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Abstract

In decentralized multi-agent reinforcement learning, agents learning in isolation can lead to
relative over-generalization (RO), where optimal joint actions are undervalued in favor of
suboptimal ones. This hinders effective coordination in cooperative tasks, as agents tend
to choose actions that are individually rational but collectively suboptimal. To address
this issue, we introduce MaxMax Q-Learning (MMQ), which employs an iterative process
of sampling and evaluating potential next states, selecting those with maximal Q-values
for learning. This approach refines approximations of ideal state transitions, aligning more
closely with the optimal joint policy of collaborating agents. We provide theoretical analysis
supporting MMQ’s potential and present empirical evaluations across various environments
susceptible to RO. Our results demonstrate that MMQ frequently outperforms existing
baselines, exhibiting enhanced convergence and sample efficiency.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has become increasingly important for address-
ing complex real-world challenges that require coordinated behaviors among multiple agents. Successful
applications included playing card games (Brown & Sandholm, 2018), autonomous driving (Shalev-Shwartz
et al., 2016; Zhou et al., 2021), unmanned aerial vehicles (Wang et al., 2020), wireless sensor networks (Xu
et al., 2020; Sahraoui et al., 2021) and traffic light control (Bazzan, 2009; Zhou et al., 2023). A dominant
framework in MARL is centralized training with decentralized execution (CTDE) (Lowe et al., 2017; Rashid
et al., 2018; Son et al., 2019), which often relies on a centralized coordinator to aggregate information, such
as local observation or individual actions from other agents during training. While this approach has been
widely adopted due to its effectiveness in leveraging global information, it may still face scalability challenges,
particularly in environments with large number of agents or complex interactions. Additionally, in scenarios
where privacy is a critical concern, CTDE methods that require access to individual agent data could be
less desirable. While many CTDE methods do not require exhaustive local information from all agents,
the potential for scalability and privacy issues in certain implementations warrants consideration. While
inter-agent communication can partially mitigate some of these challenges (Foerster et al., 2016; Zhu et al.,
2022), it introduces additional overhead, which can be prohibitive in environments where communication is
costly or unreliable.
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Consider large-scale drone swarms for search and rescue or surveillance tasks (Baldazo et al., 2019; Batra
et al., 2022). In a CTDE framework, centrally aggregating data from each drone can be impractical due to
network delays, dynamic environments, and potential communication failures. Additionally, communication
frameworks may struggle with channel congestion or high packet loss, especially in complex terrain or with
electronic interference. Fully decentralized learning presents a promising alternative, where agents rely solely
on their experiences without considering the actions or policies of other agents during both training and
execution. This approach enables the system to scale effectively and remain resilient to communication issues.
However, decentralized approaches come with their own challenges. From an individual agent’s perspective,
the learning process occurs within a non-stationary MDP, as the transition probabilities change due to the
evolving policies of other agents.

Existing decentralized MARL methods, including optimism strategies in Q-learning (Lauer & Riedmiller,
2000; Matignon et al., 2007; Wei & Luke, 2016), attempt to mitigate these challenges. More recently, Ideal
Independent Q-learning (I2Q) (Jiang & Lu, 2022) explicitly models state transitions assuming optimal joint
behavior, introducing ideal transition probabilities to address non-stationarity in independent Q-learning.

Another critical issue in decentralised MARL is Relative Over-generalisation (RO), where agents prefer
suboptimal policies because individual actions appear preferable without coordinated strategies. First defined
and studied within the field of cooperative co-evolutionary algorithms (Wiegand, 2004; Panait et al., 2006;
Panait, 2007), it has more recently been explored predominantly in centralised MARL contexts (Rashid
et al., 2020; Gupta et al., 2021; Shi & Peng, 2022). RO occurs when agents adapt their actions to limited
interactions, often focusing on the exploratory behaviours of other agents. Consequently, agents may favour
more robust but less optimal solutions in the absence of coordinated strategies. In decentralised learning
settings, this problem has been discussed within simple matrix game scenarios (Wei & Luke, 2016). RO,
exacerbated by non-stationarity, presents a significant challenge as agents make decisions based on fluctuating
global rewards without the benefit of coordinated strategies (Matignon et al., 2012; Wei & Luke, 2016).
Although previous implementations of optimistic strategies have shown some efficacy, our empirical results
indicate they fall short in cooperative tasks with pronounced RO challenges.

This paper introduces MaxMax Q-Learning (MMQ), a novel algorithm designed to address the RO problem
in decentralised MARL settings. MMQ aims to mitigate the challenges posed by RO and non-stationarity
in decentralised learning environments. The key insight behind MMQ is enabling agents to reason about
beneficial experiences that occur infrequently. At its core, MMQ employs two non-parameterised quantile
models to capture the range of state transitions, accounting for both environmental factors and the evolving
policies of learning agents. These models iteratively sample, evaluate, and select optimal states, refining
the approximation of ideal state transitions and facilitating global reward maximisation. The state with
the highest Q-value is then selected to update the value function, promoting convergence towards optimal
Q-values in the context of other agents’ best actions. The MMQ algorithm incorporates two maximum
operators in the Bellman update: the first takes the maximum over all possible next states to select the
most promising future scenario, and the second takes the maximum over Q-values of state-action pairs to
determine the best action in that scenario. MMQ’s adaptive nature, which involves continuously updating
the ranges of possible next states, enables effective decision-making in dynamic environments.

