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Abstract

Neural networks have been shown to outperform kernel methods in practice (includ-
ing neural tangent kernels). Most theoretical explanations of this performance gap
focus on learning a complex hypothesis class; in some cases, it is unclear whether
this hypothesis class captures realistic data. In this work, we propose a related, but
alternative, explanation for this performance gap in the image classification setting,
based on finding a sparse signal in the presence of noise. Specifically, we prove
that, for a simple data distribution with sparse signal amidst high-variance noise,
a simple convolutional neural network trained using stochastic gradient descent
simultaneously learns to threshold out the noise and find the signal. On the other
hand, the corresponding neural tangent kernel, with a fixed set of predetermined
features, is unable to adapt to the signal in this manner. We supplement our theo-
retical results by demonstrating this phenomenon empirically: in CIFAR-10 and
MNIST images with various backgrounds, as the background noise increases in
intensity, a CNN’s performance stays relatively robust, whereas its corresponding
neural tangent kernel sees a notable drop in performance. We therefore propose the
local signal adaptivity (LSA) phenomenon as one explanation for the superiority of
neural networks over kernel methods.

1 Introduction

Recently, deep learning (using multi-layer, non-linear neural networks) has demonstrated superior
performance over traditional linear learners in many machine learning tasks. These achievements
have bred much theoretical investigation into whether neural networks are, in fact, superior - and
why. On the one hand, the Neural Tangent Kernel (NTK) and derivative works show that, under
certain (limiting) conditions, a gradient-descent-trained neural network reduces to a kernel method
with a specific architecture- and initialization-determined kernel [Jacot et al., 2018, Du et al., 2019].
However, this does not seem to be the full story, as it fails to capture the feature learning aspect of
neural network training. This distinction between a fixed feature representation and a data-adaptive
feature representation has been studied from a variety of perspectives, including the lazy vs. active
regime framework [Chizat et al., 2019, Woodworth et al., 2020, Moroshko et al., 2020, Geiger
et al., 2020, Wang et al., 2020]. Building on these insights, there has been increasing interest in
now showing a provable gap between the performance of neural networks and kernel methods in
various settings [Ghorbani et al., 2019, 2020, Allen-Zhu and Li, 2019, 2020, Li et al., 2020b, Malach
et al., 2021, Kamath et al., 2020, Refinetti et al., 2021, Daniely and Malach, 2020, Chen et al., 2020,
Domingo-Enrich et al., 2021].
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Figure 1: Examples from the IMAGENET2012
dataset, illustrating background noise in natural
image classification tasks.
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Figure 2: Sparsity of intermediate WRN layers
during training on CIFAR-10.

In this work, we extend this theoretical investigation into the superiority of neural networks over
linear learners and, inspired by practical settings, propose a new line of reasoning that we refer to
as “Local Signal Adaptivity”. In particular, we explore the power of convolutional neural networks
(CNNs) in image classification, compared to linear functions over prescribed feature mappings.

Our setting: We study a simple data distribution that captures one key property of natural image
classification tasks: a small set of localized “label-determining” features embedded within a “noisy”
background. We formally prove that even when such background occupies a rather large fraction of
an image, a CNN can be quite effective at locating the label-determining signal and thus ignoring
background information that is mostly irrelevant to the true label, to achieve high accuracy.

Our result: In the formal setting of our simple data distribution (presented in Section 3), we ask
whether a particular two-layer CNN trained via stochastic gradient descent can provably acquire
this “signal-finding” ability and how this compares to its associated finite-width convolutional neural
tangent kernel (CNTK). We answer with a separation result between our CNN and its CNTK: We
formally prove that a small CNN, trained using standard SGD from random initialization, can
efficiently learn to find the “signal” and threshold out the noise, whereas the corresponding CNTK
requires a comparatively larger model (i.e., with more features) in order to accomplish this.

Empirical justification: While we pick a simple data distribution in our work to illustrate the main
idea and obtain a formal proof, we point out that our setting is very natural in real images: in many
image classification tasks, the label-determining feature only occupies a small fraction of the image,
and most other parts are background noise (Figure 1). Furthermore, in neural networks trained on
natural images, it is generally accepted that activation patterns become increasingly sparse throughout
training, effectively zeroing out the activations of low-magnitude noise and locating the true signal
(suggestive of the denoising/LSA phenomenon studied in this work). For completeness, we have
included such an experiment in Figure 2 above, illustrating how the average percentage of active
neurons per instance decreases throughout training (details are provided in Appendix C). Finally,
to empirically study our theoretical results, we create new datasets by embedding CIFAR-10 and
MNIST images within either random Gaussian or IMAGENET backgrounds. Our experiments show
that, as the intensity of the background noise grows and thus the “denoising task” becomes harder, the
performance of the neural network stays relatively stable, while the performance of the corresponding
NTK does, in fact, degrade significantly (Section 6, Figure 4).

