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Abstract

We propose a general framework for conditional sampling in PDE-based inverse
problems, targeting the recovery of whole solutions from extremely sparse or noisy
measurements. This is accomplished by a function-space diffusion model and
plug-and-play guidance for conditioning. Our method first trains an unconditional
discretization-agnostic denoising model using neural operator architectures. At
inference, we refine the samples to satisfy sparse observation data via a gradient-
based guidance mechanism. Through rigorous mathematical analysis, we extend
Tweedie’s formula to infinite-dimensional Banach spaces, providing the theoretical
foundation for our posterior sampling approach. Our method (FunDPS) accu-
rately captures posterior distribution in function spaces under minimal supervision
and severe data scarcity. Across five PDE tasks with only 3% observation, our
method achieves an average 32% accuracy improvement over state-of-the-art fixed-
resolution diffusion baselines while reducing sampling steps by 4x. Furthermore,
multi-resolution fine-tuning ensures strong cross-resolution generalizability and
speedup. To the best of our knowledge, this is the first diffusion-based framework
to operate independently of discretization, offering a practical and flexible solution
for forward and inverse problems in the context of PDEs. Code is available at
https://github.com/neuraloperator/FunDPS.

1 Introduction

Conditional sampling is a ubiquitous task in machine learning and scientific computing that involves
generating samples from a distribution conditioned on certain constraints or observations. This task
appears naturally in many applications where we need to reconstruct high-dimensional data given
partial, corrupted, or indirect measurements. It has been extensively studied in the image domain for
tasks like inpainting, deblurring, and super-resolution [1–5].

In scientific domains, an example of conditional sampling is climate modeling, where scientists
predict future atmospheric states based on limited sensor measurements. Traditional forecasting
methods try to produce a single, best-case outcome based on the available data. However, the chaotic
nature of weather systems means small uncertainties in initial measurements can lead to drastically
different outcomes [6]. Conditional sampling methods can generate multiple plausible weather
states consistent with the available data [7]. This probabilistic approach is especially valuable for
predicting extreme weather events and making informed policy decisions. Beyond weather prediction,
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Figure 1: Comparison between our method (FunDPS) with the state-of-the-art diffusion baseline,
DiffusionPDE, on the Darcy Flow and Helmholtz problems. The left column shows the sparse
observation measurements (3% of total points), while the other two columns display the absolute
reconstruction error of our method and DiffusionPDE, respectively. FunDPS achieves superior
accuracy with an order of magnitude fewer sampling steps.

conditional sampling naturally arises in scientific tasks such as solving inverse problems in physical
systems. These examples include recovering permeability fields in subsurface flows [8], inferring
material properties in elasticity [9], and identifying initial conditions for fluid simulations [10].

Traditional numerical methods often struggle with ill-posed problems such as when observations are
sparse or noisy, as they cannot effectively leverage prior knowledge about the solutions. While Markov
Chain Monte Carlo (MCMC) methods can theoretically sample from the posterior distribution, they
are computationally intensive and often require exponentially many iterations to converge, making
them impractical for high-dimensional problems [11]. Moreover, constructing effective proposal
distributions for MCMC is particularly challenging, leading to poor mixing times [12].

Bayesian approach to conditional sampling A principled approach to conditional sampling is from
a Bayesian perspective [13]. We aim to sample from the posterior distribution p(a|u) ∼ p(a)p(u|a),
where u represents our observations. In inverse problems, this posterior is defined through a forward
operator A and the likelihood function p(u|a) = p(u|A(a)). The forward operator A can take many
forms depending on the application. For instance, when A is a masking operator that selects specific
coordinates, it forms the reconstruction problem from sparse observations. When A represents
a PDE solution operator mapping from parameters to solutions, we obtain parameter inference
problems in physics. The likelihood function can also incorporate different noise assumptions to
handle varying measurement uncertainties. This general framework effectively consolidates many
conditional sampling problems into one unified mathematical formulation.

Diffusion Models in Function Spaces Physical systems are inherently described by continuous
functions rather than discrete grids. Consequently, methods developed for finite-dimensional settings
tend to perform poorly when applied to different discretizations of infinite-dimensional problems.
While diffusion models have been extended to function space settings, existing approaches have
limitations. Denoising Diffusion Operator [14] uplifts the generative process to infinite dimensions
by a function-valued annealed Langevin dynamics, but is limited to an uncontrollable generation
pipeline. Baldassari et al. [15] suggests a conditional denoising estimator in infinite dimensions, yet
its adaptability is limited by the requirement of a pre-trained conditional score model. In real-world
applications, the density and configuration of sensors can vary significantly, and training a separate
model for each measurement setup is too costly. This highlights the need for a method capable of
performing diffusion posterior sampling in function spaces using an unconditional score model. The
ability to use one such model for various downstream tasks offers substantial flexibility, effectively
decoupling the core model development from specific application requirements.

Contributions We introduce Function-space Diffusion Posterior Sampling (FunDPS), a novel
framework that leverages diffusion operators to address inverse problems by resolution-independent
conditional sampling. Our contributions can be regarded as tri-fold:
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Figure 2: The sampling and training pipelines of FunDPS. During inference, we utilize a standard
reverse diffusion approach with additional FunDPS guidance to drag the samples to the posterior.
During training, the model is based on a U-shaped neural operator, and Gaussian random fields are
used as the noise sampler to ensure consistency within function spaces. Notations are detailed in blue
box in the bottom-left corner, where function a jointly represents the PDE parameters and solution.

1) Infinite-dimensional Tweedie’s formula.
We develop a novel theoretical framework for posterior sampling in infinite-dimensional spaces by
extending Tweedie’s formula to the Banach space setting. Tweedie’s formula gives a closed-form
expression for the posterior mean of the reverse diffusion process and serves as the basis for many
diffusion solvers. However, prior to this work, it has only been shown to hold in finite dimensions.
We rigorously establish a generalization of Tweedie’s formula to function spaces, thereby providing a
plug-and-play approach for guided sampling in infinite-dimensional inverse problems. Concretely,
we study the scenario where a given data measure is perturbed via an additive Gaussian measure,
and show an equivalence between the score of the resulting noisy distribution and the conditional
expectation of the noise-free sample given a noisy one. This generalization, combined with a measure-
theoretic decomposition of the conditional score, enables us to inject measurement consistency (or
PDE constraints) into an unconditional function-space diffusion model at inference time.

2) Multi-resolution conditional generation pipeline in function space (FunDPS).
We propose the function-space diffusion posterior sampling method that builds on the above theo-
retical framework, the pipeline of which is shown in Figure 2. An unconditional diffusion model is
first pretrained using the score matching objective as defined in [14]. The model works on a joint
functional representation of PDE parameters and solutions, which allows us to solve forward prob-
lems, inverse problems, and a combination thereof using partial observations. The model employs
a multi-resolution training strategy, which begins training on a coarse grid, then fine-tunes on a
finer one. It reduces GPU training hours by 25%, which is enabled by the Gaussian random field
(GRF)-based noise model and neural operator architecture. After training the unconditional model,
we generate conditional samples as follows: The sample is initialized with GRF noise, followed by
iterative denoising via a second-order deterministic sampler [16]. At each step, the sample evolves
according to the conditional score operator, which decomposes into data prior (from the pretrained
model) and observation-based likelihoods. Our generalized Tweedie’s formula enables us to effi-
ciently approximate the measurement log-likelihood. FunDPS can also employ multi-resolution
inference by performing most sampling steps at a lower resolution and only upsampling towards the
end, which alone yields 2x speedup while maintaining accuracy.

3) Extensive experiments with SotA performance in both speed and accuracy.
We test our approach on five challenging PDEs, which vary widely in their difficulty due to complex
input distributions (GRF’s multi-scale features), different boundary conditions (Dirichlet and periodic),
and nonlinear patterns (Navier-Stokes). We simulate extreme obfuscation in measurements by
masking. Specifically, for forward tasks (e.g., recovering the final state), we only observe 3%
of the initial condition and reconstruct the entire solution, while for inverse tasks, we observe
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only 3% of the final state and reconstruct unknown initial or coefficient fields. Despite these
difficulties, our method consistently achieves top performance (see Figure 1). Across all five tasks,
we reduce the average error by roughly 32% compared to the state-of-the-art diffusion-based
solver (DiffusionPDE [17], which operates at a fixed trained resolution) and surpass deterministic
neural PDE solvers by even larger margins. Moreover, our reverse diffusion process requires only
200–500 steps to converge—up to 10× fewer than DiffusionPDE—while maintaining superior
accuracy (see Figure 3a). We attribute these improvements primarily to FunDPS’s function-space
formulation, which aligns better with physics functions and applies smoother guidance, cutting
inference wall-clock time by 25× compared to DiffusionPDE with minimal impact on accuracy.

2 Related Works

Neural PDE solvers Neural PDE solvers aim to approximate PDE solutions or operators using
deep networks. Physics-informed neural networks (PINNs) [18] incorporate PDE residuals and
boundary conditions into the loss function, which enables both forward and inverse problem solving
but often at the cost of challenging optimization or limited scalability [19, 20]. Operator-learning
approaches such as Fourier Neural Operator (FNO) [21] and DeepONet [22, 23] learn resolution-
invariant mappings between function spaces. Meanwhile, graph-based neural PDE solvers [24, 25]
treat spatial discretization as a graph rather than functions and apply message passing to approximate
PDE dynamics on potentially irregular domains. Despite these breakthroughs, most existing works
yield single (deterministic) outputs rather than sampling from a posterior distribution over PDE
equations in function spaces, an aspect that we address through our diffusion-based approach.

Inverse PDE problems Inverse problems in PDEs, like recovering material properties or flow states
from sparse or noisy measurements, have been mainly tackled by PDE-constrained optimization or
Bayesian inference settings. Recently, data-driven approaches like PINN, FNO, and DeepONet [18,
21, 22] have emerged as efficient approaches to tackle PDE problems. However, their main target
is not recovering the full fields from partial observations, but learning the function-space mappings.
More recently, Energy Transformer [26] can reconstruct full fields from incomplete or irregular
data, but they are limited by the patch size. Others have explored cGANO for broadband ground-
motion synthesis [27], unified latent representations for forward–inverse subsurface imaging [28],
measurement-guided diffusion in geophysical tasks [29], and physically consistent score-based
methods with PDE constraints [30]. Although these works demonstrate promising directions and
partial overlap with our goals, they typically rely on discretized image domains or separately trained
physical models, lacking resolution-invariant features and flexibility.