The main contributions of this paper are threefold. First, we introduce MMQ, a novel algorithm that
employs quantile models to capture multi-agent dynamics and approximate ideal state transitions through
sampling. Second, we provide a theoretical demonstration of MMQ’s potential to converge to globally optimal
joint policies, assuming perfect knowledge of forward and value functions. Third, we present empirical
results showing that MMQ often outperforms or matches established baselines across various cooperative
tasks, highlighting its potential for faster convergence, enhanced sample efficiency, and improved reward
maximisation in decentralised learning environments.

The remainder of this paper is structured as follows: Section 2 discusses related work in MARL and uncertainty
quantification. Section 3 provides background on multi-agent Markov Decision Processes and the challenges
of relative over-generalization. Section 4 presents the methodology of MaxMax Q-Learning, including its
theoretical foundations and implementation details. Section 5 describes our experimental setup and results
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across various environments. Finally, Section 6 concludes the paper with a discussion of our findings and
potential directions for future research.

2 Related work

Centralised learning methods. Within the centralized training paradigm, RO has been discussed mostly
for value factorization methods like QMIX (Rashid et al., 2018). The monotonic factorization in QMIX cannot
represent the dependency of one agent’s value on others’ policies, making it prone to RO. Proposed solutions
include weighting schemes during learning (Rashid et al., 2020), curriculum transfer from simpler tasks
(Gupta et al., 2021; Shi & Peng, 2022), and sequential execution policy (Liu et al., 2024). Soft Q-learning
extensions to multi-agent actor-critics (Wei et al., 2018; Lowe et al., 2017) utilise energy policies for global
search to mitigate RO. However, unlike our decentralized approach, these methods require a centralized critic
with joint action access during training.

Fully decentralized learning. Decentralized approaches in MARL aim to overcome the scalability and
privacy issues associated with centralized methods. However, they face unique challenges, particularly
in addressing non-stationarity and RO. Existing approaches can be categorized based on their strategies
for tackling these issues. Basic independent learning methods like Independent Q-learning (IQL) (Tan,
1993) and independent PPO (Yu et al., 2022) form the foundation of decentralized MARL. However, their
simultaneous updates can lead to non-stationarity, potentially compromising convergence. Recent work by
Su & Lu (2023) on DPO addresses this by providing monotonic improvement and convergence guarantees.
To mitigate negative impacts of uncoordinated learning, several methods promote optimism toward other
agents’ behaviors. Distributed Q-learning (Lauer & Riedmiller, 2000) selectively updates Q-values based
only on positive TD errors. Hysteretic Q-learning (Matignon et al., 2007) uses asymmetric learning rates,
while Lenient Q-learning (Wei & Luke, 2016) selectively ignores negative TD errors. These techniques aim to
overcome convergence to suboptimal joint actions by dampening unhelpful Q-value changes. Taking a different
approach, the recently introduced Ideal Independent Q-learning (I2Q) (Jiang & Lu, 2022) explicitly models
ideal cooperative transitions. However, it requires learning an additional utility function over state pairs.
Our proposed method, MMQ, builds upon these approaches by encoding uncertainty about decentralized
MARL dynamics. We model other agents as sources of heteroscedastic uncertainty with an epistemic flavor,
providing a more flexible way to represent optimistic policies. By sampling from possible next states, MMQ
avoids the need for heuristic corrections or separate Q-functions, offering a novel solution to the challenges of
decentralized MARL.

Uncertainty quantification. Quantifying different sources of uncertainty is crucial in reinforcement
learning, particularly in multi-agent settings. Prior work distinguishes between aleatoric uncertainty, arising
from environment stochasticity, and epistemic uncertainty, due to insufficient experiences (Osband et al.,
2016; Depeweg et al., 2016). Various methods, including variance networks (Kendall & Gal, 2017; Wu et al.,
2021) and ensembles (Lakshminarayanan et al., 2017), have been proposed to model these uncertainties,
with applications in single-agent RL (Chua et al., 2018; Sekar et al., 2020). MARL introduces additional
complexity due to the dynamic nature of agent interactions, leading to non-stationarity. This non-stationarity
limits an agent’s ability to reduce epistemic uncertainty through repeated state visits (Hernandez-Leal et al.,
2017) and can be viewed as another form of epistemic uncertainty. Our proposed MMQ algorithm addresses
these challenges by using quantile networks to effectively manage two key sources of epistemic uncertainty in
multi-agent settings: limited experiential data and evolving strategies of other agents. This approach allows
MMQ to better handle the unique uncertainties present in decentralized MARL environments.

3 Background and preliminaries

3.1 Multi-agent Markov Decision Process

Consider a multi-agent Markov Decision Process (MDP) represented by M = (S,A, R, Penv, γ). Within this
tuple, S denotes the state space, A is the joint action space, Penv(s′|s,a) and R(s, s′) are respectively the
environment dynamics and reward function for states s, s′ ∈ S and action a ∈ A, and γ is the discount factor.
Given N agents, the action space is of the form A = A1 × · · · × AN with any action a ∈ A taking the form
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Table 1: Payoff matrix for a two-agent game

Agent 2
A B C

A
ge

nt
1 A +3 -6 -6

B -6 0 0
C -6 0 0

a = (a1, . . . , aN ). At each time step t, an agent indexed by i ∈ {1, . . . , N} selects an individual action, ai.
When the N actions are executed, the environment transitions from state s to state s′, and every agent
receives a global reward, rt. The objective is to maximize the expected return, i.e., E[

∑T
t=0 γ

trt], where T is
the time horizon. The individual environment dynamics is defined as

Pi(s′|s, ai) =
∑
a−i

Penv(s′|s,a)π−i(a−i|s)

where a−i represents the joint action excluding agent i and π−i is the joint policy of all other agents. Here,
the joint action a inherently depends on ai and a−i. From any individual agent’s perspective, the learning
process occurs within a non-stationary MDP due to the evolving policy π−i.