Based on our theorem and experiments, we therefore believe that this per-instance “signal finding
within noisy backgrounds” ability of convolutional neural networks, which we dub “Local Signal
Adaptivity” (LSA), is one key component of the superiority of SGD-trained convolutional neural
networks over fixed feature mappings.
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2 Related work

There is a long line of work proving that various concept classes can be learned efficiently by SGD-
trained neural networks. Many of the theoretical works taking a “beyond-NTK” perspective and
emphasizing the non-linearity of neural networks are only proved under Gaussian inputs [Kawaguchi,
2016, Soudry and Carmon, 2016, Xie et al., 2016, Ge et al., 2017, Soltanolkotabi et al., 2017,
Tian, 2017, Brutzkus and Globerson, 2017, Zhong et al., 2017, Li and Yuan, 2017, Boob and Lan,
2017, Li et al., 2018, Vempala and Wilmes, 2018, Ge et al., 2018, Bakshi et al., 2018, Oymak and
Soltanolkotabi, 2019, Yehudai and Shamir, 2019, Li and Yuan, 2017, Li and Liang, 2017, Li et al.,
2016, Li and Dou, 2020, Li et al., 2020a]. In our work, we consider a more realistic setting in which
there is a highly-structured signal hidden within random background noise. Along these lines, we
recognize various aesthetic similarities to sparse blind deconvolution and related areas of the signal
processing literature [Zhang et al., 2019, Kuo et al., 2019, Sun and Donoho, 2021, Qu et al., 2020].
However, there are key structural differences as well - e.g., rather than recovering the unknown
sparse signal, we simply wish to extract the information relevant to the classification task; thus,
further exploring possible connections between LSA and the signal processing literature presents an
interesting avenue for future work.

We now give a more detailed comparison of our work with prior theoretical results on the separation
between neural networks and kernels.

Representation power of neural networks. Many existing works focus on separating the repre-
sentation power of neural networks from that of other models [Ghorbani et al., 2020, Refinetti et al.,
2021, Gribonval et al., 2020, Suzuki, 2019, Suzuki and Nitanda, 2019]. However, the fact that a
function can be represented efficiently by a neural network does not mean that it can be efficiently
learned. Only a subset of such works prove efficient learnability, including Suzuki and Akiyama
[2020] and Daniely and Malach [2020]. In our work, we focus on the set of functions that can be
efficiently learned by neural networks, in particular learned via stochastic gradient descent over the
standard training objective starting from random initialization.

Classification vs. regression. Many existing works only focus on separating the power of neural
networks from that of other learners in a regression setting [Ghorbani et al., 2020, Suzuki and
Akiyama, 2020, Allen-Zhu and Li, 2020, 2019, Li et al., 2020a, Wei et al., 2018, Yehudai and Shamir,
2019]. In this case, both the neural network and the other learning methods are required to fit the
exact label. Although Daniely and Malach [2020] presents one of the few results in a classification
setting, their final separation result is still in terms of hinge loss instead of 0-1 loss. In our result,
we focus on the binary classification setting, where the neural network and (significantly) the linear
learner are only required to fit the sign of the label, instead of the exact labeling function. Our final
result is therefore more natural in image classification settings than prior works.

Learning a hidden subspace. Many of the existing works showing how neural networks are better
than other learners, in particular kernel methods, focus on the case where the concept class is of the
form f(x) = φ(Wx), where W is a rank-deficient matrix [Ghorbani et al., 2020, Wei et al., 2018].
Thus, the learning process can be divided into two phases: (1) Identifying the hidden subspace of W ;
(2) Learning the function φ over this hidden subspace. We point out that to the best of our knowledge,
all the cited works only shows the superior power of neural networks in (1). This means that, if
W were known, then a neural network would have the same sample/time complexity as kernels
when performing (2). As we will show, in our work, the underlying concept class does not have a
fixed subspace, rather the signal can drift between different patches, and the neural network needs to
identify the signal patch while ignoring the noise patches. Our explanation of how neural networks
outperform kernels is therefore fundamentally different from the cited works.

