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Abstract

This work studies fundamental limits for recovering the underlying correspondence1

among multiple correlated random graphs. We identify a necessary condition for2

any algorithm to correctly match all nodes across all graphs, and propose two3

algorithms for which the same condition is also sufficient. The first algorithm4

employs global information to simultaneously match all the graphs, whereas the5

second algorithm first partially matches the graphs pairwise and then combines the6

partial matchings by transitivity. Both algorithms work down to the information7

theoretic threshold. Our analysis reveals a scenario where exact matching between8

two graphs alone is impossible, but leveraging more than two graphs allows exact9

matching among all the graphs. Along the way, we derive independent results10

about the k-core of Erdős-Rényi graphs.11

1 Introduction12

The information age has ushered an abundance of correlated networked data. For instance, the13

network structure of two social networks such as Facebook and Twitter is correlated because users are14

likely to connect with the same individuals in both networks. This wealth of correlated data presents15

both opportunities and challenges. On one hand, information from various datasets can be combined16

to increase the fidelity of data - translating to better performance in downstream learning tasks. On the17

other hand, the interconnected nature of this data also raises privacy and security concerns. Linkage18

attacks, for instance, exploit correlated data to identify individuals in an anonymized network by19

linking to other sources [NS09]. This poses a significant threat to user privacy.20

Graph matching is the problem of recovering the underlying latent correspondence between corre-21

lated networks. The problem finds many applications in machine learning: de-anonymizing social22

networks [NS08, NS09], identifying similar functional components between species by matching23

their protein-protein interaction networks [BSI06, KHGPM16], object detection [SS05] and track-24

ing [YYL+16] in computer vision, and textual inference for natural language processing [HNM05]. In25

most applications of interest, data is available in the form of several correlated networks. For instance,26

social media users are active each month on 6.7 social platforms on average [Ind23]. Similarly,27

reconciling protein-protein interaction networks among multiple species is an important problem in28

computational biology [SXB08]. As a first step toward this objective, many research works have29

studied the problem of matching two correlated graphs.30

1.1 Related Work31

The theoretical study of graph matching algorithms and their performance guarantees has primarily32

focused on Erdős-Rényi (ER) graphs. Pedarsani and Grossglauser [PG11] introduced the subsampling33

model to generate two such correlated graphs. The model entails twice subsampling each edge34

independently from a parent ER graph to obtain two sibling graphs, both of which are marginally35

ER graphs themselves. The goal is then to match nodes between the two graphs to recover the36
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underlying latent correspondence. This has been the framework of choice for many works that study37

graph matching. For example, Cullina and Kiyavash studied the problem of exactly matching two38

ER graphs, where the objective is to match all vertices correctly [CK16, CK17]. They identified a39

threshold phenomenon for this task: exact recovery is possible if the problem parameters are above a40

threshold, and impossible otherwise. Subsequently, threshold phenomena were also identified for41

partial graph matching between ER graphs - where the objective is to match only a positive fraction42

of nodes [GML21, HM23, WXY22, DD23]. The case of almost-exact recovery - where the objective43

is to match all but a negligible fraction of nodes - was studied by Cullina and co-authors: a necessary44

condition for almost exact recovery was identified, and it was shown that the same condition is also45

sufficient for the k-core estimator [CKMP19]; the estimator is described formally in Section 3. This46

estimator proved useful to uncover the fundamental limits for graph matching in other contexts such47

as the stochastic block model [GRS22] and inhomogeneous random graphs [RS23]. Ameen and48

Hajek [AH23] showed some robustness properties of the k-core estimator in the context of matching49

ER graphs under node corruption. The estimator plays an important role in the present work as well.50

A sound understanding of ER graphs inspires algorithms for real-world networks. Various efficient al-51

gorithms have been proposed, including algorithms based on the spectrum of the graph adjacency ma-52

trices [FMWX22], node degree and neighborhood based algorithms [DCKG19,DMWX21,MRT23] as53

well as algorithms based on iterative methods [DL23] and counting subgraphs [MWXY23, BCL+19].54

Some of these are discussed in Section 5 in relation to the present work.55

Incorporating information from multiple graphs to match them has been recognized as an important56

research direction, for instance in the work of Gaudio and co-authors [GRS22]. To our knowledge,57

the only other papers to consider matchings among multiple graphs are the works of Josephs and58

co-authors [JLK21], and of Rácz and Sridhar [RS21]. However, these works have different objectives59

and are not concerned with the fundamental limits for matching m graphs. In fact, both works note60

that it is possible to exactly match m graphs whenever it is possible to exactly match any two graphs61

by pairwise matching all the graphs exactly. In contrast, we show that under appropriate conditions, it62

is possible to exactly match m ER graphs even when no two graphs can be pairwise matched exactly.63

Contributions In this work, we investigate the problem of combining information from multiple64

correlated networks to boost the number of nodes that are correctly matched among them. We65

consider the natural generalization of the subsampling model to generate m correlated random graphs,66

and identify a threshold such that it is impossible for any algorithm to match all nodes correctly67

across all graphs when the problem parameters are below this threshold. Conversely, we show that68

exact recovery is possible above the threshold. This characterization generalizes known results for69

exact graph matching when m = 2. Subsequently, we show that there is a region in parameter space70

for which exactly matching any two graphs is impossible using only the two graphs, and yet exact71

graph matching is possible among m > 2 graphs using all the graphs.72

We present two algorithms and prove their optimality for this task. The first algorithm matches all m73

graphs simultaneously based on global information about the graphs. In contrast, the second algorithm74

first pairwise matches graphs, and then combines them to match all nodes across all graphs. We show75

that both algorithms correctly match all the graphs all the way down to the information theoretic76

threshold. Finally, we illustrate through simulation that our subroutine to combine information from77

pairwise comparisons between networks works well when paired with efficient algorithms for graph78

matching. Our analysis also yields some theoretical results about the k-core of ER graphs that are of79

independent interest.80

2 Preliminaries and Setup81

Notation In this work, G ∼ ER(n, p) denotes that the graph G is sampled from the Erdős-Rényi82

distribution with parameters n and p, i.e. G has n nodes and each edge is independently present with83

probability p. For a graph G, we denote the set of its vertices by V ≡ V (G) and its edges by E(G).84

The edge status of each vertex pair {i, j} with i ̸= j is denoted by G{i.j}, so that G{i, j} = 1 if85

{i, j} ∈ E(G) and G{i, j} = 0 otherwise. The degree of a node v in graph G is denoted δG(v). Let86

π denote a permutation on V (G) = {1, · · · , n}. For a graph G, denote by Gπ the graph obtained by87

permuting the nodes of G according to π, so that88

G{i, j} = Gπ {π(i), π(j)} ∀ i, j ∈ V (G) such that i ̸= j.

Standard asymptotic notation (O(·), o(·), · · · ) is used throughout and it is implicit that n→∞.89
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Figure 1: Illustration of obtaining m correlated graphs from the subsampling model

Subsampling model Consider the subsampling model for correlated random graphs [PG11], which90

has a natural generalization to the setting of m graphs. In this model, a parent graph G is sampled91

from the Erdős-Rényi distribution ER(n, p). The m graphs G1, G
′
2, · · · , G′

m−1, G
′
m are obtained by92

independently subsampling each edge from G with probability s. Finally, the graphs G2, · · · , Gm93

are obtained by permuting the nodes of each of the graphs G′
2, · · · , G′

m respectively according to94

independent permutations π∗
12, · · · , π∗

1m sampled uniformly at random from the set of all permutations95

on [n], i.e.96

Gj = (G′
j)

π∗
1j for all j ∈ {2, · · · ,m}.