3.2 Relative over-generalization through an example

Consider a two-agent game with the reward structure shown in Table 1. In this game, there are three possible
actions: A,B, and C. Agents would receive a joint reward of +3 if they take A together. However, if only
one agent takes A, that agent incurs a penalty of −6. Agents end up choosing less optimal actions (B or
C) if they perceive the reward for choosing A to be lower, based on their expectations of the other agent’s
actions. For agent 1, the utility function Q1(·) is related to the probability that the other agent chooses
A, i.e. π2(A). In this case, Q1(A) would be smaller than Q1(B) or Q1(C) if π2(A) < 2

5 . This threshold
arises because the expected value of choosing A becomes lower than choosing B or C when the probability
of the other agent also choosing A falls below 2

5 . Consequently, during initial uniform exploration where
π1(A) = π2(A) = 1

3 , both agents tend to favour B or C over A, even though A is the globally optimal choice.
Thus, with independent learning without considering the other agent’s best action, both agents may end up
with choosing suboptimal actions and fail to cooperate.

3.3 Independent Q-Learning

In independent Q-learning (Tan, 1993), each agent i learns a policy independently, treating other agents as
part of the environment. The individual Q-function is Qi(s, ai) = E [

∑∞
t=0 γ

trt | s0 = s, ai,0 = ai] for agent
i. Each agent updates its Q-function by minimizing the loss EPi(s′|s,ai)

[
(yi −Qi(s, ai))2]

, where yi is the
target value defined as R(s, s′) + γmaxa′

i
Qi(s′, a′

i). The RO problem arises in this setup as each agent seeks
to maximize its own expected return based on experiences where other agents’ policies evolve and contain
random explorations.

3.4 Ideal transition probabilities

To address the RO problem in this context, some approaches introduce implicit coordination mechanisms
centered on the concept of an ideal transition model (Lauer & Riedmiller, 2000; Matignon et al., 2007;
Wei & Luke, 2016; Palmer et al., 2018; Jiang & Lu, 2022). These methods guide each agent’s learning
with hypothetical transitions that assume optimal joint behavior, aligning independent learners towards
coordination. Let π−i denote the joint policy of other agents, and Q∗ the optimal joint Q-function. The
optimal joint policy of other agents can be expressed as π∗

−i(s, ai) = arg maxa−i Q
∗(s, ai,a−i).

The concept of ideal transitions refers to hypothetical state transitions that assume other agents are following
optimal joint policies. These ideal transition probabilities represent the dynamics that would occur if all
agents achieved perfect coordination, and are defined as P ∗

i (s′|s, ai) = Penv(s′|s, ai, π
∗
−i(s, ai)). Based on
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these probabilities, the Bellman optimality equation is given by

Q∗
i (s, ai) = EP ∗

i
(s′|s,ai)

[
R(s, s′) + γmax

a′
i

Q∗
i (s′, a′

i)
]
, (1)

where Q∗
i (s, ai) is the optimal Q-function for agent i.

An important theoretical result from Jiang & Lu (2022) establishes that when all agents perform Q-
learning based on these ideal transition probabilities, the individual and joint optimality align, that is,
maxai Q

∗
i (s, ai) = Q∗(s, π∗(s)), where Q∗(s,a) is the optimal joint Q-function for any action a ∈ A, and π∗

is the optimal joint policy. However, achieving true ideal transitions is intractable in practice due to the
evolving, uncontrolled nature of learning agents. This motivates developing techniques to approximate ideal
transitions.

4 MaxMax Q-learning Methodology

4.1 Approximation of Bellman optimality equation

Our methodology aims to approximate ideal transition probabilities, which assume other agents follow optimal
joint policies. We focus on deterministic environments and reformulate the Bellman optimality in Eq. (1) to
highlight the dependence on the set Ss,ai

of possible next states,

Ss,ai
=

s′ = fenv(s, ai,a−i) | a−i ∈
∏
j ̸=i

Aj

 , (2)

where fenv(s, ai,a−i) is the deterministic transition function that maps the current state s and the joint
actions of all agents (ai,a−i) to the next state s′, Aj is the action space for each agent j and the Cartesian
product

∏
j ̸=i Aj represents all possible combinations of actions by the other agents. It is noted that we only

use fenv to define the set Ss,ai here, but do not need to learn this global transition function directly in our
algorithm. Encoding the deterministic transitions by a delta function, δfenv(s,a)(s′), Eq. (1) is rewritten as

Q∗
i (s, ai) = Es′∼δfenv(s,ai,π∗

−i
(s,ai))(s′)

[
R(s, s′) + γmax

a′
i

Q∗
i (s′, a′

i)
]

(3a)

= max
s′∈S∗

s,ai

(
R(s, s′) + γmax

a′
i

Q∗
i (s′, a′

i)
)
. (3b)

where S∗
s,ai

is any subset of Ss,ai including s′∗ = fenv(s, ai, π
∗
−i(s, ai)).

By reformulating the Q-value optimization over the set S∗
s,ai

, our approach allows for targeting the optimal
value Q∗(s, ai) under the true coordinated joint behavior, without directly approximating s′∗. When there
is no information about s′∗, the set S∗

s,ai
could be set in principle to Ss,ai , if it were known, to ensure the

inclusion of s′∗. However, this will also make the maximisation over S∗
s,ai

in Eq. (3b) more computationally
challenging, implying a trade off between reducing the size of S∗

s,ai
and ensuring the inclusion of s′∗. We

propose a learning procedure that enables each agent to progressively shrink their set of next states S∗
s,ai

, as
all agents explore and accumulate experiences.