Kernel lower bounds. Most of the existing theoretical works demonstrating the power of neural
networks focus on showing how neural networks are better than kernel methods or linear functions
over prescribed feature mappings. There are two related lines of work: (1) Showing that neural
networks are better than any kernel method or any linear learner [Allen-Zhu and Li, 2020, Daniely
and Malach, 2020]; (2) Showing that neural networks are better than a particular set of linear
learners, most notably, the NTKs or finite-width NTKs of the corresponding neural network [Yehudai
and Shamir, 2019, Refinetti et al., 2021, Wei et al., 2018]. Our work belongs to the second line.

3



Although a result along the first line gives a much stronger separation, we point out that in the
classification setting, such a separation is known to be extremely challenging in computational
complexity theory [O’Donnell and Servedio, 2003, Sherstov and Wu, 2019].

Finite- vs. infinite-width NTK. Empirical results in the literature suggest that the infinite-width
NTK generally reaches slightly higher final test accuracy than the finite-width NTK [Allen-Zhu and Li,
2020, Lee et al., 2020]. In fact, in certain limited settings, such as low-data regimes, the infinite-width
NTK has actually demonstrated performance competitive with that of the original neural network
[Arora et al., 2020]. However, under certain conditions, the computational cost of the infinite-width
NTK can be significant compared to that of the original neural network and its corresponding finite-
width NTK [Allen-Zhu and Li, 2020, Lee et al., 2020]. Therefore, due to these computational and
accuracy distinctions between the finite- and infinite-width NTKs, in our experiments we examine
both types of NTK. Our theoretical lower bound, however, is a representational lower bound for
the finite-width NTK. This is primarily due to theoretical challenges such as those discussed above.
Theoretical results such as Allen-Zhu and Li [2020] suggest that it may be possible, in follow-up
work, to convert our finite-width NTK representational lower bound into an infinite-width NTK
sample complexity lower bound. However, proving a sample complexity gap would likely require
tightening our sample complexity upper bound as well. We believe, conceptually (and supported by
our experiments), that the LSA phenomenon is at play for infinite-width NTKs as well, and it would
thus be interesting to extend our theoretical gap to the infinite-width NTK setting as well.

3 Problem setup

We now formally state our data distribution and the learning problem in our paper.

Relevant problem parameters. We consider the input X = (X1, · · · , Xk+1) to have k + 1
patches; each patch is associated with a vector Xi ∈ Rd. We can think of X as either the input image
or the output of some intermediate layer of the convolutional neural network. It is convenient to think
of X as a matrix with k + 1 rows and d columns, i.e., X ∈ R(k+1)×d. We treat k as “large” and d
as polynomial in k, enabling us to simplify certain results by expressing them entirely in terms of
k. We consider an unknown signal vector w? ∈ Rd with `2-norm ‖w?‖2 = 1, which determines
how each (image) X is generated (described below). We also set σ = log k/

√
k, where σ determines

the intensity of the noise in our problem (described below). In Section 5, we will only prove the
kernel lower bound in the case where σ2 = 1/d; extending the result to σ2 = ω(1/d) might require
alternative proof techniques.

Data distribution. We sample each (image, label) pair (X, y) ∼ D. The marginal distribution
Dy is a uniform distribution over {−1, 1}, i.e., both classes occur with equal probability. We first
sample y fromDy and then sample X ∼ DX|y as follows: (a) draw i? from {1, . . . , k+ 1} arbitrarily
and put yw? in row i? (we call this the “signal” row); (b) in each of the k remaining rows (we call
these the “noise” rows), put an independently-drawn vector εi ∼ N (0, σ2Id×d). We use Xi ∈ Rd to
denote row i of X , for i ∈ {1, . . . , k + 1}. Formally, we therefore have:

Xi =

{
yw? if i = i?

εi otherwise.

Our data distribution shares many similarities with the distribution studied in Yu et al. [2019].
However, perhaps most crucially among the differences, the noise magnitude in our setting is
significantly higher; in Yu et al. [2019], the noise magnitude is low enough to maintain linear
separability, which is insufficient to show any separation with linear learners.

Remark. We consider the simplest setting where there is only one feature w?, though our result
trivially extends to the case when there are multiple orthogonal features (as many as d). For example,
the signal patch can contain features of the form

∑
i αiw

?
i , where the label is determined by

∑
i αi,

as in Allen-Zhu and Li [2020].

