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ABSTRACT

Prior conversational 3D avatar systems require mapping audio to parametric poses
and then pass through rendering pipeline. This forms a lossy bottleneck and intro-
duces cumulative errors at the the pose–to–render interface, where quantization,
retargeting, and per-frame tracking errors accumulate. As a result, they struggle to
maintain tight audio–motion synchronization and to express micro-articulations
crucial for conversational realism—bilabial closures, cheek inflation, nasolabial
dynamics, eyelid blinks, and fine hand gestures—issues that are amplified under
single-image personalization. We address these limitations with an end-to-end
framework that constructs a full-body, photorealistic 3D conversational avatar from
a single image and drives it directly from audio, bypassing intermediate pose predic-
tion. The avatar is represented as a particle-based deformation field of 3D Gaussian
primitives in a canonical space; an audio-conditioned dynamics module produces
audio-synchronous per-particle trajectories for face, hands, and body, enabling
localized, high-frequency control while preserving global coherence. A splat-based
differentiable renderer maintains identity, texture, and multi-view realism, and
we further enhance synchronization and natural expressivity by distilling priors
from a large audio-driven video diffusion model using feature-level guidance and
weak supervision from synthetic, audio-conditioned clips. End-to-end training lets
photometric and temporal objectives jointly shape the audio-conditioned deforma-
tion and rendering. Across diverse speakers and conditions, our method improves
lip–audio synchronization, fine-grained facial detail, and conversational gesture
naturalness over pose-driven baselines, while preserving identity from a single
photo and supporting photorealistic novel-view synthesis—advancing accessible,
high-fidelity digital humans for telepresence, assistants, and mixed reality.

1 INTRODUCTION

Building highly realistic and animatable 3D human avatars has been a central ambition in computer
vision and graphics for decades. Beyond static reconstruction, recent work increasingly targets
controllable, identity-preserving 3D avatars driven by external signals—e.g., pose, audio, or driving
video—with photorealistic novel-view synthesis. (Bagautdinov et al., 2021; Martinez et al., 2024;
Ng et al., 2024; Zielonka et al., 2025; Agrawal et al., 2025). We refer to 3D animatable avatar as a
personalized model that encodes a subject’s canonical shape and appearance, deforms coherently
under a driving signal, and photorealistic rendering. Despite rapid progress in neural rendering
and learned deformation, two capabilities remain underexplored in combination: personalizing a
full-body avatar from a single image, and expressing conversational talking motion directly from
audio. Achieving both in a user-friendly pipeline is challenging because it requires recovering identity
and deformation readiness from minimal input, and aligning subtle audio-conditioned dynamics
across face, hands, and body at high temporal precision.

Template-based pipelines fit SMPL/SMPL-X (Loper et al., 2023; Pavlakos et al., 2019a), learn canon-
ical geometry/texture, and drive them with pose-dependent LBS (Lewis et al., 2023), often coupled
with NeRF or 3D Gaussians (Mildenhall et al., 2021; Kerbl et al., 2023), yielding photorealistic
results across poses/views. However, they struggle with audio-synchronized conversational behav-
ior—where millisecond lip closures, coarticulation, and fine hand gestures strongly affect naturalness
since they require separate audio-to-motion module (Chhatre et al., 2024; Liu et al., 2024b; Mughal
et al., 2025) that predicts parametric body/face/hand poses to drive a pose-conditioned renderer,
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“Gary kicked the golden kite across ..., and a curious crowd gathered around to ... show.”

Reference Image
PERSONA 

(Pose-driven Avatar Deformation)

Ours 

(Audio-driven Avatar Deformation)

Performance Comparison 

with SOTA Methods

Figure 1: Motivation. When animating a 3D avatar with conversational motion from audio, state-of-
the-art pose-driven deformation approach degrades visual quality (including facial expressions), yield
less natural motion, and exhibit poor audio–motion synchronization. In contrast, our method directly
controls the avatar from the audio signal, yielding substantial improvements in visual quality, motion
naturalness, and synchronization. The table in the top-right reports a performance comparison under
a single-image input setting across 3D-avatar baselines; circle markers denote motion naturalness,
where larger circles indicate more realistic motion. For each method, we show the rendered frames
aligned to the highlighted words in the driving audio.

where this introduces a lossy bottleneck, failing to capture tongue–lip contacts, cheek inflation,
nasolabial detail, finger nuance and frame-by-frame deformation with weak temporal constraints,
leading to sync errors 1. These issues intensify under single-image personalization, where recovering
a deformation-ready canonical avatar and learning an expressive, audio-aligned controller from one
photo is especially ill-posed.

We address these challenges with an end-to-end pipeline that builds, from a single user image, a
full-body 3D conversational avatar whose motion is driven directly by audio, where we modulate
audio features to learn a dense deformation and fine appearance field inside differentiable avatar
deformer and neural renderer that preserves identity and photorealism. It enhances temporal align-
ment by sequence-level rendering losses, allowing gradients to flow through time and synchronize
deformations with speech prosody, rather than relying on per-frame pose tracking. Training on
paired audio–video sequences enables the model to realize micro-articulations and coordinated
face–hand–body dynamics without a lossy audio-to-pose bottleneck.

At the core of our approach is a particle-based deformation field embedded in a differentiable 3D
Gaussian renderer. From a single user photo, we reconstruct a canonical, identity-preserving avatar
and instantiate Gaussian particles that are dense over expressive regions (lips, eyelids, fingers) and
sparse elsewhere for efficiency. Audio features directly modulate per-particle trajectories—without
an intermediate parametric pose—so that micro-articulations at the mouth, eyes, and hands can
be controlled locally while the body motion remains globally coherent. Running this control at
audio-synchronous rates expresses both rapid transients (e.g., plosive closures) and longer prosodic
movements (e.g., head nods, beat gestures) with precise timing. Regularizers on locality and spectrum
curb jitter yet preserve the high-frequency components essential for intelligible articulation.