In practice, at the algorithmic step t, we work with a subset Ŝs,ai,t which approximates one of the possible
subsets S∗

s,ai
. Since neither Ss,ai

nor s′∗ are known in practice due to the incomplete information about other
agents’ policies and the environment dynamics, we cannot guarantee that s′∗ ∈ Ŝs,ai,t ⊆ Ss,ai holds, but we
will show in our performance assessment that s′∗ ∈ Ŝs,ai,t holds with high probability. Furthermore, direct
maximization over Ŝs,ai,t is challenging as this set is infinite in general.

To address this, we resort to Monte Carlo optimization, as in e.g. Robert et al. (1999), by introducing a finite
set ŜM

s,ai,t of M points randomly sampled from Ŝs,ai,t. Assuming no approximation error in the predicted
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Figure 1: Illustration of the MMQ update for two agents. Different positions of two agents in the rounded
rectangles represent different possible next states s′ = (xb, xy). From the perspective of the blue agent: The
yellow curve (P) represents the distribution of states with different yellow agent positions (xy) in the replay
buffer. The red curve (Q) represents the estimated Q-values for those possible next states. In the MMQ
update, the blue agent selects samples for update based on the highest Q-value, marked by

√
. Importantly,

this selection may not always coincide with the most frequently encountered scenarios (corresponding to the
peak of the yellow curve) from past experiences, which may be sub-optimal.

bound, that is Ŝs,ai,t ⊆ Ss,ai holds, the sample set ŜM
s,ai,t contains only reachable states and it follows that

Q∗
i (s, ai) ≥ max

s′∈ŜM
s,ai,t

[
R(s, s′) + γmax

a′
i

Q∗
i (s′, a′

i)
]

(4a)

= max
m∈{1,...,M}

[
R(s, s′

m) + γmax
a′

i

Q∗
i (s′

m, a
′
i)

]
. (4b)

With the considered approach, there are two natural phases when running the associated algorithms:

1. With little information to rely on, the agents explore the state space at random and collect diverse
trajectories, which improve their understanding of the range of possible next state Ss,ai

. In this
phase, the estimated sets Ŝs,ai,t will be close to Ss,ai

.
2. As agents refine their estimates of the set Ss,ai

of possible next states and accumulate sufficient
reward information, the maximisation in Eq. (4b) yields increasingly stable values, facilitating policy
convergence. This, in turns, means that the new trajectories will be more similar and optimised,
progressively outnumbering the initial diverse trajectories. This will cause the sets Ŝs,ai,t to zero in
on s′∗, hence facilitating the Monte Carlo optimisation in Eq. (4b).

An illustration of our sampling and selection process is shown in Figure 1: given a set of possible next state
samples, our algorithm selects the state with the highest estimated Q-value for updating, which implicitly
indicating the optimal action of other agents. As agents explore more possible actions, the estimated set
Ŝs,ai,t increasingly approximates the true set Ss,ai

. Crucially, if the optimal next state is contained within
the estimated set, the equality

Q∗
i (s, ai) = max

s′∈Ŝs,ai,t

[
R(s, s′) + γmax

a′
i

Q∗
i (s′, a′

i)
]

holds. This property is fundamental to our method, as it implies that through iterative learning and effective
sampling, each agent can learn Q-values that closely align with those derived from ideal transition probabilities.
In the following section, we analyse the convergence properties of this approach under ideal conditions. The
complete algorithm, including implementation details, will be presented in Section 4.3.

4.2 Convergence analysis

Our combined learning and sampling approach facilitates the gradual convergence of the agents’ policies
toward the globally-optimal joint policy. This gradual convergence is supported by the insights from the
following theorem, which shows the disparity between the optimal Q-values and those learned by the agents
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is limited by the difference between the best next state in the estimated set and the true best next state.
This bounding relationship is crucial, as it indicates that the closer our estimated set of next states is to the
actual set composed of all the possible next states, the more accurate the estimations of the agents’ optimal
Q-functions become.

In this section, we further elaborate on this mechanism and provide a formal convergence analysis. This
analysis demonstrates how our proposed model-based Q-learning approach, combined with the sampling
strategy, effectively facilitates convergence to an optimal global policy. We begin by showing that the
difference between the Q-values learned by our approach and the optimal Q-values depends on how well we
can estimate the best next state.
Theorem 4.1. Let Ss,ai

be the set of all possible next states as defined in (2) and let Ŝ be a non-empty subset
of Ss,ai . Let s′∗ and ŝ′∗ represent the best next states in the optimal and approximate regimes, respectively,
that is

s′∗ = arg max
s′∈Ss,ai

R(s, s′) + γmax
a′

i

Q∗
i (s′, a′

i)

ŝ′∗ = arg max
s′∈Ŝ

R(s, s′) + γmax
a′

i

Qi(s′, a′
i).

Under Assumptions A.1-A.3 (see Appendix B), if the Euclidean distance d(s′∗, ŝ′∗) is at most ϵ for all (s, ai),
then there exists K > 0 such that |Q∗

i (s, ai) −Qi(s, ai)| ≤ (1 − γ)−1Kϵ for all (s, ai).

The proof can be found in Appendix B.

In the context of our algorithm, we can relate this theorem to our specific implementation. Omitting the
algorithm step t from the notations for simplicity, Ŝ in our case corresponds to ŜM

s,ai
. This set consists of

M states uniformly sampled from Ŝs, ai, which is itself a non-empty subset of Ss, ai. Ŝs,ai is formed by all
possible outcomes predicted by our learned model. Figure 2 illustrates the relationships between these sets.