How to learn this concept class. In our concept class, one of the rows Xi is associated with the
true signal yw?, and all the others are random Gaussian noise. Since this row can appear arbitrarily
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in one of the k + 1 rows, the most naive way to learn this function is to use a convolutional linear
classifier: l(X) =

∑k+1
i=1 〈w?, Xi〉. However, we argue that this linear classifier is actually very

bad and cannot be used to classify the labels correctly. Note that in our problem setup, the noise
rows are sampled according to N (0, σ2Id×d), which means that for each noise row i, we have
〈w?, Xi〉 ∼ N (0, σ2). Hence, the total accumulated noise over k noise rows would be N (0, kσ2).
By our choice of σ = log k/

√
k, this means that the total noise is much bigger than the signal |y| = 1.

Hence, the linear classifier fails to classify the labels correctly with at least probability 0.49.

The above argument suggests that, to learn the concept class, the model cannot naively sum up
〈w?, Xi〉. Rather, the model has to identify the signal row and ignore the noise rows. In other words,
the model needs to distinguish between the case when 〈w?, Xi〉 is large (y) or small (N (0, σ2)). As
we will show, this can be efficiently learned by a neural network with ReLU activations, trained using
standard stochastic gradient descent from random initialization.

Convolutional neural network (CNN) architecture. Our goal is to learn the optimal parameters
w ∈ Rd, b ∈ R of the following simple CNN:

fw,b(x) =

k+1∑
i=1

φb(〈w, Xi〉) =

k+1∑
i=1

[
ReLU(〈w, Xi〉+ b)− ReLU(−〈w, Xi〉+ b)

]
.

This CNN can be understood from either of two equivalent perspectives:

(1) A single convolutional filter w ∈ Rd with stride d is applied to the image. Then the soft-
thresholding activation function φb(x) = ReLU(x+ b)− ReLU(−x+ b) is applied pointwise over
the resulting (k+ 1)-dimensional vector. Finally, the second (non-trainable) layer of the CNN simply
sums up the k + 1 entries (i.e., the second layer is a fully-connected layer mapping from Rk+1 to R,
with non-trainable weights all equal to 1).

(2) Two convolutional filters, each with stride d, are applied to the image. One filter is w ∈ Rd and
the other is −w ∈ Rd. After each filter is applied, the activation function ϕb(x) = ReLU(x + b)
is applied pointwise to all 2k + 2 pre-activation values (i.e., a k + 1 “vector” with 2 channels). A
non-trainable fully-connected layer is then applied, mapping R2k+2 to R; in this layer, each of the
k + 1 weights applied to the the first channel (i.e., from filter w) are all 1, and each of the weights
applied to the second channel (i.e., from filter −w) are all −1.

The key in both perspectives is how the two ReLU activation functions work together to implement a
soft-thresholding function, which enables denoising. Throughout, we refer to our CNN as having one
filter, since it only has d+ 1 trainable parameters, regardless of which perspective is taken.

Training algorithm. We initialize b deterministically at 0. We initialize w randomly by drawing
from N

(
0, σ2

0Id×d
)
, where σ0 is 1/poly(k). We train the above CNN using mini-batch stochastic

gradient descent (SGD) with the logistic loss, where the logistic loss ` is defined as `(fw,b(X), y) :=

log
(
1 + e−yfw,b(X)

)
.

Specifically, at each iteration of SGD, we use poly(k) fresh samples from D. This will allow us to
argue that, at each iteration, the empirical gradient is very close to the true population loss gradient.

To simply the proof, we use a slightly smaller learning rate for b (denoted ηb) than for w (denoted
ηw). Specifically, we adopt a 1/poly(k) learning rate for w, and we set ηb/ηw = 1/k. With a bit
more technical care, our proofs can be extended to cover the setting where ηb = ηw but we use this
simpler version to illustrate the main idea of the learning process, as we will state in the next section.

To avoid any ambiguity, we define this procedure explicitly as Algorithm 1.

