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Abstract

Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech
and prosthetic control, for individuals with neuromotor impairments. Central to
their success are neural decoders, models that map neural activity to intended
behavior. Current learning-based decoding approaches fall into two classes: sim-
ple, causal models that lack generalization, or complex, non-causal models that
generalize and scale offline but struggle in real-time settings. Both face a common
challenge, their reliance on power-hungry artificial neural network backbones,
which makes integration into real-world, resource-limited systems difficult. Spik-
ing neural networks (SNNs) offer a promising alternative. Because they operate
causally (i.e. only on present and past inputs) these models are suitable for real-
time use, and their low energy demands make them ideal for battery-constrained
environments. To this end, we introduce Spikachu: a scalable, causal, and energy-
efficient neural decoding framework based on SNNs. Our approach processes
binned spikes directly by projecting them into a shared latent space, where spiking
modules, adapted to the timing of the input, extract relevant features; these latent
representations are then integrated and decoded to generate behavioral predictions.
We evaluate our approach on 113 recording sessions from 6 non-human primates,
totaling 43 hours of recordings. Our method outperforms causal baselines when
trained on single sessions using between 2.26× and 418.81× less energy. Further-
more, we demonstrate that scaling up training to multiple sessions and subjects
improves performance and enables few-shot transfer to unseen sessions, subjects,
and tasks. Overall, Spikachu introduces a scalable, online-compatible neural de-
coding framework based on SNNs, whose performance is competitive relative to
state-of-the-art models while consuming orders of magnitude less energy.

1 Introduction

Brain-computer interfaces (BCIs) are opening new frontiers in assistive technology, particularly for
those affected by severe neuromotor disorders [1–10]. The implantation of miniaturized BCI devices
in the brains of patients suffering from debilitating disorders, such as limb loss or ALS, enabled them
to control computers and smartphones using only their thoughts, vastly improving their quality of life
[11–13]. Latest advances have even restored speech-based communication in individuals who had
lost the ability to speak by reconstructing their intended words directly from neural activity [14, 15].
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At the core of every BCI system lies a neural decoder, the software that maps neural signals to the
user’s intended actions, such as moving a cursor on a screen or controlling a prosthetic limb [16–19].

Deep learning has significantly advanced our ability to build powerful neural decoders [14, 15, 20, 21].
Unlike traditional approaches that rely on hand-crafted features, artificial neural networks (ANNs) can
learn the mapping from neural activity to intended actions directly from data. Despite this progress,
designing scalable, high-performance neural decoders suitable for integration into real-world BCI
systems remains an open challenge with constraints along several axes. First, neural decoders need
to be energy-efficient to operate within the tight power budgets of battery-constrained implantable
devices [22–25]. Second, to enable online operation, models must be causal (i.e. rely only on present
and past inputs) [10]. Third, models need to scale, since scaling up model complexity and training
dataset size has been shown to boost performance in the neural decoding domain [20, 21, 26–28].
Finally, models should generalize to new subjects and tasks with minimal training examples to reduce
the need for lengthy calibration sessions that hinder the practical deployment of BCIs [29].

While significant progress has been made along each of these axes, to our knowledge, no single
framework excels across all of them simultaneously. Existing approaches tend to fall into two main
categories, each with its own shortcomings. On one hand, simple models, often based on traditional
architectures like multi-layer perceptrons (MLPs) or Gated Recurrent Units (GRUs), tend to perform
well within individual experiments. These methods are typically causal but require homogeneous
input structures, making them difficult to scale or generalize across subjects [30–34]. On the other
hand, more sophisticated frameworks that can be trained across datasets have demonstrated strong
performance and generalization, particularly at scale [20, 21, 26–28, 35]. However, their lack
of causal processing and heavy computational demands challenges their applicability outside the
research lab.

Spiking neural networks (SNNs) offer a promising alternative. Their inherent causality supports
integration into online systems, and their low computational footprint makes them well-suited for
battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and
energy-efficient framework for multi-session, multi-subject neural decoding based on SNNs. Our
approach operates on binned spike trains, which are first projected into a latent space shared across
sessions and subjects. Temporal features are then extracted from the latents using parallel spiking
networks. To capture long-range dependencies, the extracted features are processed by spiking
self-attention blocks. Finally, the enriched latents are integrated and mapped to behavioral predictions
through another set of parallel spiking modules.

We evaluate our approach on 113 neural recording sessions from 6 non-human primates (NHPs)
totaling more than 111M spikes and 43 hours of recordings [36, 37]. Our approach outperforms
causal baselines while consuming between 2.26× and 418.81× less energy when trained on single
sessions. We then build unified models trained on multi-subject data that outperform single-session
models, and show they can be transferred to new sessions, subjects, and tasks very efficiently. Overall,
this work introduces a scalable, online-compatible neural decoding framework based on SNNs, whose
performance is competitive relative to state-of-the-art models while consuming orders of magnitude
less energy. This combination of performance and efficiency makes it a promising foundation for
BCIs designed for edge computing environments.

Our contributions can be summarized as:

• A framework for multi-session, multi-subject neural decoding that is scalable, causal,
and energy efficient. By combining SNNs with transformers, our approach offers strong
decoding performance while using minimal energy, positioning it as a compelling solution
for real-time BCI applications.

• A causal, architecture agnostic building block for multi-session, multi-subject model training.
We propose a novel formulation for mapping neural recordings from heterogeneous datasets
into a shared latent space, enabling scalable training across sessions and subjects.

• A fast, architecture agnostic building block for efficient processing across temporal res-
olutions. We propose a novel module capable of extracting features at multiple, distinct
temporal scales based on SNNs.

• Pretrained models for neural decoding. We trained a unified model on the combined data
from 3 NHPs spanning 99 neural recording sessions, which is transferable to new sessions,
subjects, and tasks. We will make the model and code publicly available.
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2 Related Work

Neural decoding. Recent advances in deep learning have significantly improved neural decoding
capabilities, with ANNs enabling impressive results across a range of applications, including cursor
control, prosthetic control, typing, and speech decoding [10, 14, 15, 17–19, 34]. These works
primarily relied on lightweight, causal architectures such as MLPs and RNNs, which performed
well on single-session datasets [38]. Relatively more sophisticated approaches based on VAEs
and self-supervision have also been used with success by Liu et al. [39] and Peterson et al. [40],
respectively. However, their performance degrades on new sessions or subjects due to their reliance
on homogeneous input structures and known electrode correspondences across sessions and subjects.

Other studies have focused on improving cross-session generalization. LFADS was among the first
to model latent dynamics across sessions and subjects [35], with extensions for large-scale training
[41]. CEBRA introduced a contrastive learning approach for learning neural representations that are
shared across subjects [21], while POYO used transformers to achieve multi-session, multi-subject,
and multi-task generalization [26]. POYO+ extended those results across distinct cell types and
brain regions [20]. The MICrONS foundation model demonstrated that large-scale pretraining on
the mouse visual cortex can yield neural representations that generalize across visual stimuli [28].
While these approaches perform impressively and generalize well, they often sacrifice causality and
introduce significant computational overhead, which is unsuitable for online applications such as
battery-constrained BCIs.

Spiking neural networks. SNNs are a class of neural networks that excel in processing event-
driven data sequences with spikes [42]. Unlike conventional ANNs, which rely on static activations
like ReLU, SNNs employ bio-inspired spiking mechanisms, with the Leaky Integrate-and-Fire
(LIF) model being the most widely used (see App. A.1). Key to their success is their remarkably
energy-efficient inference compared to ANNs, particularly when deployed on neuromorphic hardware
[43–45]. Furthermore, their event-driven, online nature makes them well-suited for processing
real-time or asynchronous data streams [46–49].

SNNs have been investigated for their potential in energy-efficient neural decoding [50–54]. However,
prior efforts have primarily focused on shallow spiking MLPs, typically with four or fewer layers,
trained and evaluated within the confines of single recording sessions. The main emphasis of these
works has been on deployment feasibility on neuromorphic hardware. In contrast, our work introduces
the first SNN-based neural decoding framework that not only leverages the inherent energy efficiency
of spiking computation but also scales to large, multi-session, and multi-subject datasets, marking a
significant step forward in the applicability of SNNs to real-world neural decoding challenges.

3 Methodology

SNNs offer remarkable energy efficiency across a variety of tasks in computer vision and natural
language processing [42, 55, 56], particularly with asynchronous, event-based data [47]. Our work
aims to leverage their advantages in the context of neural decoding.

3.1 Harmonizing the neural activity across sessions and subjects

BCI systems rely on microelectrode arrays (MEAs) to record neural activity at a high spatial and
temporal resolution. Thanks to their small size and low impedance, individual MEA electrodes can
detect extracellular action potentials from single neurons or small groups of neurons (referred to
as “units”) in their immediate vicinity [57, 58]. These recordings are typically represented as spike
trains, which abstract away the waveform of each action potential and encode only the precise times
at which spikes occur.

The spikes recorded across the electrodes of a subject are, of course, not independent. Rather, they
reflect the coordinated activity of neurons that are part of distributed brain networks [26]. A key
challenge is interpreting these signals not as isolated events, but as components of a broader neural
context [27]. This challenge becomes increasingly complex when integrating data across multiple
sessions and subjects. Within a single subject, MEA recordings can drift over time [26, 32, 57, 59].
Across subjects, MEAs inevitably sample from distinct neurons, with no known correspondence
between electrodes [60]. Consequently, our decoding approach must be capable of extracting
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Figure 1: Overview of the Spikachu framework.

meaningful, generalizable representations despite differences in electrode placement, neural dynamics,
and recorded populations across sessions and individuals.