Figure 1 illustrates this process of obtaining correlated graphs using the subsampling model. In this97

work, we are interested in the setting where s is constant and p = C log(n)/n for some C > 0.98

Objective 1. Determine conditions on parameters C, s and m so that given correlated graphs99

G1, · · · , Gm from the subsampling model, it is possible to exactly recover the underlying correspon-100

dences π∗
12, · · · , π∗

1m with probability 1− o(1).101

Stated thus, the underlying correspondences use the graph G1 as a reference. Thus, for ease of102

notation, we will use G1 and G′
1 interchangeably. Note that the underlying correspondence between103

all the graphs is fixed upon fixing π∗
12, · · · , π∗

1m: for any two graphs Gi and Gj , their underlying104

correspondence is given by π∗
ij := π∗

1j ◦ (π∗
1i)

−1.105

Formally, a matching (µ12, · · · , µ1m) is a collection of injective functions with domain dom(µ1i) ⊆106

V for each i, and co-domain V . An estimator is simply a mechanism to map any collection of graphs107

(G1, · · · , Gm) to a matching. We say that an estimator completely matches the graphs if the output108

mappings µ12, · · ·µ1m are all complete, i.e. they are all permutations on {1, · · · , n}.109

3 Main Results and Algorithm110

This section presents necessary and sufficient conditions to meet Objective 1.111

Theorem 2 (Impossibility). Let G1, · · · , Gm be correlated graphs obtained from the subsampling112

model with parameters C and s, and let π∗
12, · · · , π∗

1m denote the underlying latent correspondences113

between G1 and G2, · · · , Gm respectively. Suppose that114

Cs
(
1− (1− s)m−1

)
< 1.

The output π̂12, · · · , π̂1m of any estimator satisfies115

P (π̂12 = π∗
12, π̂13 = π∗

13, · · · , π̂1m = π∗
1m) = o(1).
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Figure 2: Regions in parameter space. Orange: Exactly matching m graphs is impossible even with
m graphs. Blue: Exactly matching 2 graphs is possible with 2 graphs. Striped: Impossible to match 2
graphs using only the 2 graphs, but possible using m graphs as side information.

Theorem 2 implies that the condition Cs(1 − (1 − s)m−1 > 1 is a necessary condition to exactly116

match m graphs with probability bounded away from 0. We show that this condition is also sufficient117

to exactly match m graphs with probability going to 1.118

Theorem 3 (Achievability). Let G1, · · · , Gm be correlated graphs obtained from the subsampling119

model with parameters C and s, and let π∗
12, · · · , π∗

1m denote the underlying latent correspondences120

between G1 and G2, · · · , Gm respectively. Suppose that121

Cs
(
1− (1− s)m−1

)
> 1.

There is an estimator whose output π̂12, · · · , π̂1m satisfies122

P (π̂12 = π∗
12, π̂13 = π∗

13, · · · , π̂1m = π∗
1m) = 1− o(1).

Theorems 2 and 3 together characterize the threshold for exact recovery. A few remarks are in order.123

1. For m = 2, the condition Cs(1− (1− s)m−1) > 1 reduces to Cs2 > 1, which is known to124

be necessary and sufficient for exactly matching two graphs [CK17, WXY22].125

2. For any m > 2, there is a non-empty region in the parameter space defined by

Cs(1− (1− s)m−1) > 1 > Cs2.

For any C and s in this region, it is impossible to exactly match any two graphs Gi and Gj126

without using the other m− 2 graphs as side information. Upon using them, however, it is127

possible to exactly match all nodes across the m graphs. This is illustrated in Figure 2.128

3.1 Algorithms for exact recovery129

For any two graphs H1 and H2 on the same vertex set V , denote by H1 ∨H2 their union graph and130

by H1 ∧H2 their intersection graph. An edge {i, j} is present in H1 ∨H2 if it is present in either131

H1 or H2. Similarly, the edge is present in H1 ∧H2 if it is present in both H1 and H2.132

A natural starting point is to study the maximum likelihood estimator (MLE) because it is optimal.133

To that end, we compute the log-likelihood function; the details are deferred to Appendix A.134

Theorem 4. Let π12, · · · , π1m denote a collection of permutations on {1, · · · , n}. Then135

logP (G1, · · · , Gm | π∗
12 = π12, · · · , π∗

1m = π1m) ∝ const.− |E (G1 ∨Gπ12
2 ∨ · · · ∨Gπ1m

m )| ,
where const. depends only on p, s and G1, · · · , Gm.136

Theorem 4 reveals that the MLE for exactly matching m graphs has a neat interpretation: simply pick137

π12, · · · , π1m to minimize the number of edges in the corresponding union graph. This is presented138

as Algorithm 1. Despite this nice interpretation of the MLE, its analysis is quite cumbersome. We139

instead present and analyze a different estimator, presented as Algorithm 2.140
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Algorithm 1: Maximum likelihood estimator

require : Graphs G1, G2, · · · , Gm on a common vertex set V

1 for (π12, π13, · · · , π1m) such that each π1j is a permutation on [n] do
2 W (π12, · · · , π1m)← |E(G1 ∨Gπ12

2 ∨ · · · ∨Gπ1m
m )|

3 end

4 return (π̂ML
12 , · · · , π̂ML

1m) ∈ argmaxπ12,··· ,π1m
W (π12, · · · , π1m)

Algorithm 2: Matching through transitive closure

require : Graphs G1, G2, · · · , Gm on a common vertex set V , Integer k

// Step 1: Pairwise matching

1 for {i, j} in {1, · · · ,m} such that i < j do

2 ν̂ij ← argmaxπ |corek
(
Gi ∧Gπ

j

)
|

3 µ̂ij ← ν̂ij with domain restricted to corek(Gi ∧G
ν̂ij

j ) // k-core estimator
4 end
// Step 2: Boosting through transitive closure

5 for v ∈ V do
6 for j = 2, · · · ,m do
7 if there is a sequence of indices 1 = k1, · · · , kℓ = j in [m] such that

µ̂kℓ−1,j ◦ · · · ◦ µ̂k2,k3
◦ µ̂1,k2

(v) = v′ for some v′ ∈ [n] then
8 Set π̂1j(v) = v′

9 end
10 end
11 end
12 return π̂12, · · · , π̂1m

Algorithm 2 runs in two steps: In step 1, the k-core estimator, for a suitable choice of k, is used141

to pairwise match all the graphs. For any i and j, the k-core estimator selects a permutation ν̂ij142

to maximize the size of the k-core1 of Gi ∧G
ν̂ij

j . It then outputs a matching µ̂ij by restricting the143

domain of ν̂ij to corek(Gi ∧G
ν̂ij

j ). These matchings µ̂ij need not be complete - in fact, each of them144

is a partial matching with high probability whenever Cs2 < 1. In step 2, these partial matchings145

are boosted as follows: If a node v is unmatched between two graphs Gi and Gj , then search for a146

sequence of graphs Gi, Gk1
, · · · , Gkℓ

, Gj such that v is matched between any two consecutive graphs147

in the sequence. If such a sequence exists, then extend µ̂i,j to include v by transitively matching it148

from Gi to Gj .149

In Section 4.2, we show that Algorithm 2 correctly matches all nodes across all graphs with probability150

1 − o(1), whenever the necessary condition Cs(1 − (1 − s)m−1) > 1 holds. We remark that this151

also implies that Algorithm 1 succeeds under the same condition, because the MLE is optimal. Note152

that the MLE selects all permutations π̂12, · · · , π̂1m simultaneously based on their union graph. In153

contrast, Algorithm 2 only ever makes pairwise comparisons between graphs. Perhaps surprisingly, it154

turns out that this is sufficient for exact recovery. An analysis of Algorithm 2 is presented in Section 4.155