Algorithm 1 Mini-batch SGD

Initialization and learning rate b(0) ← 0; w(0) ← N (0, σ2
0Id×d); ηb ← η/k; ηw ← η

for t← 1 . . . T do
Sample a mini-batch of examples of size n = poly(k): Z ← Dn

Compute the stochastic gradient: gb = 1
n

∑
z∈Z ∇b`(z), gw = 1

n

∑
z∈Z ∇w`(z)

Update using stochastic gradient descent: b(t) ← b(t−1) − ηbgb, w(t) ← w(t−1) − ηwgw
return b(T ),w(T )
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Additional notation. We will occasionally use the shorthand ft(·) to denote fw(t),b(t)(·), the
network at iteration t. We use the standard big-O notation and its variants: O(·), o(·),Θ(·),Ω(·), ω(·),
where k is the problem parameter that becomes large. Occasionally, we use the symbol Õ(·) (and
analogously with the other four variants) to hide log k factors.

Our results will hold with high probability over the random initialization of w and the randomness of
the mini-batches, where “high probability” here means a failure probability super-polynomially small
in k. Unless specified otherwise, w.h.p. can be taken to mean: with probability at least 1−e−Ω(log2 k).

4 Neural network results

We now present and briefly describe our main result on the provably efficient learning of the CNN
described in Section 3.

Theorem 1 (Main result). There exists an absolute constant k0 such that, for every k ≥ k0, using
poly(k) samples from D, learning rate η = 1/poly(k), and T = poly(k) iterations, w.h.p. over the
randomness of the initialization and the samples, we have Pr(X,y)∼D[sign(fT (X)) 6= y] ≤ 0.01, for
the final network fT returned by Algorithm 1.

Therefore, in contrast to its corresponding Neural Tangent Kernel (Section 5), our CNN trained via
SGD provably achieves high accuracy efficiently. This stands in contrast to some of the prior works
discussed in Section 2, many of which do not prove efficient learnability.

We defer our detailed proofs to Appendix A and summarize the key ideas here.

Empirical vs. population gradients. Our general proof technique involves analyzing the gradient
of the population loss at each iteration (we call this the true gradient): ∇wE(X,y)∼D[`(fw,b(X), y)]
and ∇bE(X,y)∼D[`(fw,b(X), y)]. Then, with poly(k) samples per mini-batch, we argue that w.h.p.
the empirical gradient concentrates around the true gradient, and over T = poly(k) steps, the
accumulated error is fairly small. This argument is made rigorous in Appendix A. Therefore, in the
remainder of this section, to illustrate the key idea of the proof, we limit our discussion to the true
gradient as just defined (and use the term gradient or derivative without further qualification).

Learning the signal direction. As training progresses, w ·w? grows from its small-magnitude
initialization to a relatively large, but still O(1), positive value. Specifically, at each iteration, the
gradient with respect to w has a component parallel to w?, with two opposing forces determining the
sign/magnitude of this component: in expectation over (X, y) ∼ D,

1. the k “noise” rows of X push w ·w? to shrink and

2. the “signal” row pushes w ·w? to grow.

The “signal” row’s contribution has a magnitude of Θ(1), and the k “noise” rows have a total
contribution of magnitude at most O

(
|w ·w?| · k log k · σ2

)
= O

(
|w ·w?| · log3 k

)
. Therefore,

as long as |w · w?| = o(1/ log3 k), the “signal” row’s contribution overpowers the “noise” rows’
contribution, causing w ·w? to grow. This means that, within Θ((ηw log4 k)−1) = poly(k) iterations,
w·w? rises from its small-magnitude initialization to Θ(1/ log4 k). After w·w? rises to Θ(1/ log4 k),
we no longer track its dynamics explicitly, as it must stay somewhere between Ω(1/ log4 k) andO(1)
throughout the rest of training, and this turns out to be sufficient for the remainder of the argument.
The main lemma we prove in Appendix A regarding the growth of w ·w? is a slightly more formal
version of the following:

Lemma 1 (Sketched). For any t ≤ T , if |w(t) ·w?| = o
(

1
log3 k

)
, then ∇wE[`(ft(X), y)] ·w? =

−Θ(1).