To strengthen synchronization and realism under the single-image regime, we distill audio–motion pri-
ors from a pretrained audio-driven video diffusion model. Diffusion features provide a sequence-level
alignment signal that nudges our particle dynamics toward plausible coarticulation and conversational
gesturing; in addition, synthetic audio-conditioned clips serve as weak supervision to diversify motion
while keeping it synchronized to the same audio. Training is end-to-end: rendering losses propagate
through time into the audio-conditioned deformation field, allowing the renderer and dynamics to
co-adapt for tight audio–visual alignment while preserving identity and photorealistic appearance
across novel views.

Contributions. (1) We propose an end-to-end, single-image pipeline that maps audio directly to a
dense differentiable deformation field inside a Gaussian renderer, eliminating the lossy audio-to-pose
and pose-to-render handoffs where quantization/retargeting/per-frame tracking errors accumulate,
thereby reducing drift and improving temporal alignment. (2) We introduce a particle-based repre-
sentation that affords localized, high-frequency facial/hand control with globally coherent full-body
motion, yielding precise conversational expressivity. (3) We develop a diffusion-distillation scheme
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Table 1: Comparison of most related works for animatable 3D full-body avatar generation. Early works typically
required multi-view or monocular videos, while recent methods enable avatar creation from a single image.
However, most focus on general body motion rather than explicitly modeling co-speech gestures for talking
avatars. Even approaches addressing talking avatars often rely on intermediate parametric pose conversion
instead of directly driving avatars from audio, which prevents temporal deformation that enforces alignment
with speech. Our method uniquely supports single-image input, full-body output, direct audio-driven control,
explicit talking avatar generation, and temporally aligned deformation.

Method Input:
Single-img.

Output:
Full-body

Audio
Driving

Talking
Avatar

Temporal
Deform.

ExAvatar (Moon et al., 2024) ✗ ✓ ✗ ✗ ✗
One-shot, One-talk (Xiang et al., 2024) ✓ ✓ ✗ ✓ ✗
IDOL (Zhuang et al., 2025) ✓ ✓ ✗ ✗ ✗
TaoAvatar (Chen et al., 2025a) ✗ ✓ ✗ ✓ ✗
AniGS (Qiu et al., 2025b) ✓ ✓ ✗ ✗ ✗
GUAVA (Zhang et al., 2025) ✓ ✗ ✗ ✓ ✗
LHM (Qiu et al., 2025a) ✓ ✓ ✗ ✗ ✗
PERSONA (Sim & Moon, 2025) ✓ ✓ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

that transfers audio–motion priors via feature alignment and synthetic audio-conditioned clips,
enabling realistic, well-synchronized behavior with minimal personalization data.

2 RELATED WORK

2.1 ANIMATABLE 3D FULL-BODY HUMAN AVATARS

Early systems reconstructed actors from 3D capture or multi-view studios and animated the resulting
meshes via hand-crafted pipelines—artist-designed rigging and skinning (e.g., LBS/DQS) or low-
dimensional, PCA-based template models (Stoll et al., 2010; Alldieck et al., 2018; Joo et al., 2015;
Pons-Moll et al., 2017; Habermann et al., 2019; Loper et al., 2023; Pavlakos et al., 2019b; Romero
et al., 2022; Li et al., 2017). Pose-parameterized articulation enabled cross-subject transfer, but heavy
expert intervention made these pipelines costly and time-consuming.

The advent of continuous implicit representations ushered in neural renderers such as NeRF (Milden-
hall et al., 2021), powering photorealistic avatars (Peng et al., 2021b;a; Zheng et al., 2023; Shen et al.,
2023; Su et al., 2021; Li et al., 2022; Wang et al., 2022) and free-view synthesis (Kwon et al., 2021;
2024; Weng et al., 2022; Guo et al., 2023; Liu et al., 2021). Yet NeRFs often train and infer slowly and
need additional structure for reliable driving and retargeting. Acceleration via multi-resolution hash
encodings and 3D Gaussian Splatting delivers real-time rendering with high-fidelity textures (Jiang
et al., 2023; Kerbl et al., 2023), though many methods still rely on multi-view capture (Li et al.,
2024; Pang et al., 2024) or monocular motion-capture signals (Moreau et al., 2024; Lei et al., 2024;
Qian et al., 2024; Hu et al., 2024a; Moon et al., 2024; Guo et al., 2025; Hu et al., 2024b) rather than
commodity monocular inputs. Complementary lines leverage video diffusion to obtain animatable
avatars from a single image, achieving view-consistent appearance even with limited data (Sim &
Moon, 2025; Xiang et al., 2024).

Motivated by these observations, we pursue high-quality conversational full-body avatars that reduce
dependence on pose-template intermediates. Our approach couples implicit motion-based deformation
with a particle-based deformation layer designed to retain fine facial dynamics and finger gestures,
while remaining compatible with efficient neural rendering. This hybrid control aims to preserve
expressiveness and temporal coherence under realistic driving signals, closing the gap between
head-only audio-driven animation and fully articulated, photorealisticistic human avatars.

2.2 HUMAN VIDEO DIFFUSION MODELS

Video diffusion models (Wan et al., 2025; Blattmann et al., 2023) have become strong backbones
for human video synthesis, enabling pose-guided animation from keypoints, dense or parametric
poses (Zhang et al., 2024; Xu et al., 2024; Hu, 2024; Xia et al., 2024; Zhu et al., 2024; Tu et al., 2024).
While these methods yield temporally consistent motion, they largely focus on coarse body animation
and require audio-to-motion conversion. More recent large audio-driven diffusion models (Meng
et al., 2025; Wang et al., 2025; Gan et al., 2025; Chen et al., 2025b; Tu et al., 2025) generate talking
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Figure 2: Architecture overview of the proposed audio-driven 3D full-body avatar synthe-
sis. Given text or speech, we obtain audio features via TTS or an audio encoder and fuse them
with template 3D-Gaussian query tokens to form driving tokens. A motion head and a Gaussian
head—augmented by personalized LHM-Gesture++ priors and Face/Body/Hand MLPs—predict
motion and appearance of 3D Gaussian particles with identity-adaptive skinning and linear blend
skinning; a Gaussian decoder and neural renderer then produce the rendered avatar sequence. Training
uses talking-video corpora with video score distillation and keypoint alignment, while projection and
positional encoding bridge audio to geometry; an audio-driven particle deformer refines dynamics
for natural lip–hand coordination. Inference reuses the same pathway from audio/text to motion &
Gaussian tokens to generate photorealisticistic, synchronized talking videos.

videos directly from a single reference image and audio, producing realistic lip motion and gestures.
However, they are typically limited to head/upper-body, rely on handcrafted or ground-truth guidance,
operate at modest resolution, and struggle with fine-grained hand and facial details as well as identity
preservation.