Tokenization. Motivated by the heterogeneity of the neural recordings across sessions and subjects,
we designed a tokenization scheme that enables multi-session training. At the same time, our
approach operates within timepoints to enable online usability. Inspired by Azabou et al. [26], we
represent each unit as a token via a learnable embedding in Rd. Specifically, for a binned spike
window, let U = {u1, u2, u3, . . . , unu

} be the multiset of all units recorded during that window.
Let UnitEmb(·) denote a lookup table that maps each unit to its embedding. We summarize the
neural activity of a given time window as the sequence X = [x1,x2,x3, . . . ,xnu

] ∈ Rnu×d, where
xi = UnitEmb(ui) ∀ i ∈ {1, 2, · · · , nu}. We note that if the ith electrode recorded ni units, ni

repeats of xi = UnitEmb(ui) would be present in the sequence X for that window. This sequence
summarizes the cumulative neural activity across all electrodes of a subject for the given window.

Projecting units to a shared latent space. We then project the sequence X into a latent space
that is shared across sessions and subjects using the Perceiver encoder [61, 62]. Specifically,
let Z0 = [z0,1, z0,2, · · · , z0,n0

] ∈ Rn0×dz0 , be a sequence of n0 learnable latent tokens, where
z0,i ∈ Rdz0 ∀ i ∈ {1, 2, . . . , n0}. We use cross-attention to project the input sequence X into the
latent Z1 ∈ Rn0×d whose length no is independent of the length of the input sequence X. To
do so, we linearly project the latent and input sequences into Queries: Q = WQZ0, Keys: K =
WKX, and Values: V = WV X, and compute,

Z1 ← Cross-Attn(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V, (1)

where dk refers to the feature dimensionality of K. For this operation, we use the standard transformer
block preceded by layer-normalization and followed by a feed-forward network [63].

Obtaining virtual units. We then unroll the latent Z1 ∈ Rn0×d → Rn0·d and we project it to the
low-dimensional latent Z2 ∈ Rnv using a linear layer. We interpret Z2 as a new set of nv“virtual”
units that are shared across sessions and subjects. We note that the weights of this layer are shared
across sessions and subjects—no session or subject specific adaptation is performed.

3.2 Efficient and stateful processing of the latents using spiking neural networks

Having projected the neural activity for each time bin into a new set of virtual units that is shared
across sessions and subjects, we could in principle process the latent Z2 with any causal architecture
commonly used for neural decoding such as MLP, GRU, or any model surveyed by Glaser et al. [38].

Rather than relying on such conventional power-hungry ANNs, we instead leverage SNNs which are
considered the third generation of neural network models [64]. SNNs are theoretically as expressive
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as ANNs and, due to their recurrent nature, are particularly well-suited for time-dependent tasks
[65]. While their performance advantages remain an open area of research, their energy efficiency
when deployed on neuromorphic hardware has been well demonstrated [44, 45]. This makes SNNs
particularly attractive for BCI applications, where power constraints are critical due to the limited
battery life of the miniaturized BCI implants.

Decomposing the neural activity across temporal streams. Given that the brain operates across
multiple intrinsic timescales [66], we sought to process the data in a similarly multi-timescale fashion.
To do this, we pass the latent Z2 through p parallel spiking feed forward networks (FFNs), each
designed to operate at a distinct temporal resolution. Each network returns a latent Zs,i ∈ Rds by
projecting Z2 though sequences of the following layers,

Zl+1 = BN(Wl SN l(Zl)), (2)
where SN l represents a spiking activation, Wl a linear projection, and BN the batch normalization
operation [67]. Each network’s spiking activation layers SN are initialized with independent and
learnable decay constants (see App. A.1), effectively allowing each network to extract features that
evolve as separate streams of information. We concatenate the latents from each stream into the
sequence of latent tokens Zms = [Zs,1,Zs,2, · · · ,Zs,p] ∈ Rp×ds .

Capturing long-range temporal dependencies. We then proccess the sequence Zms for informa-
tional dependencies across timescales using spiking-self attention [55]. Specifically, we project the
sequence Zms into equally shaped Queries (Q), Keys (K), and Values (V),

Q = SNQ(BN(WQZms)), K = SNK(BN(WKZms)), V = SN V (BN(WV Zms)), (3)

where Q, K, V ∈ Rdssa and compute the spiking self attention matrix as,

SSA′ = SN (QK⊤V · s), (4)

where s is a scaling factor. We then compute Zssa ∈ Rp×dssa by projecting SSA′ through the following
spiking layers,

Zssa ← SSA(Q,K,V) = SN (BN(Wssa SSA′)). (5)
Following Zhou et al. [55], we precede this operation using layer normalization and follow it with a
spiking feed-forward network. For a primer on the main differences between spiking [55] and vanilla
[63] self-attention, please see App. A.2.

Compressing the latents to a compact spatiotemporal representation. Having identified long-
term dependencies across the p temporal streams, we unroll the latents Zssa ∈ Rp×dssa → Rp·dssa and
using a spiking MLP (whose layers follow Eq. 2), we project them to a low dimensional representation
Zmlp ∈ Rdmlp where dmlp ≪ p · dssa . The latent Zmlp is a compact representation of the neural activity
that is informed by the evolution of the neural code along the spatial (electrode) and temporal axes.

Smoothing predictions using multiple timescales. Having extracted neural representations that
capture long-range spatiotemporal dependencies, we process the latent Zmlp with another set of
p′ parallel spiking MLPs that process the latents at different temporal scales (composed of layers
described in Eq. 2). This time, we use the parallel MLPs to extract latents Zs′,i ∈ Rds′ , each evolving
at unique temporal scales based on the decay constant of the neurons in that network. We then
concatenate the latents to obtain the sequence Zsm′ ∈ Rp′×ds′ .

Tracking continuous variables through the membrane potential of spiking neurons. In many
BCI applications, the behavioral variables of interest, such as the velocity of a computer cursor or
the movement of a prosthetic limb, are continuous in nature. To accommodate this, our framework
needs to map the spiking activity generated by the SNN layers to continuous-valued outputs. We
achieve this using a membrane potential observer layer, denoted SN obs, that never spikes and whose
membrane potential fluctuates over time without resetting [52, 68, 69]. We first unroll the latents
Zsm′ ∈ Rp′×ds′ → Rp′·ds′ and then pass them through the observer layer,

Mobs ← SN obs(Zsm′), (6)

where Mobs ∈ Rp′·ds′ denotes the membrane potential of the observer neurons. These accumulated
latents are then linearly projected to the target variable’s output space producing Zout ∈ Rdout , the
final continuous behavioral prediction of the network.
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4 Experiments

In this section, we validate the promise of our approach (see Fig. 1) for causal, energy-efficient and
scalable neural decoding based on spiking neural networks.

4.1 Experimental setup

Dataset. We utilized two publicly available electrophysiology datasets summarized in Tab. 1.
Altogether, the data span 6 NHPs engaged in 4 distinct behavioral tasks, encompassing a total of 113
recording sessions [36, 37, 70–72]. In terms of scale, the combined dataset contains over 43 hours of
recordings, 10,000 units, 110 million spikes, and 20 million behavioral timepoints, providing a rich
and diverse foundation for evaluating the scalability of our approach.

Table 1: Datasets used in this work. CO: Center-Out, RT: Random Target.

Study Regions # Indiv # Sess # Units # In # Out Tasks
Perich et al. [36] M1, PMd 4 111 10,410 111.39M 20M CO, RT
Pei et al. [37] M1 2 2 312 5M 9M RT, Maze

Behavioral tasks. Neural recordings were collected from NHPs that performed motor tasks of
various complexities (see Fig. 2A and App. B). In the CO task, the animal executes a relatively
structured sequence: after receiving a go cue, it reaches toward one of eight predefined targets
before returning to the center. The RT task presents additional complexity. The animal engages in
continuous, self-paced movements, with new targets appearing unpredictably across the workspace.
Our goal was to decode the velocity of the cursor controlled by the animal from their neural activity.

Design choices. Throughout all experiments, we bin spikes using a 0.01 sec sliding window on 1
sec segments of data. We do not use the trial structure during model training. We report the decoding
performance for CO tasks during reaching movements only, as established in Azabou et al. [26].
Spikachu’s implementation and training details are described in App. C and D.

Energy estimation. All energy-related results in this work are derived from the number of floating-
point operations (FLOPs) required for model inference, which we convert to energy consumption
estimates following well-established procedures described in Bal and Sengupta [56] and Zhu et al.
[49]. Because FLOPs are hardware-agnostic, our analyses do not depend on any specific hardware
implementation. All details of the energy calculations are provided in App. E.2.

4.2 Performance on single sessions

We began by evaluating the performance of our modeling approach in a single-session setting.
Specifically, we trained individual models on 99 recording sessions from three animals (NHPs C, J,
and M) from the Perich et al. [36] dataset. Each session ranged from 10 to 106 minutes in duration,
comprising 78 sessions of the CO task and 21 sessions of the RT task. These models achieved an
average per-session R2 of 0.84 and 0.68 for the CO and RT tasks, respectively (see Fig. 2B). We
also estimated the mean energy required per inference across the single-session models (see App. E.2
for details) and found it to be 5.14µJ and 5.13µJ for the CO task and RT tasks, respectively.

Table 2: Model performance for Spikachu and baselines. Best
performing model is in bold and second best model is underlined.