Along the way, independent results of interest on the k-core of Erdős-Rényi graphs are obtained.156

1The k-core of a graph G is the largest subset of vertices corek(G) such that the induced subgraph has
minimum degree at least k.
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4 Proof Outlines and Key Insights157

4.1 Impossibility of exact graph matching (Theorem 2)158

This result has a simple proof following a genie-aided converse argument. The idea is to reduce the159

problem to that of matching two graphs by providing extra information to the estimator.160

Proof of Theorem 2. If the correspondences π∗
12, · · · , π∗

1,m−1 were provided as extra information to161

an estimator, then the estimator must still match Gm with the union graph G′
1 ∨G′

2 ∨ · · · ∨G′
m−1.162

This can be viewed as an instance of matching two graphs obtained by asymmetric subsampling:163

the graph Gm is obtained from a parent graph G ∼ ER(n,C log(n)/n) by subsampling each edge164

independently with probability s1 := s, and the graph G̃m−1 := G′
1 ∨G′

2 ∨ · · · ∨G′
m−1 is obtained165

from G by subsampling each edge independently with probability s2 := 1− (1− s)m−1. Cullina166

and Kiyavash studied this model for matching two graphs: Theorem 2 of [CK17] establishes that167

matching Gm and G̃m−1 is impossible if Cs1s2 < 1, or equivalently if Cs(1− (1− s)m−1) < 1.168

4.2 Achievability of exact graph matching (Theorem 3)169

Algorithm 2 succeeds if both step 1 and step 2 succeed, i.e.170

1. Each instance of pairwise matching using the k-core estimator is correct on its domain, i.e.

µ̂ij(v) = π∗
ij(v) ∀v ∈ dom(µ̂ij), ∀i, j.

2. For each node v and any two graphs Gi and Gj , there is a sequence of graphs such that v171

can be transitively matched through those graphs between Gi and Gj .172

On step 1 This falls back to the regime of analyzing the performance of the k-core estimator in the173

setting of two graphs. Cullina and co-authors [CKMP19] showed that the k-core estimator is precise:174

For any two correlated graphs Gi and Gj with p = C log(n)/n and constant s, the k-core estimator175

correctly matches all nodes in corek(G
′
i ∧G′

j) with probability 1− o(1). In fact, this is true for any176

C > 0 and for any k ≥ 13 [RS23]. Therefore, using the fact that the number of instances of pairwise177

matchings is constant whenever m is constant, a union bound reveals178

P(∃ 1 ≤ i < j ≤ m such that µ̂ij(v) ̸= π∗
ij(v) for some v ∈ corek(G

′
i ∧G′

j))

≤
m∑
i=1

m∑
j=1

P
(
µ̂i,j(v) ̸= π∗

i,j(v) for some v ∈ corek(G
′
i ∧G′

j)
)

= o(1).

We have proved the following.179

Proposition 5. Let G1, · · · , Gm be correlated graphs from the subsampling model. Let k ≥ 13 and180

let µ̂ij denote the matching output by the k-core estimator on graphs Gi and Gj . Then,181

P(∃ 1 ≤ i < j ≤ m, and v ∈ corek(G
′
i ∧G′

j)) such that µ̂ij(v) ̸= π∗
ij(v)) = o(1).

On step 2 The challenging part of the proof is to show that boosting through transitive closure182

matches all the nodes with probability 1 − o(1) if Cs(1 − (1 − s)m−1) > 1. It is instructive to183

visualize this using transitivity graphs.184

Definition 6 (Transitivity graph,H(v)). For each node v ∈ V , letH(v) denote the graph on the vertex185

set {g1, · · · , gm} such that an edge {gi, gj} is present inH(v) if and only if v ∈ corek(G
′
i ∧G′

j).186

On the event that each instance of pairwise matching using the k-core is correct, the edge {gi, gj}187

is present inH(v) if and only if v is correctly matched using the k-core estimator between Gi and188

Gj , i.e. π∗
1i(v) is matched to π∗

1j(v). Thus, in order for Step 2 to succeed (i.e. to exactly match all189

vertices across all graphs), it suffices that the graphH(v) is connected for each node v ∈ V . However,190

studying the connectivity of the transitivity graphs is challenging because in any graph H(v), no191

two edges are independent. This is because the k-cores of any two intersection graphs G′
a ∧G′

b and192

G′
c ∧ G′

d are correlated, because all the graphs Ga, Gb, Gc and Gd are themselves correlated. To193

overcome this, we introduce another graph H̃(v) that relates toH(v) and is amenable to analysis.194
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Definition 7. For each node v ∈ V , let H̃(v) denote a complete weighted graph on the vertex set195

{g1, · · · , gm} such that the weight on any edge {gi, gj} is c̃v (i, j) := δG′
i∧G′

j
(v).196

The relationship between the graphsH(v) and H̃(v) stems from a useful relationship between the197

degree of node v in G′
i ∧ G′

j and the inclusion of v in corek(G
′
i ∧ G′

j) for each i and j. Since198

this result is of independent interest in the study of random graphs, we state it below for general199

Erdős-Rényi graphs.200

Lemma 8. Let n and k be positive integers and let G ∼ ER(n, α log(n)/n) for some α > 0. Let v201

be a node of G and let δG(v) denote the degree of v in G. Then,202

P ({v /∈ corek(G)} ∩ {δG(v) ≥ k + 1/α}) = o (1/n) . (1)

For any i and j, the graph G′
i ∧G′

j ∼ ER(n,Cs2 log(n)/n). Thus, Lemma 8 implies that with prob-203

ability 1− o(1/n), if a pair {gi, gj} has edge weight c̃ij ≥ k+ 1/α in H̃(v), then the corresponding204

edge {gi, gj} is present in the transitivity graphH(v). Equivalently, v is correctly matched between205

Gi and Gj in the instance of pairwise k-core matching between them.206

The graphH(v) is not connected only if it contains a (non-empty) vertex cut U ⊂ {1, · · · ,m} with207

no edge crossing between U and U c. Let cv(U) denote the number of such crossing edges inH(v).208

Furthermore, define the cost of the cut U in H̃(v) as209

c̃v(U) :=
∑
i∈U

∑
j∈Uc

c̃v (i, j) .

Lemma 8 is a statement about a single graph, but we show it can be invoked to prove the following.210

Theorem 9. Let G1, · · · , Gm be correlated graphs from the subsampling model with parameters C211

and s. Let v ∈ V and let U be a vertex cut of {1, · · · ,m} such that |U | ≤ ⌊m/2⌋. Then,212

P
(
{cv(U) = 0} ∩

{
c̃v(U) >

m2

4

(
k +

1

Cs2

)})
= o(1/n). (2)

It suffices therefore to analyze the probability that the graph H̃(v) has a cut U such that its cost c̃v(U)213

is too small. To that end, we show that the bottleneck arises from vertex cuts of small size. Formally,214

Theorem 10. Let G1, · · · , Gm be correlated graphs from the subsampling model. Let v ∈ V and215

let Uℓ denote the set {1, · · · , ℓ} for ℓ in {1, · · · , ⌊m/2⌋}. For any vertex cut U of {1, · · · ,m}, let216

c̃v(U) denote its cost in the graph H̃(v). The following stochastic ordering holds:217

c̃v(U1) ⪯ c̃v(U2) ⪯ · · · ⪯ c̃v(U⌊m/2⌋).