In contrast, our approach constructs a full-body audio-driven 3D avatar from a single image, over-
coming the scope and fidelity limitations of prior work. By synthesizing diverse identity-specific
talking videos from one image and varied audio, we enrich supervision for robust identity retention.
Moreover, by distilling motion priors from large audio-driven diffusion models, our method achieves
consistent coordination across body, hands, and face—capturing nuanced gestures and dynamic
appearance beyond what existing approaches can deliver.

3 METHOD

Overview. Our goal is to build a personalized, whole-body conversational 3D avatar from a single
image and to drive its face, hands, and body directly from audio at inference. Fig. 2 summarizes
the pipeline. We first fine-tune a large human reconstruction model (LHM) (Qiu et al., 2025a) to
the target subject (Sec. 3.1), augmenting it with a hand-enhancement branch; the model outputs a
canonical avatar represented by 3D Gaussian particles. Projected query tokens are then processed by
the Audio-driven Particle Deformer (Sec. 3.2) to produce audio-aligned deformation tokens, which
Gaussian heads convert into deformed Gaussian attributes, rendered via neural splatting. To learn
conversational dynamics from a single image, we distill a large audio-driven video diffusion teacher
(Sec. 3.3) using video score distillation and dense keypoint alignment, alongside RGB and perceptual
losses. At inference, a given audio sequence directly yields a rendered avatar video.

3.1 PERSONALIZING LHM FOR A CONVERSATIONAL AVATAR

Baseline. We adopt a large human reconstruction model (LHM) (Qiu et al., 2025a) as our baseline
to regress a canonical whole-body avatar from a single input image and a coarse body prior. The
avatar is represented by a set of 3D Gaussians G = {(µi,Σi, αi, ci)}Ni=1, where µi∈R3 is the mean,
Σi∈R3×3 the covariance, αi∈ [0, 1] the opacity, and ci the view-conditioned color. A splatting-based
rasterizer R renders photorealistic images in the canonical space, upon which our method builds.

Enhancing Hand Representation. Vanilla LHM focuses on general body motion and struggles
with fine hand gestures that are crucial for conversational expressiveness. To specialize LHM for
talking avatars, we personalize its multi–modal Body–Head Transformer by adding a dedicated hand–
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attention branch (Hand++ Body–Head Transformer). Concretely, we extract hand–specific visual
tokens using a ViT–based, pre–trained hand encoder Ehand (Pavlakos et al., 2024) applied to hand
RoIs. Let Q denote the query tokens from the LHM backbone and (Kfb,Vfb) the keys/values from
the original face–body streams. We augment keys and values with hand tokens: (Khand,Vhand) =
Proj(Ehand(RoIhand)) ;K = [Kfb ∥ Khand] ,V = [Vfb ∥ Vhand] , and compute cross-attention.
This injects hand cues into the shared latent, enhancing geometry and fine-detailed hand appearance.

Gaussian Decoder. From the hand–enhanced Transformer features, a Gaussian decoder DG outputs
G. Altogether with Hand++ Body–Head Transformer, we person–specifically fine–tune DG to
improve identity preservation while maintaining rendering stability.

3.2 AUDIO-DRIVEN PARTICLE DEFORMER

Template-driven LBS (Lewis et al., 2023) from SMPL-X (Pavlakos et al., 2019a) captures body motion
well but under-expresses speech-synchronous micro-dynamics of the face and co-speech hand gestures.
We therefore introduce an audio-driven particle deformer that converts acoustic/linguistic cues into
time-varying deformations of implicit particles bound to the avatar’s 3D Gaussian primitives. The
module includes frame-synchronous audio embeddings from an audio encoder, text embeddings from
a speech-to-text model, and avatar-conditioned 3D Gaussian query tokens. It outputs per-Gaussian
residual updates produced by a Gaussian Head. These outputs are rendered by a splatting-based
neural renderer.

Audio/Text Encoders. Given audio features a1:T , an audio encoder Eaud (Baevski et al., 2020)
produces At = Eaud(at) ∈ Rda ; optional transcripts are embedded by a text encoder Etext (Radford
et al., 2023) into Z = Etext(text) ∈ RLz×dz . We fuse modalities via a gated projector, using
Ãt = PE(t)⊕At and Dt = γt Proja(Ãt) + (1− γt) Pool(Projz(Z)), where PE(t) is positional
encoding, ⊕ denotes concatenation, Pool aggregates over text/time, and γt ∈ [0, 1] is predicted from
Ãt. The fused token Dt ∈ Rd serves as the driving signal at time t.

Audio-Driven Particle Deformer. We build our particle deformation module upon generative
dynamics of 3D Gaussians (Xie et al., 2024). We define M implicit particles J = {jm}Mm=1,
each producing an SE(3) transform Tm,t ∈ SE(3) per frame. Given 3D Gaussian query tokens
Q ∈ RNq×d from the personalized LHM (conditioned by face/body/hand encoders) and template
query tokens Q0, we compute cross-attention to align speech cues with avatar structure:

Kt = ProjK([Q ∥Q0]) , Vt = ProjV ([Q ∥Q0]) , (1)

Hmot
t = softmax

(
ProjQ(Dt)K

⊤
t√

d

)
Vt, (2)

yielding motion-context features Hmot
t ∈ RM×dh . A residual SE(3) parameterization is predicted as

twist coordinates ∆ξm,t ∈ R6 and integrated via the exponential map:

∆ξm,t = MLPξ
(
Hmot
t [m]

)
, Tm,t = exp

(
∆̂ξm,t

)
Tm,t−1, (3)

with ·̂ the se(3) hat operator. The Audio-driven Particle Deformer and Projection & Positional
Encoding blocks are shown in the architecture diagram.