Model Decod. Perf. (R2) ↑ Energy (µJ) ↓
CO RT CO RT

LSTM 0.4935 0.4214 15.08 14.94
MLP 0.7424 0.5724 12.18 12.06
POYO-causal 0.7961 0.5629 2151.65 2136.82
GRU 0.8336 0.6681 11.65 11.54
POYO 0.8937 0.6785 2151.65 2136.82
Spikachu 0.8398 0.6761 5.14 5.13

Baseline comparisons. We then
benchmarked the single session mod-
els against other architectures com-
monly used for neural decoding, such
as MLP, GRU, and POYO [26, 38].
Our approach outperformed all causal
baselines (see Fig. 2C and Tab.
2), while narrowing the performance
gap with non-causal models. No-
tably, Spikachu was the most energy-
efficient model, requiring 2.26× less
energy per inference when compared to GRU (the second most efficient model) and 418.81× less when
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Figure 2: Model performance on single sessions. (A) Schematic of CO and RT tasks (reproduced from
Azabou et al. [26], with permission). (B) Examples of true and predicted behavior (x, y velocities) for
the CO (top 4 subplots) and RT (bottom 4 subplots) tasks. (C) Mean (± SEM) decoding performance
and energy consumption for Spikachu and baselines on sessions from monkeys C, J, and M from the
Perich et al. [36] dataset.

compared to POYO, which was the best performing model. Importantly, the same trend was observed
when comparing the number of FLOPs required for inference for each model (see Tab. 5, App. F.5).
These findings highlight the dual benefits of our approach: high-performance neural decoding and
improved energy efficiency, underscoring its suitability for power-constrained applications such as
implantable BCIs.

We also benchmarked our model against baselines in terms of memory access costs (where Spikachu
outperformed all baseline models). We refer the reader to App. F.5 for this analysis. Detailed
implementation descriptions of the baseline models and the corresponding energy calculations are
provided in App. C.2 and App. E.1, respectively.

4.3 Spikachu-mp: Pretraining on large amounts of data

After demonstrating Spikachu’s strong performance when trained on individual sessions, we were
interested in investigating whether training on more data, despite the heterogeneity, could further
enhance Spikachu’s performance, a strategy that has shown benefits in prior works [21, 26–28].

Figure 3: Head-to-head comparison between
Spikachu-mp + finetuning vs Spikachu trained on
single-sessions. (A) Decoding Performance, (B) Energy
consumption per inference. Marker size encodes the
number of trials available for each session.

To this end, we developed Spikachu-mp:
a multi-session, multi-subject model
trained on the complete set of 99 recording
sessions from monkeys C, J, and M from
the Perich et al. [36] dataset. Notably, this
model was trained on over 40 hours of neu-
ral recordings and more than 110 million
spikes. In contrast to previous works (see
Azabou et al. [26]), we did not increase
our model’s size during multi-subject train-
ing. This design choice ensured that our
model would remain energy-efficient even
when scaling to larger datasets, a critical
consideration for resource-constrained im-
plantable BCIs. Spikachu-mp achieved a
per-session test set R2 of 0.80 for CO and
0.57 for the RT task, indicating Spikachu’s ability to learn generalized neural representations shared
across sessions and subjects.
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To evaluate the utility of the learned representations, we then finetuned Spikachu-mp on individual
sessions. The finetuned models achieved an average test set R2 of 0.88 and 0.69 for the CO and RT
tasks, respectively, outperforming models trained from scratch on single sessions (∆R2

CO = 3.75%
and ∆R2

RT = 1.71%; Fig. 3A). The finetuned models also showed increased energy efficiency
compared to single-session models trained from scratch, consuming 5.04µJ and 5.03µJ per inference
for the CO and RT tasks, respectively (see Fig. 3B). This is equivalent to saving 1.91% and 2.01%
energy per inference for the CO and RT tasks, respectively. Together, these results suggest that
leveraging cross-session representations not only improves decoding accuracy but also enhances
energy efficiency compared to training single-session models from scratch.

4.4 Transferring Spikachu-mp to new subjects

Having established that pretraining Spikachu on large amounts of data enhances decoding performance
and energy efficiency, we sought to determine whether the pretrained model could be effectively
transferred to entirely new sessions from a previously unseen subject. To test this, we trained single-
session models from scratch on 12 held-out recording sessions (6 CO and 6 RT) from a new animal
(monkey T) drawn from Perich et al. [36]. These models achieved a mean test set R2 of 0.76 and
0.66 for the CO and RT tasks, while consuming 4.97µJ and 5.14µJ per inference, respectively.

We then used Spikachu-mp to transfer the learned representations to these new sessions. The
transferred models yielded improved decoding performance, with average per-session test set R2

of 0.78 and 0.68 for the CO and RT tasks, respectively (Fig. 4A). In addition to higher decoding
accuracy, the transferred models were also more energy-efficient, consuming 4.79µJ and 4.95µJ
per inference (Fig. 4B). This represents a reduction in energy consumption of 3.71% and 3.63% for
the CO and RT tasks, respectively, relative to models trained from scratch. Finally, we analyzed
the training dynamics and observed that the transferred models converged (reached 90% of their
maximum attained R2) on average 3× and 4× faster than their scratch-trained counterparts for the CO
and RT tasks, respectively (see Fig. 4C, D). These findings suggest that Spikachu-mp learned neural
representations that generalize to new subjects, providing a powerful foundation for transfer learning
in BCI. In practical terms, this means that new users could benefit from robust BCI performance with
minimal calibration, reducing the burden of subject-specific training and enabling faster deployment
in real-world clinical or assistive settings.

Figure 4: Performance comparison between single-session models trained from scratch vs single-
session model transferred from Spikachu-mp. (A). Decoding Performance, (B) Energy consumption
per inference, (C, D) Learning dynamics for the CO and RT tasks.

4.5 Scaling laws of multi-session, multi-subject training

Having shown that pretraining Spikachu learns robust neural representations that generalize across
sessions and subjects, we next investigated its scaling behavior, specifically, how (1) decoding
performance, and (2) energy efficiency change as a function of the amount of data used for pretraining.
In addition to Spikachu-mp, we trained three multi-session, multi-subject models using 20, 49, and
75 sessions drawn from animals C, J, and M in Perich et al. [36], the same subjects used to train
Spikachu-mp. To probe generalization and transfer capabilities, we used each pretrained model as
the initialization for three finetuning conditions: (1) Seen sessions: finetuning on the same sessions
used during pretraining, (2) New sessions: transferring to unseen sessions from the same subjects
(NHPs C, J, M), (3) New subject: transferring to unseen sessions from a new subject (monkey T).

Decoding performance and energy consumption results for the CO and RT tasks are shown in Fig.
5A, B and Fig. 5C, D, respectively. For comparison, we overlayed the performance of single-session
models trained from scratch (gray bars). Across all conditions, seen sessions, new sessions, and new
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Figure 5: Benefits of scaling up the training dataset size. (A, B) Decoding performance of finetuned
and transferred models (performance of scratch-trained single-session models overlayed in gray)
as a function of the number of sessions used for model pretraining for the (A) CO, and (B) RT
tasks. Panels (C, D) show the energy consumption per inference for finetuned and transferred models
(performance of scratch-trained single-session models overlayed in gray) as a function of the number
of sessions used for model pretraining for the (C) CO, and (D) RT tasks.

subjects, the pretrained models consistently outperformed their from-scratch counterparts. Moreover,
the performance gains from pretraining scaled positively with the number of sessions used during
model pretraining (as seen by the growing gap between colored and gray bars in Fig. 5A, B, and
Fig. 8A, B). We observed a similar trend for energy consumption per inference, reported in Fig. 5C,
D. Pretrained models required less energy across all transfer settings when compared to training from
scratch, and energy savings improved with the size of the pretraining dataset (Fig. 8C, D). As a bonus,
we observed that all pretrained models converged much faster than models trained from scratch (see
App. F.1). Overall, these results show that scaling up pretraining yielded consistent improvements in
both decoding accuracy and energy efficiency, with larger datasets providing greater gains and faster
convergence.

For direct, head-to-head comparisons of decoding performance, energy efficiency, and convergence
speed between pretrained and from-scratch models, refer to App. F.1 (Fig. 9 and 10).

4.6 Transferring Spikachu-mp to a new animal, setup, and task

Figure 6: Generalizing to new animals, setup, and
tasks (A, C) Schematic (reproduced from Azabou
et al. [26], with permission) and (B, D) learning
dynamics for the MC-RTT and MC-Maze tasks,
respectively.

In Sec. 4.4 and 4.5, we demonstrated Spikachu’s
ability to generalize across sessions and animals
not encountered during pretraining. To further
assess Spikachu’s generalization capabilities, we
evaluated the model on entirely novel conditions:
neural recordings from a new animal perform-
ing a novel task under experimental settings that
substantially differed from those described in
Perich et al. [36]. Specifically, we applied our
framework to the held-out MC-RTT and MC-
Maze datasets from the Neural Latents Bench-
mark [37] (see Fig. 6A, C for schematics and
App. B for task details).

We first trained single-session models from
scratch. We used a batch size of 128 for the
MC-RTT dataset and a batch size of 512 for the
MC-Maze dataset (as this dataset is much larger).
Spikachu achieved a test set R2 and 0.57 on the
RTT task and 0.79 on the Maze task, matching
the performance of other state-of-the-art models
(see Azabou et al. [26] for a comparison). Those
models consumed 5.12 and 4.86 µJ per infer-
ence for the MC-RTT and MC-Maze tasks, re-
spectively. We then used the pretrained weights
of Spikachu-mp as a basis for transferring to
the datasets. The transferred model achieved R2 values of 0.56 for RTT and 0.78 for the Maze task
while consuming 4.96 and 4.75 µJ per inference, respectively.
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While this approach did not yield a significant performance gain, it led to markedly faster convergence
(2.33× speedup for the MC-RTT and 2.66× for MC-Maze; see Fig. 6B, D) and reduced energy
consumption by 3.03% and 2.25% for the MC-RTT and MC-Maze tasks, respectively. This result is
particularly noteworthy given the substantial difference in experimental conditions between the MC-
RTT and MC-Maze datasets and those used in pretraining Spikachu-mp. Despite these domain shifts,
the neural representations learned through pretraining proved transferable, highlighting Spikachu’s
ability to generalize across animals, recording setups, and tasks.

