
AUDIO-DRIVEN 3D CONVERSATIONAL FULL-BODY HUMAN AVATAR GENERATION FROM A SINGLE IMAGE

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

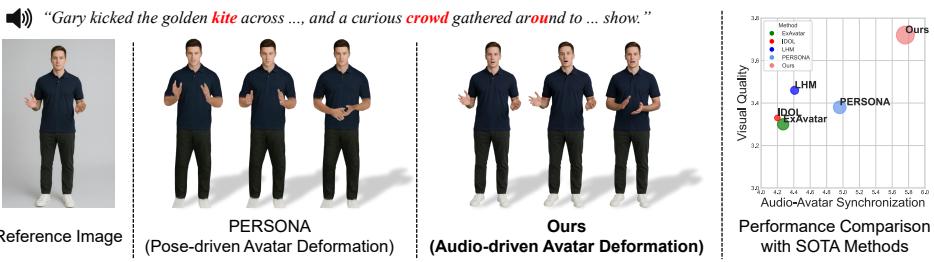
011 Prior conversational 3D avatar systems require mapping audio to parametric poses
012 and then pass through rendering pipeline. This forms a lossy bottleneck and intro-
013 duces cumulative errors at the the pose-to-render interface, where quantization,
014 retargeting, and per-frame tracking errors accumulate. As a result, they struggle to
015 maintain tight audio–motion synchronization and to express micro-articulations
016 crucial for conversational realism—bilabial closures, cheek inflation, nasolabial
017 dynamics, eyelid blinks, and fine hand gestures—issues that are amplified under
018 single-image personalization. We address these limitations with an end-to-end
019 framework that constructs a full-body, photorealistic 3D conversational avatar from
020 a single image and drives it directly from audio, bypassing intermediate pose predic-
021 tion. The avatar is represented as a particle-based deformation field of 3D Gaussian
022 primitives in a canonical space; an audio-conditioned dynamics module produces
023 audio-synchronous per-particle trajectories for face, hands, and body, enabling
024 localized, high-frequency control while preserving global coherence. A splat-based
025 differentiable renderer maintains identity, texture, and multi-view realism, and
026 we further enhance synchronization and natural expressivity by distilling priors
027 from a large audio-driven video diffusion model using feature-level guidance and
028 weak supervision from synthetic, audio-conditioned clips. End-to-end training lets
029 photometric and temporal objectives jointly shape the audio-conditioned deforma-
030 tion and rendering. Across diverse speakers and conditions, our method improves
031 lip–audio synchronization, fine-grained facial detail, and conversational gesture
032 naturalness over pose-driven baselines, while preserving identity from a single
033 photo and supporting photorealistic novel-view synthesis—advancing accessible,
034 high-fidelity digital humans for telepresence, assistants, and mixed reality.
035

1 INTRODUCTION

036 Building highly realistic and animatable 3D human avatars has been a central ambition in computer
037 vision and graphics for decades. Beyond static reconstruction, recent work increasingly targets
038 controllable, identity-preserving 3D avatars driven by external signals—e.g., pose, audio, or driving
039 video—with photorealistic novel-view synthesis. (Bagautdinov et al., 2021; Martinez et al., 2024;
040 Ng et al., 2024; Zielonka et al., 2025; Agrawal et al., 2025). We refer to 3D animatable avatar as a
041 personalized model that encodes a subject’s canonical shape and appearance, deforms coherently
042 under a driving signal, and photorealistic rendering. Despite rapid progress in neural rendering
043 and learned deformation, two capabilities remain underexplored in combination: personalizing a
044 full-body avatar from a single image, and expressing conversational talking motion directly from
045 audio. Achieving both in a user-friendly pipeline is challenging because it requires recovering identity
046 and deformation readiness from minimal input, and aligning subtle audio-conditioned dynamics
047 across face, hands, and body at high temporal precision.

048 Template-based pipelines fit SMPL/SMPL-X (Loper et al., 2023; Pavlakos et al., 2019a), learn canon-
049 ical geometry/texture, and drive them with pose-dependent LBS (Lewis et al., 2023), often coupled
050 with NeRF or 3D Gaussians (Mildenhall et al., 2021; Kerbl et al., 2023), yielding photorealistic
051 results across poses/views. However, they struggle with audio-synchronized conversational behav-
052 ior—where millisecond lip closures, coarticulation, and fine hand gestures strongly affect naturalness
053 since they require separate audio-to-motion module (Chhatre et al., 2024; Liu et al., 2024b; Mughal
et al., 2025) that predicts parametric body/face/hand poses to drive a pose-conditioned renderer,

054
055
056
057
058
059
060
061
062



063 Figure 1: **Motivation.** When animating a 3D avatar with conversational motion from audio, state-of-
064 the-art pose-driven deformation approach degrades visual quality (including facial expressions), yield
065 less natural motion, and exhibit poor audio–motion synchronization. In contrast, our method directly
066 controls the avatar from the audio signal, yielding substantial improvements in visual quality, motion
067 naturalness, and synchronization. The table in the top-right reports a performance comparison under
068 a single-image input setting across 3D-avatar baselines; circle markers denote motion naturalness,
069 where larger circles indicate more realistic motion. For each method, we show the rendered frames
070 aligned to the **highlighted** words in the driving audio.

071
072
073
074
075
076
077
078

where this introduces a lossy bottleneck, failing to capture tongue–lip contacts, cheek inflation, nasolabial detail, finger nuance and frame-by-frame deformation with weak temporal constraints, leading to sync errors 1. These issues intensify under single-image personalization, where recovering a deformation-ready canonical avatar and learning an expressive, audio-aligned controller from one photo is especially ill-posed.

079
080
081
082
083
084
085
086

We address these challenges with an end-to-end pipeline that builds, from a single user image, a full-body 3D conversational avatar whose motion is driven directly by audio, where we modulate audio features to learn a dense deformation and fine appearance field inside differentiable avatar deformer and neural renderer that preserves identity and photorealism. It enhances temporal alignment by sequence-level rendering losses, allowing gradients to flow through time and synchronize deformations with speech prosody, rather than relying on per-frame pose tracking. Training on paired audio–video sequences enables the model to realize micro-articulations and coordinated face–hand–body dynamics without a lossy audio-to-pose bottleneck.

087
088
089
090
091
092
093
094

At the core of our approach is a particle-based deformation field embedded in a differentiable 3D Gaussian renderer. From a single user photo, we reconstruct a canonical, identity-preserving avatar and instantiate Gaussian particles that are dense over expressive regions (lips, eyelids, fingers) and sparse elsewhere for efficiency. Audio features directly modulate per-particle trajectories—without an intermediate parametric pose—so that micro-articulations at the mouth, eyes, and hands can be controlled locally while the body motion remains globally coherent. Running this control at audio-synchronous rates expresses both rapid transients (e.g., plosive closures) and longer prosodic movements (e.g., head nods, beat gestures) with precise timing. Regularizers on locality and spectrum curb jitter yet preserve the high-frequency components essential for intelligible articulation.

095
096
097
098
099
100
101
102

To strengthen synchronization and realism under the single-image regime, we distill audio–motion priors from a pretrained audio-driven video diffusion model. Diffusion features provide a sequence-level alignment signal that nudges our particle dynamics toward plausible coarticulation and conversational gesturing; in addition, synthetic audio-conditioned clips serve as weak supervision to diversify motion while keeping it synchronized to the same audio. Training is end-to-end: rendering losses propagate through time into the audio-conditioned deformation field, allowing the renderer and dynamics to co-adapt for tight audio–visual alignment while preserving identity and photorealistic appearance across novel views.

103
104
105
106
107

Contributions. (1) We propose an end-to-end, single-image pipeline that maps audio directly to a dense differentiable deformation field inside a Gaussian renderer, eliminating the lossy audio-to-pose and pose-to-render handoffs where quantization/retargeting/per-frame tracking errors accumulate, thereby reducing drift and improving temporal alignment. (2) We introduce a particle-based representation that affords localized, high-frequency facial/hand control with globally coherent full-body motion, yielding precise conversational expressivity. (3) We develop a diffusion-distillation scheme

108 Table 1: Comparison of most related works for animatable 3D full-body avatar generation. Early works typically
109 required multi-view or monocular videos, while recent methods enable avatar creation from a single image.
110 However, most focus on general body motion rather than explicitly modeling co-speech gestures for talking
111 avatars. Even approaches addressing talking avatars often rely on intermediate parametric pose conversion
112 instead of directly driving avatars from audio, which prevents temporal deformation that enforces alignment
113 with speech. Our method uniquely supports single-image input, full-body output, direct audio-driven control,
114 explicit talking avatar generation, and temporally aligned deformation.

Method	Input: Single-img.	Output: Full-body	Audio Driving	Talking Avatar	Temporal Deform.
ExAvatar (Moon et al., 2024)	✗	✓	✗	✗	✗
One-shot, One-talk (Xiang et al., 2024)	✓	✓	✗	✓	✗
IDOL (Zhuang et al., 2025)	✓	✓	✗	✗	✗
TaoAvatar (Chen et al., 2025a)	✗	✓	✗	✓	✗
AniGS (Qiu et al., 2025b)	✓	✓	✗	✗	✗
GUAVA (Zhang et al., 2025)	✓	✗	✗	✓	✗
LHM (Qiu et al., 2025a)	✓	✓	✗	✗	✗
PERSONA (Sim & Moon, 2025)	✓	✓	✗	✗	✗
Ours	✓	✓	✓	✓	✓

124 that transfers audio–motion priors via feature alignment and synthetic audio-conditioned clips,
125 enabling realistic, well-synchronized behavior with minimal personalization data.

2 RELATED WORK

2.1 ANIMATABLE 3D FULL-BODY HUMAN AVATARS

131 Early systems reconstructed actors from 3D capture or multi-view studios and animated the resulting
132 meshes via hand-crafted pipelines—artist-designed rigging and skinning (e.g., LBS/DQS) or low-
133 dimensional, PCA-based template models (Stoll et al., 2010; Alldieck et al., 2018; Joo et al., 2015;
134 Pons-Moll et al., 2017; Habermann et al., 2019; Loper et al., 2023; Pavlakos et al., 2019b; Romero
135 et al., 2022; Li et al., 2017). Pose-parameterized articulation enabled cross-subject transfer, but heavy
136 expert intervention made these pipelines costly and time-consuming.