Diffusion-based posterior sampling Diffusion models have demonstrated high quality and stability
in generation tasks [31–33, 16]. By learning a score function—a vector field pointing towards high-
density data regions at different noise levels—we can reverse the noising process to sample from
the prior distribution ν(a) [34–36]. Diffusion models have been widely used to solve inverse
problems in a plug-and-play manner, utilizing a pre-trained unconditional diffusion model as a prior
and its sampling process to integrate constraints [37, 38]. One key advantage of these methods is
their flexibility—the same unconditional model can be used for various downstream tasks without
retraining. Various approaches have been proposed to leverage diffusion priors, ranging from
guidance terms or resampling strategies within the generative process [39, 40] to integrations within
variational frameworks [41, 42]. While widely researched for fixed-resolution inverse problems like
images, their application to partial differential equations (PDEs) in function spaces is less explored.
DiffusionPDE [17] learns joint distributions of PDE parameters and solutions, but its reliance on
fixed discretizations limits its practical applicability in scientific computing.

Generative neural operators For physics-informed problems, developing true function-space
generative methods is crucial as data are inherently functions. Lim et al. [14] proposes Denoising
Diffusion Operators (DDOs), which extend diffusion processes to Gaussian random fields and
prove resolution-independence under discretization, while Pidstrigach et al. [43] provides a rigorous
mathematical framework for infinite-dimensional diffusion models that preserve key properties as
discretization is refined. Another work uses adversarial training on function spaces [44], which
introduces Generative Adversarial Neural Operators (GANO) to learn push-forward maps between
probability measures in infinite-dimensional Hilbert spaces. Flow matching techniques [45] offer an
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alternative by directly learning a velocity field whose induced transport matches the target distribution.
This framework has very recently been extended to infinite-dimensional settings [46–48]. Kerrigan
et al. [49] further applies functional flow matching in a conditional inference context, providing a
rigorous training scheme for downstream tasks. In contrast, we leverage a pre-trained functional prior
and simply compose it with arbitrary measurement operators at test time in a plug-and-play manner,
without requiring task-specific re-training.

3 Method

We now present our function-space diffusion posterior sampling (FunDPS) framework. We begin by
formulating the inverse problem in function spaces and establishing the Bayesian framework. We then
derive the conditional score through the decomposition of likelihood and prior terms and develop the
necessary approximations for practical implementation. Finally, we describe the complete FunDPS
algorithm, including our multi-resolution training strategy.

3.1 Problem Settings

PDE-based inverse problems We focus on general inverse problems in function spaces, with the
goal of retrieving an unknown function a ∈ A from a measurement function u ∈ U given by

u = A(a) + ε with A : A → U , (1)

where ε is an U-valued random variable representing the measurement noise and A and U are
separable Hilbert spaces. Such inverse problems frequently appear in the context of PDEs

Lcf = 0 (on D) and f |∂D = g, (2)

where Lc is a differential operator depending on a coefficient function c, the function g encodes
boundary or initial values on the domain D, and f is the solution3 function. For classical inverse
problems, A can be the operator mapping the parameter functions of a PDE, i.e. coefficient functions
c and boundary values g, to the corresponding solution f . Additionally, A can combine both a PDE
solution operator and a masking operator for solving inverse problems with sparse measurements.

Bayesian perspective For many practical solutions and masking operators, the inverse problem
is ill-posed, i.e., A is not injective nor stable, meaning that small changes in u can cause large
variations in a. To address these issues, we consider a Bayesian perspective [13], where we assume a
prior distribution ν(a) on A with the aim of sampling from the corresponding posterior distribution
νu = ν(a|u). All distributions, including the prior ν and posterior νu, are considered as probability
measures, and the existence of densities in infinite-dimensional spaces often requires careful treatment.

We assume that the measurement noise ε is a Gaussian random field (GRF) with covariance op-
erator Cη, i.e., ε is drawn from the Gaussian measure η = N (0,Cη) on U , which is the nat-
ural extension of Gaussian noise to function spaces [50]. Observe that, given a, we have that
u | a ∼ ηA(a) = N (A(a),Cη) is drawn from a Gaussian measure ηA(a) with mean A(a). When
the noise-free observation A(a) is an element of the Cameron-Martin space C

1/2
η (U) =: H(η) ⊂ U

associated with Cη , Cameron-Martin theorem allows us to compute the Radon-Nikodym derivative 4

dηA(a)

dη
(u) = exp

(
⟨u,A(a)⟩H(η) − 1

2
∥A(a)∥2H(η)

)
. (3)

In other words, Eq. (3) gives the density of ηa with respect to the noise measure η. We will use
Φ : A×U → R to represent the function Φ(a,u) = ⟨u,A(a)⟩U0

− 1
2∥A(a)∥2U0

. Loosely speaking,
Φ(a,u) is the log-likelihood of u given a. In the special case that u ∈ Rn is finite dimensional (for
instance, when A is the composition of a PDE solution operator and a finite observation mask), the
measure η corresponds to a mean-zero Gaussian random variable with covariance matrix Cη ∈ Rn×n.
In this case, when Cη has full rank, the Cameron-Martin space is C

1/2
η (Rn) = Rn so that the log-

likelihood is defined for any value of A(a).

3We assume that the considered PDEs allow for unique, strong solutions in a suitable space of functions.
4We recall that the inner product and norm on the Cameron-Martin space U0 are readily computed via

⟨u0,u1⟩H(η) = ⟨C−1/2
η u0,C

−1/2
η u1⟩U , u0,u1 ∈ H(η).
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By Bayes’ rule [13], the posterior νu is absolutely continuous with respect to the prior measure ν,
and moreover, the corresponding Radon-Nikodym derivative is proportional to the likelihood, i.e.,
dνu

dν (a) ∝ exp (Φ(a,u)) with the constant of proportionality depending on u but not a.

Diffusion prior We propose to learn the prior distribution ν(a) from data using the recent extension
of diffusion models to function spaces [14, 51]. These methods define a sequence of distributions
νt(at) that progressively add noise to the data until approximately reaching a tractable latent distri-
bution µT ≈ Γ. Learning a score approximator Dθ(at, t) ≈ E[a0|at] from the data via a variant
of score matching, one can approximately reverse the noising process5 and sample from the data
distribution. Moreover, by replacing the score with a conditional expectation, one can solve the
reverse SDE given initial conditions [43]. Notably, the denoiser Dθ is parametrized as a neural
operator [14, 52], and the noise is chosen to be Gaussian random fields, as opposed to neural networks
and multivariate Gaussian random variables for the finite-dimensional setting (see Appendix A for
more details). The diffusion prior will be updated by (approximated) conditional likelihood during
inference in order to solve inverse problems.

3.2 Conditional Score via Likelihood and Prior Score

In our setting, the unconditional forward process of the diffusion model may be simulated via

at = a0 + σtεt εt ∼ γ, a0 ∼ ν (4)

for some specified time-dependent constants σt > 0 [14]. Here, γ = N (0,Cγ) is now a Gaussian
measure on the spaceA. We will also use γt = N (0, σ2

tCγ) to represent the corresponding Gaussian
measure with scaled covariance. The spaces H(γ), H(γt) represent the Cameron-Martin spaces
associated with these Gaussian measures. We will write ν0(a0) = ν(a) for the prior distribution over
a and νt(at) for the marginal distribution of at obtained during the forward process. Similarly, the
conditional forward process is obtained in the same manner as Eq. (4) except with initial conditions
a0 ∼ νu drawn from the posterior corresponding to a given, fixed u. We will use νu0 = νu and νut
for the corresponding measures. Informally, νut can be thought of as∇apt(at|u).
As in prior work [14, 43], we make the assumption that the prior ν0 is supported on H(γ), i.e.,
ν(H(γ)) = 1. Note that as the posterior νu0 ≪ ν0 is absolutely continuous with respect to the prior,
we also have that νu0 (H(γ)) = 1. Under this assumption, both νt and νut are equivalent to γt in the
sense of mutual absolute continuity (see Appendix C and [14, Lemma 13]).

In this case, by the Radon-Nikodym theorem there exists a density dνut / dγt. We assume that the
logarithm of this density is Fréchet differentiable along H(γt). The object of interest when seeking
to sample from the posterior νu using a diffusion model is the conditional score of νt, defined as

DH(γt) log
dνu

t

dγt
: A → H(γt)

∗. (5)

The unconditional score of νt is defined analogously. Previous work [14] uses this notion of a
score to build function-space diffusion models. To simplify the notation, we write∇at

= DH(γt) as
shorthand for this Fréchet derivative.

However, in our setup, we do not assume we have access to the score of νut , but rather only to the
unconditional score of νt and the log-likelihood function Φ(a0,u). To overcome this, note that

∇at log
dνu

t

dγt
(at) = ∇at log

dνu
t

dνt
(at) +∇at log

dνt
dγt

(at) = ∇atΦ̃t(at,u) +∇at log
dνt
dγt

(at), (6)

where Φ̃t(at,u) = log(( dνut / dνt)(at)) is the log-likelihood of u | at. Thus, we have managed to
decompose the conditional score into a sum of a likelihood term and the prior score as desired.

3.3 Approximating the Likelihood in Function Spaces

While the calculations in the previous section in principle allow for plug-and-play posterior sampling,
a major difficulty is that the time-dependent likelihood Φ̃t is intractable. In particular, from Eq. (3)
we know the log-likelihood of u given a noise-free sample a0, but Eq. (6) requires us to have access

5Following common conventions, we will also refer to the noising process as forward process.
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to the log-likelihood of u given a noisy sample at. In the next two sections, we develop a method for
approximating this likelihood through a conditional expectation.