Gaussian Head (Appearance/Residual Geometry). Speech induces fine nonrigid changes (lip
rounding, teeth visibility, specular shifts). Complementary to LBS, the Gaussian Head predicts
per-Gaussian residuals conditioned on both the driving token and Gaussian queries:

Hgau
t = CrossAttn

(
Dt,Q

)
, (4)

∆pi(t) = MLPµ
(
Hgau
t [i]

)
, ∆si(t) = MLPΣ

(
Hgau
t [i]

)
, (5)

∆αi(t) = MLPα
(
Hgau
t [i]

)
, ∆ci(t) = MLPc

(
Hgau
t [i]

)
, (6)

and applies them after motion:
µ⋆i (t) = µ′

i(t) + ∆pi(t), (7)

Σ⋆
i (t) = Σ′

i(t)⊕∆si(t), α⋆i (t) = αi +∆αi(t), c⋆i (t) = ci +∆ci(t). (8)
Here ⊕ denotes a stable covariance update. The Gaussian Head is shown alongside the Motion Head
in the pipeline.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.3 DISTILLING AUDIO-DRIVEN LARGE HUMAN VIDEO DIFUSSION MODEL AND TRAINING

We leverage a audio-driven large human video diffusion model (Chen et al., 2025b) to enable a 3D
avatar to express conversational motion from a single image. Specifically, we (i) augment person-
specific talking video datasets (see supplementary for details), and (ii) transfer motion knowledge
learned from large-scale data into the 3D avatar through a video score distillation objective. This also
mitigates the identity preservation issues common when relying only on image-level losses. Below,
we further describe video score distillation, dense keypoint alignment, and the total loss.

Video Score Distillation. Let I1:T (Φ) be frames rendered from our model parameters Φ (particle
deformer, motion/gaussian heads, skinning, renderer), conditioned on driving audio/text c. Denote
the teacher score network sψ(·, τ, c) at noise level τ with variance schedule α(τ) and σ(τ). We apply
a video variant of score-distillation sampling to inject the teacher’s generative prior:

∇ΦLvsd = Et,τ,ϵ
[
w(τ)

(
sψ(xt,τ , τ, c)− ϵ

) ∂xt,τ
∂Φ

]
, xt,τ = α(τ) It(Φ) + σ(τ)ϵ, (9)

which encourages I1:T to lie on the teacher’s audio-conditioned video manifold while inheriting its
temporal coherence.

Dense Keypoint Alignment. To sharpen motion-phase alignment, we detect dense 2D face/hand
keypoints from the teacher frames {Ĩt} and from our renderings {It}. With Kface

t , Khand
t and their

teacher counterparts K̃face
t , K̃hand

t , we minimize

Lkpt =
∑
t

[
ρ
(
∥Kface

t − K̃face
t ∥2

)
+ λhandρ

(
∥Khand

t − K̃hand
t ∥2

)]
, (10)

where ρ is a robust penalty to handle detector noise and occlusions.

Image-Level Supervision and Total Loss. We constrain appearance with per-frame RGB and per-
ceptual losses, Limg =

∑
t ∥It− Ĩt∥1+λperc

∑
t ∥ϕ(It)−ϕ(Ĩt)∥22, where ϕ is a fixed visual encoder.

The full objective is L = λvsdLvsd+λkptLkpt+λimgLimg+λregLreg, where λvsd, λpkt, λimg, λreg

is scaling parameters, Lreg is an ARAP (as-rigid-as-possible) regularizer on deformations to preserve
local rigidity and stabilize the avatar, jointly optimizing all modules for identity preservation, speech
synchrony, and temporal smoothness.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP.

Dataset. Due to the limited availability of publicly accessible conversational human videos paired
with audio, we aggregate data from multiple sources. In total, we collect and process ∼15,000
videos drawn from the Seamless-Interaction dataset (Agrawal et al., 2025), the Casual Conversational
dataset (Porgali et al., 2023), additional online sources, and our own in-house captures. All videos
depict a single human subject engaged in natural conversation, exhibiting both speaking activity and
accompanying conversational motions, and each video is temporally aligned with its corresponding
audio track. For evaluation, we create identity-aware splits: 10% of the videos for each identity are
held out as a test set, and the remaining videos are used for training. Unless otherwise specified, the
first frame of each video serves as the reference image of each models, for that identity.

Metrics. We evaluate our approach from multiple perspectives, using a variety of evaluation metrics.
We evaluate the visual and aesthetic quality by evaluating IQA and ASE using Q-align (Wu et al.,
2023). We adopt SyncC and SyncD, introduced by (Prajwal et al., 2020), to quantify the synchro-
nization accuracy between lip motion and the corresponding audio. To evaluate the preservation of
facial identity, we compute the cosine similarity (CSIM) between facial features extracted from the
reference image and those from the generated frames. We further assess gesture fidelity using the
average keypoint distance, reporting the Hand Keypoint Confidence (HKC) and the Hand Keypoint
Variance (HKV), defined as the average confidence score and standard deviation of detected hand
keypoints. For low-level reconstruction fidelity, we report PSNR and SSIM (Wang et al., 2004)
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“Do you know how many ideas we could explore?”“Today is the best time to start something new.” Bottom:Top:

Figure 3: Qualitative comparison with state-of-the-art audio-driven large human video diffusion
models. For each method, we show the rendered frames aligned to the highlighted words in the
driving audio. Our method outperforms state-of-the-art approaches in terms of visual quality, motion
naturalness, and synchronization.

between the rendered images and the ground-truth video, given same audio driving signal. Lastly, we
employ the Fréchet Inception Distance (FID) (Heusel et al., 2017) and the Fréchet Video Distance
(FVD) (Unterthiner et al., 2019) to measure the generative diversity and overall coherence of rendered
3d avatars.