137 The advent of continuous implicit representations ushered in neural renderers such as NeRF (Mildenhall
138 et al., 2021), powering photorealistic avatars (Peng et al., 2021b;a; Zheng et al., 2023; Shen et al.,
139 2023; Su et al., 2021; Li et al., 2022; Wang et al., 2022) and free-view synthesis (Kwon et al., 2021;
140 2024; Weng et al., 2022; Guo et al., 2023; Liu et al., 2021). Yet NeRFs often train and infer slowly and
141 need additional structure for reliable driving and retargeting. Acceleration via multi-resolution hash
142 encodings and 3D Gaussian Splatting delivers real-time rendering with high-fidelity textures (Jiang
143 et al., 2023; Kerbl et al., 2023), though many methods still rely on multi-view capture (Li et al.,
144 2024; Pang et al., 2024) or monocular motion-capture signals (Moreau et al., 2024; Lei et al., 2024;
145 Qian et al., 2024; Hu et al., 2024a; Moon et al., 2024; Guo et al., 2025; Hu et al., 2024b) rather than
146 commodity monocular inputs. Complementary lines leverage video diffusion to obtain animatable
147 avatars from a single image, achieving view-consistent appearance even with limited data (Sim &
148 Moon, 2025; Xiang et al., 2024).

149 Motivated by these observations, we pursue high-quality conversational full-body avatars that reduce
150 dependence on pose-template intermediates. Our approach couples implicit motion-based deformation
151 with a particle-based deformation layer designed to retain fine facial dynamics and finger gestures,
152 while remaining compatible with efficient neural rendering. This hybrid control aims to preserve
153 expressiveness and temporal coherence under realistic driving signals, closing the gap between
154 head-only audio-driven animation and fully articulated, photorealisticistic human avatars.

2.2 HUMAN VIDEO DIFFUSION MODELS

157 Video diffusion models (Wan et al., 2025; Blattmann et al., 2023) have become strong backbones
158 for human video synthesis, enabling pose-guided animation from keypoints, dense or parametric
159 poses (Zhang et al., 2024; Xu et al., 2024; Hu, 2024; Xia et al., 2024; Zhu et al., 2024; Tu et al., 2024).
160 While these methods yield temporally consistent motion, they largely focus on coarse body animation
161 and require audio-to-motion conversion. More recent large audio-driven diffusion models (Meng
et al., 2025; Wang et al., 2025; Gan et al., 2025; Chen et al., 2025b; Tu et al., 2025) generate talking

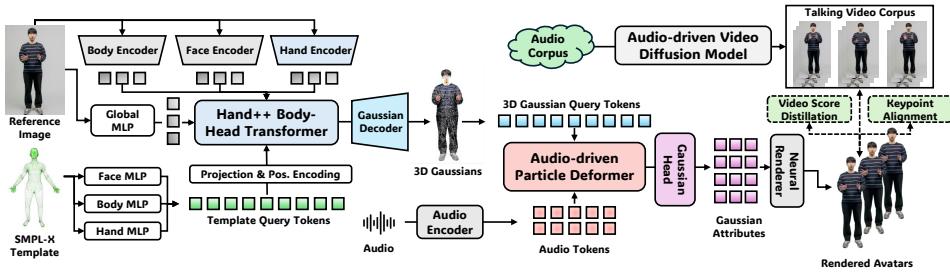


Figure 2: **Architecture overview of the proposed audio-driven 3D full-body avatar synthesis.** Given text or speech, we obtain audio features via TTS or an audio encoder and fuse them with template 3D-Gaussian query tokens to form driving tokens. A motion head and a Gaussian head—augmented by personalized LHM-Gesture++ priors and Face/Body/Hand MLPs—predict motion and appearance of 3D Gaussian particles with identity-adaptive skinning and linear blend skinning; a Gaussian decoder and neural renderer then produce the rendered avatar sequence. Training uses talking-video corpora with video score distillation and keypoint alignment, while projection and positional encoding bridge audio to geometry; an audio-driven particle deformor refines dynamics for natural lip–hand coordination. Inference reuses the same pathway from audio/text to motion & Gaussian tokens to generate photorealistic, synchronized talking videos.

videos directly from a single reference image and audio, producing realistic lip motion and gestures. However, they are typically limited to head/upper-body, rely on handcrafted or ground-truth guidance, operate at modest resolution, and struggle with fine-grained hand and facial details as well as identity preservation.

In contrast, our approach constructs a full-body audio-driven 3D avatar from a single image, overcoming the scope and fidelity limitations of prior work. By synthesizing diverse identity-specific talking videos from one image and varied audio, we enrich supervision for robust identity retention. Moreover, by distilling motion priors from large audio-driven diffusion models, our method achieves consistent coordination across body, hands, and face—capturing nuanced gestures and dynamic appearance beyond what existing approaches can deliver.

3 METHOD

Overview. Our goal is to build a personalized, whole-body conversational 3D avatar from a *single* image and to drive its face, hands, and body directly from audio at inference. Fig. 2 summarizes the pipeline. We first fine-tune a large human reconstruction model (LHM) (Qiu et al., 2025a) to the target subject (Sec. 3.1), augmenting it with a hand-enhancement branch; the model outputs a canonical avatar represented by 3D Gaussian particles. Projected query tokens are then processed by the Audio-driven Particle Deformer (Sec. 3.2) to produce audio-aligned deformation tokens, which Gaussian heads convert into deformed Gaussian attributes, rendered via neural splatting. To learn conversational dynamics from a single image, we distill a large audio-driven video diffusion teacher (Sec. 3.3) using *video score distillation* and *dense keypoint alignment*, alongside RGB and perceptual losses. At inference, a given audio sequence directly yields a rendered avatar video.

3.1 PERSONALIZING LHM FOR A CONVERSATIONAL AVATAR

Baseline. We adopt a large human reconstruction model (LHM) (Qiu et al., 2025a) as our baseline to regress a canonical whole-body avatar from a single input image and a coarse body prior. The avatar is represented by a set of 3D Gaussians $\mathcal{G} = \{(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i, \alpha_i, \mathbf{c}_i)\}_{i=1}^N$, where $\boldsymbol{\mu}_i \in \mathbb{R}^3$ is the mean, $\boldsymbol{\Sigma}_i \in \mathbb{R}^{3 \times 3}$ the covariance, $\alpha_i \in [0, 1]$ the opacity, and \mathbf{c}_i the view-conditioned color. A splatting-based rasterizer \mathcal{R} renders photorealistic images in the canonical space, upon which our method builds.

Enhancing Hand Representation. Vanilla LHM focuses on general body motion and struggles with fine hand gestures that are crucial for conversational expressiveness. To specialize LHM for talking avatars, we personalize its multi-modal Body–Head Transformer by adding a dedicated hand–

attention branch (Hand++ Body–Head Transformer). Concretely, we extract hand–specific visual tokens using a ViT-based, pre-trained hand encoder E_{hand} (Pavlakos et al., 2024) applied to hand RoIs. Let \mathbf{Q} denote the query tokens from the LHM backbone and $(\mathbf{K}_{fb}, \mathbf{V}_{fb})$ the keys/values from the original face–body streams. We augment keys and values with hand tokens: $(\mathbf{K}_{\text{hand}}, \mathbf{V}_{\text{hand}}) = \text{Proj}(\bar{E}_{\text{hand}}(\text{RoI}_{\text{hand}}))$; $\mathbf{K} = [\mathbf{K}_{fb} \parallel \mathbf{K}_{\text{hand}}]$, $\mathbf{V} = [\mathbf{V}_{fb} \parallel \mathbf{V}_{\text{hand}}]$, and compute cross-attention. This injects hand cues into the shared latent, enhancing geometry and fine-detailed hand appearance.

Gaussian Decoder. From the hand–enhanced Transformer features, a Gaussian decoder $D_{\mathcal{G}}$ outputs \mathcal{G} . Altogether with Hand++ Body–Head Transformer, we person–specifically fine–tune $D_{\mathcal{G}}$ to improve identity preservation while maintaining rendering stability.

3.2 AUDIO-DRIVEN PARTICLE DEFORMER

Template-driven LBS (Lewis et al., 2023) from SMPL-X (Pavlakos et al., 2019a) captures body motion well but under-expresses speech-synchronous micro-dynamics of the face and co-speech hand gestures. We therefore introduce an audio-driven particle deformers that converts acoustic/linguistic cues into time-varying deformations of implicit particles bound to the avatar’s 3D Gaussian primitives. The module includes frame-synchronous audio embeddings from an audio encoder, text embeddings from a speech-to-text model, and avatar-conditioned 3D Gaussian query tokens. It outputs per-Gaussian residual updates produced by a *Gaussian Head*. These outputs are rendered by a splatting-based neural renderer.

Audio/Text Encoders. Given audio features $\mathbf{a}_{1:T}$, an audio encoder E_{aud} (Baevski et al., 2020) produces $\mathbf{A}_t = E_{\text{aud}}(\mathbf{a}_t) \in \mathbb{R}^{d_a}$; optional transcripts are embedded by a text encoder E_{text} (Radford et al., 2023) into $\mathbf{Z} = E_{\text{text}}(\text{text}) \in \mathbb{R}^{L_z \times d_z}$. We fuse modalities via a gated projector, using $\tilde{\mathbf{A}}_t = \text{PE}(t) \oplus \mathbf{A}_t$ and $\mathbf{D}_t = \gamma_t \text{Proj}_a(\tilde{\mathbf{A}}_t) + (1 - \gamma_t) \text{Pool}(\text{Proj}_z(\mathbf{Z}))$, where $\text{PE}(t)$ is positional encoding, \oplus denotes concatenation, Pool aggregates over text/time, and $\gamma_t \in [0, 1]$ is predicted from $\tilde{\mathbf{A}}_t$. The fused token $\mathbf{D}_t \in \mathbb{R}^d$ serves as the driving signal at time t .