This result demonstrates that if the distance between the estimated best next state ŝ′∗ and the actual
best next state s′∗ is arbitrarily small for all state-action pairs (s, ai), then the discrepancy between the
learned Q-values Qi(s, ai) and the optimal Q-values Q∗

i (s, ai) is bounded. This implies that as we refine our
estimation of the optimal next state through iterative sampling and learning, we progressively narrow the
gap between the learned Q-values of our agents and the true optimal values.

Figure 2: Illustration of the set relationship among Ss,ai
, Ŝs,ai

and ŜM
s,ai

(denoted as M above). The red star,
s′∗, is the best next state in the real set, and s̃′∗, and ŝ′∗ represent the two states that are the closest to the
best next states in Ŝs,ai and ŜM

s,ai
. According to the triangle inequality, the distance between s′∗ and ŝ′∗,

d(s′∗,ŝ′∗), is upper bound by the sum of d(s′∗,s̃′∗) and d(s̃′∗,ŝ′∗)

To better analyse the distance d(s′, ŝ′), we introduce a third state s̃′ as the best next state in Ŝs,ai
. This

allows us to use the triangle inequality to upper bound the distance as , d(s′, ŝ′) ≤ d(s′, s̃′) + d(s̃′, ŝ′)

The first term, d(s′, s̃′), reflects the difference between the optimal next state in Ss,ai
and the one in Ŝs,ai

.
As the size of Ŝs,ai

increases in the first phase of the algorithm, it’s more likely to include states closer to s′,
thus decreasing d(s′, s̃′). The second term, d(s̃′, ŝ′), represents the error in the Monte Carlo optimization.
This error tends to be large initially but decreases in the second phase as Ŝs,ai shrinks, making it easier to
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sample states close to s̃′. This analysis shows how our algorithm progressively improves its estimation of the
optimal next state, contributing to the overall convergence of the Q-values.

Theorem 4.2. Assume that S = R and that Ŝs,ai
is of the form [−u, u] for some u ∈ (0,∞). Consider M

i.i.d. samples s′
1, . . . , s

′
M from the uniform distribution on [−u, u]. It holds that

E
[

min
k=1,...,M

|s̃′∗ − s′
k|

]
<

2u
M + 1 .

The proof can be found in Appendix B.

This result demonstrates that the Monte Carlo optimization error d(s̃′∗, ŝ′∗) diminishes as the number of
samples M increases. Incidentally, the Monte Carlo optimisation error could exhibit exponential dependence
as the dimensionality of the state space increases. However, in multi-agent scenarios, partially-observed MDPs
typically limit effective dimensionality growth, as agents rely on a restricted view of the overall state space.

Seemingly, there is an inherent trade-off involved in expanding the state set Ŝs,ai , i.e., expanding u in the
above one-dimension case, to cover more possibilities while managing the resultant error. A broader Ŝs,ai

reduces the gap between s̃′∗ and the true best state s′∗, as it increases the likelihood of encompassing s′∗.
This action effectively shrinks the error term d(s′∗, s̃′∗). Yet, increasing the size of Ŝs,ai

, i.e., increasing u, also
typically increases variability, leading to a larger error d(s̃′∗, ŝ′∗) and necessitating more samples to maintain
a given level of precision.

4.3 Implementation details

Algorithm 1: MMQ for each agent i
Input: Q-network Qi, actor network πi and target networks Qi, πi; Quantile models gτl

i and gτu
i ; Reward

network Ri; Replay buffer Di

for t = 1, . . . , Tmax do
All agents interact with the environment using random action (for initial P steps) or ε-greedy policy and

store experiences (s, ai, r, s
′) in Di

Sample a mini-batch from Di;
Update gτl

i and gτu
i by minimizing (5)

Draw M samples from predicted bound [gτl
i (·), gτu

i (·)] to construct set Ŝ
Calculate the target value over Ŝ using (6)
Update Qi multiple times by minimizing (7)
Update Ri by minimizing (8)
Update πi by minimizing (9)
Update the target network Qi and πi

end for

To capture the range of possible next states, our implementation utilises two non-parametrised quantile
models, gτl

i and gτu
i , which employ neural networks to predict the τl = 0.05 and τu = 0.95 quantiles for each

dimension of the next state. The neural network parameters, denoted by ϕl
i and ϕu

i , are learnt by minimising
the quantile loss according to their respective τ values over samples from individual replay buffer Di:

L(ϕi) = Es,ai∼Di
[Lτ (gτ

i (s, ai;ϕi) − s′)], (5)

where Lτ (u) = I(u > 0)τu+ I(u < 0)(1 − τ)u. For each (s, ai) pair, the two quantile models predict bounds
[gτl

i (s, ai), gτu
i (s, ai)]. We then construct the potential next state set Ŝ by including the true s′ and M samples

drawn from the quantile bounds. We also explored a parametrised multivariate Gaussian model as another
method to estimate the possible next states, detailed in Appendix C.3.
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Each agent also learns a Q-network, parameterised by θi, and represented as Qi(s, ai; θi). The target value
for the Q-network update is given by:

Yi(s, ai; θi) = max
ŝ′∈Ŝ

(
Ri(s, s′;ψi) + γmax

a′
i

Qi(ŝ′, a′
i; θi)

)
, (6)

where Ri(s, s′;ψi) is an estimate from a learned reward model parameterised by ψi. Here we apply a
stop-gradient operator to the target value to prevent gradient flow back to the next state estimation process.
This operation is crucial for maintaining stability in the learning dynamics by separating the optimization of
the Q-network from the updates to the next state estimation. The loss function for optimising the Q-network
parameter θi is then given by