Theorems 9 and 10 imply that the tightest bottleneck to the connectivity of H(v) is the event that218

c̃v(U1) is below the threshold r := m2

4

(
k + 1

Cs2

)
, i.e. the sum of degrees of v over the intersection219

graphs (G1 ∧ G′
j : j = 2, · · · ,m) is less than r. This event occurs only if the degree of v is less220

than r in each of the intersection graphs (G1 ∧G′
j : j = 2, · · · ,m). However, under the condition221

Cs(1− (1− s)m−1) > 1, it turns out that this event occurs with probability o(1/n).222

Theorem 11. Let G1, · · · , Gm be obtained from the subsampling model with parameters C and s.223

Let r = m2

4

(
k + 1

Cs2

)
. Let v ∈ [n] and suppose that Cs(1− (1− s)m−1) > 1. Then,224

P (c̃v(U1) ≤ r) ≤ P
({

δG1∧G′
2
(v) ≤ r

}
∩ · · · ∩

{
δG1∧G′

m
(v) ≤ r

})
= o (1/n) .

4.3 Piecing it all together: Proof of Theorem 3225

Proof of Theorem 3. Let π̂12, · · · , π̂1m denote the output of Algorithm 2 with k ≥ 13. Let E1 (resp.226

E2) denote the event that Algorithm 1 (resp. Algorithm 2) fails to match all m graphs exactly, i.e.227

E1 =
{
π̂ML
12 ̸= π∗

12

}
∪ · · · ∪

{
π̂ML
1m ̸= π∗

1m

}
, E2 = {π̂12 ̸= π∗

12} ∪ · · · ∪ {π̂1m ̸= π∗
1m} .
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First, we show that the output of Algorithm 2 is correct with probability 1− o(1) whenever Cs(1−228

(1− s)m−1) > 1. If the event E2 occurs, then either step 1 failed, i.e. there is a k-core matching µ̂ij229

that is incorrect, or step 2 failed, i.e. at least one of the graphsH(v) is not connected. Therefore,230

P (E2) ≤ P

⋃
i,j

⋃
v∈corek(G′

i∧G′
j)

{
µ̂ij ̸= π∗

ij

}+ P

(⋃
v∈V

{H(v) is not connected}

)
≤ o(1) +

∑
v∈V

qv,

where the last step uses Proposition 5, and qv denotes the probability that the transitivity graphH(v)231

is not connected. For each ℓ in the set {1, · · · , ⌊m/2⌋}, let Uℓ denote the set {1, · · · , ℓ}. Then,232

qv= P

⌊m/2⌋⋃
ℓ=1

{∃ U ⊂ {1, · · · ,m} : |U | = ℓ and cv(U) = 0}


≤

⌊m/2⌋∑
ℓ=1

(
m

ℓ

)
· P (cv(Uℓ) = 0)

≤
⌊m/2⌋∑
ℓ=1

(
m

ℓ

)[
P
(
c̃v(Uℓ) ≤

m2

4

(
k+

1

Cs2

))
+P

(
{cv(Uℓ) = 0} ∩

{
c̃v(Uℓ) >

m2

4

(
k+

1

Cs2

)})]
(a)
≤

⌊m/2⌋∑
ℓ=1

(
m

ℓ

)[
P
(
c̃v(Uℓ) ≤

m2

4

(
k+

1

Cs2

))
+o

(
1

n

)]
(b)
≤

⌊m/2⌋∑
ℓ=1

(
m

ℓ

)[
P
(
c̃v(U1) ≤

m2

4

(
k+

1

Cs2

))
+o

(
1

n

)]
(c)
≤

⌊m/2⌋∑
ℓ=1

mℓ

[
o

(
1

n

)
+ o

(
1

n

)]
= o

(
1

n

)
.

Here, (a) uses Theorem 9, and (b) uses the fact that for any ℓ ≥ 2, the random variable c̃v(Uℓ)233

stochastically dominates c̃v(U1) (Theorem 10). Finally, (c) uses Theorem 11 and the fact that234

Cs(1− (1− s)m−1) > 1. Therefore, a union bound over all the nodes yields235

P (E2) ≤ o(1) +
∑
v∈V

qv ≤ o(1) + n× o(1/n) = o(1).

Finally, by optimality of the MLE, it follows that

P (E1) ≤ P (E2) = o(1),

whenever Cs(1− (1− s)m−1) > 1. This concludes the proof.236

5 Discussion and Future Work237

In this work, we introduced and analyzed matching through transitive closure - an approach that238

combines information from multiple graphs to recover the underlying correspondence between them.239

Despite its simplicity, it turns out that matching through transitive closure is an optimal way to240

combine information in the setting where the graphs are pairwise matched using the k-core estimator.241

A limitation of our algorithms is the runtime: Algorithm 2 does not run in polynomial time because242

it uses the k-core estimator for pairwise matching, which involves searching over the space of243

permutations. Even so, it is useful to establish the fundamental limits of exact recovery, and serve as244

a benchmark to compare the performance of any other algorithm.245

The transitive closure subroutine (Step 2) itself is efficient because it runs in polynomial time O(mn).246

Therefore, a natural next step is to modify Step 1 in our algorithm so that the pairwise matchings are247

done by an efficient algorithm. However, it is not clear if transitive closure is optimal for combining248

information from the pairwise matchings in this setting. For example, there is a possibility that249

the pairwise matchings resulting from the efficient algorithm are heavily correlated, and transitive250

closure is unable to boost them. In Figure 3, we show experimentally that this is not the case for two251

algorithms of interest: GRAMPA [FMWX22] and Degree Profiles [DMWX21].252
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Figure 3: Matching through transitive closure

1. GRAMPA is a spectral algorithm that uses the entire spectrum of the adjacency matrices to253

match the two graphs. The code is available in [FMWX20].254

2. Degree Profiles associates with each node a signature derived from the degrees of its255

neighbors, and matches nodes by signature proximity. The code is available in [DMWX20].256

Evidently, both algorithms benefit substantially from using transitive closure to boost the number of257

matched nodes. This suggests that transitive closure can be a practical algorithm to boost matchings258

between networks by using other networks as side-information. Unfortunately, both GRAMPA and259

Degree Profiles require the graphs to be close to isomorphic in order to perform well, and so they260

do not perform well when the model parameters are close to the information theoretic threshold for261

exact recovery. Subsequently, they cannot be used to answer the question in Objective 1.262

Our work presents several directions for future research.263

• Polynomial-time algorithms. Using a polynomial-time estimator in place of the k-core264

estimator in Step 1 of Algorithm 2 yields a polynomial-time algorithm to match m graphs.265

It is critical that the estimator in question is able to identify for itself the nodes that it has266

matched correctly - this precision is present in the k-core estimator and enables the transitive267

closure subroutine to work correctly. Can the performance guarantees of the k-core estimator268

be realized through polynomial time algorithms that meet this constraint?269

• Beyond Erdős-Rényi graphs. The study of matching two ER graphs provided tools and270

techniques that extended to the analysis of more realistic models. For instance, the k-271

core estimator itself played a crucial role in establishing limits to matching two correlated272

stochastic block models [GRS22] and two inhomogeneous random graphs [RS23]. Can the273

techniques developed in the present work be used to identify the information theoretic limits274

to exact recovery in these models in the general setting of m graphs?275

• Boosting for partial recovery. This work focused on exact recovery, where the objective is276

to match all nodes across all graphs. It would be interesting to consider a regime where any277

instance of pairwise matching recovers at best a small fraction of nodes. Is it possible to278

quantify the extent to which transitive closure boosts the number of matched nodes?279

• Robustness. Finally, how sensitive to perturbation is the transitive closure algorithm? Is280

it possible to quantify the extent to which an adversary may perturb edges in some of the281

graphs without losing the performance guarantees of the matching algorithm? Algorithms282

that perform well on models such as ER graphs and are further generally robust are expected283

to also work well with real-world networks.284
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A Maximum Likelihood Estimator366