Audio-Driven Particle Deformer. We build our particle deformation module upon generative dynamics of 3D Gaussians (Xie et al., 2024). We define M implicit particles $\mathcal{J} = \{j_m\}_{m=1}^M$, each producing an SE(3) transform $\mathbf{T}_{m,t} \in \text{SE}(3)$ per frame. Given 3D Gaussian query tokens $\mathbf{Q} \in \mathbb{R}^{N_q \times d}$ from the personalized LHM (conditioned by face/body/hand encoders) and template query tokens \mathbf{Q}_0 , we compute cross-attention to align speech cues with avatar structure:

$$\mathbf{K}_t = \text{Proj}_K([\mathbf{Q} \parallel \mathbf{Q}_0]), \quad \mathbf{V}_t = \text{Proj}_V([\mathbf{Q} \parallel \mathbf{Q}_0]), \quad (1)$$

$$\mathbf{H}_t^{\text{mot}} = \text{softmax}\left(\frac{\text{Proj}_Q(\mathbf{D}_t)\mathbf{K}_t^\top}{\sqrt{d}}\right)\mathbf{V}_t, \quad (2)$$

yielding motion-context features $\mathbf{H}_t^{\text{mot}} \in \mathbb{R}^{M \times d_h}$. A residual SE(3) parameterization is predicted as twist coordinates $\Delta\boldsymbol{\xi}_{m,t} \in \mathbb{R}^6$ and integrated via the exponential map:

$$\Delta\boldsymbol{\xi}_{m,t} = \text{MLP}_\xi(\mathbf{H}_t^{\text{mot}}[m]), \quad \mathbf{T}_{m,t} = \exp(\widehat{\Delta\boldsymbol{\xi}_{m,t}}) \mathbf{T}_{m,t-1}, \quad (3)$$

with $\widehat{\cdot}$ the $\text{se}(3)$ hat operator. The *Audio-driven Particle Deformer* and *Projection & Positional Encoding* blocks are shown in the architecture diagram.

Gaussian Head (Appearance/Residual Geometry). Speech induces fine nonrigid changes (lip rounding, teeth visibility, specular shifts). Complementary to LBS, the **Gaussian Head** predicts per-Gaussian residuals conditioned on both the driving token and Gaussian queries:

$$\mathbf{H}_t^{\text{gau}} = \text{CrossAttn}(\mathbf{D}_t, \mathbf{Q}), \quad (4)$$

$$\Delta\mathbf{p}_i(t) = \text{MLP}_\mu(\mathbf{H}_t^{\text{gau}}[i]), \quad \Delta\mathbf{s}_i(t) = \text{MLP}_\Sigma(\mathbf{H}_t^{\text{gau}}[i]), \quad (5)$$

$$\Delta\alpha_i(t) = \text{MLP}_\alpha(\mathbf{H}_t^{\text{gau}}[i]), \quad \Delta\mathbf{c}_i(t) = \text{MLP}_c(\mathbf{H}_t^{\text{gau}}[i]), \quad (6)$$

and applies them after motion:

$$\boldsymbol{\mu}_i^*(t) = \boldsymbol{\mu}_i'(t) + \Delta\mathbf{p}_i(t), \quad (7)$$

$$\boldsymbol{\Sigma}_i^*(t) = \boldsymbol{\Sigma}_i'(t) \oplus \Delta\mathbf{s}_i(t), \quad \alpha_i^*(t) = \alpha_i + \Delta\alpha_i(t), \quad \mathbf{c}_i^*(t) = \mathbf{c}_i + \Delta\mathbf{c}_i(t). \quad (8)$$

Here \oplus denotes a stable covariance update. The *Gaussian Head* is shown alongside the *Motion Head* in the pipeline.

270 3.3 DISTILLING AUDIO-DRIVEN LARGE HUMAN VIDEO DIFFUSION MODEL AND TRAINING
 271

272 We leverage a audio-driven large human video diffusion model (Chen et al., 2025b) to enable a 3D
 273 avatar to express conversational motion from a single image. Specifically, we (i) augment person-
 274 specific talking video datasets (see supplementary for details), and (ii) transfer motion knowledge
 275 learned from large-scale data into the 3D avatar through a video score distillation objective. This also
 276 mitigates the identity preservation issues common when relying only on image-level losses. Below,
 277 we further describe video score distillation, dense keypoint alignment, and the total loss.

278 **Video Score Distillation.** Let $\mathbf{I}_{1:T}(\Phi)$ be frames rendered from our model parameters Φ (particle
 279 deformer, motion/gaussian heads, skinning, renderer), conditioned on driving audio/text c . Denote
 280 the teacher score network $s_\psi(\cdot, \tau, c)$ at noise level τ with variance schedule $\alpha(\tau)$ and $\sigma(\tau)$. We apply
 281 a video variant of score-distillation sampling to inject the teacher’s generative prior:
 282

$$283 \nabla_\Phi \mathcal{L}_{\text{vsd}} = \mathbb{E}_{t, \tau, \epsilon} \left[w(\tau) (s_\psi(\mathbf{x}_{t, \tau}, \tau, c) - \epsilon) \frac{\partial \mathbf{x}_{t, \tau}}{\partial \Phi} \right], \quad \mathbf{x}_{t, \tau} = \alpha(\tau) \mathbf{I}_t(\Phi) + \sigma(\tau) \epsilon, \quad (9)$$

285 which encourages $\mathbf{I}_{1:T}$ to lie on the teacher’s audio-conditioned video manifold while inheriting its
 286 temporal coherence.

288 **Dense Keypoint Alignment.** To sharpen motion-phase alignment, we detect dense 2D face/hand
 289 keypoints from the teacher frames $\{\tilde{\mathbf{I}}_t\}$ and from our renderings $\{\mathbf{I}_t\}$. With K_t^{face} , K_t^{hand} and their
 290 teacher counterparts $\tilde{K}_t^{\text{face}}$, $\tilde{K}_t^{\text{hand}}$, we minimize

$$292 \mathcal{L}_{\text{kpt}} = \sum_t \left[\rho(\|K_t^{\text{face}} - \tilde{K}_t^{\text{face}}\|_2) + \lambda_{\text{hand}} \rho(\|K_t^{\text{hand}} - \tilde{K}_t^{\text{hand}}\|_2) \right], \quad (10)$$

294 where ρ is a robust penalty to handle detector noise and occlusions.

296 **Image-Level Supervision and Total Loss.** We constrain appearance with per-frame RGB and per-
 297 perceptual losses, $\mathcal{L}_{\text{img}} = \sum_t \|\mathbf{I}_t - \tilde{\mathbf{I}}_t\|_1 + \lambda_{\text{perc}} \sum_t \|\phi(\mathbf{I}_t) - \phi(\tilde{\mathbf{I}}_t)\|_2^2$, where ϕ is a fixed visual encoder.
 298 The full objective is $\mathcal{L} = \lambda_{\text{vsd}} \mathcal{L}_{\text{vsd}} + \lambda_{\text{kpt}} \mathcal{L}_{\text{kpt}} + \lambda_{\text{img}} \mathcal{L}_{\text{img}} + \lambda_{\text{reg}} \mathcal{L}_{\text{reg}}$, where λ_{vsd} , λ_{kpt} , λ_{img} , λ_{reg}
 299 is scaling parameters, \mathcal{L}_{reg} is an ARAP (as-rigid-as-possible) regularizer on deformations to preserve
 300 local rigidity and stabilize the avatar, jointly optimizing all modules for identity preservation, speech
 301 synchrony, and temporal smoothness.

303 4 EXPERIMENTS AND ANALYSIS

305 4.1 EXPERIMENTAL SETUP.

307 **Dataset.** Due to the limited availability of publicly accessible conversational human videos paired
 308 with audio, we aggregate data from multiple sources. In total, we collect and process $\sim 15,000$
 309 videos drawn from the Seamless-Interaction dataset (Agrawal et al., 2025), the Casual Conversational
 310 dataset (Porgali et al., 2023), additional online sources, and our own in-house captures. All videos
 311 depict a single human subject engaged in natural conversation, exhibiting both speaking activity and
 312 accompanying conversational motions, and each video is temporally aligned with its corresponding
 313 audio track. For evaluation, we create identity-aware splits: 10% of the videos for each identity are
 314 held out as a test set, and the remaining videos are used for training. Unless otherwise specified, the
 315 first frame of each video serves as the reference image of each model, for that identity.

316 **Metrics.** We evaluate our approach from multiple perspectives, using a variety of evaluation metrics.
 317 We evaluate the visual and aesthetic quality by evaluating IQA and ASE using Q-align (Wu et al.,
 318 2023). We adopt SyncC and SyncD, introduced by (Prajwal et al., 2020), to quantify the synchronization
 319 accuracy between lip motion and the corresponding audio. To evaluate the preservation of
 320 facial identity, we compute the cosine similarity (CSIM) between facial features extracted from the
 321 reference image and those from the generated frames. We further assess gesture fidelity using the
 322 average keypoint distance, reporting the Hand Keypoint Confidence (HKG) and the Hand Keypoint
 323 Variance (HKV), defined as the average confidence score and standard deviation of detected hand
 324 keypoints. For low-level reconstruction fidelity, we report PSNR and SSIM (Wang et al., 2004)

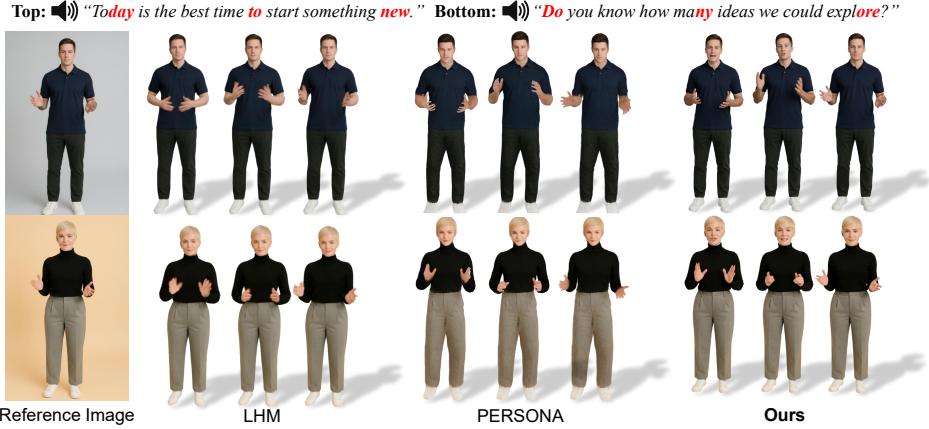


Figure 3: **Qualitative comparison with state-of-the-art audio-driven large human video diffusion models.** For each method, we show the rendered frames aligned to the **highlighted** words in the driving audio. Our method outperforms state-of-the-art approaches in terms of visual quality, motion naturalness, and synchronization.

between the rendered images and the ground-truth video, given same audio driving signal. Lastly, we employ the Fréchet Inception Distance (FID) (Heusel et al., 2017) and the Fréchet Video Distance (FVD) (Unterthiner et al., 2019) to measure the generative diversity and overall coherence of rendered 3d avatars.