Bounded growth along non-signal directions. As training progresses, we also track ‖w − (w ·
w?)w?‖2, the magnitude of w’s projection onto the orthogonal complement of span{w?}. Although
the projection’s direction can change, we show that its norm remains very small, allowing w ·w? to
dominate.
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Specifically, letting w⊥ denote w − (w · w?)w? at the start of iteration t, we show that
∇wE[`(ft(X), y)] ∈ span{w?,w⊥}. Further, ∇wE[`(ft(X), y)] ·w⊥/‖w⊥‖2 mirrors the “noise”
contribution above: it has magnitude at most O

(
‖w⊥‖2 · k log k · σ2

)
= O

(
‖w⊥‖2 · log3 k

)
and

pushes ‖w⊥‖2 to shrink. Thus, if we were actually using the true gradient, w⊥ would maintain its
direction, and its norm would shrink. The effect of the stochastic gradient is that w⊥ can change
direction slightly, and its norm can grow a bounded amount per iteration; however, as long as the
mini-batch size is large enough (poly(k) suffices), its norm stays small enough throughout training.
The main lemma we prove in Appendix A regarding ‖w⊥‖2 is therefore a slightly more formal
version of the following:

Lemma 2 (Sketched). For any t ≤ T , let g(t)
⊥ denote ∇wE[`(ft(X), y)] · w(t)

⊥ /‖w
(t)
⊥ ‖2. Then

g
(t)
⊥ ≥ 0 and g(t)

⊥ = O
(
‖w(t)
⊥ ‖2 · log3 k

)
.

Learning to threshold out the noise. The derivative with respect to b similarly has two opposing
forces determining its sign/magnitude: in expectation over (X, y) ∼ D,

1. the k “noise” rows of X push b to decrease and
2. the “signal” row pushes b to increase.

The “signal” row’s contribution has a magnitude of Θ(1). Thus, we can only guarantee that b is
decreasing if the “noise” rows’ total contribution is ω(1). Roughly, the “noise” rows’ contribution is
determined by (i) the scalar projection of each noise vector εi onto w and (ii) (when b < 0) how much
of these scalar projections survive “thresholding”. As ‖w‖2 grows throughout training (primarily due
to the growth of w ·w?, discussed above), (i) becomes larger. However, as b decreases (i.e, |b| grows,
for b < 0), (ii) becomes smaller (i.e., much of the noise does not survive “thresholding”). Therefore,
the crux of the proof is to show that, as long as the probability of misclassification is still > 0.01,
despite b already “thresholding out” a fair amount of the noise, the “noise” rows’ total contribution
will remain ω(1) and thus cause b to further decrease. The main lemma we prove in Appendix A
regarding b is therefore a slightly more formal version of the following:
Lemma 3 (Sketched). For any t ≤ T , if w(t) ·w? = ω(1/k1/8), then∇bE[`(ft(X), y)] = Ω(1).

We note that the requirement w(t) ·w? = ω(1/k1/8) is satisfied by the Ω(1/ log4 k) lower bound
presented above, thus connecting the two phases of training.

Comment on actual dynamics. The elegance of this approach is that it largely allows us to ignore
b’s behavior prior to w ·w? reaching the Ω(1/ log4 k) regime. In reality, there is a short phase at the
beginning of training during which b grows (i.e., becomes increasingly positive); this occurs because,
even though none of the noise is being “thresholded out” at this point, ‖w‖2 is not yet large enough
for the “noise” rows’ contribution to dominate the “signal” row’s Θ(1) contribution (which itself
does not scale with ‖w‖2). Then, at some point prior to w ·w? reaching Ω(1/ log4 k), b begins to
decrease rather than increase - and, as we prove, eventually continues to decrease throughout the rest
of training. However, for our performance guarantee, it does not matter exactly when this transition
from increasing to decreasing actually occurs. The ηb/ηw = 1/k ratio ensures that |b|/|w ·w?| never
exceeds Θ(1/k) while b > 0, which means that b = O(1/k) throughout its positive phase.

Provable efficiency. We argue that if Pr(X,y)∼D[sign(fT (X)) 6= y] ≥ 0.01, then we must have
|w ·w?| = O(1). This, along with the rest of the argument, is made fully rigorous in Appendix A.
We sum up the total number of iterations as follows. First, there are O((ηw log4 k)−1) iterations
before b begins to decrease. Then, because |w · w?| = O(1), ∇bE[`(ft(X), y)] = Ω(1), and the
classification accuracy is controlled by the ratio |b|/|w · w?|, we conclude that there are poly(k)
iterations before |b| becomes large enough to yield Pr(X,y)∼D[sign(fT (X)) 6= y] ≤ 0.01. Thus,
T = poly(k), and with poly(k) samples per mini-batch, we have total sample complexity poly(k).