Let us write µat
t for the conditional distribution of u | at. This measure can be sampled from by

first predicting the clean a0 from the noisy at, followed by sampling from the noise measure ηA(a0)

according to Eq. (1). Hence, for any measurable U ⊆ U , we have

µat
t (U) =

∫
A
ηA(a0)(U) dνat

0|t(a0) (7)

where νat

0|t is the conditional measure of the reverse diffusion process given a noisy at. Denote by
â0(at) = E[a0 | at] the expected value of this measure. (We will sometimes write â0 to simplify
the notation when the dependency on at is clear from context.) Approximating νat

0|t ≈ δ[â0] with its
mean, under the assumption that A(a0) ∈ H(η) is an element of the CM space of η, we have

µat
t (U) =

∫
A
ηA(a0)(U) dνat

0|t(a0) =

∫
A

∫
U

dηa0

dη
(u) dνat

0|t(a0) ≈
∫
U

dηA(â0)

dη
(u) dη(u). (8)

Note further that Eq. (7) shows that if the prior ν0 is such that A(a0) ∈ H(η) almost surely, then
µat
t ≪ η. In all, we have shown

dµat
t

dη
(u) ≈ dηA(â0)

dη
(u). (9)

Carrying this approximation over into the log-likelihood, we obtain Φ̃t(at,u) ≈ Φ(â0,u) as defined
by Eq. (3). Thus, when we are able to calculate∇at

Φ(â0(at),u), we may substitute this expression
into Eq. (6) in order to guide the diffusion process to approximately sample from the posterior νu.

In the special case that U is finite dimensional (e.g., when A represents observing our PDE at finitely
many locations) and Cη is full rank, observe that via a straightforward calculation we have

Φ(â0,u) = − 1
2

(
∥u−Aâ0∥2H(η) − ∥u∥2H(η)

)
(10)

and so in this case we are justified in using an approximation to our log-likelihood of the form

∇atΦ̃t(at,u) ≈ ∇at

(
− 1

2
∥C−1/2

η (u−Aâ0(at))∥2U
)

(11)

as the two differ by a constant depending only on u. However, when U is infinite dimensional, the
Cameron-Martin space H(η) has measure zero under η, and so u−A(â0) almost surely not be an
element of H(η) in which case Eq. (10) is ill-defined. It is also worth noting that this approximation
is less accurate when noise level is high [53], which opens future work in this topic.

3.4 Approximation of Conditional Expectation via Tweedie’s Formula

Tweedie’s formula [54] plays a fundamental role in diffusion solvers by providing a link between
score functions and conditional expectations. It is a cornerstone in many guided sampling methods,
including MCG [38], DPS [40], and PSLD [55]. In our framework, the approximated likelihood also
relies on this efficient estimation of conditional expectations E[a0 | at], but in function spaces.

Generalization of Tweedie’s formula to function spaces requires careful treatment of several concepts.
In infinite-dimensional spaces, we can no longer rely on probability density functions or standard
gradients as in the finite-dimensional case. The notion of conditional expectation must be handled
through measure-theoretic tools, and the score function needs to be redefined using the Fréchet
derivative and the Riesz representation theorem. Here we present our extension below.

Theorem 3.1 (Tweedie’s formula in infinite-dimensional Banach spaces). Let B be a separable
Banach space. Assume that µ(H(γ)) = 1, the score of ν is Fréchet differentiable along H(γ), and
that the Fréchet derivatives of dγx/ dγ are µ-almost surely bounded by a µ-integrable function.
Then, for ν-almost every y,

E[X | Y = y] = R

(
DH(γ) log

dν

dγ
(y)

)
. (12)

Proof. See Appendix C.
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3.5 FunDPS: Function-Space Diffusion Posterior Sampling

With the analytically tractable likelihood approximation, we can now proceed to the posterior
sampling step. We will introduce the guidance term for the reverse diffusion process by defining a
differentiable likelihood term given a measurement function. The FunDPS algorithm follows, with
special attention to some design details of our implementation.

Guidance With the extended Tweedie’s formula, we now have a closed form representation of
â0(at) = E[a0 | at] given by Theorem 3.1. It becomes differentiable when we use a neural operator
to simulate the score function, enabling us to compute the likelihood function given in Eq. (11).
In practice, our observations u will be finite dimensional. We also assume that the covariance Cη

of the observation noise is approximately uncorrelated, such that C−1
η can be well-approximated by

a scaled version C−1
η ≈ cI of the identity. Plugging this and Eq. (11) into Eq. (6) with the trained

score operator Dθ, we can now formalize the conditional score operator, acting as the guidance for
posterior sampling

∇at log
dνu

t

dγt
(at) = ∇at log

dνt
dγt

(at) +∇atΦ̃t(at,u) ≈Dθ(at, t)− c
2
∇at∥u−A(â0)∥2U . (13)

When there are multiple types of observation, we further define the total log likelihood as a weighted
sum of individual observation log likelihoods. This formulation introduces a vector of hyperpa-
rameters ζ, where each component scales its corresponding likelihood term. These weights can be
interpreted as confidence measures for observations. For simplicity, we also absorb c

2 into ζ.

Algorithm 2 depicts this reverse diffusion process, where we iteratively update the samples ai using
the consistency between the given measurement u and the one obtained from the denoiser, i.e.,
A(Dθ(ai, ti)). Specifically, we propose the update rule

ai+1 ← ai − ζ · ∇ai∥u−A(Dθ(ai, ti))∥2U , (14)

where ζ is a predefined guidance weight as above.

Joint embedding In practice, the solution and the parameter functions are typically measured
by sensors and can only be partially observed [56]. Hence, we focus on the general case where
the operator A is an arbitrary masking operator, specifying the coordinates of the sensors, and
the function a jointly represents the PDE parameters and solution. Our goal is learning the prior
distribution of both initial and solution states via diffusion models. We then recover classical inverse
problems by fully masking the coefficients. On the other hand, forward problems correspond to
reconstructing the masked full solution from partial observations of the parameters. By partially
masking either channel, sparse reconstruction problems are resolved.

Multi-resolution training Inspired by other works on operator learning [57, 58], we introduce
a new training technique to learn the prior distribution with reduced computational costs. We first
train the diffusion model on low-resolution data for a majority of the epochs and only train on higher
resolution for the final epochs. This curriculum learning approach guides the model to efficiently
learn coarser information at the earlier stages of training and finer high-frequency details in the later
stages. Due to the discretization invariance of neural operators, the resulting model exhibits similar
performance as training only on high resolutions, almost at the cost of low-resolution training.

Multi-resolution inference Beyond reducing steps, inference time per step can be accelerated
by initially processing at a lower resolution and progressively increasing it. This aligns with the
concept of diffusion models generating autoregressively in resolution or frequency space [59]. We
propose ReNoise, a bi-level multi-resolution inference method. Initially, samples are processed at a
lower resolution. Subsequently, they are upscaled, and inspired by ReSample[60], additional noise is
introduced to mitigate artifacts and noise level mismatch arising from upscaling, followed by a few
denoising steps at the target resolution. This enables us to achieve equivalent accuracy in half the
computing time. We illustrate the pipeline in Figure 3b with implementation details in Appendix H.4.

4 Experiments

We will now showcase the efficiency, robustness, and multi-resolution generalizability of our proposed
FunDPS through various tasks. Additional and ablation experiments can be found in Appendix H.
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(a) (b)

Observation Target

              High-resolution sampling
                Multi-resolution sampling

Figure 3: (a) Comparison of FunDPS and DiffusionPDE in terms of accuracy and inference time with
varying step sizes; (b) Demonstration of multi-resolution inference pipeline. σ is in log-scale.

4.1 Experimental Setup

Datasets & Tasks We validate our approach by solving both forward and inverse problems on five
different PDE problems. The problems span a range of difficulties, characterized by complex input
distributions arising from the multi-scale features of GRFs, varying boundary conditions (Dirichlet
and periodic), and nonlinear patterns inherent in the Navier-Stokes equations. We provide a detailed
description of each PDE in Appendix E. The objective is to solve forward and inverse problems
in sparse sensor settings. For forward tasks, we only observe 3% of the initial condition before
reconstructing the entire solution. Conversely, for inverse tasks, we only observe 3% of the final state
before reconstructing unknown initial or coefficient fields.

Training & Inference We base our code on EDM-FS [61]. In particular, we adopt a U-shaped
neural operator architecture [52] as the denoiser Dθ and modify the noising process according to the
discussion above. Our denoiser has 54M parameters, which is similar to DiffusionPDE’s network
size. The implementation is detailed in Appendix F. The guidance weight ζ in Eq. (14) is tuned on a
small validation set, provided in Appendix G.

Baselines Baseline comparisons include well-known deterministic PDE solvers such as FNO [21],
PINO [62], DeepONet [22] and PINN [18], as well as the state-of-the-art diffusion-based approach,
DiffusionPDE [17]. We had correspondence with DiffusionPDE’s authors about its reproducibility
issues. We use our reproduced results for comparison. Please refer to the Appendix I for details.

4.2 Results

Main results We evaluate our method on both forward and inverse problems across five PDE tasks
with sparse observations. Results are shown in Table 1. Even with severe occlusions, where only
3% of function points are visible, we are able to reconstruct both states effectively. Our approach
always achieves the best results among all the baselines with the lowest error rates, surpassing all
baselines with 32% higher accuracy with one-fourth steps. We provide qualitative results in Figure 1
and Appendix K. We also compared all methods on classical fully-observed forward and inverse
problems, where FunDPS also showed superior performance as in Table 6. Further, we test our
framework with diverse guidance methods to show its adaptability (Figure 6 and Table 5). We also
conducted an ablation study on the effectiveness of our design choices in Table 12. Additionally, we
provide results by using FDM as forward operator and compare with joint learning in Appendix D.

Inference speed We compare the inference time of our method with the diffusion-based solver,
DiffusionPDE, as shown in Figure 3. With a 200-step discretization of the reverse-time SDE, our
method achieved superior accuracy with only one-tenth of the integration steps compared to DiffPDE.
When we increase the number of steps, FunDPS further reduces the error, which suggests that the
scaling law of inference time may hold for solving PDE problems with guided diffusion. This
highlights the effectiveness of our function space formulation and guidance mechanism.