Recall the form of the maximum likelihood estimator as claimed in Theorem 4.367

Theorem 4. Let π12, · · · , π1m denote a collection of permutations on {1, · · · , n}. Then368

logP (G1, · · · , Gm | π∗
12 = π12, · · · , π∗

1m = π1m) ∝ const.− |E (G1 ∨Gπ12
2 ∨ · · · ∨Gπ1m

m )| ,

where const. depends only on p, s and G1, · · · , Gm.369

Proof. Notice that370

P (G1, · · · , Gm|π∗
12, · · · , π∗

1m) =
∏

e∈([n]
2 )

P (G1(e), G2(π
∗
12(e)) · · · , Gm(π∗

1m(e)) | π∗
12, · · · , π∗

1m)

=
∏

e∈([n]
2 )

P (G1(e), G
′
2(e) · · · , G′

m(e)) (3)

where for a node pair e = {u, v}, the shorthand π(e) denotes {π(u), π(v)}. The edge status of371

any node pair e in the graph tuple (G1, G
′
2, · · · , G′

m) can be any of the 2m bit strings of length372

m, but the corresponding probability in (3) depends only on the number of ones and zeros in373

the bit string. For i ∈ [m], let αi denote the number of node pairs e whose corresponding tuple374

(G1(e), G
′
2(e), · · · , G′

m(e)) has exactly i 1’s:375

αi :=
∑

e∈([n]
2 )

1 {(G1(e), G
′
2(e), · · · , G′

m(e)) has exactly i 1’s} .

Two key observations are in order. First, it follows by definition that α0 + α1 + · · · + αm =
(
n
2

)
.376

Second, by definition of αi, it follows that377

m∑
i=0

iαi =
∑

e∈([n]
2 )

m∑
j=1

Gj(e) =
∑

e∈([n]
2 )

m∑
j=1

G′
j(e) (4)

is constant, independent of π∗
12, · · · , π∗

1m. It follows then that378

(3) = (1− p+ p(1− s)m)
α0 ×

m∏
i=1

(
psi(1− s)m−i

)αi

= (1− p+ p(1− s)m)
α0 × p

∑m
i=1 αi ×

m∏
i=1

(
si(1− s)m−i

)αi

= (1− p+ p(1− s)m)
α0 × p(

n
2)−α0 ×

(
s

1− s

)∑m
i=1 iαi

× (1− s)m
∑m

i=1 αi

=

(
1− p+ p(1− s)m

p(1− s)m

)α0

× (p(1− s)m)(
n
2) ×

(
s

1− s

)∑m
i=1 iαi

∝
(
1 +

1− p

p(1− s)m

)α0

,

where the last step uses (4). Finally, since 1−p
p(1−s)m > 0, it follows that the log-likelihood satisfies379

log (P (G1, · · · , Gm | π∗
12, · · · , π∗

1m)) ∝ const. + α0,

i.e. maximizing the likelihood corresponds to selecting π12, · · · , π1m to maximize α0 - the number380

of node pairs e for which G1(e) = G2(π12(e)) = · · · = Gm(π1m(e)) = 0. This is equivalent to381

minimizing the number of edges in the union graph G1 ∨Gπ12
2 ∨ · · · ∨Gπ1m

m , as desired.382

Remark 12. In the case of two graphs, minimizing the number of edges in the union graph G1 ∨π G2383

is equivalent to maximizing the number of edges in the intersection graph G1∧πG2. This is consistent384

with existing literature on two graphs [CK16, WXY22].385
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B Concentration Inequalities for Binomial Random Variables386

The following bounds for the binomial distribution are used frequently in the analysis.387

Lemma 13. Let X ∼ Bin(n, p). Then,388

1. For any δ > 0,389

P (X ≥ (1 + δ)np) ≤
(

eδ

(1 + δ)1+δ

)np

≤
(

e

1 + δ

)(1+δ)np

. (5)

2. For any δ > 5,390

P (X ≥ (1 + δ)np) ≤ 2−(1+δ)np. (6)

3. For any δ ∈ (0, 1),391

P (X ≤ (1− δ)np) ≤
(

e−δ

(1− δ)1−δ

)np

. (7)

Proof. All proofs follow from the Chernoff bound and can be found, or easily derived, from Theorems392

4.4 and 4.5 of [MU17].393

C Proof of Lemma 8394

We restate Lemma 8 for convenience.395

Lemma 8. Let n and k be positive integers and let G ∼ ER(n, α log(n)/n) for some α > 0. Let v396

be a node of G and let δG(v) denote the degree of v in G. Then,397

P ({v /∈ corek(G)} ∩ {δG(v) ≥ k + 1/α}) = o (1/n) . (1)

Before presenting the proof, we present the intuition behind it. The events {v /∈ corek(G)} and398

{δG(v) ≥ k + 1/α} are highly negatively correlated. However, consider the subgraph (G− v) of399

G induced on the vertex set V − {v}, and note that the k-core of this subgraph does not depend on400

the degree of v. Furthermore, if v /∈ corek(G), then it must be that v has fewer than k neighbors in401

corek(G− v). Intuitively, this event has low probability if corek(G− v) is sufficiently large.402

Notice that (G− v) ∼ ER(n− 1, α log(n)/n), and so standard results about the size of the k-core403

of Erdős-Rényi graphs apply. However, we require the error probability that the k-core of G − v404

is too small to be o(1/n) - this is crucial since we will later use a union bound over all the nodes405

v. Unfortunately, standard results such as [Łuc91] can only be invoked directly to show that the406

corresponding probability is o(1), which is insufficient for our purpose. Later in this section, we407

refine the analysis in [Łuc91] to obtain the desired convergence rate. The refinement culminates in408

the following.409

Lemma 14. Let α > 0 and G ∼ ER(n, α log(n)/n). Let v be a node of G. The size of the k-core of410

G− v satisfies411

P
(
|corek(G− v)| < n− 3n1−α

)
= o(1/n).

The proof of Lemma 14 is deferred to Appendix C.1. It remains to study the error event that v412

has too few neighbors in corek(G − v). To count the number of neighbors of v in corek(G − v),413

we exploit the independence of corek(G − v) and v as follows: each neighbor of v is considered414

a success if it belongs to corek(G− v) and a failure otherwise. Counting the number of successes415

is equivalent to sampling with replacement δG(v) elements, each of which is independently a416

success with probability |corek(G− v)|/ (n− 1). The number of successes then follows precisely a417

hypergeometric distribution. This intuition is made rigorous in the proof below.418

Let us recall some facts about the hypergeometric distribution because it plays an important role in419

the proof. Denote by HypGeom(N,K, n) a random variable that counts the number of successes in420

a sample of n elements drawn without replacement from a population of N individuals, of which421
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K elements are considered successes. Note that if this sampling were done with replacement, then422

the number of successes would follow a Bin (n,K/N) distribution. A result of Hoeffding [Hoe94]423

establishes that the HypGeom(N,K, n) distribution is convex-order dominated by the Bin (n,K/N)424

distribution, i.e.425

E [f(HypGeom(N,K, n))] ≤ E [f(Bin(n,K/N))] for all convex functions f.

In particular, the function f(x) = etx is convex for any value of t, and so Chernoff bounds that hold426

for the binomial distribution also hold for the corresponding hypergeometric distribution. This yields427

the following proposition.428

Proposition 15. Let X ∼ HypGeom(N,K, n). It follows for any δ > 0 that429

P
(
X > (1 + δ)× nK

N

)
≤
(

eδ

(1 + δ)1+δ

)nK/N

≤
(

e

1 + δ

)(1+δ)nK/N

.

Our final remark about the hypergeometric distribution is a symmetry property. By interchanging the430

success and failure states, it follows that431

P (HypGeom(N,K, n) = k) = P (HypGeom(N,N −K,n) = n− k) .