Illustration of training dynamics with synthetic data. Figure 3 illustrates these training dynam-
ics on synthetic data (with k = 1000, d = 10, σ = 1, ηw = 0.1, ηb = 0.1/1000). As can be seen in
the figure, as training progresses, w ·w? increases and b decreases (i.e., b < 0, with increasing mag-
nitude). Furthermore, as the ratio |b|/|w ·w?| grows (and thus more and more noise is “thresholded
out”), the test accuracy increases as well, tightly aligning with the theory.
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Figure 3: Training our model on synthetic data. Left: Values of b and w · w?. Center: Ratio
|b|/(w ·w?). Right: Test accuracy.

5 Kernel results

In this section, we compare the function learned by our simple convolution neural network to its
corresponding finite-width CNTK [Allen-Zhu et al., 2019]. We define the finite-width CNTK as:

kw(X) =
∑
i∈[k]

∑
j∈[m]

〈wj , Xi〉1|〈w(0)
j ,Xi〉|+bj≥0

,

which is a linear function over the gradient of fw,b(X) at initialization. We show that this NTK is
unable to classify the target function correctly, unless the total number of channels m is large.

We prove this for the case where σ2 = 1/d. Extending the result to σ2 = ω(1/d) might require
alternative proof techniques.

Theorem 2. As long as m = O(1), w.p. at least 0.999 over the random initialization {w(0)
j }j∈[m]

where each w
(0)
j i.i.d. ∼ N (0, σ2

0I), we have that for every set of weights w and for every set of
biases {bj}j∈[m],

Pr
X,y∼D

[sign(kw(X)) 6= y] ≥ 0.1.

Compared to our convolutional neural network, which only requires m = 1 neurons and can learn the
target function correctly, the corresponding finite-width CNTK needs ω(1) neurons in order to even
represent the target function. This is due to the fact that the features w(0)

j are prescribed at random
initialization, instead of trained. Thus, even with arbitrary tuned bias bj , the neural tangent kernel
still fails to adapt to the local signal and perform denoising.

6 Experiments

We now provide concrete empirical evidence that the LSA phenomenon does explain the performance
gap between CNNs and kernels in real-world datasets. We first construct several variants of CIFAR-10
[Krizhevsky, 2009] with various forms of structured noise and compare how the scale of the noise
affects CNNs and their corresponding finite-width NTKs. Next, we perform similar experiments
using a smaller CNN on MNIST [LeCun et al., 2010]; in this setting we can efficiently compute
the infinite-width NTK, as well as vary the width of the finite-width NTK, and observe whether the
performance gap persists. CNN architecture and training details are given in Appendix C.1

CIFAR with structured noise. We construct several CIFAR-10 variants with structured noise,
which capture a key property of real-world image classification tasks, that the signal is localized
to patch amidst a large amount of background noise. Although real-world images also exhibit
this property (as in Figure 1), we wanted the ability to easily vary the intensity of the background
noise, while leaving the signal intact. On each dataset, we compare the performance of a 10-layer
WideResNet (with widening factor of 10) to that of its finite-width NTK [Zagoruyko and Komodakis,

1Code for experiments is available at https://github.com/skarp/local-signal-adaptivity.
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Figure 4: WRN and NTK test accuracy over a range of noise levels.

Figure 5: Examples from
CIFAR-VEHICLES (top) and
CIFAR-10 with IMAGENET
noise (bottom), both for back-
ground noise pixel intensity
scaled to 0.75.

2016]. We vary the intensity of the noise and observe the resulting degradation in WideResNet
(WRN) and NTK performance.

Each dataset is constructed by scaling a CIFAR image to 16x16 pixels and placing it onto a 32x32
noise background. In some instances described below, we used IMAGENET backgrounds [Deng et al.,
2009]. Here we highlight experiments on four such datasets:

• CIFAR-10, IMAGENET noise. CIFAR-10 images are placed at a random location onto
random background image chosen from the IMAGENET Plants synset. The Plants synset
was chosen for its visual similarity to backgrounds in real images. In our experiments, we
scale the background pixel intensity in a range between zero (black background) and one
(original IMAGENET background). An example is shown in Figure 5 (bottom).

• CIFAR-2, IMAGENET noise. Same as above, except the CIFAR-10 classes are grouped
into animals and vehicles and the classification task is now binary. In contrast to CIFAR-10,
on CIFAR-2 the NTK performs nearly as well as the CNN in the zero-noise setting.

• CIFAR-2, Gaussian noise. Also using the CIFAR-2 task, but with standard Gaussian
noise in the background, for a range of standard deviations σ.