5 Discussion

In this work, we introduced Spikachu: a causal, scalable, and energy-efficient framework for multi-
session, multi-subject neural decoding based on SNNs. Unlike existing approaches, it combines the
expressivity of transformers with the low-power advantages of SNNs, resulting in a system that is
both high-performing and energy-conscious. Our experiments demonstrate that Spikachu performs
comparably to state-of-the-art neural decoding models while offering large energy savings. We also
demonstrate that pretraining our model on a large corpus of heterogenous neural data benefits neural
decoding. To our knowledge, this is the first demonstration that unified models trained on multi-
subject, multi-task neural data can yield improved performance in the spiking domain. Moreover, we
find that pretraining encourages sparsity in network activity, further enhancing energy efficiency, a
critical factor for scaling up training across heterogeneous datasets.

This work provides strong experimental evidence that SNNs are a practical and energy-efficient
alternative to ANNs for neural decoding. While the majority of our architecture leverages SNNs to
achieve substantial energy savings, it still relies on an ANN-based harmonization module to support
large-scale training across datasets and subjects. Although this module represents a small fraction of
the total model parameters (less than 15% of total parameters), it accounts for a disproportionately
high share of the model’s energy. Replacing it with a fully spiking alternative could yield additional
energy savings. We believe that adaptations of spiking attention, such as those introduced by
Zhou et al. [73] or Li et al. [74], offer promising pathways to develop a fully spiking, end-to-end
architecture.

Although our results provide strong evidence for spiking-based neural decoding, real-world validation
remains a critical next step. Implementing Spikachu on neuromorphic hardware and using it in online
experiments would ultimately test its usability in the real world. Prior works have demonstrated the
feasibility of simple online SNN decoders [50, 52–54] but scaling to more complex architectures
remains a formidable challenge. Encouragingly, Spikachu’s resource requirements in this work are
modest (fewer than 4M synapses and roughly 10K neurons) and well within the capacity of modern
neuromorphic chips such as the Loihi 2 [43] and Darwin 3 [75]. Importantly, the compact form
factor of these chips is also well within the physical constraints of fully implantable BCI systems,
which typically fit within the area of a U.S. quarter. We hope our work inspires collaboration between
neuroscience and hardware communities to address implementation barriers.

Overall, this work represents a meaningful step forward in neuroscience by introducing an energy
efficient neural decoding framework based on SNNs.We demonstrate that our framework delivers
strong decoding performance that scales when trained on large, heterogeneous, multi-session datasets.
This challenges the conventional notion that spiking networks must sacrifice performance for energy
savings and highlights their potential for broader generalization [73]. Given that early demonstrations
of BCI therapeutic interventions have already been shown [14, 15, 17–19], our work paves the way
towards energy efficient neural decoding therapeutic interventions, bringing them closer to clinical
translation.
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Appendix

A Concept Primers

A.1 Spiking neuron models

Overview of spiking model history. The simplest neuron model available for machine learning
is the standard ANN neuron, which statelessly aggregates incoming signals with addition and then
passes the result through a predetermined non-linearity [76]. Bio-inspired models retain more of the
complexity of biological neurons at the cost of being more technically involved. Amongst the first
to quantify such models, Hodgkin and Huxley [77] developed a multi-parameter model to describe
squid axon neurons. Other works have provided detailed models to approximate different types of
biological neurons. For instance, Migliore et al. [78] and Herrera et al. [79] modeled various aspects
of pyramidal neurons, whereas Sherff and Mulloney [80] modeled motor neurons in the swimmeret
system of crayfish. *

The Leaky Integrate-and-Fire neuron. Between the simplicity of ANN neurons and fully biologi-
cal neurons lie several models that trade off between the two, retaining the statefulness of biological
systems while greatly simplifying the computational specifics to a much more tractable form. These
models, generally termed spiking neurons, include state variables that typically correspond to poten-
tials of various ion channels in biological systems. They also contain logic that dictates the evolution
of these variables over time, typically expressed as a differential equation, as well as the necessary
conditions for firing output spikes. The most ubiquitous such model is the Leaky Integrate-and-Fire
(LIF) model, which approximates a neuron with a spiking RC circuit. In this model, the tracked state
is a real, scalar number corresponding to the membrane voltage of the neuron. The state v(t) obeys
its own recurrent dynamics, modeled as an exponential decay, to which inputs are added through
integration. The differential equation for the potential with time-varying input current i(t),

τ · v̇(t) = −v(t) +R · i(t), (7)

can be solved analytically,

v(t) = e−t/τ ·
(
v0 +

∫ t

t0

es/τ · R · i(s)
τ

ds

)
, (8)

where the parameter τ controls the decay rate and R corresponds to an input resistance. A LIF
neuron’s firing behavior is then a simple matter of thresholding,

s(t) = 1[v(t) > Vth], v(t+ δt) =

{
v(t) + v̇(t) · δt , if s(t) = 0

Vrs , if s(t) = 1
, (9)

where s(t) is the spike output and 1 is the indicator function. If the membrane voltage is above the
threshold Vth, there will be a binary spike in the output, and the state will be reset according to the
reset logic; one way to implement this would be to set the membrane back to a resting potential value
Vrs, typically zero. Recently, it has been shown that these parameters can be learned [81]. We utilize
this property in the present work to specialize different network components for separate (implicit)
portions of the input signal.

Other spiking neurons. Other neuron models have found application in SNNs. In Orchard et al.
[43], Resonate-and-Fire (RF) spiking neurons were used. These neurons are very similar to LIF,
except that their state is complex, meaning that excitation induces an oscillatory behavior. Spiking
only occurs when the imaginary part of the membrane state is zero, and the output is not binary, but
instead the instantaneous value of the real part of the state. It is eventually shown that the resulting
behavior is mathematically similar to the Short-Time Fourier Transform (STFT). Similarly, Xing
et al. [82] introduced a generalized version of the LIF neuron. With integral outputs, the Generalized
Integrate-and-Fire (GIF) neuron supported the authors’ saliency-based spiking large language models.
These works showcase the different directions in which spiking neurons can develop.

*A collection of computational neuroscience models can be retrieved at: https://modeldb.science/.
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A.2 Spiking vs vanilla self attention

In this work, we use spiking self-attention (SSA) introduced by Zhou et al. [55] (an extension of the
vanilla self-attention (VSA) introduced by Vaswani et al. [63]) which was specifically designed for
SNNs. Here, we provide a brief overview of the differences between the two mechanisms.

Vanilla self attention. Let an input sequence X ∈ RT×N×D, where T, N, D refer to the number
of time steps, the number of tokens in the sequence, and the dimensionality of each token, respectively.
VSA relies on three components,

Queries: Q = WQX, Keys: K = WKX, and Values: V = WV X, (10)

and is computed as,

VSA(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V, (11)

where dk refers to the feature dimensionality of K.

VSA can be directly used on spiking sequences. However, it is unsuitable because: (1) the float-
point matrix multiplication of Q, K and softmax function (which contains exponent calculation and
division operation) do not comply with the calculation rules of SNNs, and (2) computational and
space requirements for VSA scale quadratically with the length of the input sequence X which does
not meet the efficient computational requirements of SNNs [55].

Spiking self attention. Zhou et al. [55] proposed SSA, an alternative to VSA which is more suitable
for SNNs. In their formulation, the sequence X ∈ RT×N×D is projected into equally shaped Queries
(Q), Keys (K), and Values (V),

Q = SNQ(BN(WQX)), K = SNK(BN(WKX)), V = SN V (BN(WV X)), (12)
and compute the spiking self-attention matrix as,

SSA′ = SN (QK⊤V · s), (13)

where s is a scaling factor. SSA is then computed via the following spiking layers,

SSA(Q,K,V) = SN (BN(Wssa SSA′)). (14)

This formulation is better suited for spiking sequences than traditional VSA for several reasons. First,
SSA operates independently at each time step, aligning naturally with the temporal dynamics of
SNNs. Unlike VSA, SSA removes the use of the softmax function to normalize the attention matrix.
Instead, it directly computes the attention by multiplying the query, key, and value sequences without
additional normalization. This simplification is more efficient as softmax introduces unnecessary
computational complexity. Since the spiking neuron layers SNQ and SNK output binary spike
trains, the resulting attention maps are inherently non-negative. This removes the need for softmax
to enforce non-negativity, as the attention mechanism already emphasizes relevant features and
suppresses irrelevant ones through sparse, event-driven computation.
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B Datasets

To train and evaluate our framework, we leveraged a diverse collection of publicly available datasets
spanning multiple NHPs and various behavioral paradigms.

B.1 Datasets used for training and validation

To develop our model, we leveraged a rich and diverse dataset comprising 99 unique recording
sessions from three NHPs (monkeys C, J, and M) engaged in two distinct behavioral tasks. These
recordings were collected across four foundational studies [36, 70–72], and were later curated into
a unified dataset by Azabou et al. [26]. This comprehensive resource is publicly available through
Dandi (used in this work) and via the brainsets platform.

Across all sessions in the dataset, each NHP was seated in a primate chair, and a custom two-
dimensional planar manipulandum was used to control a cursor displayed on a computer screen.
During each recording session, the NHP performed one of two structured motor tasks:

• Center-out Task (CO): In this classic reaching task, the monkey initiated movement from a
central target toward one of eight peripheral targets arranged uniformly around a circle with
an 8 cm radius. After holding at the center target for a variable duration, an auditory “go”
cue signaled the monkey to move to a designated outer target. This task is widely used to
investigate neural processes underlying movement planning, preparation, and execution.

• Random Target Task (RT): Similar in design to the CO task, the RT task involved targets
that were randomly distributed across the workspace rather than arranged in a circular
pattern. The monkey was instructed, via an auditory cue, to move sequentially between
four randomly positioned targets, introducing greater variability in movement direction and
distance.