The above intuition for the proof of Lemma 8 is formalized below.432

Proof of Lemma 8. Let V denote the vertex set of G, and let G− v denote the induced subgraph of433

G on the vertex set V − {v}. For any set A ⊆ V , let Nv(A) denote the set of neighbors of v in the434

set A, i.e.435

Nv(A) := {u ∈ A : {u, v} ∈ E(G)} .

Since corek(G− v) ⊆ corek(G), it is true that436

{v /∈ corek(G)} ⊆ {|Nv(corek(G))| ≤ k − 1} ⊆ {|Nv(corek(G− v))| ≤ k − 1} .

It follows that437

P ({v /∈ corek(G)} ∩ {δG(v) ≥ k + 1/α}) ≤ p1 + p2,

where438

p1 = P
(
{Nv(corek(G− v)) ≤ k − 1} ∩ {δG(v) ≥ k + 1/α} ∩

{
|corek(G− v)| < n− 3n1−α

})
p2 = P

(
{Nv(corek(G− v)) ≤ k − 1} ∩ {δG(v) ≥ k + 1/α} ∩

{
|corek(G− v)| ≥ n− 3n1−α

})
It suffices to show that both p1 and p2 are o(1/n). The term p1 deals with the probability that the439

k-core of G− v is too small. In fact, by Lemma 14, it follows directly that440

p1 ≤ P
(
|corek(G− v)| < n− 3n1−α

)
= o(1/n),

Next, the probability p2 is analyzed. Enumerate arbitrarily but independently the elements of sets441

Nv(V ) and corek(G− v), so that442

Nv(V ) =
{
v1, · · · , vδG(v)

}
, corek(G− v) =

{
a1, · · · , a|corek(G−v)|

}
.

Given that Nv(V ) has more than k + 1/α nodes and corek(G− v) has more than n− 3n1−α nodes,443

it is true that444

Nv(corek(G− v)) = Nv(V ) ∩ corek(G− v)

⊇
{
v1, · · · , v⌈k+1/α⌉

}
∩
{
a1, · · · , a⌈n−3n1−α⌉

}
=: Ñv(c̃orek(G− v)).

In words, Ñv(c̃orek(G− v)) counts among the first ⌈k + 1/α⌉ neighbors of v those nodes that are445

also in the first ⌈n− 3n1−α⌉ nodes of corek(G− v). Therefore,446

p2 = P
(
{Nv(corek(G− v)) ≤ k − 1} ∩ {δG(v) ≥ k + 1/α} ∩

{
|corek(G− v)| ≥ n− 3n1−α

})
≤ P

(
{Nv(corek(G− v)) ≤ k − 1}

∣∣ δG(v) ≥ k + 1/α, |corek(G− v)| ≥ n− 3n1−α
)

≤ P
(
{Ñv(c̃orek(G− v)) ≤ k − 1}

∣∣ δG(v) ≥ k + 1/α, |corek(G− v)| ≥ n− 3n1−α
)

(8)
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Note that corek(G − v) is entirely determined by the graph G − v, i.e. it is independent of the447

neighbors of v. Consequently, the two sets
{
v1, · · · , v⌈k+1/α⌉

}
and {a1, · · · , a⌈n−3n1−α⌉} are448

selected independent of each other. Equivalently, given that |corek(G − v)| ≥ n − 3n1−α and449

δG(v) ≥ k + 1/α, the size of the intersection set Ñv(c̃orek(G − v)) follows a hypergeometric450

distribution with parameters (n− 1, ⌈n− 3n1−α⌉, ⌈k + 1/α⌉). Therefore,451

(8) = P
(
HypGeom(n− 1, ⌈n− 3n1−α⌉, ⌈k + 1/α⌉) ≤ k − 1

)
(a)
= P

(
HypGeom(n− 1, n− 1− ⌈n− 3n1−α⌉, ⌈k + 1/α⌉) ≥ ⌈k + 1/α⌉ − (k − 1)

)
= P

(
HypGeom(n− 1, ⌊3n1−α⌋ − 1, ⌈k + 1/α⌉) ≥ 1 + 1/α

)
(9)

where (a) uses the symmetry of the hypergeometric distribution. Using Proposition 15 and the fact452

that n− 1 ≥ n/2 for any n ≥ 1 yields453

(9) ≤
(
e · ⌈k + 1/α⌉

1 + 1/α
· ⌊3n

1−α⌋
n− 1

)1+1/α

≤
(
6e⌈k + 1/α⌉
1 + 1/α

)1+1/α

× n−1−α

= o(1/n),

whenever α > 0.454

C.1 Proof of Lemma 14455

A key ingredient towards proving Lemma 14 is a useful result about the number of low-degree456

vertices in an Erdős-Rényi graph, presented next.457

Proposition 16. Let α > 0 and G ∼ ER (n− 1, α log(n)/n). Let r be a positive integer and let Zr458

denote the set of vertices in G with degree no more than r, i.e.459

Zr = {v ∈ V (G) : δG(v) ≤ r} .
For any δ such that δ > 1− α, it is true that460

P
(
|Zr| ≥ nδ

)
= o(1/n).

Proof. Notice that461

P
(
|Zr| ≥ nδ

)
= P

(
∃S′ ⊆ V :

{
|S′| ≥ nδ

}
∩
{
max
i∈S′

δG(i) ≤ r

})
≤ P

(
∃ S ⊆ V :

{
|S| = nδ

}
∩
{
max
i∈S

δG(i) ≤ r

})
≤ P

(
∃ S ⊆ V :

{
|S| = nδ

}
∩

{∑
i∈S

δG(i) ≤ r|S|

})
. (10)

If |S| = nδ, then the sum of degrees of vertices in S is the total number of edges with exactly462

end point in S, plus twice the number of edges with both end points in S. There are exactly463 (|S|
2

)
+ |S| (n− 1− |S|) ≤ n1+δ such vertex pairs, and each of them independently has an edge464

with probability α log(n)/n. Therefore, a union bound over all possible choices of S yields465

(10) ≤
(
n− 1

nδ

)
· P
(
Bin

(
n1+δ, α log(n)/n

)
+ Bin

(
n2δ/2, α log(n)/n

)
≤ rnδ

)
≤
(
n− 1

nδ

)
· P
(
Bin

(
n1+δ, α log(n)/n

)
≤ rnδ

)
(a)
≤
(ne
nδ

)nδ

×
(

exp (r/(α log n)− 1)

(r/(α log n))r/(α logn)

)nδα log(n)

= o(1/n),

whenever δ > 1− α as desired. Note that (a) uses the Binomial concentration inequality (7) and the466

fact that
(
n−1
k

)
≤
(
n
k

)
≤
(
ne
k

)k
.467
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Algorithm 3: Łuczak expansion

require : Graph G, Set U ⊆ V (G).

1 U0 ← U
2 for i = 0, 1, 2, 3, · · · do
3 if there exists u ∈ V \ Ui such that u has 3 or more neighbors in Ui then
4 Ui+1 ← Ui ∪ {u}
5 else
6 return Ui

7 end
8 end

Our objective is to show that the k-core of G− v is sufficiently large with probability 1− o(1/n).468

To that end, consider Algorithm 3 to identify a subset of the k-core, originally proposed by469

Łuczak [Łuc91].470

Note that the for loop eventually terminates - the set V \ Ui is empty, for example when i = n471

for any input set U . The key is to realize that the for loop terminates much faster when the input472

U = Zk+1 , i.e the set of vertices of the input graph G whose degree is k + 1 or less. Furthermore,473

the complement of the set output by the algorithm is contained in the k-core. Formally,474

Lemma 17. Let Uf be the output of Algorithm 3 with input graph G− v and set U = Zk+1. Then,475

(a) U c
f ⊆ corek(G− v).476

(b) For any δ > 1− α,477

P
(
|Uf | > 3nδ

)
= o(1/n).