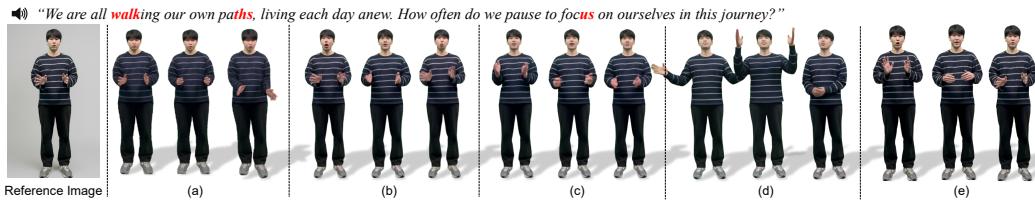
Comparative Methods. For comparative analysis, we benchmarked our approach against the most relevant state-of-the-art methods for creating animatable 3D avatars from a single image, namely publicly available PERSONA (Sim & Moon, 2025) and LHM (Qiu et al., 2025a), through both quantitative and qualitative evaluations. However, unlike our approach, they cannot directly drive a 3D avatar from audio and therefore require a converter from audio to a sequence of SMPL-X pose parameters. To this end, we utilize a state-of-the-art whole-body motion converter (Bian et al., 2025) to generate motion, which is then used to control the 3D avatars of the baselines. In addition, since our framework incorporates a rendering pipeline capable of producing fully rendered videos, we further extended our comparisons to include several state-of-the-art audio-driven human video diffusion models, OmniAvatar (Gan et al., 2025) and HunyuanVideo-Avatar Chen et al. (2025b), to provide a broader evaluation.

4.2 RESULTS

Quantitative Comparisons. Table 2 shows that our approach outperforms all baselines across the ten reported metrics on the test set. Against single-image 3D avatar methods, LHM (Qiu et al., 2025a) and PERSONA (Sim & Moon, 2025), our method achieves higher perceptual quality (IQA: +3.4%, ASE: +4.4%), better audio-lip synchronization (SyncC: +4.3%, SyncD: ↓20.3% vs. the best baseline), and stronger low-level fidelity (SSIM: +4.7%, PSNR: +4.3%). When compared with state-of-the-art audio-driven human video diffusion models, OmniAvatar (Gan et al., 2025) and HunyuanVideo-Avatar (Chen et al., 2025b), our method delivers markedly improved video-level realism and temporal coherence, reducing FID by 27.9% (12.4 vs. 17.2) and FVD by 25.0% (240 vs. 320) relative to the strongest baseline. We also observe consistent gains in hand-gesture fidelity (HKC: +2.5%), reflecting more reliable control of fine-grained motions. Overall, these results substantiate the effectiveness of our audio-driven 3D avatar pipeline, yielding robust improvements across perceptual, synchronization, reconstruction, and video-level metrics.

Qualitative Comparisons. Fig. 3 qualitatively compares the baselines that synthesize animatable 3D avatars from a 3D image on the test sets. Because prior approaches cannot directly control a 3D avatar from audio, we evaluate rendering quality under the same motion for all methods to ensure a fair comparison. The results show that our approach produces sharper and more expressive

391 **Figure 4: Qualitative comparison with human video generation models.** For each method, we
 392 show the rendered frames aligned to the **highlighted** words in the driving audio, along with cropped
 393 views of the *face* and *hands* for finer inspection. Relative to diffusion-based baselines, our approach
 394 exhibits fewer motion artifacts (e.g., lip–audio desynchronization, hand jitter/warping) and stronger
 395 identity preservation across views and phonetic contexts.



404 **Figure 5: Ablation of the proposed components.** We evaluate (a) w/o LHM personalization,
 405 (b) w/o \mathcal{L}_{vsd} , (c) w/o particle-based deformor, (d) w/o \mathcal{L}_{kpt} , and (e) full model. Removing any
 406 component harms visual fidelity, motion naturalness, and audio–motion sync, confirming each
 407 element’s contribution to overall quality.

409 facial expressions, improved lip synchronization, and finer hand–gesture details. Across time, our
 410 renderings also exhibit smoother, more natural motion transitions.

412 Our rendering pipeline is built on a Gaussian rasterizer, enabling direct extraction of videos as
 413 sequences of images. We therefore also compare against state-of-the-art methods that generate
 414 human-animation videos from audio signals, as shown in Fig. 4. The visual comparisons indicate
 415 that our method achieves competitive image and motion quality even relative to recent generative
 416 video diffusion models. Notably, the second example highlights two consistent advantages of our
 417 approach: (i) motion-consistent preservation of fine hand details and (ii) stronger identity preservation
 418 throughout the sequence.

419 **Ablation Study.** We systematically ablate the proposed components and compare each variant to
 420 the full model across all metrics. Please refer to Table 3, and we qualitatively validate the proposed
 421 key components in Fig. 5.

423 **Personalization module.** Removing the fine-tuned Gaussian decoder (*w/o finetune. Gaussian de-*
 424 *coder*) degrades perceptual and reconstruction quality (IQA and PSNR), while dropping the weight
 425 decoder (*w/o weight decoder*) increases distributional gaps (FID and FVD 275). Omitting the hand-
 426 enhancement pathway (*w/o hand enhancement*) notably reduces hand–gesture fidelity (HKG) despite
 427 otherwise moderate scores, confirming the role of high-frequency hand priors.

428 **Audio-driven particle deformor.** Excluding implicit motion tokens (*w/o implicit motion tokens*)
 429 harms audio–motion alignment (SyncC and SyncD) and raises video distances (FVD), indicating that
 430 compact motion cues are crucial for temporally coherent driving. Removing hand–gesture offsets
 431 (*w/o hand gesture offsets*) primarily impacts HKC, whereas removing facial-expression offsets (*w/o*
 432 *face expression offsets*) lowers perceptual quality and lip–face expressivity (IQA 4.00, SyncC 6.85).

432 Table 2: **Quantitative comparisons on the test set.** We compare our method with state-of-the-art
 433 methods that generate animatable 3D avatars from a single image and audio-driven human video
 434 diffusion models, across the evaluation metrics on the test set. Our approach consistently demonstrates
 435 significantly superior performance across all ten evaluation metrics.

Methods	IQA↑	ASE↑	SyncC↑	SyncD↓	HKC↑	CSIM↓	SSIM↑	PSNR↑	FID↓	FVD↓
EchoMimicV2 (Meng et al., 2025)	3.37	1.98	4.12	10.20	0.836	0.458	0.660	15.90	22.8	420
OmniAvatar (Gan et al., 2025)	3.99	2.64	6.40	7.60	0.858	0.525	0.705	17.20	18.6	350
HunyuanVideo-Avatar (Chen et al., 2025b)	4.08	2.71	6.90	7.12	0.875	0.539	0.709	17.55	17.2	320
LHM (Qiu et al., 2025a)	3.80	2.50	6.10	7.00	0.860	0.500	0.700	16.90	19.5	365
PERSONA (Sim & Moon, 2025)	3.88	2.58	6.30	6.80	0.868	0.510	0.708	17.20	18.9	345
Ours	4.22	2.83	7.20	5.42	0.897	0.551	0.742	18.30	12.4	240

444 Table 3: **Ablation study.** We demonstrate the effectiveness of our proposed components by sys-
 445 tematically removing them and comparing against our full model across all evaluation metrics. The
 446 first block (rows 2–4) corresponds to the components introduced for personalizing large human
 447 reconstruction for conversational avatars. The second block (rows 5–7) includes the components
 448 introduced in the audio-driven particle deformers for the temporal deformation model. The third block
 449 (rows 8–9) consists of the objective functions incorporated to inject knowledge from audio-driven
 450 video diffusion models into our framework. The results highlight the importance of each proposed
 451 component, as all of them contribute to significant performance improvements across the evaluation
 452 metrics.

Methods	IQA↑	ASE↑	SyncC↑	SyncD↓	HKC↑	CSIM↓	SSIM↑	PSNR↑	FID↓	FVD↓
w/o finetune. Gaussian decoder	4.05	2.75	7.05	5.60	0.890	0.545	0.720	17.60	13.8	265
w/o hand enhancement	4.18	2.80	7.15	5.45	0.870	0.555	0.735	18.10	13.1	252
w/o weight decoder	4.10	2.72	6.95	5.70	0.885	0.540	0.728	17.80	14.5	275
w/o implicit motion tokens	4.08	2.70	6.60	6.10	0.882	0.538	0.726	17.70	15.2	300
w/o hand gesture offsets	4.16	2.78	7.10	5.50	0.860	0.552	0.734	18.00	13.7	258
w/o face expression offsets	4.00	2.74	6.85	5.80	0.888	0.520	0.730	17.90	14.2	272
w/o video score distillation	3.95	2.69	6.90	5.78	0.886	0.542	0.722	17.50	15.0	290
w/o keypoint alignment	4.02	2.73	6.70	6.20	0.872	0.544	0.725	17.60	15.6	310
Ours	4.22	2.83	7.20	5.42	0.897	0.551	0.742	18.30	12.4	240

464
 465 *Objective functions.* Disabling video score distillation (*w/o video score distillation*) yields broad drops
 466 across perception and fidelity (IQA, ASE, FID, and FVD), and removing keypoint alignment (*w/o*
 467 *keypoint alignment*) produces the highest temporal distance (FVD) together with the worst sync error
 468 (SyncD), underscoring the value of geometry-aware supervision. Overall, the full model achieves the
 469 best results on all metrics, demonstrating that each component contributes meaningfully to perceptual
 470 quality, audio–lip synchronization, fine-grained gesture control, and temporal coherence.