Regarding the actual run time, our model averages 15s/sample for 500 steps (without multi-resolution
inference technique) on a single NVIDIA RTX 4090 GPU, while DiffusionPDE takes 190s/sample for
2000 steps on the same hardware and the same 128× 128 discretization. This superior performance
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Table 1: Comparison of different models on five PDE problems (in L2 relative error)

Steps (N)
Darcy Flow Poisson Helmholtz Navier-Stokes Navier-Stokes (BCs)

Forward Inverse Forward Inverse Forward Inverse Forward Inverse Forward Inverse

FunDPS (ours) 200 2.88% 6.78% 2.04% 24.04% 2.20% 20.07% 3.99% 9.87% 5.91% 4.31%
FunDPS (ours) 500 2.49% 5.18% 1.99% 20.47% 2.13% 17.16% 3.32% 8.48% 4.90% 4.08%
DiffusionPDE 2000 6.07% 7.87% 4.88% 21.10% 12.64% 19.07% 3.78% 9.63% 9.69% 4.18%
FNO - 28.2% 49.3% 100.9% 232.7% 98.2% 218.2% 101.4% 96.0% 82.8% 69.6%
PINO - 35.2% 49.2% 107.1% 231.9% 106.5% 216.9% 101.4% 96.0% 81.1% 69.5%
DeepONet - 38.3% 41.1% 155.5% 105.8% 123.1% 132.8% 103.2% 97.2% 97.7% 91.9%
PINN - 48.8% 59.7% 128.1% 130.0% 142.3% 160.0% 142.7% 146.8% 100.1% 105.5%

can be attributed to two factors: our efficient implementation increases our steps per second, and we
require significantly fewer steps than pixel-space models.

Multi-resolution training For our main results, we employed a two-phase training strategy: training
primarily on low-resolution data before switching to high resolution in the final epochs. As shown
in Table 7, this approach achieves comparable accuracy to models trained solely on high-resolution
grids, while requiring only 25% of the GPU hours.
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Figure 4: Comparison of the accuracy of FunDPS
with ReNoise under different ratios of low-
resolution inference steps.

Multi-resolution inference Thanks to its
multi-resolution nature, neural operators can be
trained on multiple resolutions and applied to
data of different resolutions. We can reduce
significant inference time by performing most
sampling steps at low resolution and upsampling
only near the end to finalize high-frequency de-
tails. We found that upsampling in the middle
of the diffusion process worked poorly, which
we attribute to the difficulty of preserving GRF
properties during upscaling. Hence, we propose
a bi-level sampling process, ReNoise, that mit-
igates the upsampling artifacts by adding noise
for improved correction potential. The imple-
mentation details are given in Appendix H.4.

We provide the multi-resolution inference results in Figure 4. With 80% of steps performed at
low resolution, ReNoise sustains similar accuracy, yielding a further 2x speed improvement to
7.5s/sample–25 times faster than DiffusionPDE.

5 Conclusion
We introduce a novel discretization-agnostic generative framework for solving inverse problems in
function spaces. Our framework supports sampling from posterior distributions with generalizability
across different resolutions. We provide theoretical foundations for our framework with the extension
of Tweedie’s formulation to function spaces. We verified our approach with various settings and
PDEs, achieving 32% higher accuracy than baselines while reducing time by an order of magnitude.

Limitations Incorporating PDE loss in FunDPS yields only marginal improvements over pure
observation-based guidance. We attribute this partially to numerical errors introduced by finite
difference approximations of PDE operators. Second, our approach still requires manual tuning of
guidance weights for different problems. Future work could explore improved techniques to better
preserve the continuous nature of the PDEs and include an adaptive guidance scheme.

Outlook While we focused on sparse spatial observations, our framework could naturally extend
to temporal observations in time-dependent PDEs, enabling spatiotemporal evolution from limited
measurements. Second, function-space diffusion models could serve as a unifying methodology for
diverse physical systems–enabling foundation models that can be trained once on multiple PDE and
domain types and then adapted to various downstream tasks. Lastly, while FunDPS demonstrates
promise for general PDE-based inverse problems, its performance on specialized inverse tasks such
as MRI reconstruction [63] and full waveform inversion [64] remains to be seen.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and §1 Introduction explicitly list our main contributions in
terms of theory (the extension of Tweedie’s formula to infinite-dimensional Banach spaces),
algorithm (the FunDPS framework for function-space diffusion posterior sampling), and
results (demonstrated through many experiments and ablation studies). These contributions
are well-aligned with the paper’s scope on solving inverse problems in infinite-dimensional
spaces.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: §6 Conclusion (Limitations) describes the need to tune guidance weights and
open extensions to temporal data.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated with each theorem, and full proofs appear in
Appendix B; the main text gives proof sketches for intuition.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: §4 Experiments and Appendix E,F,G detail data splits, hyper-parameters,
training and inference details; code and scripts are also provided in the supplementary, with
exact commands to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

16



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Codes are provided in the supplementary zip file. Datasets have been taken
from DiffusionPDE’s work, which is openly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the necessary setup details have been provided throughout §4 Experiments
and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars were not included primarily due to the extensive scope of experi-
ments (30+ setups across five large PDE datasets) and limited computational resources. The
main claims are supported by substantial and consistent performance improvements (e.g.,
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32% average accuracy gain, 4x fewer sampling steps) demonstrated on five test sets with
1000 samples each.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix F details the complete set of hardware, total training time and
per-sample inference time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work adheres to all points of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss possible positive and negative impacts in Appendix K. This paper
presents work whose goal is to advance the field of machine learning. There are many
potential societal consequences of our work, none of which we feel must be specifically
highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The released models and code are for specialized scientific applications
involving PDE-based simulations with non-sensitive, synthetic data. They present a very
low risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: All used assets, including data, code, and models, are properly cited, credited,
and explicitly mentioned throughout the paper. Although the explicit license terms for each
of these assets are not reiterated in the manuscript, they originate from publicly accessible
sources that are governed by standard open-source licenses (MIT for NeuralOperator and
EDM-FS; CC-BY-SA 4.0 for DiffusionPDE).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets are introduced; only code and trained weights are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work does not involve any research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The work does not involve any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not part of the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Diffusion Models in Function Spaces

A.1 Forward Diffusion with Gaussian Random Fields

Infinite-dimensional data (such as functions defined on a continuous domain) require a careful
definition of the diffusion process on them. We adopt a measure-theoretic approach following
recent score-based generative models in function spaces [14]. Let H be a separable Hilbert space
of functions (the function space of interest), and let µ be the data distribution on H (a probability
measure over H for our training data). In infinite dimensions, there is no Lebesgue density, so we
work relative to a reference Gaussian measure. We introduce a centered Gaussian prior measure
N (0,C) on H , with covariance operator C chosen to be self-adjoint, non-negative, and trace-class
(so that N (0,C) is a well-defined GRF measure). We refer to N (0,C) as the GRF prior measure.

Noising process Given a sample a ∼ µ, we perturb it by adding an independent Gaussian random
function (drawn from the GRF prior) with appropriate variance. In other words, for a noise scale
σ ≥ 0, we define the noisy function at level σ as

aσ = a+ η, (15)

where η ∼ N (0, σ2C) is a Gaussian random element in H with covariance σ2C. As σ increases,
more Gaussian noise is added to the function. For σ = 0, we have a0 = a (no noise), and at large σ,
aσ is dominated by noise (In fact as σ →∞, aσ approaches a draw from the zero-mean GRF prior).
This construction defines the forward diffusion process in function space in a distributional sense: it
transforms the data distribution µ into a family of perturbed distributions µσ, where µσ is the law
of aσ = a + η. Equivalently, µσ is the convolution of µ with the Gaussian measure N (0, σ2C).
By varying σ from 0 to some large value, we obtain a continuum (or a discrete set) of distributions
bridging µ0 = µ and an almost pure noise distribution (when σ is high). This is analogous to the
forward noising process in standard diffusion models, but defined on an infinite-dimensional function
space via GRFs.

A.2 Score Function and Denoising Objective

With the forward process defined, we now consider the score function on the function space. At a
given noise level σ, the score is defined as the gradient of the log-density of the perturbed distribution
µσ. In our infinite-dimensional setting, this gradient is understood with respect to the Gaussian
reference measure (the GRF prior). Formally, for each σ, we define the score function s(a, σ) as
the H-valued gradient of log pσ(a), where pσ is the density of µσ relative to N (0, σ2C). Intuitively,
s(a, σ) points in the direction in H that increases the likelihood of a under µσ the most. In finite
dimensions, this recovers∇a log pσ(a); here we assume s(a, σ) exists as an element of H [14].

Denoising score matching In practice, s(a, σ) is unknown because the true data distribution µ (and
hence µσ) is unknown. Instead of trying to directly estimate the score, we train a denoising model
Dθ(aσ, σ) to recover the underlying clean function a from a noisy sample aσ . This is called denoising
score matching, which is particularly convenient in function spaces. Following the EDM [16] training
strategy, we sample pairs of clean and noisy functions and train Dθ to predict the clean input. In
particular, given a sample a ∼ µ and its noisy version y = a+ η with η ∼ N (0, σ2C), we train Dθ

to output a (the ground truth) when given (y, σ) as input. The training objective, averaged over the
data distribution and noise, is formulated as a weighted mean squared error:

L(θ) = E a∼µ, η∼N (0,σ2C)

[
λ(σ) ∥Dθ(a+ η, σ) − a ∥2H

]
, (16)

where λ(σ) is a positive weighting function that balances the loss contributions across different
noise levels. Lim et al. [14] shows that minimizing this denoising objective for all σ is equivalent to
learning the true score function on H . In fact, there is an explicit relationship between the optimal
denoiser and the score operator in function space, analogous to Tweedie’s formula. Given a noisy
observation y = a+ η at scale σ, the score can be written as:

s(y, σ) =
Dθ( y, σ ) − y

σ2
. (17)

Thus, by training the model to minimize L(θ) across many noise levels, we are effectively teaching it
to approximate the score operator in H . We implement the above training with a discrete noise level
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schedule and random sampling of noise intensities, similar to the EDM methodology (Algorithm 1).
We randomly sample σ noise levels log-uniformly over [σmin, σmax] as in Karras et al. [16]. As a
result, Dθ becomes a function-space denoiser that can gradually refine a noisy input at any noise
scale within the range.