Comparative Methods. For comparative analysis, we benchmarked our approach against the most
relevant state-of-the-art methods for creating animatable 3D avatars from a single image, namely
publicly available PERSONA (Sim & Moon, 2025) and LHM (Qiu et al., 2025a), through both
quantitative and qualitative evaluations. However, unlike our approach, they cannot directly drive
a 3D avatar from audio and therefore require a converter from audio to a sequence of SMPL-X
pose parameters. To this end, we utilize a state-of-the-art whole-body motion converter (Bian et al.,
2025) to generate motion, which is then used to control the 3D avatars of the baselines. In addition,
since our framework incorporates a rendering pipeline capable of producing fully rendered videos,
we further extended our comparisons to include several state-of-the-art audio-driven human video
diffusion models, OmniAvatar (Gan et al., 2025) and HunyuanVideo-Avatar Chen et al. (2025b), to
provide a broader evaluation.

4.2 RESULTS

Quantitative Comparisons. Table 2 shows that our approach outperforms all baselines across
the ten reported metrics on the test set. Against single-image 3D avatar methods, LHM (Qiu et al.,
2025a) and PERSONA (Sim & Moon, 2025), our method achieves higher perceptual quality (IQA:
+3.4%, ASE: +4.4%), better audio–lip synchronization (SyncC: +4.3%, SyncD: ↓20.3% vs. the
best baseline), and stronger low-level fidelity (SSIM: +4.7%, PSNR: +4.3%). When compared with
state-of-the-art audio-driven human video diffusion models, OmniAvatar (Gan et al., 2025) and
HunyuanVideo-Avatar (Chen et al., 2025b), our method delivers markedly improved video-level
realism and temporal coherence, reducing FID by 27.9% (12.4 vs. 17.2) and FVD by 25.0% (240
vs. 320) relative to the strongest baseline. We also observe consistent gains in hand–gesture fidelity
(HKC: +2.5%), reflecting more reliable control of fine-grained motions. Overall, these results
substantiate the effectiveness of our audio-driven 3D avatar pipeline, yielding robust improvements
across perceptual, synchronization, reconstruction, and video-level metrics.

Qualitative Comparisons. Fig. 3 qualitatively compares the baselines that synthesize animatable
3D avatars from a 3D image on the test sets. Because prior approaches cannot directly control
a 3D avatar from audio, we evaluate rendering quality under the same motion for all methods to
ensure a fair comparison. The results show that our approach produces sharper and more expressive
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OursOmniAvatarReference Image

“I saw a beautiful blue house on a quiet avenue, and ... was reading a book aloud.”

“Today the little stars danced silently above the valley, while ... to sing about peace and love.”

OursHunyuanVideo-AvatarReference Image

Figure 4: Qualitative comparison with human video generation models. For each method, we
show the rendered frames aligned to the highlighted words in the driving audio, along with cropped
views of the face and hands for finer inspection. Relative to diffusion-based baselines, our approach
exhibits fewer motion artifacts (e.g., lip–audio desynchronization, hand jitter/warping) and stronger
identity preservation across views and phonetic contexts.

“We are all walking our own paths, living each day anew. How often do we pause to focus on ourselves in this journey?”

Reference Image (a) (d) (e)(b) (c)

Figure 5: Ablation of the proposed components. We evaluate (a) w/o LHM personalization,
(b) w/o Lvsd, (c) w/o particle-based deformer, (d) w/o Lkpt, and (e) full model. Removing any
component harms visual fidelity, motion naturalness, and audio–motion sync, confirming each
element’s contribution to overall quality.

facial expressions, improved lip synchronization, and finer hand–gesture details. Across time, our
renderings also exhibit smoother, more natural motion transitions.

Our rendering pipeline is built on a Gaussian rasterizer, enabling direct extraction of videos as
sequences of images. We therefore also compare against state-of-the-art methods that generate
human-animation videos from audio signals, as shown in Fig. 4. The visual comparisons indicate
that our method achieves competitive image and motion quality even relative to recent generative
video diffusion models. Notably, the second example highlights two consistent advantages of our
approach: (i) motion-consistent preservation of fine hand details and (ii) stronger identity preservation
throughout the sequence.

Ablation Study. We systematically ablate the proposed components and compare each variant to
the full model across all metrics. Please refer to Table 3, and we qualitatively validate the proposed
key components in Fig. 5.

Personalization module. Removing the fine-tuned Gaussian decoder (w/o finetune. Gaussian de-
coder) degrades perceptual and reconstruction quality (IQA and PSNR), while dropping the weight
decoder (w/o weight decoder) increases distributional gaps (FID and FVD 275). Omitting the hand-
enhancement pathway (w/o hand enhancement) notably reduces hand–gesture fidelity (HKC) despite
otherwise moderate scores, confirming the role of high-frequency hand priors.

Audio-driven particle deformer. Excluding implicit motion tokens (w/o implicit motion tokens)
harms audio–motion alignment (SyncC and SyncD) and raises video distances (FVD), indicating that
compact motion cues are crucial for temporally coherent driving. Removing hand-gesture offsets
(w/o hand gesture offsets) primarily impacts HKC, whereas removing facial-expression offsets (w/o
face expression offsets) lowers perceptual quality and lip–face expressivity (IQA 4.00, SyncC 6.85).
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Table 2: Quantitative comparisons on the test set. We compare our method with state-of-the-art
methods that generate animatable 3D avatars from a single image and audio-driven human video
diffusion models, across the evaluation metrics on the test set. Our approach consistently demonstrates
significantly superior performance across all ten evaluation metrics.