L(θi) = Es,ai∼Di
[Qi(s, ai; θi) − Yi(s, ai; θi)]2 . (7)

This loss aims to align the Q-network’s predictions with the maximum expected return, considering both
the immediate reward and the discounted future Q-values of the potential next states sampled from the
estimated quantile bound. Additionally, the learned reward function Ri(s, s′;ψi), parameterised by ψi, is
trained to approximate the rewards for state transitions. The loss for this reward model is the mean squared
error between the predicted and actual rewards,

L(ψi) = Es∼Di [Ri(s, s′;ψi) − r]2. (8)

To deal with continuous action spaces, each agent uses an actor network πi(s; ρi), parameterised by ρi, to
learn its policy. The loss function for the actor network, aimed at maximising the Q-value, is

L(ρi) = Es∼Di
[−Qi(s, πi(s; ρi); θi)]. (9)

The training process is summarised in Algorithm 1, and the full source code is available at
https://github.com/Tingz0/Maxmax_Q_learning. The full algorithm interleaves the optimisation of vari-
ous constituent models, allowing agents to adaptively learn and improve their policies based on their own
experiences and the evolving environmental dynamics. Our implementation incorporates two key strategies.
First, a delayed update approach for the actor network relative to the critic network, where the critic is
updated 10 times more frequently to maintain stability (Fujimoto et al., 2018). Second, negative reward
shifting (Sun et al., 2022), which enhances our double-max-style updates (see also Appendix C.1).

5 Experimental results

5.1 Environments

We evaluated the MMQ algorithm in three types of cooperative MARL environments characterized by the
need for complex coordination among agents; see Figure 3 for an overview.

Differential Games We adapted this environment from Jiang & Lu (2022), where N agents move within
the range [−1, 1]. At each time step, an agent indexed by i selects an action ai ∈ [−1, 1]. The state of this
agent then transitions to clip{xi + 0.1 × ai,−1, 1}, where xi is the previous state and the clip(y, ymin, ymax)
function restricts y within [ymin, ymax]. The global state is the position vector (x1, x2). The reward function,
detailed in Appendix A, assigns rewards following each action. A narrow optimal reward region is centred,
surrounded by a wide zero-reward area and suboptimal rewards at the edges (see DG in Figure 3). This setup
can lead to RO problems as agents might prefer staying in larger suboptimal areas.

Multiple Particle Environment We designed six variants of cooperative navigation tasks with RO
rewards as shown in Figure 3. The common goal is for two disk-shaped agents, D1 and D2, to simultaneously
reach a disk-shaped target. To encourage coordination, we introduce a penalty for scenarios where only one
agent is within a certain distance from the target. Specifically, we define a disk D centered on the target with
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(a) Differential Game (DG)

(b) Half-Cheetah 2x3 (c) MPE scenarios

Figure 3: Task visualization. (a) Differential Game(DG): agents need to cross a wide zero-reward area to
move to the center to gain the optimal reward. (b) Half-Cheetah 2x3 : the Half-Cheetah 2x3 scenario in
MAmujoco domain; (c) MPE scenarios; Cooperative navigation(CN): two agents need to enter the grey area
of the target together to gain the reward, the solo entry would induce a penalty. CN + More penalty: Same
task as CN but with more penalty for solo entry; CN + HT : Agents could choose to approach one of the two
Targets with different reward settings; CN+HA: same task as CN but two agents have different sizes and
velocity; Predator-Prey(PP): two agents need to enter the grey area of a pre-trained prey. Sequential Task:
two agents need to first go through the grey area of Target B and then enter the grey of Target A with the
same RO reward design as CN.

radius rD and penalize agents if only one is within D. This setup is designed to illustrate the RO problem,
where agents might prefer staying outside D rather than risk being the only one inside it. The task difficulty
increases as the radius rD decreases. The reward function, designed to reflect the RO problem, is defined as:

rCN =


Rin if Di ∩D ̸= ∅, i = 1, 2
Rout if (D1 ∪D2) ∩D = ∅
Rout − p otherwise.

The rewards for the three cases should satisfy Rout − p < Rout < Rin. Detailed descriptions of Rout and
Rin for different settings are provided in Appendix A. In task CN, the penalty for solo entry into the circle
is p = 0.2; in task CN+More Penalty, the penalty increases to p = 0.5 for entering the circle alone; in
task CN+Heterogeneous Agents (HA), two agents performing the CN task are heterogeneous, having
different sizes and velocities; in task CN+Heterogeneous Targets (HT), there are two targets, where
entering the circle of target A follows the previous RO design, and entering the circle of target B incurs no
RO penalty but offers a reward lower than Rin; in the sub-optimal scenario, agents might only enter the
circle of target B; in task Sequential Task, agents must coordinate over a longer period—they could either
directly reach target A with the same RO reward as before or first reach target B to pick up cargo, then
receive a bonus each step (a higher Rin) when they later enter target A together; in task Predator-Prey
(PP), two predators (which we control) and one prey, who interact in an environment with two obstacles.
The prey, trained using MADDPG (Lowe et al., 2017), is adept at escaping faster than the predators. The
predators need to enter the prey’s disk together to receive the reward Rin.