The behavioral sampling rate used across all sessions within this dataset was 100 Hz. We used 70%
of the data from within each session for training and 10% for validation; the remaining 20% was
held-out for testing.

B.2 Datasets held out for testing

We reserved 20% of the data from each session described above for testing. In addition, we fully held
out all sessions from Monkey T, comprising 6 CO and 6 RT sessions, to assess the model’s ability to
generalize across subjects.

To asses the model’s ability to generalize to novel tasks, we also held-out two standardized datasets
from the Neural Latents Benchmark [37], MC-Maze and MC-RTT, which are described in detail
below. In both datasets, the animals (different for MC-Maze and MC-RTT) performed the tasks by
swiping on a touch screen instead of using a manipulandum.

• MC Maze: In this task, the monkey performed delayed reaches to visually presented targets
while navigating around the boundaries of a virtual maze. The dataset includes a wide
range of behavioral configurations, each defined by unique combinations of target positions,
barrier counts, and barrier placements. This diversity results in both straight and curved
reach trajectories. With thousands of trials, MC Maze provides a rich substrate for analyzing
population-level neural dynamics. Moreover, its delayed reaching design facilitates a clear
dissociation between neural activity related to movement preparation and execution.

• Random Target Task (RTT): In this task, the monkey executes a variant of the RT task
described previously. Instead of performing reaches separated via auditory cues, the animal
completes continuous, point-to-point reaching movements between virtually presented
targets. The movements begin and end at various locations, span variable distances, and
include only a few repeated trajectories. This variability makes RTT particularly useful for
evaluating a model’s ability to generalize across complex and less stereotyped behaviors.

The behavioral sampling rate for the RTT and Maze tasks was 1000 and 100 Hz, respectively. To
standardize the sampling rate across all datasets used in this work, we downsampled behavioral
samples for the RTT task to 100 Hz.
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C Model Implementation Details

C.1 Spikachu implementation details

Spikachu is a general framework that supports various implementations. Here, we outline the one
used in this work.

Learnable embeddings for units. We assign each unit a unique 32-dimensional learnable embed-
ding.

Harmonizer. This is the ANN part of our architecture described in Sec. 3.1. The cross-attention
block is implemented as described in Jaegle et al. [61] and is initialized with 128, 32-dimensional
learnable latent queries. The linear layer following the cross-attention block projects the latents to a
128-dimensional vector.

Multi Scale SNN-I. The 128-dimensional latent vector is passed through 3 parallel spiking MLPs.
Each MLP is composed of 4 layers and projects the 128-dimensional input vector to a 256-dimensional
latent vector (all hidden layers and output layer have a dimensionality of 256). Each MLP has neurons
whose membrane potential dynamics evolve at distinct temporal scales. We initialize the learnable
decay constants of the neurons of the 3 parallel networks to values τ of 1.11, 1.46, and 434.79 and
allow them to update freely during model training.

Spiking Self-Attention. The three 256-dimensional latents extracted by Multi Scale SNN-I are
arranged in a sequence and processed using spiking self-attention as described by Zhou et al. [55].
The input is projected to equally shaped 512-dimensional keys, queries, and values prior to spiking
self-attention which is carried out using 8 heads. The latent is then passed through a 2-layer spiking
feed forward network with a hidden size of 256. Residual connections are employed after the attention
calculation as well as after the feed forward network, as is employed in Spikformer [55].

Spiking MLP. The three 256-dimensional outputs of the attention operation are unrolled and are
projected to a dimensionality of 384 via one linear layer followed by a spiking activation.

Multi Scale SNN-II. The 384-dimensional latent is passed through 2 parallel spiking MLPs
composed of 4 layers each. The hidden size for each MLP is set to 384. The learnable decay
constant for the neurons of each of the two parallel MLPs is set to an initial τ of 1.11, and 434.79.
Following processing, the latents from the 2 parallel MLPs are concatenated, resulting in a latent
with dimensionality 768.

Membrane potential observer layer. The 768-dimensional latent is then passed through a spiking
activation. Instead of tracking the output of the neurons of this activation layer (they never fire), we
keep track of their membrane potential instead. This results in a latent of the same dimensionality of
768.

Readout layer. The 768-dimensional latent is then projected to a 2-dimensional vector, which is
our network’s velocity prediction (vx, vy), using a linear layer.

C.2 Baseline model implementation details

We introduced several baseline architectures for our experimental comparisons, which we describe in
detail below.

MLP. Our MLP baseline comprises seven consecutive hidden dense layers of ANN neurons, with
input shapes: [100, 256, 512, 1024, 1024, 512, 256]. We used the ReLU nonlinearity and dropout
probability of 0.1. Since the model is not recurrent, we supplied a rolling window of 10 consecutive
binned spike windows during inference.

GRU. Our GRU baseline comprises four sequential blocks, as implemented in PyTorch. Each
block contains four cells, with a hidden dimension of 164. We used a dropout probability of 0.1.
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LSTM. Our LSTM baseline comprises four sequential blocks, as implemented in PyTorch. Each
block contains four cells, with a hidden dimension of 162. We used a dropout probability of 0.1.

POYO. Our POYO baseline was implemented using the model coded by Azabou et al. [26], made
available at https://github.com/neuro-galaxy/poyo. We trained the model using N=256 latent tokens
each with a dimensionality of 128.

Causal POYO. Our causal POYO baseline is implemented using the model coded by Azabou
et al. [26]. On top of the provided model, we added causal masking in all the model’s transformer
blocks. Specifically, for each attention module described in Azabou et al. [26], let Q be the set of
N latent query vectors with timestamps tQi , i = 1, . . . , N , and K be the set of M key vectors with
timestamps tKi , i = 1, . . . ,M . We dynamically masked the attention multiplication QK⊤ such that
tQi ≤ tKj , for all pairs i, j for which the attention matrix is computed. This is a direct generalization
of lower-triangular masking of the attention matrix commonly used in transformers to prevent tokens
from accessing future tokens, effectively making the operation causal. The masks used for masking
the (1) encoder cross-attention block, (2) each self-attention block, and (3) the decoder cross-attention
block used in causal POYO are shown in Fig. 7.

Figure 7: Masking used to make POYO Causal. Mask used in (A) encoder cross-attention, (B)
self-attention, and (C) decoder cross-attention blocks.
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D Model Training Details

All models were coded in PyTorch [83]. The spiking components of Spikachu were implemented
using SpikingJelly [84].

D.1 Training hyperparameters

All models were trained using LAMB optimizer [85] with weight decay set to 10−4. The learning rate
was initialized at 2× 10−3 and held constant for the first 75% of training epochs and was decayed to
zero using a cosine schedule for the remaining 25%. Single-session models were trained for 1000
epochs with a batch size of 128, while multi-session models were trained for 400 epochs with a batch
size of 512.

D.2 Compute

Model training was conducted on a multi-GPU cluster. Depending on resource availability, single-
session models were trained using one of several NVIDIA GPUs, from the following: L40s, L40,
A40, 3090, A6000, 2080 Ti, and A10. Training these models required under 11GB of GPU memory
and typically less than an hour, with a few sessions taking up to 5 hours when trained on a 2080 Ti
graphics card. Finetuning to individual sessions was performed on the same range of GPUs and took
approximately the same amount of time as training from scratch.

Training of multi-session models was performed on an NVIDIA A40 GPU with 48GB of memory. All
multi-session models, including Spikachu-mp, our most computationally intensive model, completed
training in under 48 hours.

D.3 Data augmentation

For all model training (both single-session and multi-session) we employed unit dropout augmentation,
introduced by Azabou et al. [26]. In this approach, a random subset of the recorded neural population
is sampled within time windows and used for training, effectively simulating variability in unit
availability. To prevent the augmentation from being overly destructive, we enforced a minimum
population size of 30 units per window.

D.4 Training objective

All models were trained by minimizing the MSE loss between the true and predicted hand velocity
sequences of the NHPs performing the various behavioral tasks. For the RT task, all behavioral
timepoints were weighted equally during training. For the CO task, we increased the weight of
the prediction during the reaching segments of the movements by a factor of 5 as has been done in
previous works [26, 86].

D.5 Evaluation details

Although model training is performed on arbitrary segments of neural data, evaluation follows
standardized protocols established in prior works [26, 37, 87]. For CO and MC-Maze, we report
decoding performance only during the reaching phase of successfully completed trials. For RT,
which includes a hold period followed by a sequence of 3 to 4 random reaches, we likewise evaluate
performance only during the reaching movements. Since movements are continuous for MC-RTT,
we report decoding accuracy across all available segments.

D.6 Surrogate gradients

Spiking neurons are inherently non-differentiable due to their discrete activation function (the
Heaviside step function) which presents a fundamental challenge for gradient-based backpropagation.
To overcome this limitation, we adopt a surrogate gradient approach, replacing the non-differentiable
Heaviside function with the arctangent (atan) function when calculating the gradients used for
backpropagation. This surrogate function has been demonstrated to support the stable training of
deep SNNs in prior works [84, 88].
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D.7 Smoothing

Prior to gradient computation, model predictions were smoothed along the temporal axis using a
moving average with a window size of 20 samples. To ensure a fair comparison, identical smoothing
was used across all models.