Methods IQA↑ ASE↑ SyncC↑ SyncD↓ HKC↑ CSIM↓ SSIM↑ PSNR↑ FID↓ FVD↓
EchoMimicV2 (Meng et al., 2025) 3.37 1.98 4.12 10.20 0.836 0.458 0.660 15.90 22.8 420
OmniAvatar (Gan et al., 2025) 3.99 2.64 6.40 7.60 0.858 0.525 0.705 17.20 18.6 350
HunyuanVideo-Avatar (Chen et al., 2025b) 4.08 2.71 6.90 7.12 0.875 0.539 0.709 17.55 17.2 320

LHM (Qiu et al., 2025a) 3.80 2.50 6.10 7.00 0.860 0.500 0.700 16.90 19.5 365
PERSONA (Sim & Moon, 2025) 3.88 2.58 6.30 6.80 0.868 0.510 0.708 17.20 18.9 345

Ours 4.22 2.83 7.20 5.42 0.897 0.551 0.742 18.30 12.4 240

Table 3: Ablation study. We demonstrate the effectiveness of our proposed components by sys-
tematically removing them and comparing against our full model across all evaluation metrics. The
first block (rows 2–4) corresponds to the components introduced for personalizing large human
reconstruction for conversational avatars. The second block (rows 5–7) includes the components
introduced in the audio-driven particle deformer for the temporal deformation model. The third block
(rows 8–9) consists of the objective functions incorporated to inject knowledge from audio-driven
video diffusion models into our framework. The results highlight the importance of each proposed
component, as all of them contribute to significant performance improvements across the evaluation
metrics.

Methods IQA↑ ASE↑ SyncC↑ SyncD↓ HKC↑ CSIM↓ SSIM↑ PSNR↑ FID↓ FVD↓
w/o finetune. Gaussian decoder 4.05 2.75 7.05 5.60 0.890 0.545 0.720 17.60 13.8 265
w/o hand enhancement 4.18 2.80 7.15 5.45 0.870 0.555 0.735 18.10 13.1 252
w/o weight decoder 4.10 2.72 6.95 5.70 0.885 0.540 0.728 17.80 14.5 275

w/o implicit motion tokens 4.08 2.70 6.60 6.10 0.882 0.538 0.726 17.70 15.2 300
w/o hand gesture offsets 4.16 2.78 7.10 5.50 0.860 0.552 0.734 18.00 13.7 258
w/o face expression offsets 4.00 2.74 6.85 5.80 0.888 0.520 0.730 17.90 14.2 272

w/o video score distillation 3.95 2.69 6.90 5.78 0.886 0.542 0.722 17.50 15.0 290
w/o keypoint alignment 4.02 2.73 6.70 6.20 0.872 0.544 0.725 17.60 15.6 310

Ours 4.22 2.83 7.20 5.42 0.897 0.551 0.742 18.30 12.4 240

Objective functions. Disabling video score distillation (w/o video score distillation) yields broad drops
across perception and fidelity (IQA, ASE, FID, and FVD), and removing keypoint alignment (w/o
keypoint alignment) produces the highest temporal distance (FVD) together with the worst sync error
(SyncD), underscoring the value of geometry-aware supervision. Overall, the full model achieves the
best results on all metrics, demonstrating that each component contributes meaningfully to perceptual
quality, audio–lip synchronization, fine-grained gesture control, and temporal coherence.

5 CONCLUSION

In this paper, we proposed an end-to-end framework that constructs a personalized full-body 3D avatar
from only a single image and drives its motion directly from raw audio. Unlike prior approaches
that rely on intermediate parametric pose representations, our method eliminates the lossy audio-to-
motion bottleneck and enables temporally precise, expressive conversational behavior. Leveraging
a particle-based deformation model, the system captures fine-grained details in facial expressions
and hand gestures while maintaining globally coherent body motion. Furthermore, by distilling
motion priors from large-scale audio-driven video diffusion models, we enhance synchronization,
motion diversity, and robustness under the single-image regime. Comprehensive experiments confirm
that our framework delivers more photorealisticistic and synchronized talking avatars than existing
baselines. We believe this formulation opens new possibilities for creating accessible, high-fidelity
digital humans, with broad applications in telepresence, embodied AI, and immersive mixed reality
environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Ethics Statement. This work makes use of publicly available datasets (Seamless-Interaction,
Casual Conversational dataset) as well as a small amount of internally collected data. For all publicly
available datasets, we adhere to their original license terms. For the internally collected data, explicit
consent was obtained from the participants, and no personally identifying information beyond facial
and vocal expressions was retained.

The proposed 3D talking avatar model has positive applications in telepresence, education, accessibil-
ity, and mixed reality systems. However, we acknowledge that the technology may be misused for
harmful purposes, such as the creation of deceptive media. To mitigate such risks, we discuss limita-
tions of the model and emphasize responsible use, including the potential integration of watermarking
and detection mechanisms in deployment scenarios.

We also recognize possible concerns of fairness and bias, as datasets may not equally represent
diverse demographics. We encourage future work to evaluate and expand the diversity of training
data.

No sensitive personal information or medical data were used in this study. Institutional review board
(IRB) approval was not required for the datasets employed, but ethical considerations regarding
privacy, data protection, and informed consent were carefully followed.
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Sylvain Gelly. Fvd: A new metric for video generation. 2019.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Mengchao Wang, Qiang Wang, Fan Jiang, Yaqi Fan, Yunpeng Zhang, Yonggang Qi, Kun Zhao, and
Mu Xu. Fantasytalking: Realistic talking portrait generation via coherent motion synthesis. arXiv
preprint arXiv:2504.04842, 2025.

Shaofei Wang, Katja Schwarz, Andreas Geiger, and Siyu Tang. Arah: Animatable volume rendering
of articulated human sdfs. In European conference on computer vision, pp. 1–19. Springer, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira Kemelmacher-
Shlizerman. Humannerf: Free-viewpoint rendering of moving people from monocular video.
In Proceedings of the IEEE/CVF conference on computer vision and pattern Recognition, pp.
16210–16220, 2022.

Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching lmms for visual scoring via
discrete text-defined levels. arXiv preprint arXiv:2312.17090, 2023.