Multi-agent MuJoCo Environment We employ the Half-Cheetah 2x3 scenario from the Multi-agent
MuJoCo framework (de Witt et al., 2020). This environment features two agents, each controlling three
joints of the Half-Cheetah robot via torque application. It presents a partial observability setting, with each
agent accessing only its local observations. We implement an RO reward structure designed to necessitate

10
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Figure 4: Performance comparison for two-agents setting in DG, MPE scenarios and Half-Cheetah

high coordination between agents. The reward function rv is defined as: −7 if v < vl, −9 if vl ≤ v ≤ vu, and
−2, otherwise; where vl = 0.035/dt, vu = 0.04/dt, and dt = 0.05. This structure rewards agents for moving
forward at speeds exceeding vu, penalizes speeds between vl and vu, and provides a moderate penalty for
very low speeds. Agents failing to overcome the RO problem may settle for maintaining low speeds to avoid
the harshest penalty.

Table 2: Settings with N = 2 agents. Mean Returns and 95% Confidence Interval (over eight seeds) for all
algorithms at the end of training. Values are bolded if their confidence intervals overlap with the maximum
value.

Setting Setting MMQ IDDPG HyDDPG I2Q* I2Q
DG N = 2 19.55±0.16 14.67±4.61 19.47±0.17 17.84±3.01 14.62±4.23

MPE Tasks CN -15.66±1.75 -30.91±12.78 -19.12±1.56 -51.24±12.01 -33.16±11.82
CN+more penalty -18.01±2.24 -60.25±0.07 -50.12±13.24 -60.55±0.36 -60.54±0.70
CN+HT -24.25±0.49 -40.34±26.01 -30.93±6.92 -56.04±40.80 -35.95±15.83
CN+HA -17.63±4.12 -45.76±13.99 -28.21±9.71 -60.49±0.15 -60.25±0.03
PP -35.28±0.40 -56.63±0.11 -49.40±7.18 -57.10±0.33 -56.67±0.14
Sequential Task -215.09±59.97 -295.31±9.75 -233.55±53.21 -300.53±0.45 -266.42±43.37

Half-Cheetah 2 × 3 -134.09±16.05 -163.81±9.61 -152.66±10.32 -135.65±4.60 -140.94±8.55

Table 3: Setting with more than 2 agents. Mean Returns and 95% Confidence Interval (over eight seeds)
for all algorithms at the end of training. Values are bolded if their confidence intervals overlap with the
maximum value.

Setting Setting MMQ IDDPG HyDDPG I2Q* I2Q

DG N = 3 19.51±0.15 15.45±3.76 16.17±4.11 15.95±3.78 8.19±3.85
N = 4 20.09±0.10 14.09±4.22 12.77±4.56 16.31±4.28 12.59±4.45
N = 5 20.44±0.11 13.94±4.27 16.02±3.97 16.91±3.30 2.98±0.70

MPE Tasks CN (N=3) -34.79±2.75 -60.11±17.06 -45.47±15.48 -50.86±17.68 -54.89±17.49
PP (N=3) -37.86±1.01 -49.64±2.14 -46.16±4.84 -52.52±0.26 -51.86±0.95

5.2 Baselines

Our benchmarks include comparisons with three baseline algorithms: Ideal Independent Q-Learning (I2Q),
Independent Deep Deterministic Policy Gradient (IDDPG), and Hysteretic DDPG (HyDDPG). We differ-
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(a) (b)

Figure 5: (a) Ablation study for different sample number M in three tasks; (b) Percentage of each dim of
true next states fall within the predicted quantile bound for three tasks

entiate between two versions of I2Q: the original implementation by Jiang & Lu (2022), which we refer to
as I2Q*, involves multiple updates of all network components after every 50 interaction steps. In contrast,
our implementation, denoted as I2Q, updates only the critic network multiple times every 50 steps. This
distinction allows us to more accurately assess the performance impact of these differing update strategies.

5.3 Experiment Results

To compare the performance among different baselines, we consider the mean episode return over 8 seeds,
where the episode return is defined as the accumulated reward

∑T
t=0 rt for the whole episode, with T being

the episode length.

Differential Games Our evaluations, depicted in Figure 4 and Table 2, show that MMQ outperforms other
algorithms with 15 samples drawn from the quantile bounds predicted by two quantile models. HyDDPG
and I2Q∗ also perform well. Interestingly, the performance of HyDDPG and IDDPG surpasses that reported
for I2Q in Jiang & Lu (2022), possibly due to our implementation’s emphasis on updating the critic network
more frequently than the actor network to stabilize training. However, I2Q learns much slower compared to
I2Q∗, which updates all modules rather than just the critic multiple times. These update strategies have
different effects on various algorithms. With more agents, the performance of other algorithms degrades
slightly, showing higher variability, as shown in Table 3. MMQ consistently identifies the optimal region in
all test cases, demonstrating its higher sample efficiency and scalability. We also tested MMQ in a stochastic
version of this game (Appendix D.1), confirming that MMQ still outperforms the baselines under stochastic
state transitions and reward dynamics.

Multiple Particle Environment As shown in Figure 4 and Table 2, our algorithm, using 15 samples
from the predicted quantile bounds, successfully overcomes the Relative Over-generalisation (RO) problem
in all settings. HyDDPG performs particularly well, especially in the lower penalty scenarios, such as CN,
CN+HT, and CN+HA. In CN and CN+HT, I2Q∗ initially demonstrated some ability to solve the
task but its performance deteriorated over time. We observed that the learned Q-values of some seeds
increased rapidly and incorrectly simultaneously, despite setting the weight of the Qss(s, s′) value to a minimal
parameter during the update process. This might be due to the challenges in computing effective Qss(s, s′)
values in I2Q, leading to less accurate predictions of optimal states and resulting in cumulative estimation
errors over time. With a higher solo-entry penalty in CN+More Penalty, all baselines’ performance
significantly declines, remaining stuck in suboptimal areas except for HyDDPG, which could learn to a
limited extent. Our sampling-based approach, however, demonstrates robustness even with the increased RO
problem.
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PP presents a more challenging task compared to the above settings due to its larger state space, more
agents, and fast-moving prey that the predators must catch. Our results, illustrated in Figure 4, show our
algorithm successfully overcomes the RO problem, demonstrating higher mean return and greater sample
efficiency than other baselines.