472 5 CONCLUSION

473 In this paper, we proposed an end-to-end framework that constructs a personalized full-body 3D avatar
 474 from only a single image and drives its motion directly from raw audio. Unlike prior approaches
 475 that rely on intermediate parametric pose representations, our method eliminates the lossy audio-to-
 476 motion bottleneck and enables temporally precise, expressive conversational behavior. Leveraging
 477 a particle-based deformation model, the system captures fine-grained details in facial expressions
 478 and hand gestures while maintaining globally coherent body motion. Furthermore, by distilling
 479 motion priors from large-scale audio-driven video diffusion models, we enhance synchronization,
 480 motion diversity, and robustness under the single-image regime. Comprehensive experiments confirm
 481 that our framework delivers more photorealistic and synchronized talking avatars than existing
 482 baselines. We believe this formulation opens new possibilities for creating accessible, high-fidelity
 483 digital humans, with broad applications in telepresence, embodied AI, and immersive mixed reality
 484 environments.

486 **Ethics Statement.** This work makes use of publicly available datasets (Seamless-Interaction,
487 Casual Conversational dataset) as well as a small amount of internally collected data. For all publicly
488 available datasets, we adhere to their original license terms. For the internally collected data, explicit
489 consent was obtained from the participants, and no personally identifying information beyond facial
490 and vocal expressions was retained.

491 The proposed 3D talking avatar model has positive applications in telepresence, education, accessibility,
492 and mixed reality systems. However, we acknowledge that the technology may be misused for
493 harmful purposes, such as the creation of deceptive media. To mitigate such risks, we discuss limitations
494 of the model and emphasize responsible use, including the potential integration of watermarking
495 and detection mechanisms in deployment scenarios.

496 We also recognize possible concerns of fairness and bias, as datasets may not equally represent
497 diverse demographics. We encourage future work to evaluate and expand the diversity of training
498 data.

499 No sensitive personal information or medical data were used in this study. Institutional review board
500 (IRB) approval was not required for the datasets employed, but ethical considerations regarding
501 privacy, data protection, and informed consent were carefully followed.

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria
543 Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, et al. Seamless interaction:
544 Dyadic audiovisual motion modeling and large-scale dataset. *arXiv preprint arXiv:2506.22554*,
545 2025.

546 Thiem Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-Moll. Video
547 based reconstruction of 3D people models. In *CVPR*, 2018.

548 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
549 for self-supervised learning of speech representations. *Advances in neural information processing
550 systems*, 33:12449–12460, 2020.

551

552 Timur Bagautdinov, Chenglei Wu, Tomas Simon, Fabian Prada, Takaaki Shiratori, Shih-En Wei,
553 Weipeng Xu, Yaser Sheikh, and Jason Saragih. Driving-signal aware full-body avatars. *ACM
554 Transactions on Graphics (TOG)*, 40(4):1–17, 2021.

555 Yuxuan Bian, Ailing Zeng, Xuan Ju, Xian Liu, Zhaoyang Zhang, Wei Liu, and Qiang Xu. Motioncraft:
556 Crafting whole-body motion with plug-and-play multimodal controls. In *Proceedings of the AAAI
557 Conference on Artificial Intelligence*, volume 39, pp. 1880–1888, 2025.

558

559 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
560 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
561 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

562 Jianchuan Chen, Jingchuan Hu, Gaige Wang, Zhonghua Jiang, Tiansong Zhou, Zhiwen Chen, and
563 Chengfei Lv. Taoavatar: Real-time lifelike full-body talking avatars for augmented reality via 3d
564 gaussian splatting. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
565 pp. 10723–10734, 2025a.

566 Junming Chen, Yunfei Liu, Jianan Wang, Ailing Zeng, Yu Li, and Qifeng Chen. Diffsheg: A
567 diffusion-based approach for real-time speech-driven holistic 3d expression and gesture generation.
568 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
569 7352–7361, 2024.

570

571 Yi Chen, Sen Liang, Zixiang Zhou, Ziyao Huang, Yifeng Ma, Junshu Tang, Qin Lin, Yuan Zhou,
572 and Qinglin Lu. Hunyanvideo-avatar: High-fidelity audio-driven human animation for multiple
573 characters. *arXiv preprint arXiv:2505.20156*, 2025b.

574 Kiran Chhatre, Nikos Athanasiou, Giorgio Becherini, Christopher Peters, Michael J Black, Timo
575 Bolkart, et al. Emotional speech-driven 3d body animation via disentangled latent diffusion.
576 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
577 1942–1953, 2024.

578 ElevenLabs. Elevenlabs text-to-speech. <https://elevenlabs.io>, 2025. Online service.

579

580 Qijun Gan, Ruizi Yang, Jianke Zhu, Shaofei Xue, and Steven Hoi. Omniavatar: Efficient audio-driven
581 avatar video generation with adaptive body animation. *arXiv preprint arXiv:2506.18866*, 2025.

582

583 Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan, Andrew Owens, and Jitendra Malik. Learning
584 individual styles of conversational gesture. In *Proceedings of the IEEE/CVF conference on
585 computer vision and pattern recognition*, pp. 3497–3506, 2019.

586 Chen Guo, Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges. Vid2Avatar: 3D avatar reconstruc-
587 tion from videos in the wild via self-supervised scene decomposition. In *CVPR*, 2023.

588

589 Chen Guo, Junxuan Li, Yash Kant, Yaser Sheikh, Shunsuke Saito, and Chen Cao. Vid2avatar-pro:
590 Authentic avatar from videos in the wild via universal prior. In *Proceedings of the Computer Vision
591 and Pattern Recognition Conference*, pp. 5559–5570, 2025.

592

593 Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian Theobalt.
Livecap: Real-time human performance capture from monocular video. *ACM Transactions On
Graphics (TOG)*, 38(2):1–17, 2019.

594 Xu He, Qiaochu Huang, Zhensong Zhang, Zhiwei Lin, Zhiyong Wu, Sicheng Yang, Minglei Li, Zhiyi
595 Chen, Songcen Xu, and Xiaofei Wu. Co-speech gesture video generation via motion-decoupled
596 diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
597 *Recognition*, pp. 2263–2273, 2024.

598 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
599 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
600 *information processing systems*, 30, 2017.

602 Steven Hogue, Chenxu Zhang, Hamza Daruger, Yapeng Tian, and Xiaohu Guo. Diffited: One-shot
603 audio-driven ted talk video generation with diffusion-based co-speech gestures. In *Proceedings of*
604 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1922–1931, 2024.

606 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation.
607 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
608 8153–8163, 2024.

609 Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
610 Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
611 animatable 3d gaussians. In *Proceedings of the IEEE/CVF conference on computer vision and*
612 *pattern recognition*, pp. 634–644, 2024a.

614 Shoukang Hu, Tao Hu, and Ziwei Liu. Gauhuman: Articulated gaussian splatting from monocular
615 human videos. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
616 *recognition*, pp. 20418–20431, 2024b.

617 Ziyao Huang, Fan Tang, Yong Zhang, Xiaodong Cun, Juan Cao, Jintao Li, and Tong-Yee Lee. Make-
618 your-anchor: A diffusion-based 2d avatar generation framework. In *Proceedings of the IEEE/CVF*
619 *Conference on Computer Vision and Pattern Recognition*, pp. 6997–7006, 2024.

621 Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges. Instantavatar: Learning avatars from
622 monocular video in 60 seconds. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
623 *and Pattern Recognition*, pp. 16922–16932, 2023.

624 Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara,
625 and Yaser Sheikh. Panoptic studio: A massively multiview system for social motion capture. In
626 *Proceedings of the IEEE international conference on computer vision*, pp. 3334–3342, 2015.

628 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
629 for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

631 Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry Fuchs. Neural Human Performer:
632 Learning generalizable radiance fields for human performance rendering. *NeurIPS*, 2021.

633 Youngjoong Kwon, Lingjie Liu, Henry Fuchs, Marc Habermann, and Christian Theobalt. DELIFFAS:
634 Deformable light fields for fast avatar synthesis. *NeurIPS*, 2024.

636 Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian
637 articulated template models. In *Proceedings of the IEEE/CVF conference on computer vision and*
638 *pattern recognition*, pp. 19876–19887, 2024.

639 John P Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to
640 shape interpolation and skeleton-driven deformation. In *Seminal Graphics Papers: Pushing the*
641 *Boundaries, Volume 2*, pp. 811–818. 2023.

643 Rui long Li, Julian Tanke, Minh Vo, Michael Zollhöfer, Jürgen Gall, Angjoo Kanazawa, and Christoph
644 Lassner. Tava: Template-free animatable volumetric actors. In *European Conference on Computer*
645 *Vision*, pp. 419–436. Springer, 2022.

647 Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. Learning a model of facial
shape and expression from 4d scans. *ACM Trans. Graph.*, 36(6):194–1, 2017.

648 Xinjie Li, Ziyi Chen, Xinlu Yu, Iek-Heng Chu, Peng Chang, and Jing Xiao. Co-speech gesture video
649 generation with implicit motion-audio entanglement. In *Proceedings of the Computer Vision and*
650 *Pattern Recognition Conference*, pp. 11384–11394, 2025.

651 Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Animatable Gaussians: Learning pose-dependent
652 gaussian maps for high-fidelity human avatar modeling. In *CVPR*, 2024.

653 Haiyang Liu, Naoya Iwamoto, Zihao Zhu, Zhengqing Li, You Zhou, Elif Bozkurt, and Bo Zheng.
654 Disco: Disentangled implicit content and rhythm learning for diverse co-speech gestures synthesis.
655 In *Proceedings of the 30th ACM international conference on multimedia*, pp. 3764–3773, 2022.

656 Haiyang Liu, Xingchao Yang, Tomoya Akiyama, Yuanjian Huang, Qiaoge Li, Shigeru Kuriyama,
657 and Takafumi Taketomi. Tango: Co-speech gesture video reenactment with hierarchical audio
658 motion embedding and diffusion interpolation. *arXiv preprint arXiv:2410.04221*, 2024a.

659 Haiyang Liu, Zihao Zhu, Giorgio Becherini, Yichen Peng, Mingyang Su, You Zhou, Xuefei Zhe,
660 Naoya Iwamoto, Bo Zheng, and Michael J Black. Emage: Towards unified holistic co-speech
661 gesture generation via expressive masked audio gesture modeling. In *Proceedings of the IEEE/CVF*
662 *Conference on Computer Vision and Pattern Recognition*, pp. 1144–1154, 2024b.