D.8 Finetuning/Transferring details

The training procedure for finetuning and transferring Spikachu-mp to individual sessions is identical
to that of training single-session models from scratch, except: models trained from scratch were
initialized randomly (using seed 42); finetuned and transferred models were initialized with the
pretrained weights from the multi-session pretrained models. In both cases, all learnable parameters
were updated throughout training.
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E Energy Analysis

Estimating energy consumption for any machine learning model consists of approximating the total
amount of floating-point operations (FLOPs) necessary to execute the forward pass of the model.
These are split into two categories, multiply-accumulate (MAC) and accumulate (AC) operations. A
MAC operation multiplies two operands and adds the result to an accumulator. Symbolically, if x, y
are the operands and a is the accumulator, a MAC is defined as: a← a+ x · y. An AC operation acts
on a single operand by adding it to an accumulator. If x is the operand and a is the accumulator, an
AC is defined as: a← a+ x.

Each instance of these operations consumes a certain amount of energy, and by summing, we can
estimate the total energy consumption of a model’s forward pass. As quantified by Horowitz [89],
performing ACs is cheaper than MACs in hardware, specifically: EMAC ≃ 4.6pJ , EAC ≃ 0.9pJ .
Therefore, a model’s total energy becomes: Etotal = NAC · EAC +NMAC · EMAC. The N variables
represent the total count of the respective operations in the architecture.

For reference, a matrix multiplication of the form A ·B, A ∈ Rn×m, B ∈ Rm×k, requires (n ·m · k)
MAC operations, and vector addition of dimension d requires d AC operations.

E.1 Baseline energy calculation

Here, we describe the methodology used to compute the energy required per inference for each
baseline model in this work.

E.1.1 MLP

Each linear layer of an MLP is parameterized by a weight matrix W ∈ Rni×no and a bias vector
b ∈ Rno . Given an input x ∈ Rni , the operation performed is: z = Wx+ b. The energy
expenditure of an L-layer MLP is therefore,

EMLP =

L∑
l=1

n
(l)
i n(l)

o · EMAC + n(l)
o · EAC, (15)

where l ∈ {1, . . . , L} is the layer index.

E.1.2 GRU

The equations for a GRU cell are described in detail by Chung et al. [90]. Briefly, each cell can be
expressed as,

rt = σ(Wirxt + bir +Whrh(t−1) + bhr),

zt = σ(Wizxt + biz +Whzh(t−1) + bhz),

nt = tanh(Winxt + bin + rt ⊙ (Whnh(t−1) + bhn)),

ht = (1− zt)⊙ nt + zt ⊙ h(t−1),

where x is the input, W -variables refer to weight matrices, b-variables to bias vectors, h is the hidden
state, t the timestep index, i denotes variables acting directly on the input, and r, z, n are the reset,
update, and new gates, respectively. We also denote the sigmoid function with σ and the Hadamard
product with ⊙. From these equations, we can calculate the total operations performed in each cell as
a function of its input and hidden state sizes as,

NGRU
MAC = 3 · (nh(ni + nh) + nh) + 4nh, and NGRU

AC = 6nh, (16)

where ni is the input size and nh is the hidden size. For the full module comprising multiple cells,
we sum the counts of the above operations for each cell to obtain the total energy,

EGRU = NB ·

(
EMAC

C∑
c=1

NGRU
MAC(c) + EAC

C∑
c=1

NGRU
AC (c)

)
+ EMLP, (17)

where c is an index over the C cells in each block, NB is the total number of multi-cell blocks, and
EMLP represents the energy of an MLP used for readout, with energy given by Eq. 15.
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E.1.3 LSTM

The exact implementations of the LSTM architecture can be found in Sak et al. [91]. Briefly, each
cell can be described as,

it = σ(Wiixt + bii +Whih(t−1) + bhi),

ft = σ(Wifxt + bif +Whfh(t−1) + bhf ),

gt = tanh(Wigxt + big +Whgh(t−1) + bhg),

ot = σ(Wioxt + bio +Whoh(t−1) + bho),

ct = ft ⊙ c(t−1) + it ⊙ gt,

ht = ot ⊙ tanh(ct),

where x is the input, W -variables refer to weight matrices, b-variables to bias vectors, h is the hidden
state, t the timestep index, i, f, g, o are the input, forget, cell, and output gates, respectively, and c is
the cell state. From these equations, the total operations can be counted as,

NLSTM
MAC = 4 · (nh(ni + nh) + nh) + 3nh, and NLSTM

AC = 9nh, (18)

where ni is the input size and nh is the hidden size. For the full module comprising multiple cells,
we sum each cell’s counts of the above operations to obtain the total energy,

ELSTM = NB ·

(
EMAC

C∑
c=1

NLSTM
MAC (c) + EAC

C∑
c=1

NLSTM
AC (c)

)
+ EMLP, (19)

where c is an index over the C cells in each block, NB is the total number of multi-cell blocks, and
EMLP represents the energy of a small MLP used for readout, with energy given by Eq. 15.

E.1.4 POYO

Attention. We will first describe how we calculate the energy for a single attention module, based
on which POYO is built [26]. To compute the energy requirements of the attention operation (see
Eq. 11), we cache the dimensions of the query, key, and value tensors at runtime. We can then
precisely calculate the FLOPs necessary for the matrix multiplications, scaling, and/or softmax
operations performed in attention. The following derivation explains the energy requirements for a
single cross-attention block. †

Let L1, L2 be the input and output sequence lengths respectively, E the embedding dimension,
Q ∈ RL1×E the query tensor, K ∈ RL2×E the key tensor, and V ∈ RL2×D the value tensor. The
computational requirements following Eq. 11, for a single attention head, are computed as follows,

NQK⊤

MAC = EL1L2, N
norm
MAC = 3L1L2, N

V
MAC = DL2

2 ⇒
NCA

MAC = L2 · ((E + 3)L1 +DL2).

For multi-head attention, we need only multiply the above by the number of heads. Letting H be the
number of heads, the total energy for the cross attention operation is,

ECA = H · EMAC ·NCA
MAC. (20)

Note that the cost for projecting inputs to Q,K,V and projecting outputs to the appropriate down-
stream shape is computed separately (linear layers, computation follows the logic of E.1.1).

POYO. By iteratively applying Eq. 20, computing the energy requirements per inference for POYO
becomes straightforward. For each attention block, we need to account for the attention energy, and
also the energy necessary for projections, given by Eq. 15. Specifically,

Eproj = EQ
proj + EK

proj + EV
proj + Eo

proj, (21)

where the summands correspond to the energy required for the query, key, value, and output projec-
tions respectively. The total energy requirement for POYO can now be expressed as,

EPOYO = (Eenc
CA + Eenc

proj) +NSA(ESA + ESA
proj) + (Edec

CA + ECA
proj) + EMLP, (22)

†For self-attention, we need only set the sequence lengths to be equal; the derivation is otherwise identical.
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where NSA is the number of consecutive self-attention blocks used in the model. We note that one
more subcomponent exists for this model, namely positional encoding using RoPE [92]. However,
since the operations involved in computing the positional encoding are very limited, we did not take
them into account when estimating POYO’s energy requirements.

E.2 SNN energy

Computing the energy requirement for an SNN follows the same principles used for ANNs. However,
SNNs achieve energy savings via two properties of their processing: (a) not all neurons spike at each
point in time, and (b) in the case of binary spikes (unit magnitude), matrix multiplications simplify
to indexing and accumulation (addition) of elements of the weight matrices. These savings become
tangible during inference when deploying on specialized neuromorphic hardware [44, 45]. Following
[49, 93–95], we calculate these savings while training and running our models on GPUs. To achieve
this, a careful accounting is performed of the proportion of neurons that spiked at each spiking neuron
layer for a given forward pass of a model. That rate subsequently reduces the next layer’s FLOP count.
For example, if the next layer is dense, the FLOP count for that layer is reduced proportionately to the
spiking rate of the given layer. Furthermore, as was explained earlier, ACs in hardware are cheaper
than MACs. This is another source of savings for SNNs, where each spike’s forward computation is
significantly cheaper than a whole floating-point MAC.

E.2.1 Spiking MLPs

Here we describe the energy required per inference for a spiking MLP. Given a spiking MLP of L
layers, let T denote the number of simulation steps used to update the state of each neuron. To clarify,
T > 1 values are commonly used in SNN works to signify that the same, time-independent input
(e.g., a static image) is presented to the SNN T times in succession, allowing neuron dynamics to
converge. The result of the network is then obtained by aggregation of the output layer’s values over
this artificially introduced time dimension. In our case, T = 1, since each sample of the input does
not need to be repeated, due to our data’s inherently temporal nature. Furthermore, let ρl−1 ∈ [0, 1]
be the proportion of the previous layer’s neurons that spiked, and El be the energy consumed by the
l-th layer. Also let EW denote the energy per algebraic operation for a dense layer with weight matrix
W ∈ Rni×no and bias vector b ∈ Rno , with ni, no being the input and output shapes respectively.

Then, for a batch size of 1, the equations for the energy consumption of a spiking MLP are as follows,

ESMLP =

L∑
l=1

T · ρl−1 · n(l)
i n(l)

o · EW + n(l)
o · EAC, (23)

where l ∈ {1, 2, . . . , N − 1} is the layer index. This is similar to Eq. 15, the only differences being
that there are spiking rates to help reduce the computational load, and that input values are binary
spikes, meaning that: EW = EAC < EMAC. The latter holds because matrix-vector multiplication
can be expressed purely in terms of indexing and accumulation when the vector is binary.

E.2.2 Spiking self-attention

We calculate spiking self-attention energy based on the formulation in App. A.2. Let L be the
sequence length, E the embedding dimension, Q ∈ RL×E the query tensor, K ∈ RL×E the key
tensor, and V ∈ RL×D the value tensor. The computational requirements following Eq. 13, for a
single attention head, are computed as follows,

NQK⊤

AC = L2E, N norm
MAC = L2, NV

AC = L2D ⇒
NSSA

AC = L2 · (E +D), and NSSA
MAC = L2.