Zhiqiang Xia, Zhaokang Chen, Bin Wu, Chao Li, Kwok-Wai Hung, Chao Zhan, Yingjie He, and
Wenjiang Zhou. Musev: Infinite-length and high fidelity virtual human video generation with
visual conditioned parallel denoising. arxiv, 2024.

Jun Xiang, Yudong Guo, Leipeng Hu, Boyang Guo, Yancheng Yuan, and Juyong Zhang. One shot,
one talk: Whole-body talking avatar from a single image. arXiv preprint arXiv:2412.01106, 2024.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4389–4398, 2024.

Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation using
diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1481–1490, 2024.

Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao, Yandong Wen, Timo Bolkart, Dacheng Tao, and
Michael J Black. Generating holistic 3d human motion from speech. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 469–480, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Dongbin Zhang, Yunfei Liu, Lijian Lin, Ye Zhu, Yang Li, Minghan Qin, Yu Li, and Haoqian Wang.
Guava: Generalizable upper body 3d gaussian avatar. arXiv preprint arXiv:2505.03351, 2025.

Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, and Fangyuan Zou.
Mimicmotion: High-quality human motion video generation with confidence-aware pose guidance.
arXiv preprint arXiv:2406.19680, 2024.

Zerong Zheng, Xiaochen Zhao, Hongwen Zhang, Boning Liu, and Yebin Liu. AvatarRex: Real-time
expressive full-body avatars. ACM TOG, 2023.

Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Zilong Dong, Yinghui Xu, Xun Cao, Yao Yao,
Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d
parametric guidance. In European Conference on Computer Vision, pp. 145–162. Springer, 2024.

Yiyu Zhuang, Jiaxi Lv, Hao Wen, Qing Shuai, Ailing Zeng, Hao Zhu, Shifeng Chen, Yujiu Yang,
Xun Cao, and Wei Liu. Idol: Instant photorealistic 3d human creation from a single image. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 26308–26319, 2025.

Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier
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A MORE RELATED WORKS AND DISCUSSION

Co-Speech Gesture Video Generation. Similar to large-scale human video diffusion models,
prior work has studied human video generation from audio, skeleton data, or 2D/3D poses, often
through a two-stage pipeline: mapping audio to poses and then using a pre-trained GAN-based
pose2video model (Ginosar et al., 2019; Qian et al., 2021). More recently, diffusion models (Hogue
et al., 2024; Liu et al., 2024a; Qian et al., 2021; Liu et al., 2022; He et al., 2024) have been applied. A
study (Huang et al., 2024) has also been introduced that generates a style-specific anchor avatar video
from only a one-minute video clip. With notable work (Li et al., 2025) directly generating videos
from audio, showing that bypassing the audio-to-pose step—long a performance bottleneck—can
advance the task.

While this task shares the common goal of generating talking human videos from audio signals, it
differs significantly from our approach: such methods typically produce only 2D videos rather than
3D avatars, and the generated content is limited to the upper body. Furthermore, they have been
validated only on constrained domain-specific datasets, such as TED talks.

Speech-driven Whole-body Motion Generation. This section focuses on methodologies that
generate body, face, and hand parametric motions together. It is the task of automatically predicting
natural, human-like body and hand gestures that align with spoken language. Unlike earlier works
that focused on generating only facial expressions or body gestures in isolation, recent research
has begun to explore the simultaneous generation of body, face, and hand gestures. These studies
have introduced several methodological advances, including the use of VQ-VAE architectures (Yi
et al., 2023), the adoption of large-scale datasets (Liu et al., 2024b), diffusion-based generative
models (Chhatre et al., 2024; Chen et al., 2024; Mughal et al., 2025), and real-time generation (Liu
et al., 2025) enabled by MAMBA or Flow Matching approaches. More recently, motion generation
has been significantly improved through multi-task learning that incorporates diverse multimodal
signals such as speech, text, and music, along with tasks including text-to-motion, audio-to-motion,
and dance generation (Bian et al., 2025).

These methods map audio signals to co-speech gesture motions for 3D avatars, but their reliance
on low-dimensional representations limits fine details such as wrinkles, facial nuances, and subtle
hand gestures. Articulations and skinning on naked body meshes also cause deformation errors with
clothed avatars. To address this, we propose an end-to-end pipeline that directly deforms 3D avatars
from raw audio, reducing information loss and shape-induced errors while enabling photorealistic
detail and expressive gestures. We further validated our approach through comparison with the
state-of-the-art MotionCraft.

B ADDITIONAL RESULTS

We provide additional visual comparisons with methods that generate animatable 3D avatars from a
single image, as well as with several audio-driven large human video diffusion models. Please refer to
Fig. 6 and Fig. 7. Furthermore, we compare with One-shot and One-talk (Xiang et al., 2024), which
are related works that generate 3D talking avatars from a single image. However, since their code
and details regarding the train/test dataset split are not publicly available, it is difficult to conduct
a quantitative comparison. Instead, we compare with the results released on their project pages to
demonstrate the clear performance advantages of our approach. Please refer to Fig. 8.

C CONVERSATIONAL TALKING HUMAN DATASET CREATION

We describe in detail the pipeline for constructing a whole-body talking human video dataset paired
with audio. An overview of the pipeline is illustrated in Fig. 9. We need to learn the whole-body
motion of a 3D avatar from a single reference image. In this section, we leverage an audio-driven large
human video diffusion model to achieve this goal. We propose a systematic pipeline for constructing
a Conversational Talking Human Dataset, which integrates multimodal resources—text, audio, and
video—to enable the generation of realistic, conversational human avatars. The process is designed to
balance both diversity and consistency across different modalities, ensuring that the resulting dataset
can serve as a strong foundation for speech-driven avatar generation and conversational AI research.
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Figure 6: Visual comparison with large human video diffusion models. Our method shows
improved identity preservation and reduced hand artifacts compared to human video diffusion
models.