663 Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and Christian Theobalt.
664 Neural actor: Neural free-view synthesis of human actors with pose control. *ACM transactions on*
665 *graphics (TOG)*, 40(6):1–16, 2021.

666 Pinxin Liu, Luchuan Song, Junhua Huang, Haiyang Liu, and Chenliang Xu. Gestureelm: Latent
667 shortcut based co-speech gesture generation with spatial-temporal modeling. *arXiv preprint*
668 *arXiv:2501.18898*, 2025.

669 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
670 A skinned multi-person linear model. In *Seminal Graphics Papers: Pushing the Boundaries,*
671 *Volume 2*, pp. 851–866. 2023.

672 Julieta Martinez, Emily Kim, Javier Romero, Timur Bagautdinov, Shunsuke Saito, Shou-I Yu, Stuart
673 Anderson, Michael Zollhöfer, Te-Li Wang, Shaojie Bai, et al. Codec avatar studio: Paired human
674 captures for complete, driveable, and generalizable avatars. *Advances in Neural Information*
675 *Processing Systems*, 37:83008–83023, 2024.

676 Rang Meng, Xingyu Zhang, Yuming Li, and Chenguang Ma. Echomimicv2: Towards striking,
677 simplified, and semi-body human animation. In *Proceedings of the Computer Vision and Pattern*
678 *Recognition Conference*, pp. 5489–5498, 2025.

679 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
680 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
681 *of the ACM*, 65(1):99–106, 2021.

682 Gyeongsik Moon, Takaaki Shiratori, and Shunsuke Saito. Expressive whole-body 3d gaussian avatar.
683 In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024.

684 Arthur Moreau, Jifei Song, Helisa Dhamo, Richard Shaw, Yiren Zhou, and Eduardo Pérez-Pellitero.
685 Human gaussian splatting: Real-time rendering of animatable avatars. In *CVPR*, 2024.

686 M Hamza Mughal, Rishabh Dabral, Merel CJ Scholman, Vera Demberg, and Christian Theobalt.
687 Retrieving semantics from the deep: an rag solution for gesture synthesis. In *Proceedings of the*
688 *Computer Vision and Pattern Recognition Conference*, pp. 16578–16588, 2025.

689 Evonne Ng, Javier Romero, Timur Bagautdinov, Shaojie Bai, Trevor Darrell, Angjoo Kanazawa, and
690 Alexander Richard. From audio to photoreal embodiment: Synthesizing humans in conversations.
691 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
692 1001–1010, 2024.

693 OpenAI. Chatgpt (gpt-5), 2025. URL <https://chat.openai.com/>. Large language model.

694 Haokai Pang, Heming Zhu, Adam Kortylewski, Christian Theobalt, and Marc Habermann. ASH:
695 Animatable gaussian splats for efficient and photoreal human rendering. In *CVPR*, 2024.

702 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
703 Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a single
704 image. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp.
705 10975–10985, 2019a.

706 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios
707 Tzionas, and Michael J Black. Expressive body capture: 3d hands, face, and body from a single
708 image. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
709 pp. 10975–10985, 2019b.

710 Georgios Pavlakos, Dandan Shan, Ilija Radosavovic, Angjoo Kanazawa, David Fouhey, and Jitendra
711 Malik. Reconstructing hands in 3d with transformers. In *Proceedings of the IEEE/CVF Conference*
712 *on Computer Vision and Pattern Recognition*, pp. 9826–9836, 2024.

713 Sida Peng, Junting Dong, Qianqian Wang, Shangzhan Zhang, Qing Shuai, Xiaowei Zhou, and Hujun
714 Bao. Animatable neural radiance fields for modeling dynamic human bodies. In *ICCV*, 2021a.

715 Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei
716 Zhou. Neural Body: Implicit neural representations with structured latent codes for novel view
717 synthesis of dynamic humans. In *CVPR*, 2021b.

718 Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. Clothcap: Seamless 4d clothing
719 capture and retargeting. *ACM Transactions on Graphics (ToG)*, 36(4):1–15, 2017.

720 Bilal Porgali, Vítor Albiero, Jordan Ryda, Cristian Canton Ferrer, and Caner Hazirbas. The casual
721 conversations v2 dataset. In *Proceedings of the IEEE/CVF conference on computer vision and*
722 *pattern recognition*, pp. 10–17, 2023.

723 KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar. A lip sync expert is
724 all you need for speech to lip generation in the wild. In *Proceedings of the 28th ACM international*
725 *conference on multimedia*, pp. 484–492, 2020.

726 Shenhan Qian, Zhi Tu, Yihao Zhi, Wen Liu, and Shenghua Gao. Speech drives templates: Co-speech
727 gesture synthesis with learned templates. In *Proceedings of the IEEE/CVF international conference*
728 *on computer vision*, pp. 11077–11086, 2021.

729 Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar:
730 Animatable avatars via deformable 3d gaussian splatting. In *Proceedings of the IEEE/CVF*
731 *conference on computer vision and pattern recognition*, pp. 5020–5030, 2024.

732 Lingteng Qiu, Xiaodong Gu, Peihao Li, Qi Zuo, Weichao Shen, Junfei Zhang, Kejie Qiu, Weihao
733 Yuan, Guanying Chen, Zilong Dong, et al. Lhm: Large animatable human reconstruction model
734 from a single image in seconds. *arXiv preprint arXiv:2503.10625*, 2025a.

735 Lingteng Qiu, Shenhao Zhu, Qi Zuo, Xiaodong Gu, Yuan Dong, Junfei Zhang, Chao Xu, Zhe
736 Li, Weihao Yuan, Liefeng Bo, et al. Anigs: Animatable gaussian avatar from a single image
737 with inconsistent gaussian reconstruction. In *Proceedings of the Computer Vision and Pattern*
738 *Recognition Conference*, pp. 21148–21158, 2025b.

739 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
740 Robust speech recognition via large-scale weak supervision. In *International conference on*
741 *machine learning*, pp. 28492–28518. PMLR, 2023.

742 Javier Romero, Dimitrios Tzionas, and Michael J Black. Embodied hands: Modeling and capturing
743 hands and bodies together. *arXiv preprint arXiv:2201.02610*, 2022.

744 Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Jose Zarate, Julien Valentin, Jie Song, and Otmar
745 Hilliges. X-avatar: Expressive human avatars. In *Proceedings of the IEEE/CVF Conference on*
746 *Computer Vision and Pattern Recognition*, pp. 16911–16921, 2023.

747 Geonhee Sim and Gyeongsik Moon. Persona: Personalized whole-body 3d avatar with pose-driven
748 deformations from a single image. *arXiv preprint arXiv:2508.09973*, 2025.

756 Carsten Stoll, Juergen Gall, Edilson De Aguiar, Sebastian Thrun, and Christian Theobalt. Video-based
757 reconstruction of animatable human characters. *ACM Transactions on Graphics (TOG)*, 29(6):
758 1–10, 2010.

759 Shih-Yang Su, Frank Yu, Michael Zollhöfer, and Helge Rhodin. A-nerf: Articulated neural radiance
760 fields for learning human shape, appearance, and pose. *Advances in neural information processing*
761 systems, 34:12278–12291, 2021.

762 Shuyuan Tu, Zhen Xing, Xintong Han, Zhi-Qi Cheng, Qi Dai, Chong Luo, and Zuxuan Wu. Stableani-
763 mator: High-quality identity-preserving human image animation. *arXiv preprint arXiv:2411.17697*,
764 2024.

765 Shuyuan Tu, Yueming Pan, Yimeng Huang, Xintong Han, Zhen Xing, Qi Dai, Chong Luo, Zuxuan
766 Wu, and Yu-Gang Jiang. Stableavatar: Infinite-length audio-driven avatar video generation. *arXiv*
767 *preprint arXiv:2508.08248*, 2025.

768 Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and
769 Sylvain Gelly. Fvd: A new metric for video generation. 2019.

770 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
771 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
772 *arXiv preprint arXiv:2503.20314*, 2025.

773 Mengchao Wang, Qiang Wang, Fan Jiang, Yaqi Fan, Yunpeng Zhang, Yonggang Qi, Kun Zhao, and
774 Mu Xu. Fantasytalking: Realistic talking portrait generation via coherent motion synthesis. *arXiv*
775 *preprint arXiv:2504.04842*, 2025.

776 Shaofei Wang, Katja Schwarz, Andreas Geiger, and Siyu Tang. Arah: Animatable volume rendering
777 of articulated human sdf. In *European conference on computer vision*, pp. 1–19. Springer, 2022.

778 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
779 error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612,
2004.

780 Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira Kemelmacher-
781 Shlizerman. Humannerf: Free-viewpoint rendering of moving people from monocular video.
782 In *Proceedings of the IEEE/CVF conference on computer vision and pattern Recognition*, pp.
783 16210–16220, 2022.

784 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
785 Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching lmms for visual scoring via
786 discrete text-defined levels. *arXiv preprint arXiv:2312.17090*, 2023.

787 Zhiqiang Xia, Zhaokang Chen, Bin Wu, Chao Li, Kwok-Wai Hung, Chao Zhan, Yingjie He, and
788 Wenjiang Zhou. Musev: Infinite-length and high fidelity virtual human video generation with
789 visual conditioned parallel denoising. *arxiv*, 2024.

790 Jun Xiang, Yudong Guo, Leipeng Hu, Boyang Guo, Yancheng Yuan, and Juyong Zhang. One shot,
791 one talk: Whole-body talking avatar from a single image. *arXiv preprint arXiv:2412.01106*, 2024.

792 Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
793 Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In *Proceedings of the*
794 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4389–4398, 2024.

795 Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
796 Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation using
797 diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
798 *Recognition*, pp. 1481–1490, 2024.

799 Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao, Yandong Wen, Timo Bolkart, Dacheng Tao, and
800 Michael J Black. Generating holistic 3d human motion from speech. In *Proceedings of the*
801 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 469–480, 2023.

810 Dongbin Zhang, Yunfei Liu, Lijian Lin, Ye Zhu, Yang Li, Minghan Qin, Yu Li, and Haoqian Wang.
811 Guava: Generalizable upper body 3d gaussian avatar. *arXiv preprint arXiv:2505.03351*, 2025.
812

813 Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, and Fangyuan Zou.
814 Mimicmotion: High-quality human motion video generation with confidence-aware pose guidance.
815 *arXiv preprint arXiv:2406.19680*, 2024.