For multi-head attention, we need only multiply the above by the number of heads. Letting H be the
number of heads, the total energy for the cross attention operation is,

ESSA = H ·
(
EMAC ·NSSA

MAC + EAC ·NSSA
AC

)
. (24)

Note that the cost for projecting inputs to Q,K,V and projecting outputs to the appropriate down-
stream shape is computed separately (spiking linear layers, computation follows the logic of E.2.1).
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E.2.3 Spikachu

To compute the total energy consumed by Spikachu during a forward pass, we compute the sum of
the energy of its modules, described below.

Harmonizer. This is a CA block followed by a linear layer. Its energy is computed following Eq.
20, with the addition of the energy cost of the projection layers (denoted EQ

h , E
K
h , E

V
h , E

out
h ), and the

extra linear layer (denoted ESMLP
h ),

Eh = H · EMAC ·NCA
MAC + EQ

h + EK
h + EV

h + Eout
h + ESMLP

h , (25)

where each of the summands outside the parentheses is a direct application of Eq. 15.

Multi Scale SNN-I. This is a combination of parallel spiking MLPs, based on Eq. 23,

Es,1 =

P∑
p=1

Ep
SMLP = EAC · P ·

L∑
l=1

T · ρl−1 · n(l)
i n(l)

o + n(l)
o , (26)

where P is the number of parallel spiking MLPs and l ∈ {1, . . . , L} is the layer index.

Spiking Self-Attention. SSA is implemented as described in Sec. A.2, with energy computed
based on Eq. 24,

Ea = H ·
(
EMAC ·NSSA

MAC + EAC ·NSSA
AC

)
+ EQ

SSA + EK
SSA + EV

SSA + Eout
SSA, (27)

where the added summands are spiking MLPs used for projections, their energy calculated using Eq.
23.

Spiking MLP. Mixing module, energy given by Eq. 23, denoted Em.

Multi Scale SNN-II. Same as Multi Scale SNN—I, denoted Es,2.

Membrane potential observer layer. Layer containing only leaky integrators, energy per time-step
is 1 AC operation per neuron,

Eo = no · EAC, (28)

where no is the number of observer neurons.

Readout layer. Single linear layer, equivalent to a single layer of Eq. 23, denoted by Er.

Thus, the total energy per inference for Spikachu is given by,

ESpikachu = Eh + Es,1 + Ea + Em + Es,2 + Eo + Er. (29)
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F Additional Results

F.1 Scaling laws of multi-session, multi-subject training: Continued

In Sec. 4.5, we demonstrated that pretraining Spikachu on multi-session, multi-subject datasets
improves both decoding performance and energy efficiency. Here, we present additional evidence
that complements those findings.

Figure 8: Benefits of scaling up training dataset size. (A, B) Performance difference between the
single-subject models trained from scratch vs finetuned/transferred models from pretrained for the
RT, and CO tasks. (C, D) Percent difference in energy consumption between the same groups for the
same tasks.

Fig. 8A, B shows the improvement in per-session test set decoding performance achieved by the
pretrained models after (1) finetuning on sessions seen during pretraining (monkeys C, J, and M;
blue), (2) transferring to new sessions from animals seen during pretraining (monkeys C, J, and M;
skyblue), and (3) transferring to new sessions from a new animal, unseen during pretraining (monkey
T; orange). Across all conditions, we observe consistent performance gains that increase with the
number of sessions used for pretraining, with gains possibly saturating beyond ∼75 sessions.

In Fig. 8C, D, we report the relative reduction in energy consumption per inference,

∆E = −Emsf − Ess

Ess
,

where Emsf is the energy required per inference by the pretrained model after finetuning, and Ess is
the energy used by a single-session model trained from scratch. Across all finetuning conditions,
energy savings scale positively with the size of the pretraining dataset. Given that typical BCI sessions
require tens of thousands of inferences per session, these efficiency gains are highly practical in a
real-world setting.

Figure 9: Decoding performance and energy benefits of scaling up. (A, B, C, D) Head-to-head
decoding performance comparison between single-session models trained from scratch vs (1) the
pretrained models + finetuning (seen; blue) and (2) pretrained models + transfer (new session;
skyblue and new subject; orange). (E, F, G, H) Head-to-head comparison of the energy consumed
per inference for the same groups.
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To further illustrate these benefits, Fig. 9A–D presents head-to-head comparisons of decoding
performance between finetuned models and their scratch-trained counterparts for pretraining on 20,
49, 75, and 99 sessions. In each case, the finetuned models outperform their baseline equivalents, with
the performance gap widening as pretraining data increases. Figs. 9E–H compare energy usage per
inference under the same conditions. Here, we observe that finetuned models consistently consume
less energy than their scratch-trained counterparts, emphasizing the energy efficiency achieved
through pretraining. The energy savings also scale positively with the amount of pretraining data.

Figure 10: Learning speedup achieved through pretraining. (A) Leaning Curves for the CO task for
(1) single-session models trained from scratch (gray), (2) the pretrained models + finetuning (seen;
blue), and (3) pretrained models + transfer (new session; skyblue). (B) Leaning Curves for the RT
task for (1) single-session models trained from scratch (gray), (2) the pretrained models + finetuning
(seen; blue), and (3) pretrained models + transfer (new session; skyblue). (C) Leaning Curves for
the CO task for (1) single-session models trained from scratch (gray), and (2) pretrained models +
transfer (new subject; orange). (D) Leaning Curves for the RT task for (1) single-session models
trained from scratch (gray), and (2) pretrained models + transfer (new subject; orange).

Finally, Figs. 10A-D show the mean learning curves under the same three finetuning conditions,
alongside the baseline learning curves of scratch-trained single-session models (gray). Across all
levels of pretraining, finetuning the pretrained models to single sessions converges much faster than
training single-session models from scratch. This demonstrates that the pretrained models learn
transferable, general-purpose neural representations shared across both sessions and subjects that can
be transferred very efficiently.
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F.2 Ablation study

F.2.1 Building blocks

To identify the contribution of each building block of Spikachu to the decoding performance of our
models, we performed an ablation study using the 99 recording sessions from monkeys C, J, M
drawn from Perich et al. [36]. Specifically, we trained variants of our proposed architecture, each
time removing a building block and assessing the model’s decoding performance. To ensure a fair
comparison, training hyperparameters were kept identical across all training runs.

The building blocks of our architecture are described in App. C.1 (see also Fig. 1). For convenience,
we also list them here: Harmonizer (Harm.), Multi scale SNN-I (Multi-Scale I), Spiking Self Attention
(SSA), Spiking MLP (sMLP), Multi scale SNN-II (Multi-Scale II), Membrane Potential Observer
Layer, Readout Layer.

We note that by ablating the multi-scale SNNs we used one spiking MLP instead of multiple parallel
spiking MLPs. We did not ablate the sMLP because there is no straightforward way to project the
output of the SSA block to the input dimensionality of Multi Scale SNN-II without it. For the same
reason, we did not ablate the “Readout Layer” (needed to project the output of “Membrane Potential
Observer Layer” to the output dimensionality of the cursor velocity). We also did not ablate the
“Membrane Potential Observer Layer” because there is no straightforward way to track continuous
variables (as is the velocity tracked in this work) without this layer when using SNNs.

The results of the ablation study when training Spikachu and variants in single sessions are shown
in Fig. 11A, B. We observed that the spiking components of the architecture (“Multi Scale SNN-I”
and “Multi Scale SNN-II”) influence model performance most, indicating that our model did not rely
on the ANN part (the harmonizer) to perform. We also observed that the performance difference
when ablating the SSA block was negligible. To further investigate the utility of the SSA block, we
trained variants of our architecture with the SSA block ablated on multiple sessions. We observed
that the SSA block did affect the model’s performance when scaling up (see Fig. 11C, D for model
performance on the validation set when training on 75 sessions).

Figure 11: Summary of ablation results. (A, B) Single session training decoding performance (mean
± sem) in the validation set for the (A) CO and (B) RT tasks. (C, D) Multi-session training decoding
performance (mean ± sem) in the validation set for the (A) CO and (B) RT tasks for models trained
on 75 sessions from 3 animals.

F.2.2 Spiking mechanism of neurons

Table 3: Model performance for Spikachu and ANN Variants.

Model Variant Decod. Perf. (R2) ↑
CO RT

ANN 0.5332 0.3642
ANN + context 0.5348 0.3643
SNN 0.8398 0.6761

To determine whether our model’s per-
formance was driven by its spiking
mechanism or simply by network con-
nectivity, we conducted an additional
ablation study. In this experiment, we
re-implemented Spikachu as an ANN,
preserving the exact same connectiv-
ity but replacing stateful LIF neurons with stateless ReLU neurons, thereby removing any intrinsic
temporal dynamics. We refer to this variant as Spikachu-ANN.

We evaluated Spikachu-ANN on the same 99 recording sessions from monkeys C, J, and M from
Perich et al. [36] described in Section 4.2, considering two different training conditions: (1) using
only the current timebin (identical to the setup for Spikachu; ANN in Tab. 3), and (2) providing
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additional temporal context by including the four preceding timebins as inputs (ANN + context in
Tab. 3).

As summarized in Tab. 3, Spikachu (SNN in Tab. 3) consistently outperformed its ANN counterpart
under both conditions. Importantly, even when explicitly supplied with temporal context, Spikachu-
ANN underperformed the spiking model. These findings demonstrate that Spikachu’s performance
arises from the LIF neuron’s spiking dynamcis and is not due to network connectivity alone.

F.3 Testing the utility of the neural “harmonizer” on baseline models

Table 4: Impact of harmonizer on model performance.

Model Center Out (R2) Random Target (R2)
- Harm. + Harm. - Harm. + Harm.