Algorithm 1 FunDPS Training (Training an unconditional diffusion model in function spaces)
Require: Data distribution µ, GRF prior covariance C, noise-level distribution p(σ)

1: Initialize model parameters θ
2: repeat
3: a ∼ µ, σ ∼ p(σ) {Draw clean function and noise level}
4: η ∼ N (0, σ2C) {Sample GRF noise}
5: y ← a+ η {Construct noisy sample}
6: â← Dθ(y, σ) {Compute denoised prediction}
7: L← λ(σ)∥â− a∥2H {Compute training loss}
8: Update parameters θ by minimizing L
9: until converged

10: return Dθ

A.3 Reverse Diffusion and Sampling

Once the denoising model (score model) is trained, we can generate new function samples from the
learned distribution by running the diffusion process in reverse – starting from noise and iteratively
removing noise. The key idea is to start with an initial random field drawn from the prior and then
repeatedly apply the denoiser Dθ while decreasing σ in stages. Here we adopt a discrete reverse
diffusion approach aligned with EDM’s deterministic solver. First, we choose a high noise level σmax

(e.g. the upper bound used in training) and sample an initial function aN ∼ N (0, ;σ2
max,C), i.e. a

pure noise sample in H drawn from the GRF prior. Then we define decreasing sequence of noise
levels σmax = σN > σN−1 > · · · > σ1 > σ0 ≈ 0, where the levels are spaced polynomially so that
adjacent levels have small differences in terms of signal-to-noise ratio as in EDM [16]. The noise
scheduler spans from the highest noise to zero (σmax corresponds to the prior and σ0 = 0 corresponds
to a clean sample). At each step i = N,N − 1, . . . , 1, given the current noisy sample ai at noise
level σi, we apply the denoiser to get â = Dθ(ai, σi), the model’s estimate of the clean underlying
function. It is followed by adding the σi−1 noise level to reach the next step’s sample ai−1 along
with higher-order updates. After iterating down to the final level σ0 → 0, we obtain a0, which is an
approximate sample from the original data distribution µ (since no noise remains). We can then use
a0 as a newly generated function sample drawn from the learned generative model. We implement
our framework using a deterministic sampler based on Euler’s 2nd order method. Algorithm 2 without
the FunDPS guidance corresponds to this unconditional sampling procedure.

B Pseudocode for FunDPS

Algorithm 2 FunDPS Sampler
Require: Observation u, forward operator A, denoising diffusion operator Dθ, variance schedule
{σ(ti)}Ni=0 with σ(t0) = 0, guidance weights ζ.

1: aN ∼ N (0,C) {Initialize a from GRF}
2: for i = N to 1 do
3: â0 ←Dθ(ai, σ(ti)) {Estimate a0 by Tweedie’s formula}
4: di ← (ai − â0)/σ(ti) {Evaluate da/dt at ti}
5: ai−1 ← ai + (σ(ti−1)− σ(ti))di {Take Euler step from σ(ti) to σ(ti−1)}
6: if σ(ti−1) ̸= 0 then
7: â′

0 ←Dθ(ai−1, σ(ti−1))
8: d′

i ← (ai−1 − â′
0)/σ(ti−1)

9: ai−1 ← ai + (σ(ti−1)− σ(ti))( 12di +
1
2d

′
i) {Apply 2nd-order correction}

10: end if
11: ai−1 ← ai−1 − ζ · ∇ai

∥u−A(â′
0)∥2U {Invoke the FunDPS guidance in Eq. (14)}

12: end for
13: return a0
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C Measure-Theoretic Tweedie’s Formula

In this section, we prove a generalization of Tweedie’s formula which holds for separable Banach
spaces. This will furnish us with a link between score functions [14] and conditional expectations,
which is a key step in enabling function-space inverse problem solvers. We begin with some
preliminaries on Gaussian measures before proceeding with our proof.

Notation Throughout this section, B will represent a separable Banach space. For two measures
µ, ν on B, we write µ≪ ν if µ is absolutely continuous with respect to ν, i.e., if E ∈ B(B) is Borel
measurable and ν(E) = 0, then µ(E) = 0. We write µ ∼ ν are equivalent if ν ≪ ν and ν ≪ µ. For
any h ∈ B, we will write Th : B → B for the translation map x 7→ x + h. For an arbitrary Borel
measure µ on B we will write µh = (Th)#µ = µ(· − h) for the translated measure.

C.1 Banach Space Gaussian Measures

We briefly review the key definitions necessary for our constructions. We refer to [50] for an
in-depth treatment of this material. A centered Gaussian measure γ on B is a Borel probability
measure such that the pushforward of γ along any bounded linear functional f ∈ B∗ is a mean-zero
Gaussian distribution on R. Note that, as B is separable, Fernique’s theorem guarantees that we have
B∗ ⊂ L2(γ). The reproducing kernel Hilbert space (RKHS) B∗

γ associated with γ is the closure of
B∗ with respect to the L2(γ) norm, i.e.,

B∗
γ = {f ∈ X∗}L2(γ) (18)

and for f, g ∈ B∗
γ their inner product is ⟨f, g⟩B∗

γ
=

∫
f(x)g(x) dγ(x).

The measure γ is uniquely determined by its covariance operator Cγ : B∗
γ → B∗∗, defined by

Cγ(f)(g) =

∫
f(x)g(x) dγ(x) ∀f ∈ B∗

γ , g ∈ B∗. (19)

The Cameron-Martin space H(γ) ⊂ X is defined as

H(γ) = Cγ(B
∗
γ) = {Cγ(f) | f ∈ B∗

γ}. (20)

Although H(γ) ⊂ B∗∗ in general, because B is a separable Banach space we may take H(γ) ⊂ B.
That is, we write h = Cγ(f) for some h ∈ B and f ∈ B∗

γ if f(g) = Cγ(f)(g) for all g ∈ B∗. Since
every h, k ∈ H(γ) are of the form h = Cγ(ĥ), k = Cγ(k̂) for some ĥ, k̂ ∈ B∗

γ , the space H(γ) has
an induced inner product

⟨h, k⟩H(γ) = ⟨Cγ(ĥ), Cγ(k̂)⟩H(γ) = ⟨ĥ, k̂⟩L2(γ). (21)

The space H(γ) is a Hilbert space under this inner product. We will write |h|H(γ) for the associated
norm. Note that we may equivalently define

|h|H(γ) = sup {f(h) | f ∈ B∗, Cγ(f)(f) ≤ 1} (22)

where the Cameron-Martin space H(γ) may be identified as [50, Theorem 3.2.3]

H(γ) = {h ∈ X | |h|H(γ) <∞}. (23)

Note that the map Cγ : B∗
γ → H(γ) is an isometric isomorphism. Since H(γ) is a Hilbert space,

the Riesz representation theorem furnishes us with a canonical isometry R : H(γ)∗ → H(γ). Thus
H(γ)∗ ≃ B∗

γ . Somewhat more explicitly, we obtain an isometric isomorphism

J : B∗
γ → H∗ f 7→ ⟨Cγ(f), ·⟩H(γ). (24)

Note further that (R ◦ J)(f) = Cγ(f) for f ∈ B∗
γ gives us an isometry R ◦ J : B∗

γ → H(γ).

The following shows that the Cameron-Martin space H(γ) is precisely those directions under which
we may translate the measure γ while remaining absolutely continuous [50, Corollary 2.4.3, Theorem
3.2.3]. Moreover, the celebrated Cameron-Martin formula allows us to explicitly calculate the
associated density.
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Theorem C.1 (Cameron-Martin). On a separable Banach space B, an element h ∈ H(γ) is an
element of the Cameron-Martin space if and only if γh ∼ γ are equivalent in the sense of being
mutually absolutely continuous. In this case,

dγh

dγ
(x) = exp

(
C−1

γ (h)(x)− 1
2 |h|

2
H(γ)

)
.

C.2 Tweedie’s Formula

We now proceed to give a proof of a generalized Tweedie’s formula for centered Gaussian measures
on Banach spaces. Let X ∼ µ be a random variable on B with distribution µ and let Z ∼ γ be
distributed according to an independent centered Gaussian measure with covariance Cγ . Define a
new random variable

Y = X + Z (25)
whose distribution ν = µ ⋆ γ is obtained by the convolution of these two measures, i.e.,

ν(E) =

∫
B

γ(E − x) dµ(x) ∀E ∈ B(B). (26)

Observe that conditioned on a fixed value of X = x, we have Y | X = x ∼ γx is distributed
according to a Gaussian measure γx with mean x and covariance Cγ .

We begin by showing that ν ∼ γ are equivalent when µ is supported on the CM space H(γ). This is
a generalization of [14, Theorem 1], who show an analogous claim for separable Hilbert spaces. The
proof is essentially the same in both cases, but we include it here for the sake of completeness.
Proposition C.2. Suppose µ(H(γ)) = 1. Then, ν ∼ γ are equivalent.

Proof. Let E ∈ B(B) be an arbitrary Borel set. Suppose that γ(E) = 0. By Theorem C.1, γx ∼ γ
for µ-almost every x, and hence γx(E) = 0 for µ-almost every x. It follows that

ν(E) =

∫
B

γx(E) dµ(x) = 0.

Conversely, suppose ν(E) = 0. It follows that γx(E) = 0 for µ-almost every x. Since µ(H(γ)) = 1,
Theorem C.1 shows the measures γx and γ are almost surely equivalent and thus γ(E) = 0.

Hence, if µ(H(γ)) = 1, the Radon-Nikodym theorem provides us with a Borel measurable ϕ : B →
R with

dν

dγ
(y) = exp(ϕ(y)) γ-a.e. y ∈ B.

We henceforth assume this is the case. Assume further that ϕ is Fréchet differentiable along H(γ).
The score of ν is defined as

DH(γ)ϕ : B → H(γ)∗.

That is, DH(γ)ϕ = DH(γ) log
dν
dγ is the logarithmic derivative of the density of ν along H(γ). The

value [DH(γ)ϕ](x)(h) is the derivative of ϕ at x in the direction h ∈ H(γ). We refer to [14] for a
further discussion of this notion of a score and the differentiability assumption.

In the following lemma, we prove that the density of ν with respect to the noise measure γ can also
be understood in terms of the corresponding conditional distributions γx. This lemma will be used to
aid our later calculations.
Lemma C.3. Assume that µ(H(γ)) = 1. For γ-almost every y ∈ B, we have

dν

dγ
(y) =

∫
B

dγx

dγ
(y) dµ(x) = Ex∼µ

[
dγx

dγ
(y)

]
. (27)

Moreover, for γ-almost every y ∈ B,

dγ

dν
(y) =

(
dν

dγ
(y)

)−1

. (28)
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Proof. Fix a measurableE ∈ B(B). Since µ(H(γ)) = 1, then µ-almost surely we have that γx ≪ γ.
Hence, by the Radon-Nikodym theorem, the density ( dγx/ dγ)(y) exists µ-almost everywhere.