Proof. (a) The proof is by construction: Since Uf is obtained by adding exactly f nodes to U0, it478

follows that U c
f ⊆ U c

0 = Zc
k+1, so each node in U c

f has degree k + 2 or more in G− v. Further, each479

node in U c
f has at most 2 neighbors in Uf , else the for loop would not have terminated. Thus, the480

subgraph of G− v induced on the set U c
f has minimum degree at least k, and the result follows.481

(b) If |Uf | > 3nδ , then either |U0| > 3nδ or there is some M in {0, 1, · · · , f} for which |UM | = 3nδ .482

Therefore,483

P
(
|Uf | > 3nδ

)
≤ P

(
|U0| > 3nδ

)
+ P

(
∃M ∈ {0, 1, · · · , f} s.t. |UM | = 3nδ

)
= o(1/n) + P

(
∃M ∈ {0, 1, · · · , f} s.t. |UM | = 3nδ

)︸ ︷︷ ︸
(⋆)

,

by Proposition 16. Note that each iteration i = 0, 1, · · · ,M − 1 of the for loop adds exactly 1 vertex484

and at least 3 edges to the subgraph of G− v induced on UM . Therefore, the induced subgraph G|UM
485

has 3nδ vertices and at least 3 (|UM | − |U0|) edges. Thus,486

(⋆) ≤ P
(
∃ subgraph H=(W,F ) of G− v s.t. |W | = 3nδ and |F | ≥ 3

(
3nδ − |U0|

))
≤ P

(
|U0| > nδ

)
+ P

(
∃ subgraph H=(W,F ) of G− v s.t. |W | = 3nδ and |F | ≥ 6nδ

)
≤ o(1/n) +

(
n

3nδ

)
· P
(
Bin

((
3nδ

2

)
,
α log(n)

n

)
> 6nδ

)
︸ ︷︷ ︸

(⋆⋆)

,
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where the last step uses Proposition 16 and a union bound over all possible choices of W . Finally,487

using the relation
(
n
k

)
≤
(
ne
k

)k
and the concentration inequality (5) from Lemma 13 yields488

(⋆⋆) ≤
(
n1−δe

3

)3nδ

P
(
Bin

(
9n2δ

2
,
α log n

n

)
> 6nδ

)
≤ (n1−δ)3n

δ

×
(
3αe log n

4n1−δ

)6nδ

=

(
3αe log n

4n(1−δ)/2

)6nδ

= o(1/n),

whenever 0 < δ < 1. The result follows.489

Finally, notice that Lemma 17 directly implies Lemma 14.490

D Proof of Theorem 9491

Theorem 9. Let G1, · · · , Gm be correlated graphs from the subsampling model with parameters C492

and s. Let v ∈ V and let U be a vertex cut of {1, · · · ,m} such that |U | ≤ ⌊m/2⌋. Then,493

P
(
{cv(U) = 0} ∩

{
c̃v(U) >

m2

4

(
k +

1

Cs2

)})
= o(1/n). (2)

Proof. For any vertex cut U ,494 {
c̃v(U) >

m2

4

(
k +

1

Cs2

)}
(a)
⊆
{
c̃v(U) > |U | (m− |U |)

(
k +

1

Cs2

)}
=

{∑
i∈U

∑
j∈Uc

δG′
i∧G′

j
(v) > |U |(m− |U |)

(
k +

1

Cs2

)}

⊆
⋃
i∈U

⋃
j∈Uc

{
δG′

i∧G′
j
(v) > k +

1

Cs2

}
,

where (a) uses the fact that the maximum of a set of a numbers is greater than or equal to the average.495

On the other hand496

{cv(U) = 0} =
⋂
i∈U

⋂
j∈Uc

{
v /∈ corek(G

′
i ∧G′

j)
}
.

Let p1 denote the probability in the LHS of (2). It follows from the union bound that497

p1 ≤
∑
i∈U

∑
j∈Uc

P
({

v /∈ corek(G
′
i ∧G′

j)
}
∩
{
δG′

i∧G′
j
(v) > k +

1

Cs2

})
= o(1/n),

since for any choice of i and j, the graph G′
i ∧G′

j ∼ ER
(
n,Cs2 log(n)/n

)
.498

E On Stochastic Dominance: Proof of Theorem 10499

The objective of this section is to build up to a proof of Theorem 10. We start by making a simple500

observation about products of Binomial random variables.501

Lemma 18. Let X1, · · · , Xm ∼ Bern(s) be i.i.d. random variables, and let B = X1 + · · ·+Xm502

denote their sum. For each ℓ in {1, 2, · · · , ⌊m/2⌋}, define503

Tℓ = (X1 + · · ·+Xℓ) (Xℓ+1 + · · ·+Xm) .

For any ℓ1, ℓ2 ∈ {1, 2, · · · , ⌊m/2⌋} such that ℓ1 < ℓ2, and for any t ∈ R and any b ∈ {0, 1, · · · ,m},504

P (Tℓ1 > t | B = b) ≤ P (Tℓ2 > t | B = b) . (11)
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Proof of Lemma 18. Consider overlapping but exhaustive cases:505

Case 1: t < 0. Since Tℓ ≥ 0 almost surely for all ℓ, the inequality (11) holds.506

Case 2: t ≥ b− 1. Note that conditioned on B = b, it follows that T1 ∈ {0, b− 1}. Therefore, the507

left hand side of (11) equals zero, and the inequality holds.508

Case 3: b = 0 or b = 1. In this case, Tℓ is identically zero for all ℓ, so (11) holds.509

Case 4: b ≥ 2 and 0 ≤ t < b− 1. For any ℓ ∈ {1, 2, · · · , ⌊m/2⌋},510

P (Tℓ > t | B = b) =
P ({(X1 + · · ·+Xℓ) (Xℓ+1 + · · ·+Xm) > t} ∩ {X1 + · · ·+Xm = b})

P (X1 + · · ·+Xm = b)

=

∑
i:i(b−i)>t P ({X1 + · · ·+Xℓ = i} ∩ {Xℓ+1 + · · ·+Xm = b− i})

P (X1 + · · ·+Xm = b)

(a)
=

∑b−1
i=1 P (X1 + · · ·+Xℓ = i)P (Xℓ+1 + · · ·+Xm = b− i)

P (X1 + · · ·+Xm = b)

(b)
=

∑b−1
i=1

(
ℓ
i

)(
m−ℓ
b−i

)(
m
b

)
=

∑b
i=0

(
ℓ
i

)(
m−ℓ
b−i

)
−
(
m−ℓ
b

)
−
(
ℓ
b

)(
m
b

)
=

(
m
b

)
−
(
m−ℓ
b

)
−
(
ℓ
b

)(
m
b

) , (12)

where (a) used the fact that for any t such that 0 ≤ t < b− 1, it is true that

{i : i(b− i) > t} = {1, 2, · · · , b− 1} .