• CIFAR-VEHICLES. The task is to classify between the four vehicle classes from CIFAR-
10. The vehicle appears in a random corner of the image, and the other three corners are
filled with random images from the four CIFAR-10 animal classes. See Figure 5 (top).
Unlike the relatively uniform IMAGENET plants backgrounds, this dataset is designed to
capture a common type of background noise which consists of “distractor" signals which
are not predictive of the true image class. For example, irrelevant people, bicycles, and birds
could all occur in the background of a real-world vehicle-classification task.

For a more natural setting, we conduct an additional experiment on CIFAR-2 with IMAGENET noise,
but maintaining the full pixel intensity and varying the size of the background noise. This is detailed
in Appendix D, along with additional experiment variants such as different image placements, all
of which display similar behavior to the experiments described here. While these datasets capture
key attributes of real images, their synthetic construction does limit how realistic the images can
be. We construct the datasets in this way in order to allow tunable noise levels, thus providing the
x-axis of the plots in Figure 4. One could imagine alternative, more realistic ways of creating tunable
noise levels, such as increasing the diversity of distractor images; these are viable avenues for future
experimentation.

Observations. As seen in Figure 4, as the scale of the noise increases, NTK performance decreases
significantly while WRN performance is relatively unaffected. Table 1 gives the percent of test
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Figure 6: Comparison of CNN, finite-width, and infinite-width NTKs on a 20k MNIST sample (left),
and various finite-width NTKs on full MNIST (right).

accuracy retained by each model as noise intensity increases from 0 to 1 (or from σ = 0 to σ = 2 in
the Gaussian-noise case); that is, the percentage 100 · test acc. at max noise level

test acc. at zero noise . The WRN always retains
over 96% of its zero-noise performance, while the NTK in one case degrades below 70%.

Table 1: Percentage of zero-noise test accuracy retained at maximum noise level.
CIFAR-10, ImNet noise CIFAR-Vehicles CIFAR-2, ImNet noise CIFAR-2, Gauss. noise

WRN 98.97 97.25 99.79 96.83
NTK 69.75 76.37 92.81 85.54

Effect of NTK width (MNIST). We place MNIST images of size 28x28 onto 42x42 Gaussian-
noise backgrounds. We use a small CNN with two convolutions with 8 and 16 channels, and compare
to finite-width NTKs where the width has been increased by a factor of between 50 and 100. On a
subset of 20k MNIST images, we also compare the same CNN and finite-width NTK (width factor=1)
to the infinite-width NTK.

The results (Figure 6) indicate that the degradation of NTK performance persists for both infinite-
and finite-width NTKs (regardless of finite NTK width). Results for intermediate NTK widths are
shown in Appendix D. Another desirable feature which we observe in the MNIST setting is that the
NTK and CNN perform on-par in the presence of zero noise.

7 Conclusion

We have considered a simple, noisy data distribution that captures some of the key structure seen
in natural images. We have (1) provably shown that a particular two-layer CNN trained via SGD
can efficiently (in time and sample complexity) achieve high accuracy and (2) that its corresponding
linear model (the finite-width NTK) requires a larger network size (i.e., more features). Overall, our
results shed light on a new mechanism through which neural networks are provably better than their
corresponding kernels: in particular, when there is a signal hidden within background noise, a neural
network is able to simultaneously adapt to the local signal and perform “denoising”. We provide
empirical justification showing that our theoretical framework does coincide with the superior power
of neural networks over linear learners in practice.

One avenue for future work involves extending the noise distribution: increasing σ beyond log k/
√
k,

which can provide an even stronger separation with linear learners, and extending to other noise
models beyond Gaussian. Another possible extension is to drop the restriction that the same filter
is used in both parts of the activation function and study whether this soft-thresholding behavior is
recovered automatically upon training the final-layer weights. We could also consider more general
models in which the signal “patch” and the CNN filter are not perfectly aligned. Another possibility is
to develop a limitation result for all kernel methods instead of the CNTK corresponding to our CNN;
however, as discussed in Section 2, this would likely be a regression result instead of a classification
result, which is weaker in other ways. Finally, it would be interesting to extend this theoretical
analysis to deeper networks and thus more practical CNNs (perhaps “hierarchical denoising”).

[Ethics statement] Our work is primarily theoretical in nature and analyzes existing methods; thus, to
the best of our knowledge, it does not have any negative societal impact.
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