Now, recall that ν = µ ⋆ γ is a convolution of measures, so that

ν(E) =

∫
B

γ(E − x) dµ(x) (29)

=

∫
B

γx(E) dµ(x) (30)

=

∫
B

∫
E

dγx

dγ
(y) dγ(y) dµ(x) (31)

=

∫
E

∫
B

dγx

dγ
(y) dµ(x) dγ(y). (32)

where the last equality follows by Tonelli’s theorem and the fact that the densities are nonnegative.
By Proposition C.2, ν ≪ γ and so by the Radon-Nikodym theorem the density dν/dγ is uniquely
defined up to a set of γ-measure zero. Thus,

dν

dγ
(y) =

∫
B

dγx

dγ
(y) dµ(x) γ-a.e. y ∈ B (33)

as claimed. The second claim follows because ν ∼ γ under the assumption µ(H(γ)) = 1.

We now proceed to calculate E[X|Y = y]. First, we directly calculate this using the definition of a
conditional expectation. Note that this proof follows closely a calculation shown in [43], Appendix
F.1.
Proposition C.4. Suppose that µ(H(γ)) = 1. Then, for ν-almost every y ∈ B, the conditional
expectation is given by

E[X | Y = y] =
dγ

dν
(y)Ex∼µ

[
x
dγx

dγ
(y)

]
. (34)

Proof. Write f(y) for the right-hand side of (34) and let A ∈ σ(Y ) be a Y -measurable event. We
show Ey∼ν [1Af(y)] = Ex∼µ[1Ax], from which the claim follows. Indeed,

∫
A

f(y)dν(y) =

∫
B

∫
A

f(y)dγx̃(y)dµ(x̃) (35)

=

∫
B

∫
B

∫
A

x
dγ

dν
(y)

dγx

dγ
(y) dγx̃(y) dµ(x̃) dµ(x) (36)

=

∫
B

∫
B

∫
A

x
dγ

dν
(y)

dγx

dγ
(y)

dγx̃

dγ
(y) dγ(y) dµ(x̃) dµ(x) (37)

=

∫
B

∫
A

x
dγ

dν
(y)

dγx

dγ
(y)

[∫
B

dγx̃

dγ
(y) dµ(x̃)

]
dγ(y) dµ(x) (38)

=

∫
B

∫
A

x
dγ

dν
(y)

dγx

dγ
(y)

dν

dγ
(y) dγ(y) dµ(x) (39)

=

∫
A

x

[∫
B

dγx

dγ
(y) dγ(y)

]
dµ(x) (40)

= Ex∼µ[1Ax]. (41)

which completes the proof.

We now proceed to calculate the Cameron-Martin space gradient of the score. In particular, we show
that it is equal to the same expression we obtained in Proposition C.4. This requires an assumption
on the measure µ to ensure that the derivatives of dγx/ dγ are bounded by an integrable function in
order to justify a derivative-integral exchange. Using the continuity of Cγ , the condition in Eq. (43)
can be relaxed to finding an integrable ψ ∈ L1(γ) such that for all y ∈ B and µ-almost every x,

|x|H(γ) exp
(
|C−1

γ |B∗
γ
|x|H(γ)|y|B − 1

2 |x|
2
H(γ)

)
≤ ψ(x). (42)
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While this condition depends on the specific choice of µ, it will be satisfied when e.g. µ is compactly
supported in H(γ) or when µ has tails which decay sufficiently fast.

Proposition C.5. Assume µ(H(γ)) = 1 and that log dν
dγ is Fréchet differentiable along H(γ).

Consider the score DH(γ) log
dν
dγ : B → H(γ)∗. Let R : H(γ)∗ → H(γ) be the Riesz isometry.

Assume further that there exists a non-negative function ψ ∈ L1(µ) such that for all y ∈ B and
µ-almost every x ∈ B, ∣∣∣∣DH(γ)

dγx

dγ
(y)

∣∣∣∣
H(γ)∗

≤ ψ(x). (43)

Then, the Cameron-Martin score

R

(
DH(γ) log

dν

dγ

)
: B → H(γ) (44)

is given for ν-almost every y ∈ B as

R

(
DH(γ) log

dν

dγ
(y)

)
=

dγ

dν
(y)Ex∼µ

[
x
dγx

dγ
(y)

]
. (45)

Proof. Since we assume the score of ν is Fréchet differentiable, we may apply the chain rule to see
that for y ∈ B,

DH(γ) log
dν

dγ
(y) =

dγ

dν
(y)DH(γ)

dν

dγ
(y). (46)

Moreover, by the Cameron-Martin formula, if x ∈ H(γ), then[
DH(γ) log

dγx

dγ

]
(y) = J(C−1

γ (x)) (47)

where J : B∗
γ → H∗ is the isomorphism defined in Eq. (24). Note this isomorphism is required

as C−1
γ (x) ∈ B∗γ is an element of the RKHS B∗

γ , whereas the Fréchet derivative is an element of
H(γ)∗. Using Lemma C.3 and the assumption that there exists a dominating function ψ ∈ L1(µ),
we may use the Leibniz integral rule to calculate that[

DH(γ)
dν

dγ

]
(y) =

∫
B

J(C−1
γ (x))

dγx

dγ
(y) dµ(x) (48)

in the sense that[
DH(γ)

dν

dγ

]
(y)(h) =

∫
B

J
(
C−1

γ (x)
)
(h)

dγx

dγ
(y) dγ(x) ∀h ∈ H(γ). (49)

Using the fact that R is bounded and R ◦ J = Cγ , we obtain

R

(
DH(γ)

dν

dγ
(y)

)
=

∫
B

x
dγx

dγ
(y) dγ(x) (50)

= Ex∼γ

[
x
dγx

dγ
(y)

]
. (51)

Combined with Eq. (46), this yields the claim.

Combining Proposition C.4 and Proposition C.5 yields the Banach space generalization of Tweedie’s
formula, which concludes the proof for Theorem 3.1.

C.3 Special Case: Euclidean Setting

Here, we will informally replicate our proof of Tweedie’s formula in the special case of B = Rn to
provide some intuition and to sanity check this result. In this case we suppose everything admits
densities, so that ν = pY (y), µ = pX(x), and γ = pZ(z) = N (z | 0, C). Moreover pY |X(y | x) =
N (y | x,C). While many of these steps in this section can be done in a more straightforward fashion
when B = Rn, we purposefully follow the structure of our previous calculations.
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In this setting, we seek to compute

∇y log
dν

dγ
(y) = ∇y log

pY (y)

pZ(y)
. (52)

as the score is now taken with respect to the noise measure pZ(y). Now, using the densities, we may
calculate in an analogous fashion

∇y log
pY (y)

pZ(y)
=
pZ(y)

pY (y)
∇y

(
1

pZ(y)

∫
Rn

pY (y | x)pX(x) dx

)
(53)

=
pZ(y)

pY (y)

∫
Rn

∇y log

(
pY (y | x)
pZ(y)

)
pY (y | x)
pZ(y)

p(x) dx (54)

=
pZ(y)

pY (y)

∫
Rn

(
C−1(x− y) + C−1(y)

) pY (y | x)
pZ(y)

p(x) dx (55)

=
pZ(y)

pY (y)

∫
Rn

C−1(x)
pY (y | x)
pZ(y)

p(x) dx. (56)

This expression is the finite-dimensional analogue of the one we obtain in Eq. (48). This yields

C∇y log
pY (y)

pZ(y)
=
pZ(y)

pY (y)

∫
Rn

x
pY (y | x)
pZ(y)

p(x) dx. (57)

On the other hand, we may explicitly calculate the conditional expectation by

E[X | Y = y] =

∫
Rn

xpX|Y (x | y) dx (58)

=

∫
Rn xpY |X(y | x)pX(x) dx

pY (y)
(59)

=
pZ(y)

pY (y)

∫
Rn

x
pY |X(y | x)
pZ(y)

pX(x) dx (60)

= C∇y log
pY (y)

pZ(y)
, (61)

Let us take a step further towards the standard expression of Tweedie’s formula. The gradient
∇y log

pY (y)
pZ(y) can be expanded as∇y log pY (y)−∇y log pZ(y). For pZ(y) = N (z | 0, C), we have

∇y log pZ(y) = −C−1y. Substituting, this becomes the more familiar expression

E[X | Y = y] = y + C∇y log pY (y). (62)
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D Inverse PDE Solver with an FDM Forward Operator

In order to show the diverse adaptability of our methodology, we further apply our framework to
solve inverse PDE problems by using a Finite Difference Method (FDM)-based forward operator. In
this problem, we only model the prior distribution on the coefficient space using the function-space
diffusion model. We then reconstruct the initial states from full, noisy, and sparse observations of the
solution space. Specifically, the forward operator here is

A(a) = FDM_Solve(−∇[a∇u] = 1), (63)

and we formulate the inverse problem as estimating initial state a from corrupted observations of
solution state u. Our goal is to sample from p(a|u) by applying the function-space reverse diffusion
steps with a guidance term ∇a∥A(a) − u∥. Since A is a standard FDM solver, we can compute
gradients via automatic differentiation. We present qualitative examples in Figure 5 and show
in Table 2 that our method can achieve small relative L2-errors in these challenging cases with both
FDM as forward operator and joint learning. In practice, considering similar or better performance,
we use a joint learning approach for all our experiments as the inference speed is considerably faster,
since the FDM-based method requires backpropagating through the linear solve FDM_Solve.
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Figure 5: Reconstruction of coefficient functions from partially-observed Darcy Flow problems.

Table 2: The reconstruction error on the inverse Darcy Flow problem with diverse settings.

Steps (N) Time Corruption

None Noisy Masked

FDM 50 57s 4.28% 4.67% 4.47%
Joint Learning 500 15s 3.64% 6.32% 3.95%

E Detailed Dataset Description

Darcy Flow Darcy Flow is a fundamental model that describes the flow of a viscous incompressible
fluid through a porous medium. The governing equations are given by:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (64)

with constant forcing f(x) = 1 and zero boundary conditions. We follow the strategies in Li et al.
[21] to generate coefficient functions a ∼ h

#
N (0, (−∆+ 9I)−2), where h : R→ R is set to be 12

for positive numbers and 3 otherwise.
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Poisson Equation The Poisson equation describes steady-state diffusion processes:

∇2u(x) = a(x), x ∈ (0, 1)2, (65)

with homogeneous Dirichlet boundary conditions u|∂Ω = 0. We generate coefficient fields a(x) from
Gaussian random fields N (0, (−∆+ 9I)−2). The PDE guidance function is f = ∇2u− a.