816 Zerong Zheng, Xiaochen Zhao, Hongwen Zhang, Boning Liu, and Yebin Liu. AvatarRex: Real-time
817 expressive full-body avatars. *ACM TOG*, 2023.

818

819 Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Zilong Dong, Yinghui Xu, Xun Cao, Yao Yao,
820 Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d
821 parametric guidance. In *European Conference on Computer Vision*, pp. 145–162. Springer, 2024.

822 Yiyu Zhuang, Jiaxi Lv, Hao Wen, Qing Shuai, Ailing Zeng, Hao Zhu, Shifeng Chen, Yujiu Yang,
823 Xun Cao, and Wei Liu. Idol: Instant photorealistic 3d human creation from a single image. In
824 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26308–26319, 2025.

825 Wojciech Zienonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier
826 Romero. Drivable 3d gaussian avatars. In *2025 International Conference on 3D Vision (3DV)*, pp.
827 979–990. IEEE, 2025.

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A MORE RELATED WORKS AND DISCUSSION**
865

866 **Co-Speech Gesture Video Generation.** Similar to large-scale human video diffusion models,
867 prior work has studied human video generation from audio, skeleton data, or 2D/3D poses, often
868 through a two-stage pipeline: mapping audio to poses and then using a pre-trained GAN-based
869 pose2video model (Ginosar et al., 2019; Qian et al., 2021). More recently, diffusion models (Hogue
870 et al., 2024; Liu et al., 2024a; Qian et al., 2021; Liu et al., 2022; He et al., 2024) have been applied. A
871 study (Huang et al., 2024) has also been introduced that generates a style-specific anchor avatar video
872 from only a one-minute video clip. With notable work (Li et al., 2025) directly generating videos
873 from audio, showing that bypassing the audio-to-pose step—long a performance bottleneck—can
874 advance the task.

875 While this task shares the common goal of generating talking human videos from audio signals, it
876 differs significantly from our approach: such methods typically produce only 2D videos rather than
877 3D avatars, and the generated content is limited to the upper body. Furthermore, they have been
878 validated only on constrained domain-specific datasets, such as TED talks.

879 **Speech-driven Whole-body Motion Generation.** This section focuses on methodologies that
880 generate body, face, and hand parametric motions together. It is the task of automatically predicting
881 natural, human-like body and hand gestures that align with spoken language. Unlike earlier works
882 that focused on generating only facial expressions or body gestures in isolation, recent research
883 has begun to explore the simultaneous generation of body, face, and hand gestures. These studies
884 have introduced several methodological advances, including the use of VQ-VAE architectures (Yi
885 et al., 2023), the adoption of large-scale datasets (Liu et al., 2024b), diffusion-based generative
886 models (Chhatre et al., 2024; Chen et al., 2024; Mughal et al., 2025), and real-time generation (Liu
887 et al., 2025) enabled by MAMBA or Flow Matching approaches. More recently, motion generation
888 has been significantly improved through multi-task learning that incorporates diverse multimodal
889 signals such as speech, text, and music, along with tasks including text-to-motion, audio-to-motion,
890 and dance generation (Bian et al., 2025).

891 These methods map audio signals to co-speech gesture motions for 3D avatars, but their reliance
892 on low-dimensional representations limits fine details such as wrinkles, facial nuances, and subtle
893 hand gestures. Articulations and skinning on naked body meshes also cause deformation errors with
894 clothed avatars. To address this, we propose an end-to-end pipeline that directly deforms 3D avatars
895 from raw audio, reducing information loss and shape-induced errors while enabling photorealistic
896 detail and expressive gestures. We further validated our approach through comparison with the
897 state-of-the-art MotionCraft.

898 **B ADDITIONAL RESULTS**
899

900 We provide additional visual comparisons with methods that generate animatable 3D avatars from a
901 single image, as well as with several audio-driven large human video diffusion models. Please refer to
902 Fig. 6 and Fig. 7. Furthermore, we compare with One-shot and One-talk (Xiang et al., 2024), which
903 are related works that generate 3D talking avatars from a single image. However, since their code
904 and details regarding the train/test dataset split are not publicly available, it is difficult to conduct
905 a quantitative comparison. Instead, we compare with the results released on their project pages to
906 demonstrate the clear performance advantages of our approach. Please refer to Fig. 8.

907 **C CONVERSATIONAL TALKING HUMAN DATASET CREATION**
908

909 We describe in detail the pipeline for constructing a whole-body talking human video dataset paired
910 with audio. An overview of the pipeline is illustrated in Fig. 9. We need to learn the whole-body
911 motion of a 3D avatar from a single reference image. In this section, we leverage an audio-driven large
912 human video diffusion model to achieve this goal. We propose a systematic pipeline for constructing
913 a Conversational Talking Human Dataset, which integrates multimodal resources—text, audio, and
914 video—to enable the generation of realistic, conversational human avatars. The process is designed to
915 balance both diversity and consistency across different modalities, ensuring that the resulting dataset
916 can serve as a strong foundation for speech-driven avatar generation and conversational AI research.

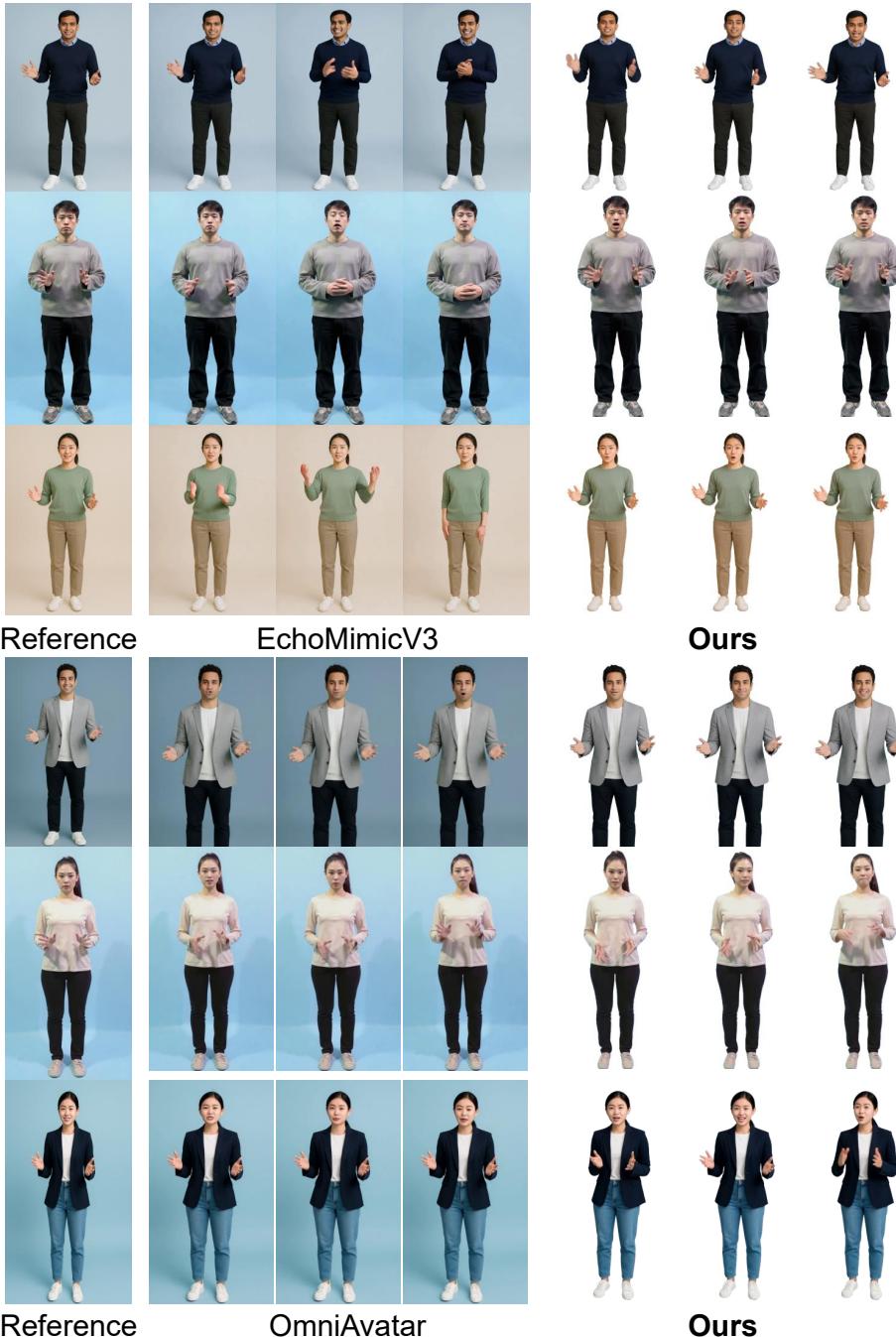
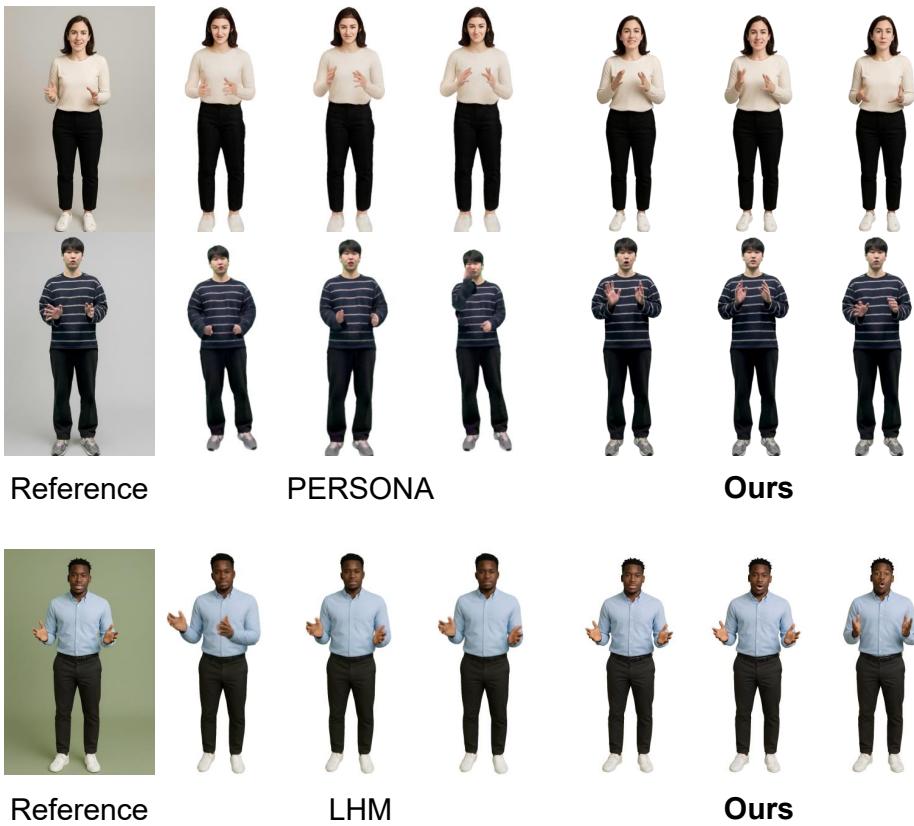


Figure 6: **Visual comparison with large human video diffusion models.** Our method shows improved identity preservation and reduced hand artifacts compared to human video diffusion models.