In the Sequential Task, both our MMQ and HyDDPG initially learned to enter target A directly. After
discovering that entering target B could yield a bonus, they deliberately targeted B, which led to a temporary
decline in performance. MMQ recovered quicker than HyDDPG. I2Q began to show learning towards the end
of the training while IDDPG failed in this task.

We also tested our algorithm in the CN and PP settings with an additional agent (as shown in Table 3). With
one more agent, the state dimension increases and the transition dynamics become more complex. In CN
with three agents, the results for HyDDPG and I2Q∗ showed large variability, indicating that these methods
were effective only under certain initial conditions. In PP with three agents, which is more challenging, all
baselines were stuck in suboptimal areas. However, our algorithm still managed to overcome the RO problem,
demonstrating scalability with an increased number of agents. Further tests with the default reward setting
(detailed in Appendix D.2) show that our algorithm matches the performance of other baselines in settings
without significant RO problems.

Multi-agent MuJoCo environment In this setting, we also utilized 15 samples drawn from the predicted
quantile bounds. As depicted in Figure 4, MMQ remains competitive in this challenging environment,
consistently surpassing other baselines during the latter half of the training period. Given the inherent
complexity of the task, we maintained a mild level of the RO problem to preserve feasibility. This explains
why I2Q was able to perform well, despite its sensitivity to RO problems noted in other environments.
We provided results for one more partitions of Half-Cheetah (Half-Cheetah 4|2) and two partitions of Ant
(Ant 2 × 4 and 4 × 2) with the same reward setting in Appendix D.3. In these tasks, MMQ consistently
outperforming other baselines.

Ablation study: number of samples We conducted an ablation study to investigate the effect of varying
the number of samples across three different environmental settings, as shown in Figure 5a. The results
demonstrated that MMQ, even with just one sample, outperformed baselines in the DG and Half-Cheetah
environments. In the PP environment, using one sample was slightly less effective than HyDDPG, but
using three or more samples consistently outperformed all baselines. Additionally, increasing the number of
samples M appeared to accelerate learning across the three settings, aligning with our theoretical analysis.
Furthermore, we included a study (see Appendix C.2) that employed a small ensemble of quantile models.
Although this ensemble enlarged the predicted bounds and enhanced the percentage of true next states within
these bounds, as shown in Figure 8b, it did not lead to further performance improvements. Thus, we did not
incorporate the ensemble approach in the final results for simplicity.

To demonstrate the effectiveness of the quantile model, Figure 5b shows the percentage of each dimension
of the true next states that fall within the predicted quantile bounds during the learning process for three
environment settings. The percentage is calculated as follows: For each sample in the mini-batch, consisting
of n samples, during the update process, we have the predicted bound [ld, ud] for each dimension d of the
state with value sd. The state has a total of D dimensions. If the state value sd falls within the predicted
bound, i.e., ld ≤ sd ≤ ud, we increment a count. If the total count across all dimensions and samples is P ,
the percentage is then calculated as P

n·D × 100%.

The percentage is already high initially for the DG and CN environments but is a bit lower for Half-Cheetah,
possibly due to its more complex dynamics compared to the other two. These results indicate that the
quantile model can effectively capture most state changes as expected, suggesting that Ŝs,ai

closely reflects
the true set Ss,ai , as analyzed in Section 4.1.

6 Discussion and Conclusions

In this work, we introduced MaxMax Q-learning (MMQ), a novel algorithm designed to mitigate the Relative
Over-generalisation problem in multi-agent collaborative tasks through the use of quantile models and
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optimistic sampling. Our key theoretical contribution establishes a connection between the accuracy of
estimating the best next state and the convergence towards globally optimal joint policies within the MMQ
framework, providing a solid foundation for understanding the algorithm’s behaviour and performance.

Empirically, we demonstrated the effectiveness of MMQ across three diverse tasks, showing its ability to
outperform existing baselines in terms of convergence speed, sample efficiency, and final performance. A
notable outcome is MMQ’s scalability, as it can accommodate an increased number of agents while achieving
superior performance with minimal samples, which reduces computational overhead—a crucial factor in
practical multi-agent systems.

Despite these promising results, several limitations of MMQ remain. First, the Monte Carlo optimisation error
in MMQ may exhibit exponential dependence as the dimensionality of the state space increases. However,
this issue is somewhat mitigated in multi-agent settings, where the use of partially-observed MDPs limits the
effective dimensionality. Second, although MMQ has demonstrated scalability in our experiments, challenges
may arise in environments with very large populations of agents, where increased computational costs and
coordination complexity could impact performance.

Looking ahead, future work may aim to address these limitations and further enhance MMQ’s capabilities.
One promising direction involves developing adaptive mechanisms to gauge the informativeness of observations
about other agents, which could improve the robustness of reward function learning, especially in scenarios
with partial or noisy observations. Additionally, relaxing the current assumption of independence across
dimensions in the quantile model by predicting the covariance matrix could capture more complex state
dynamics, potentially leading to more accurate estimations. Further improvements in scalability might be
achieved by reducing the number of samples required as the state space grows, thereby lowering computational
demands in high-dimensional and large-agent scenarios. Together, these future developments aim to overcome
current limitations and extend the applicability of MMQ to a broader range of multi-agent scenarios.
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