Helmholtz Equation The Helmholtz equation models wave propagation in heterogeneous media:

∇2u(x) + k2u(x) = a(x), x ∈ (0, 1)2, (66)

with k = 1 and Dirichlet boundary conditions u|∂Ω = 0. Coefficient fields a(x) are GRFs generated
as in [17]. The PDE guidance function is f = ∇2u+ k2u− a.

Navier-Stokes Equations We further evaluate the performance on the Navier-Stokes equations
by generating its initial and terminal states as in [21]. In particular, we consider the evolution of a
velocity field u(x, t) over time given by

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ], (67)

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ], (68)

u(x, 0) = a(x), x ∈ (0, 1)2, (69)

where w = ∇ × u is the vorticity; ν = 1
1000 , viscosity; and f , a fixed forcing term. The initial

condition a(x) is sampled from N (0, 73/2(−∆+ 49I)−5/2). The forcing term is defined as f(x) =
1
10 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))). We simulate the PDE for T = 1 using a pseudo-spectral
method. It should be noted that the PDE guidance formulated in Huang et al. [17] is invalid:

∇ ·w = ∇ · (∇× u) = 0 (70)

Furthermore, due to the lack of information, calculating a PDE loss is non-trivial here. While the
experiments in this work use the original incorrect formulation for consistency with prior benchmarks,
we anticipate minimal impact on the final results given the relatively small loss weight λPDE .

Navier-Stokes Equations with Boundary Conditions (BCs) We study bounded flow around
cylindrical obstacles, governed by:

∂tv(x, t) + v(x, t) · ∇v(x, t) = −∇p+ ν∇2v(x, t), x ∈ Ω, t ∈ (0, T ], (71)
∇ · v(x, t) = 0, x ∈ Ω, t ∈ (0, T ], (72)

with ν = 0.001, ρ = 1.0, and no-slip boundaries on ∂Ωleft,right,cylinder. The domain contains randomly
placed cylinders. We learn the joint distribution of v0 and vT at T = 4. Its original PDE guidance
has the same error as the non-bounded case.

F Detailed Experiment Setup

Datasets We validate our approach by solving both forward and inverse problems on five different
PDE problems. These PDEs include Darcy Flow, Poisson, Helmholtz, and Navier-Stokes with and
without boundary conditions. We follow the same strategy as in DiffusionPDE [17] to generate
datasets, where we prepare 50, 000 training samples and 1, 000 test samples for each PDE. The
Navier-Stokes equation with boundary conditions specifically consists of 14, 000 train and 1, 000 test
samples. The resolution is 128 × 128, and in some settings we downsample the data by 2×. For
quantitative comparisons, error rates are calculated using the L2 relative error between the predicted
and true solutions, except for the inverse Darcy Flow problem, where we use the binary error rate.

Implementation We adopt a 4-level U-shaped neural operator architecture [52] as the denoiser
Dθ, which has 54M parameters, similar to DiffusionPDE’s network size. The network is trained
using 50, 000 training samples for 200 epochs. For the multi-resolution training, we begin training
on a coarser grid (64× 64) for 200 epochs, then switch to a higher resolution (128× 128) for 100
epochs. The hyperparameters we used for training and inference are listed in Table 3. We source the
quantitative results of deterministic baselines from DiffusionPDE [17]’s table.
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Table 3: Hyperparameters of Choice.
Hyperparameter Value
learning_rate 0.0001
learning_rate_warmup 5 million samples
ema_half_life 0.5 million samples
dropout 0.13
rbf_scale 0.05
sigma_max 80
sigma_min 0.002
rho 7

Speed comparison All the experiments are conducted using a single NVIDIA RTX 4090 GPU. To
determine per-sample inference time, we averaged batch inference time over 10 runs and divided by
the batch size. Batch sizes were optimized to fully utilize GPU memory; specifically, for 128× 128
data, these were 13 for FunDPS and 8 for DiffusionPDE.

G Implementation Details of the Guidance Mechanism

For inference, we tuned the guidance strength ζ on a small validation set, resulting in the values
shown in Table 4. We noted that PDE loss calculations are unreliable in early sampling stages due to
high noise levels. Hence empirically, we only apply PDE loss when σt < 1. Furthermore, to ensure
smooth convergence to the posterior, we found it beneficial to dial down the guidance weights as the
noise level decreases. Therefore, we implement a simple but effective scheduling scheme for the
guidance weights of both observation and PDE loss:

ζ̃t =

{
σtζ if σt < 1

ζ if σt ≥ 1

We use the Huber loss for PDE guidance instead of mean squared error because it provides robustness
against potential outliers caused by finite difference approximation errors, which improves the
stability of gradient updates. We investigated the method’s sensitivity to the guidance strength in
Appendix H.6.

Table 4: Guidance strength ζ used for each PDE problem.
Darcy Flow Poisson Helmholtz Navier-Stokes Navier-Stokes with BCs

Forward Inverse Forward Inverse Forward Inverse Forward Inverse Forward Inverse

Observation Loss Type MSE MSE MSE MSE MSE L2 MSE L2 MSE L2
Observation Loss Weight 10000 50000 10000 20000 10000 5000 5000 7500 3000 2000

PDE Loss Type Huber Huber Huber Huber Huber Huber Huber Huber Huber Huber
PDE Loss Weight 0 0 0 0 1 1 1 10 100 15
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H Additional Experiments

In this section, we will present additional experiments to demonstrate key aspects of our model. Due
to time constraints, we primarily focus on two representative PDEs: Darcy Flow and Navier-Stokes
equation. These systems are of significant interest and range from smooth elliptic problems to highly
nonlinear dynamics.

H.1 Plug-and-play inverse solvers

In order to show the adaptability of the framework, we further test our method with various guidance
methods. Namely, Table 5 and Figure 6 demonstrate the reconstruction results on Poisson PDE
equation with various inverse solvers [40, 39, 65] on different priors. FunDPS (Function Space +
DPS) consistently outperforms other methods within a smaller number of steps.

The significant underperformance of DDNM and DAPS in our setting is primarily due to the extreme
sparsity of observation data. DDNM relies on projecting the sample onto measurement subspace
at each step. With only 3% of observation points, the measurement subspace is extremely low-
dimensional compared to the overall function space. As a result, the projection provides very weak
guidance and leads to poor reconstruction. The core issue of DAPS comes from the localness of
guided updates during Langevin dynamics. Only the points with observation are updated and others
are just added with noise. This makes the intermediate state after Langevin dynamics discontinuous
and out-of-distribution, which hinders performance. If we increase the number of sampling steps to
20,000, the accuracy can match DPS, but with 100x more time.

Table 5: The relative errors for Poisson equation under varying priors and plug-and-play inverse
solvers. FunDPS corresponds to the intersection of Function Space prior with DPS solver. FunDPS
results are based on 500 steps, whereas other methods are performed with at least 2000 steps.

Inverse Solvers Function Space Euclidean Space

Forward Inverse Forward Inverse

DPS [40] 1.99% 20.47% 4.88% 21.10%
DDNM [65] 10.17% 41.67% 20.66% 43.84%
DAPS [39] 40.35% 77.72% 492.6% 274.8%
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Ground Truth Function Space Euclidean Space Function Space Euclidean Space Function Space Euclidean Space

DPS DDNM DAPS

Error: 2.10% Error: 3.96% Error: 8.70% Error: 18.32% Error: 24.58% Error: 369.1%

Error: 20.71% Error: 23.85% Error: 32.45% Error: 29.60% Error: 55.65% Error: 182.5%

Figure 6: The qualitative results of Table 5 with Poisson equation. First and second rows correspond
to the forward problem reconstructions and error maps, respectively. The third and fourth rows
correspond to the inverse problem reconstructions and error maps, respectively. Relative errors are
also reported for this specific data under each error map, where FunDPS achieves the minimum
among all the tasks.
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H.2 Fully-observed problems

Deep learning approaches have been extensively researched for solving classical forward and inverse
problems, where either the initial state or the final state is fully known. While the deterministic
baselines are powerful in these tasks, our method still demonstrates superior performance in 3 out
of 4 cases, highlighting the strong modeling capabilities of our framework. Ours also outperforms
DiffusionPDE in all cases, shown in Table 6.

Table 6: Comparison of different methods on forward and inverse problems with full observation.
Error rates are calculated using the L2 relative error between the predicted and true solutions,
except for the Darcy Flow inverse problem, where a binary error rate is used. FunDPS significantly
outperforms the fixed-resolution diffusion baseline and achieves top performance even when compared
to deterministic baselines in 3 out of 4 cases. The best results are highlighted in bold.

Steps (N)
Darcy Flow Navier-Stokes

Forward Inverse Forward Inverse

FunDPS (ours) 200 1.1% 4.2% 4.9% 7.8%
FunDPS (ours) 500 1.4% 3.0% 3.0% 7.0%
FunDPS (ours) 2000 0.9% 2.1% 1.6% 6.6%

DiffusionPDE6 2000 2.9% 13.0% 2.4% 8.4%
FNO - 5.3% 5.6% 2.3% 6.8%
PINO - 4.0% 2.1% 1.1% 6.8%
DeepONet - 12.3% 8.4% 25.6% 19.6%
PINN - 15.4% 10.1% 27.3% 27.8%

H.3 Multi-resolution training

Our multi-resolution training combines efficient low-resolution learning with high-resolution finetun-
ing. We first train for 200 epochs on 64×64 resolution data to learn coarse features, then train for
100 epochs on 128×128 resolution to capture fine details. This approach leverages the resolution
independence of neural operators while reducing computational costs.

Table 7 compares training configurations across resolutions. Direct high-resolution training performs
well but requires substantially more parameters and computing resources. Our multi-resolution
approach achieves comparable or better performance while maintaining the smaller model size,
reducing total GPU hours by about 25%.

Table 7: Comparison of different training resolution strategies. "Mixed" refers to our two-phase
approach, which achieves comparable or better performance to training directly at high resolution
while using significantly fewer parameters. We use 500 steps for evaluation.