LSTM 0.4935 0.5804 0.4214 0.5919
MLP 0.7424 0.6415 0.5724 0.5229
GRU 0.8336 0.8187 0.6681 0.6110

In this work, we introduce the neural
harmonizer, a novel, causal method
for aligning heterogeneous neural
recordings across sessions and sub-
jects, as detailed in Sec. 3.1. This ap-
proach addresses a key barrier to scal-
ing neural decoding models to multi-
session and multi-subject datasets: the reliance of traditional architectures, such as MLPs and GRUs,
on homogeneous input structures and consistent neural correspondences. By projecting the disparate
neural signals from different datasets into a unified representation, the harmonizer enables any
standard model (see Glaser et al. [38] for an overview) to be trained effectively across sessions and
subjects, which could enhance the model’s generalizability.

Although the homogenizer was developed as part of the Spikachu framework, we demonstrate its
broader applicability by integrating it with baseline models (LSTM, MLP, and GRU) and training
them across all 99 neural recording sessions from monkeys C, J, and M in the dataset from Perich
et al. [36]. The corresponding test set results, reported separately for the CO and RT tasks, are shown
in Tab. 4. The results indicate that the standard models perform well when paired with the neural
harmonizer and even see performance gains in some cases. We note that we did not perform any
hyperparameter tuning for the harmonizer or the baseline models when combining them into a single
pipeline. Instead, we used the harmonizer configuration optimized for Spikachu and the baseline
models as trained in the single-session setting described in Sec. 4.2. This highlights the potential of
our approach to scale model training across multi-session, multi-subject neural datasets, offering a
flexible and powerful foundation for generalized neural decoding.

F.4 Representation analysis of the unit embedding space of Spikachu-mp

In this section, we investigated whether any structure emerged in the latent space of Spikachu-mp
(see Sec. 4.3), the model we trained on 99 recording sessions from monkeys C, J, M performing the
CO and RT tasks from Perich et al. [36].

Figure 12: Linear Discriminant Analysis of session embed-
dings. Visualization of session-level embeddings in the la-
tent space when maximizing separability for (A) Subject, (B)
Task.

Since our model does not have any
explicit session-specific embeddings,
for this analysis, we used the unit em-
beddings for each electrode of each
session. To investigate whether mean-
ingful structure emerged in the latent
space of our trained model, we aggre-
gated the unit embeddings within each
session into a 2D matrix and applied
PCA, retaining the first five principal
components as a summary represen-
tation for each session. We then used
these session-level representations as
features in two distinct Linear Dis-
criminant Analyses (LDA): one to as-
sess separability by subject (monkeys
C, J, and M) and another by task (Center Out vs. Random Target). Visualizing the session embeddings
projected into the LDA space revealed clear clustering both by subject (see Fig. 12A) and by task
(see Fig. 12B).
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To quantify the separability, we trained an SVM classifier (using scikit-learn’s SVC with default
parameters) using 5-fold cross-validation with features the summary representations of each session
(the first five principal components of the aggregated unit embeddings; same as those used in LDA) to
predict (1) the subject and (2) the task associated with each session. We achieved an average accuracy
of 0.69 ± 0.02 for subject classification (chance = 0.33) and 0.79 ± 0.02 for task classification (chance
= 0.50), suggesting that Spikachu-mp learned latent representations that reflect high-level structure
in the data even though it is not explicitly trained to do so.

F.5 Profiling Spikachu in terms of memory access costs

In Sec. 4.2, we benchmarked Spikachu’s performance against various baseline models commonly
used for neural decoding. In this section, we provide comparisons between Spikachu and baselines
in terms of computational and memory-access costs per inference. We note that this comparison
is important since the total energy expenditure per inference consists of the energy required for
computation, as well as the energy required to load (LOAD Ops) and store (STORE Ops) data in
memory.

Table 5: FLOP counts for Spikachu and baselines. Best performing
model is in bold and second best model is underlined. M stands for
millions.

Model MAC (M) ↓ AC (M) ↓ Total FLOPs (M) ↓
LSTM 3.27 0.02 3.29
MLP 2.63 0.02 2.65
POYO-causal 466 1.0 467
GRU 2.53 0.01 2.54
POYO 466 1.0 467
Spikachu 0.97 0.78 1.75

For this analysis, we used the 99
single-session models trained on the
recording sessions from monkeys C,
J, and M performing the CO and RT
tasks from Perich et al. [36] (models
produced by the experiment in Sec.
4.2). For each model and session, we
calculated the number of FLOPs (i.e.
MACS, and ACs) required for infer-
ence (see Sec. E). Our findings for
the number of necessary operations
for each model are presented in Tab. 5. Notably, Spikachu has a higher proportion of AC operations
compared to other models, due to the binary output of each spiking neuron layer, which simplifies
downstream computation. In conclusion, Spikachu requires the least amount of such operations,
thanks to its SNN backbone. ‡

Next, we use the aforementioned results to estimate memory access requirements by converting
FLOPs to LOAD and STORE operations. As described in Liao et al. [52], we assume NLOAD

MAC = 3
LOAD and NSTORE

MAC = 1 STORE operation per MAC and NLOAD
AC = 2 LOAD and NSTORE

AC = 1
STORE operation per AC. Therefore, memory operations can be estimated as,

NLOAD = NLOAD
MAC ·NMAC +NLOAD

AC ·NAC (30)

NSTORE = NSTORE
MAC ·NMAC +NSTORE

AC ·NAC (31)

where NAC and NMAC denote the total number of AC and MAC operations for a given architecture,
respectively.

Table 6: Memory access counts for Spikachu and baselines. Best
performing model is in bold and second best model is underlined.
M stands for millions.

Model Load (M) ↓ Store (M) ↓ Total Ops (M) ↓
LSTM 9.85 3.29 13.14
MLP 7.93 2.65 10.58
POYO-causal 1400 467 1860
GRU 7.61 2.54 10.15
POYO 1400 467 1860
Spikachu 4.47 1.75 6.22

The results, averaged across all ses-
sions and tasks for Spikachu and base-
lines, are summarized in Tab. 6. No-
tably, Spikachu required the fewest
memory access costs across the board,
highlighting its energy efficiency not
only from reduced computational de-
mands but also from minimized mem-
ory costs. This result further strength-
ens the promise of energy-efficient de-
ployment of Spikachu for fully im-
plantable BCIs.

We also note that while this analysis is hardware-agnostic, the practical energy savings are likely
substantially greater than what is suggested here. The present analysis is most directly applicable to
von Neumann architectures (e.g., conventional CPUs and GPUs), where further memory overheads

‡In terms of energy expenditure, AC is significantly cheaper than MAC [89].
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arise from maintaining DRAM blocks even when their contents are not accessed during a clock cycle
[96]. In contrast, neuromorphic hardware (the intended deployment platform for Spikachu) typically
relies on local SRAM memory, which incurs negligible keep-alive costs and only needs to supply
data on a per-core basis. This architecture effectively eliminates the bulk of memory-related costs
compared to von Neumann systems. As a result, energy savings are expected to be significantly more
pronounced on neuromorphic hardware, with total memory costs likely falling below the estimates
derived from our hardware-agnostic analysis presented in this section.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: To the best of our knowledge, all claims made in the abstract and introduction
are supported by our experiments described in Sec. 4 and App. F.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec. 5, we discuss the limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The only theoretical results in this work describe our process for calculating
energy requirements for various machine learning models in App. E. To the best of our
knowledge, they are complete and correct.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed information required to reproduce all experiments can be found in
Sec. 4 and App. C, D, and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The dataset used in this work has been made publically available by Azabou
et al. [26] here:
https://github.com/neuro-galaxy/poyo. We will make our code publically available
upon acceptance of this manuscript.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details of our training can be found in App. D.We also share the data splits
and random seed used to generate them in App. B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars report mean ± standard error of the mean for all plots, unless
otherwise mentioned. No experiments to assess statistical significance were performed in
this work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: App. D.2 describes the compute resources used in this work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, this work complies in every aspect with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Sec. 1 and 5. We have not discussed negative societal impacts,
since there are none to the best of our knowledge.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We have not discussed such safeguards, as there is no foreseeable potential for
misuse of our work. We hope that the community understands the motivation behind our
approach and applies it responsibly to improve the lives of the intended patients.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used for our work are licensed for academic use. We also have
an extensive list of citations, ensuring proper attribution of the works of others we used
in this manuscript. Where applicable, we have acquired explicit permission to reproduce
explanatory graphics in our figures.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is well documented and will be made publically available upon
acceptance of this manuscript. There are no other assets generated by this work that require
documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve any research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs did not contribute to the research in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	Harmonizing the neural activity across sessions and subjects
	Efficient and stateful processing of the latents using spiking neural networks

	Experiments
	Experimental setup
	Performance on single sessions
	Spikachu-mp: Pretraining on large amounts of data
	Transferring Spikachu-mp to new subjects
	Scaling laws of multi-session, multi-subject training
	Transferring Spikachu-mp to a new animal, setup, and task

	Discussion
	Concept Primers
	Spiking neuron models
	Spiking vs vanilla self attention

	Datasets
	Datasets used for training and validation
	Datasets held out for testing

	Model Implementation Details
	Spikachu implementation details
	Baseline model implementation details

	Model Training Details
	Training hyperparameters
	Compute
	Data augmentation
	Training objective
	Evaluation details
	Surrogate gradients
	Smoothing
	Finetuning/Transferring details

	Energy Analysis
	Baseline energy calculation
	MLP
	GRU
	LSTM
	POYO

	SNN energy
	Spiking MLPs
	Spiking self-attention
	Spikachu


	Additional Results
	Scaling laws of multi-session, multi-subject training: Continued
	Ablation study
	Building blocks
	Spiking mechanism of neurons

	Testing the utility of the neural ``harmonizer'' on baseline models
	Representation analysis of the unit embedding space of Spikachu-mp
	Profiling Spikachu in terms of memory access costs