Attribute Dictionary Construction. The pipeline begins with the construction of an attribute
dictionary that defines the diversity of the generated human figures. Attributes such as gender,
age, body type, hairstyle, and clothing style are explicitly enumerated to create a wide spectrum of
possible appearances. These attributes are embedded in carefully engineered text-to-image prompts
that instruct the model to produce full-body renderings of realistic humans. Each generated image
depicts a human making a conversational gesture, facing forward with both hands visible and
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Figure 7: Visual comparison with single-image animatable 3D avatars. Our method shows
superior visual quality and motion naturalness compared to them.

undistorted, while maintaining a solid background for visual consistency. This stage ensures not only
diversity in representation but also structural integrity across the generated subjects.

Text Corpus Design. To simulate natural conversational dynamics, a dedicated text corpus is
created. The corpus contains phrases that mirror authentic human interactions, including greetings,
introductions, transitional statements, and engagement prompts. Rather than arbitrary text, these
utterances are contextually grounded and resemble real dialogue or presentation scenarios. This
design guarantees that the dataset captures the flow and tone of human-to-human communication.
The collected text corpus is used as prompts at the LLM system (OpenAI, 2025).

Speech Generation. Each textual utterance is paired with a high-quality speech sample using text-
to-speech (TTS) systems (ElevenLabs, 2025). Multiple variations in voice characteristics—including
gender, timbre, and speaking style—are generated in order to reflect the natural diversity of spoken
communication. This step enriches the dataset with acoustic variety and ensures that the resulting
videos are not limited to a single vocal identity.

Text-to-Image Human Generation. Once the attributes and speech samples are defined, a diffusion-
based text-to-image model (OpenAI, 2025) is employed to generate photorealistic human figures. By
embedding the attribute specifications into prompts, the model produces visually consistent renderings
that adhere to the conversational setting. Particular care is taken to enforce gestural realism, especially
in the visibility and articulation of hands and fingers, as well as in the appropriateness of facial
expressions aligned with conversational intent. The use of full-body images further enhances the
realism and applicability of the dataset.
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Figure 8: Qualitative comparison with One-shot, One-talk (Xiang et al., 2024). Since the code for
these methods is not publicly available, quantitative comparison cannot be conducted. However, to
demonstrate the superior performance of our proposed approach, we compare with the results released
on the project page. Our method shows better hand appearance and gesture details. Moreover, it
exhibits stronger ability to preserve facial identity across frames.

Gender: [“female”, “male”]

Age: [“child”, ..., “middle-aged”]

Body Type: [“slim”, ..., “muscular”]

Hair Style: [“straight”,..., “ponytail”]

Clothing Style: [“casual”,... ,“formal”]

⋯

Attribute Dictionary

"A full-body photo of a realistic human 
{Gender}. He has {Hair Style},...,{Clothing 
Style} and is making a conversational gesture 
while facing the camera, with his gaze directed 
forward. Both hands are clearly visible, with 
all fingers on the left and right hands shown 
without distortion. The background is a solid 
color, and the entire full body must appear in 
the image."

Prompt

"Good evening, here are today’s top headlines for you."

"Up next, we’ll bring you the ... from around the world."

"Hello everyone, I’m delighted to spend ... with you today."

"Are you ready to get started? Let’s go."

"Stay tuned for more details right after this short break."

⋯

Text Corpus

⋯

Audio Corpus

Audio-Driven Large Human Video Diffusion Model
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Text-to-Image Generation
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⋯

Talking Human Video Dataset

Figure 9: Conversational Human Video Dataset creation pipeline overview.

Audio-Driven Talking Human Video Synthesis. The crucial stage of the pipeline involves syn-
chronizing static images with their corresponding audio through an audio-driven large human video
diffusion model (Chen et al., 2025b). This model generates temporally coherent talking human videos
by aligning lip movements, facial expressions, and subtle body gestures with the spoken content. The
synthesis produces lifelike video segments in which the generated characters convincingly deliver the
conversational utterances. The final dataset is assembled by systematically combining the generated
human images, the conversational text corpus, the paired speech samples, and the synchronized
talking human videos. This multimodal alignment provides a rich and diverse resource that can
support applications, including realistic whole-body human avatar generation. The proposed dataset
creation pipeline not only emphasizes diversity and naturalism but also ensures reproducibility and
scalability for future studies in this field.
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D LIMITATIONS

While our approach achieves compelling results, we acknowledge several limitations. First, novel
view synthesis remains challenging. Because our system constructs avatars from a single input
image and augments training data through audio-driven human video diffusion models, the generated
samples are primarily near-frontal views, which limits performance under large viewpoint shifts.
Nevertheless, our framework still produces high-fidelity avatars in typical front-facing scenarios,
which are the most relevant for applications such as video conferencing, education, and digital
assistants.

Second, our method does not yet support interactive conversational avatar generation. In natural
conversations, gestures and expressions often adapt dynamically to the partner’s speech and behavior,
a factor not modeled in our current framework. Even so, by focusing solely on the speaker’s audio,
our method captures speech-synchronized motions with remarkable consistency, offering a reliable
foundation for lifelike avatar animation. We see interactive modeling as an exciting avenue for future
research, but our present approach already provides a strong step toward expressive and accessible
human-avatar communication.

E BROADER IMPACTS

Potential Negative Societal Impacts Our work advances high-fidelity, audio-driven 3D talking
avatars but also carries risks. The technology could be misused to create deceptive or harmful media,
such as deepfakes for misinformation, harassment, or identity fraud, raising ethical and legal concerns
about trust in digital communication. Fairness and bias are also issues, as underrepresented groups in
training data may experience degraded performance. Privacy risks emerge if avatars are generated
without consent, and high computational demands may limit accessibility, reinforcing the digital
divide.

Broader Impacts At the same time, this technology offers significant benefits. Personalized 3D
avatars can enhance telepresence, education, and remote collaboration, lowering communication
barriers across diverse contexts. For individuals with disabilities, avatars may open new channels
for expression and inclusion. The method also benefits entertainment, creative industries, and mixed
reality applications. More broadly, it contributes to understanding the coupling of speech and
gesture. To support responsible use, future work should incorporate safeguards such as watermarking,
provenance tracking, and bias-aware evaluations.
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