Attribute Dictionary Construction. The pipeline begins with the construction of an attribute dictionary that defines the diversity of the generated human figures. Attributes such as gender, age, body type, hairstyle, and clothing style are explicitly enumerated to create a wide spectrum of possible appearances. These attributes are embedded in carefully engineered text-to-image prompts that instruct the model to produce full-body renderings of realistic humans. Each generated image depicts a human making a conversational gesture, facing forward with both hands visible and



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 7: **Visual comparison with single-image animatable 3D avatars.** Our method shows superior visual quality and motion naturalness compared to them.

undistorted, while maintaining a solid background for visual consistency. This stage ensures not only diversity in representation but also structural integrity across the generated subjects.

Text Corpus Design. To simulate natural conversational dynamics, a dedicated text corpus is created. The corpus contains phrases that mirror authentic human interactions, including greetings, introductions, transitional statements, and engagement prompts. Rather than arbitrary text, these utterances are contextually grounded and resemble real dialogue or presentation scenarios. This design guarantees that the dataset captures the flow and tone of human-to-human communication. The collected text corpus is used as prompts at the LLM system (OpenAI, 2025).

Speech Generation. Each textual utterance is paired with a high-quality speech sample using text-to-speech (TTS) systems (ElevenLabs, 2025). Multiple variations in voice characteristics—including gender, timbre, and speaking style—are generated in order to reflect the natural diversity of spoken communication. This step enriches the dataset with acoustic variety and ensures that the resulting videos are not limited to a single vocal identity.

Text-to-Image Human Generation. Once the attributes and speech samples are defined, a diffusion-based text-to-image model (OpenAI, 2025) is employed to generate photorealistic human figures. By embedding the attribute specifications into prompts, the model produces visually consistent renderings that adhere to the conversational setting. Particular care is taken to enforce gestural realism, especially in the visibility and articulation of hands and fingers, as well as in the appropriateness of facial expressions aligned with conversational intent. The use of full-body images further enhances the realism and applicability of the dataset.

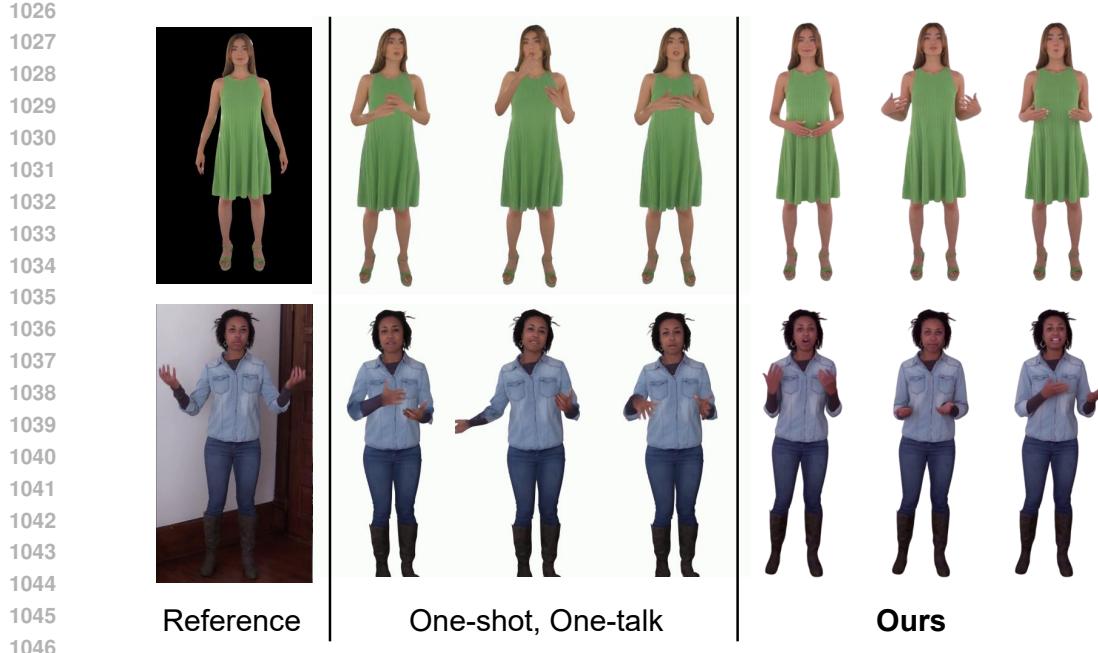


Figure 8: **Qualitative comparison with One-shot, One-talk (Xiang et al., 2024).** Since the code for these methods is not publicly available, quantitative comparison cannot be conducted. However, to demonstrate the superior performance of our proposed approach, we compare with the results released on the project page. Our method shows better hand appearance and gesture details. Moreover, it exhibits stronger ability to preserve facial identity across frames.

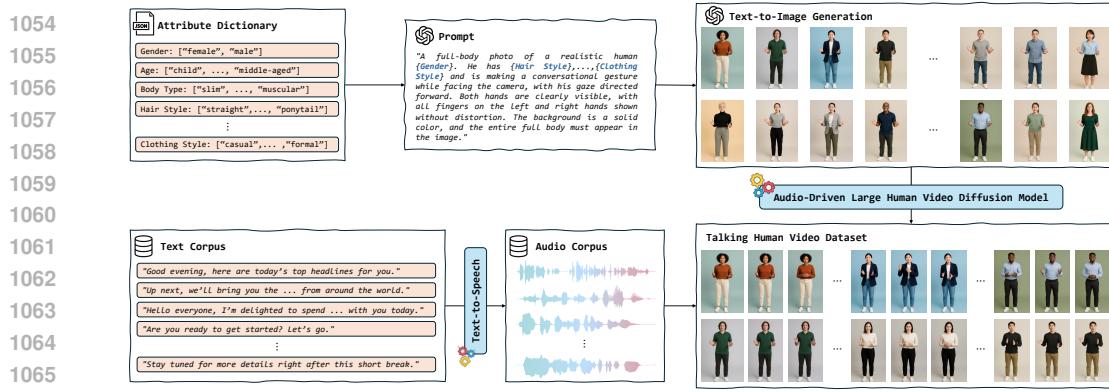


Figure 9: **Conversational Human Video Dataset creation pipeline overview.**

Audio-Driven Talking Human Video Synthesis. The crucial stage of the pipeline involves synchronizing static images with their corresponding audio through an audio-driven large human video diffusion model (Chen et al., 2025b). This model generates temporally coherent talking human videos by aligning lip movements, facial expressions, and subtle body gestures with the spoken content. The synthesis produces lifelike video segments in which the generated characters convincingly deliver the conversational utterances. The final dataset is assembled by systematically combining the generated human images, the conversational text corpus, the paired speech samples, and the synchronized talking human videos. This multimodal alignment provides a rich and diverse resource that can support applications, including realistic whole-body human avatar generation. The proposed dataset creation pipeline not only emphasizes diversity and naturalism but also ensures reproducibility and scalability for future studies in this field.

1080
1081

D LIMITATIONS

1082
1083
1084
1085
1086
1087
1088

While our approach achieves compelling results, we acknowledge several limitations. **First, novel view synthesis** remains challenging. Because our system constructs avatars from a single input image and augments training data through audio-driven human video diffusion models, the generated samples are primarily near-frontal views, which limits performance under large viewpoint shifts. Nevertheless, our framework still produces high-fidelity avatars in typical front-facing scenarios, which are the most relevant for applications such as video conferencing, education, and digital assistants.

1089
1090
1091
1092
1093
1094
1095

Second, our method does not yet support **interactive conversational avatar generation**. In natural conversations, gestures and expressions often adapt dynamically to the partner’s speech and behavior, a factor not modeled in our current framework. Even so, by focusing solely on the speaker’s audio, our method captures speech-synchronized motions with remarkable consistency, offering a reliable foundation for lifelike avatar animation. We see interactive modeling as an exciting avenue for future research, but our present approach already provides a strong step toward expressive and accessible human-avatar communication.

1096
1097
1098

E BROADER IMPACTS

1099
1100
1101
1102
1103
1104
1105

Potential Negative Societal Impacts Our work advances high-fidelity, audio-driven 3D talking avatars but also carries risks. The technology could be misused to create deceptive or harmful media, such as deepfakes for misinformation, harassment, or identity fraud, raising ethical and legal concerns about trust in digital communication. Fairness and bias are also issues, as underrepresented groups in training data may experience degraded performance. Privacy risks emerge if avatars are generated without consent, and high computational demands may limit accessibility, reinforcing the digital divide.

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Broader Impacts At the same time, this technology offers significant benefits. Personalized 3D avatars can enhance telepresence, education, and remote collaboration, lowering communication barriers across diverse contexts. For individuals with disabilities, avatars may open new channels for expression and inclusion. The method also benefits entertainment, creative industries, and mixed reality applications. More broadly, it contributes to understanding the coupling of speech and gesture. To support responsible use, future work should incorporate safeguards such as watermarking, provenance tracking, and bias-aware evaluations.