Training Res. Inference Res. # Params Darcy Flow Navier-Stokes

Forward Inverse Forward Inverse

64 64 54M 3.03% 6.75% 3.20% 8.85%
64 128 54M 3.64% 5.24% 3.81% 8.48%

128 128 184M 2.74% 5.03% 3.35% 8.20%
Mixed 128 54M 2.49% 5.18% 3.32% 8.16%

H.4 Multi-resolution inference

Our multi-resolution sampling pipeline is shown in Figure 3b. It includes two stages with noise
increase in between. The first stage is a complete diffusion sampling at low resolution, from σ

(1)
max

to σ(1)
min, over tup steps. Samples are then upscaled (e.g., using bicubic interpolation, though our

6We again found reproducibility issues with DiffusionPDE. Our reproduced results are here. Please refer to
Appendix I for details.
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method is not sensitive to this choice). To counter upscaling artifacts and initiate a subsequent high-
resolution diffusion, noise is added at σ = σ

(2)
max. Subsequently, a second diffusion sampling process

is performed. Empirically, we found that σ(2)
min in the initial low-resolution stage need not be very

low, as details are refined in the second stage. Furthermore, σ(2)
max for initiating the high-resolution

process is typically set to a modest value (e.g., in the 1–10 range), considerably lower than the initial
σ
(1)
max = 80, as we want to keep the existing information in the low-resolution sample. We provide

the multi-resolution inference results in Figure 4. Table 8 further shows that FunDPS generalizes
across resolutions, while DiffusionPDE fails to transfer and must be retrained for each fixed grid.

Table 8: Results on Darcy Flow under different training–inference resolution pairs. DiffPDE-2000
and DiffPDE-500 represent 2000 and 500 steps for Diffusion PDE, respectively. FunDPS, using
500 steps, achieves superior generalization and maintains accuracy under multi-resolution settings,
whereas DiffusionPDE fails to generalize between grids.

Training Inference DiffPDE-2000 DiffPDE-500 FunDPS

64 64 6.38% 7.96% 3.03%
64 128 33.72% 35.57% 3.64%
128 128 6.07% 4.60% 2.74%

Mixed 128 3.83% 4.53% 2.49%

H.5 Number of observations

We investigate how the number of observations affects model performance in both forward and
inverse Darcy Flow problems. We use 500 steps for evaluation. Figure 7 shows that performance
improves consistently as we increase the number of observed points from 100 (0.6%) to 2000 (12%)
of the spatial domain. It is worth noting that our method can achieve reasonable accuracy even with
extremely sparse observations, demonstrating its effectiveness.

We further analyze the performance of FunDPS and DiffusionPDE under different observation
sparsities on both forward and inverse Darcy Flow problems. As shown in Table 9, FunDPS maintains
high accuracy even with extremely sparse observations (as low as 0.5% of spatial points), while
DiffusionPDE performance degrades significantly under sparse settings.

Table 9: Comparison of FunDPS and DiffusionPDE across varying numbers of observations on Darcy
Flow. DiffPDE-2000 and DiffPDE-500 represent 2000 and 500 steps for Diffusion PDE, respectively.
FunDPS, using 500 steps, maintains <10% relative error even with as few as 0.5% observed points.

Forward Inverse

# of Obs. DiffPDE-2000 DiffPDE-500 FunDPS DiffPDE-2000 DiffPDE-500 FunDPS

100 7.2% 13.8% 7.2% 10.7% 16.4% 8.0%
200 6.5% 7.8% 4.8% 9.1% 10.2% 6.3%
500 6.1% 4.6% 2.9% 7.9% 8.1% 5.2%

2000 2.2% 2.3% 1.7% 3.9% 4.7% 4.1%

H.6 Sensitivity to the guidance strength

The guidance weight ζ is a key hyperparameter in our framework, manually chosen for each task
by tuning on a small validation set. This is a common practice in guided diffusion models, as the
optimal weight often depends on the forward operator and prior data distribution. We provide a list of
tuned ζ values in Table 4. In our experience, the model’s performance is stable across wide ranges
of ζ. However, values that are too high can cause sampling to become unstable and diverge, while
values that are too low result in weak guidance and less accurate reconstructions.

We conducted an ablation study to evaluate performance on Darcy Flow and Poisson equation
forward/inverse problems across a range of ζ values, using 500 sampling steps. The results, shown in
Table 10, demonstrate expected behavior.
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Figure 7: Comparison of the accuracy of our method with respect to the number of observations for
he forward and inverse Darcy Flow problems.

Table 10: Ablation study on guidance weight ζ for Darcy Flow and Poisson problems. Errors are L2

relative errors (%). NA indicates divergence due to instability.
ζ Darcy Forward Darcy Inverse Poisson Forward Poisson Inverse

1000 6.92% 24.02% 3.31% 34.38%
5000 2.92% 11.01% 2.56% 28.05%

10000 2.49% 9.16% 1.99% 19.47%
20000 NA 9.86% 18.86% 20.47%
50000 NA 5.18% NA NA

H.7 Additional experiments on Navier-Stokes with boundary conditions

In Table 1, we present experiments for the Navier–Stokes equations with boundary conditions by
using both boundary observations and 1% random interior points. We also compare our methodology
against a standard setup in which only 3% of the data is revealed for state reconstruction. Numerical
results for this comparison can be found in Table 11.

Table 11: Quantitative results of the Navier-Stokes equations with boundary conditions, where sparse
observation consists of 3% of data, the same as in other PDE experiments.

Steps (N)
Navier-Stokes with BCs

Forward Inverse

DiffusionPDE 2000 9.78% 4.71%
FunDPS (ours) 200 4.62% 3.14%
FunDPS (ours) 500 3.48% 3.07%

H.8 Design Choices of DiffusionPDE and FunDPS

In order to show the effectiveness of our design choice, we include an ablation study on Darcy Flow
PDE by adding different components to achieve FunDPS starting from DiffusionPDE. Details are
shown in Table 12, and FunDPS’s superiority can be observed upon adding the components.

I Reproducibility of DiffusionPDE

We replicated DiffusionPDE’s results using their provided code and weights. Due to reproducibility
issues, we reran all experiments in communication with DiffusionPDE’s authors and present the
comparison in Table 13.
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Table 12: Ablation study on the design choices of DiffusionPDE and FunDPS, tested on forward and
inverse Darcy Flow problems. Functional diffusion noise significantly boosts capability. FunDPS
achieves superior performance with fewer steps by using functional noise and neural operators.

Functional
Noise?

Neural
Operator? Steps (N ) Darcy Flow

Forward Inverse

DiffusionPDE ✗ ✗ 2000 6.07% 14.50%
FunDPS w/o NO ✓ ✗ 500 3.59% 7.77%
FunDPS ✓ ✓ 500 2.49% 5.18%

Table 13: Comparison between reported results in the DiffusionPDE paper and our reproduced results
using the official code and weights.

Darcy Flow Poisson Helmholtz Navier-Stokes Navier-Stokes (BCs)

Forward Inverse Forward Inverse Forward Inverse Forward Inverse Forward Inverse

DiffusionPDE (reported) 2.5% 3.2% 4.5% 20.0% 8.8% 22.6% 6.9% 10.4% 3.9% 2.7%
DiffusionPDE (reproduced) 6.07% 7.87% 4.88% 21.10% 12.64% 19.07% 3.78% 9.63% 9.69% 4.18%

J Impact Statement

This research introduces FunDPS, a novel framework that significantly advances the solution of
PDE-based inverse problems in function spaces. The main positive societal impact is the acceleration
of scientific and engineering research by enabling more accurate and efficient modeling from sparse,
noisy data in many areas.

Our released models and code are specialized for these scientific applications and are trained on
simulated, non-sensitive data. Thus, they carry a low risk of societal misuse and do not produce
general-purpose generative content for public consumption.
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K Qualitative Comparison

Here we conduct qualitative comparisons between the prediction of FunDPS and DiffusionPDE on
Darcy Flow (Figure 8), Poisson (Figure 9), Helmholtz (Figure 10) and Navier-Stokes (Figures 11
and 12) problems.
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Figure 8: We compare the results of our method with the diffusion-based baseline, DiffusionPDE, on
the Darcy Flow problem. The first column shows the 3% observed measurements, while the second
column shows the corresponding ground truth (note that these two states are in different spaces). The
middle two columns show the reconstruction results of our method and DiffusionPDE, respectively.
The last two columns present the absolute error between the predictions and the ground truth. We
provide relative errors for this specific test sample as well.

Fo
rw

ar
d

Pr
ob

le
m

Observation Ground Truth FunDPS (Ours) DiffusionPDE

0.004

0.002

0.000

0.002

0.004

0.006

Error: 1.51%

FunDPS Error (Ours)

Error: 16.89%

DiffusionPDE Error

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

In
ve

rs
e

Pr
ob

le
m

0.4

0.2

0.0

0.2

0.4

0.6

Error: 22.68% Error: 28.79%
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 9: We compare the results of our method with the diffusion-based baseline, DiffusionPDE,
on the Poisson problem. The first column shows the 3% observed measurements, while the second
column shows the corresponding ground truth (note that these two states are in different spaces). The
middle two columns show the reconstruction results of our method and DiffusionPDE, respectively.
The last two columns present the absolute error between the predictions and the ground truth. We
provide relative errors for this specific test sample as well.
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Figure 10: We compare the results of our method with the diffusion-based baseline, DiffusionPDE,
on the Helmholtz problem. The first column shows the 3% observed measurements, while the second
column shows the corresponding ground truth (note that these two states are in different spaces). The
middle two columns show the reconstruction results of our method and DiffusionPDE, respectively.
The last two columns present the absolute error between the predictions and the ground truth. We
provide relative errors for this specific test sample as well.
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Figure 11: We compare the results of our method with the diffusion-based baseline, DiffusionPDE,
on the Navier-Stokes problem. The first column shows the 3% observed measurements, while the
second column shows the corresponding ground truth (note that these two states are in different
spaces). The middle two columns show the reconstruction results of our method and DiffusionPDE,
respectively. The last two columns present the absolute error between the predictions and the ground
truth. We provide relative errors for this specific test sample as well.
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Figure 12: We compare the results of our method with the diffusion-based baseline, DiffusionPDE,
on the Navier-Stokes with boundary conditions problem. The first column shows the 3% observed
measurements, while the second column shows the corresponding ground truth (note that these
two states are in different spaces). The middle two columns show the reconstruction results of our
method and DiffusionPDE, respectively. The last two columns present the absolute error between the
predictions and the ground truth. We provide relative errors for this specific test sample as well.
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