Here, the notation for binomial coefficients in (b) involves setting
(
n
k

)
= 0 whenever k < 0 or k > n.511

Let fm,b(ℓ) denote the numerator of (12), i.e.512

fm,b(ℓ) :=

(
m

b

)
−
(
m− ℓ

b

)
−
(
ℓ

b

)
It suffices to show that fm,b(ℓ)− fm,b(ℓ− 1) ≥ 0 for all ℓ ∈ {2, · · · , ⌊m/2⌋}. Indeed,513

fm,b(ℓ)− fm,b(ℓ− 1) =

(
m− ℓ+ 1

b

)
−
(
m− ℓ

b

)
−
((

ℓ

b

)
−
(
ℓ− 1

b

))
(c)
=

(
m− ℓ

b− 1

)
−
(
ℓ− 1

b− 1

)
≥ 0,

whenever m− ℓ ≥ ℓ− 1, i.e. ℓ ≤ ⌊m/2⌋. Here, (c) uses the identity
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, and the514

fact that
(
n1

k

)
≥
(
n2

k

)
whenever n1 ≥ n2. This concludes the proof.515

Corollary 19. Let F be a collection of edges in the parent graph G. For any edge er ∈ F , let Xr
i516

denote the indicator random variable G′
i(er) ∼ Bern(ps). For each ℓ in {1, · · · , ⌊m/2⌋}, define517

T r
ℓ = (Xr

1 + · · ·+Xr
ℓ )(X

r
ℓ+1 + · · ·+Xr

m).

Then, for any ℓ1, ℓ2 ∈ {1, · · · , ⌊m/2⌋} such that ℓ1 < ℓ2, the following stochastic ordering holds518

|F |∑
r=1

T r
ℓ1 ⪯

|F |∑
r=1

T r
ℓ2 .

Proof. It suffices to show that T r
ℓ1
⪯ T r

ℓ2
for each r, since the edges are independent. Indeed, we519

have for any t that520

P
(
T r
ℓ1 > t

)
=

m∑
b=0

P (B = b)P
(
T r
ℓ1 > t|B = b

)
≤

m∑
b=0

P (B = b)P
(
T r
ℓ2 > t|B = b

)
= P

(
T r
ℓ2 > t

)
,

which concludes the proof.521
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With this, we are ready to prove Theorem 10. The theorem is restated for convenience.522

Theorem 10. Let G1, · · · , Gm be correlated graphs from the subsampling model. Let v ∈ V and523

let Uℓ denote the set {1, · · · , ℓ} for ℓ in {1, · · · , ⌊m/2⌋}. For any vertex cut U of {1, · · · ,m}, let524

c̃v(U) denote its cost in the graph H̃(v). The following stochastic ordering holds:525

c̃v(U1) ⪯ c̃v(U2) ⪯ · · · ⪯ c̃v(U⌊m/2⌋).

Proof. Let ℓ1, ℓ2 ∈ {1, · · · , ⌊m/2⌋} such that ℓ1 < ℓ2. Let t ∈ R. Consider the parent graph G and526

label the set of incident edges on v as {e1, · · · , eδG(v)}. Denote by Xr
i the indicator random variable527

G′
i(er) ∼ Bern(ps). It follows that528

P (c̃v(Uℓ2) > t) = P

 ℓ2∑
i=1

m∑
j=ℓ2+1

δG′
i∧G′

j
(v) ≥ t


= P

 ℓ2∑
i=1

m∑
j=ℓ2+1

δG(v)∑
r=1

Xr
i X

r
j > t


=

n∑
d=0

P (δG(v) = d)P

(
d∑

r=1

(
(Xr

1 + · · ·+Xr
ℓ2)(X

r
ℓ2+1 + · · ·+Xr

m)
)
> t

)
(a)
≥

n∑
d=0

P (δG(v) = d)P

(
d∑

r=1

(
(Xr

1 + · · ·+Xr
ℓ1)(X

r
ℓ1+1 + · · ·+Xr

m)
)
> t

)

= P

 ℓ1∑
i=1

m∑
j=ℓ1+1

δG(v)∑
r=1

Xr
i X

r
j > t


= P

 ℓ1∑
i=1

m∑
j=ℓ1+1

δG′
i∧G′

j
(v) ≥ t


= P (c̃v(Uℓ1) > t) ,

as desired. Here, (a) uses Corollary 19.529

F On Low Degree Nodes: Proof of Theorem 11530

Theorem 11. Let G1, · · · , Gm be obtained from the subsampling model with parameters C and s.531

Let r = m2

4

(
k + 1

Cs2

)
. Let v ∈ [n] and suppose that Cs(1− (1− s)m−1) > 1. Then,532

P (c̃v(U1) ≤ r) ≤ P
({

δG1∧G′
2
(v) ≤ r

}
∩ · · · ∩

{
δG1∧G′

m
(v) ≤ r

})
= o (1/n) .

Proof. Consider fixed integers r1, · · · , rm such that 0 ≤ r2, · · · , rm ≤ r. Since r is constant, by a533

union bound argument it suffices to show534

(⋆) =: P
({

δG1∧G′
2
(v) = r2

}
∩ · · · ∩

{
δG1∧G′

m
(v) = rm

})
= o (1/n) .

Proceed by conditioning on the degree of v in G1, which follows a Bin(n, ps) distribution. Since535

the degrees of v in the intersection graphs {G1 ∧G′
i : i = 2, · · · ,m} are conditionally independent536

given the degree of v in G1, we have537

(⋆) = ED

[
P
( m⋂

i=2

{
δG1∧G′

i
(v) = ri

} ∣∣∣δG1(v) = D
)]

= ED

[
m∏
i=2

P
({

δG1∧G′
i
(v) = ri

} ∣∣∣δG1
(v) = D

)]

= ED

[
m∏
i=2

(
D

ri

)
sri(1− s)D−ri

]
. (13)
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Using the fact that
(
D
ri

)
≤
(

De
ri

)ri
, it follows that538

(13) ≤
(

se

1− s

)∑m
i=2 ri

·
m∏
i=2

r−ri
i × ED

[
D

∑m
i=2 ri × (1− s)

(m−1)D
]

≤ const.× ED

[
D

∑m
i=2 ri × (1− s)

(m−1)D
]
. (14)

Expanding out the expectation yields539

(14) = const.×
n∑

d=0

Ld, where Ld := d
∑m

i=2 ri(1− s)(m−1)d × P (Bin(n, ps) = d) .

Proceed by splitting the summation at (log n)2. The first part can be bounded as540

(logn)2∑
d=0

Ld ≤ (log n)
2
∑m

i=2 ri

(logn)2∑
d=0

(1− s)
(m−1)d · P (Bin(n, ps) = d)

≤ (log n)
2
∑m

i=2 ri ·
n∑

d=0

(1− s)
(m−1)d · P (Bin(n, ps) = d)

= (log n)
2
∑m

i=2 ri · ED

[
(1− s)(m−1)D

]
(a)
= (log n)

2
∑m

i=2 ri ·

(
1−

Cs
(
1− (1− s)m−1

)
log n

n

)n

= o(1/n),

whenever Cs(1− (1− s))m−1 > 1. Here, (a) is obtained by evaluating the probability generating541

function of the Bin(n, ps) random variable at (1− s)m−1 and setting p = C log(n)/n.542

The other part of the sum can now be bounded as follows.543

n∑
d=(logn)2

Ld ≤
[

max
d : (logn)2≤d≤n

d
∑m

i=2 ri(1− s)md

]
· P
(
Bin(n, ps) ≥ (log n)2

)
(b)
≤
[
(log n)

2
∑m

i=2 ri (1− s)m(logn)2
]
× 2−(logn)2

= (log n)2
∑m

i=2 ri

(
(1− s)m

2

)(logn)2

= o (1/n) .

whenever C > 0. Here, (b) is true because the function d 7→ d
∑

ri(a− s)md is decreasing on the544

interval [(log n)2, n] for all sufficiently large n. Finally, the concentration inequality for the Binomial545

distribution holds by (6) in Lemma 13. The inequality applies since p = C log(n)/n and since546

(log n)2 > 6Cs log(n) for all n sufficiently large. This concludes the proof.547
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dataset, or provide access to the model. In general. releasing code and data is often633

one good way to accomplish this, but reproducibility can also be provided via detailed634

instructions for how to replicate the results, access to a hosted model (e.g., in the case635

of a large language model), releasing of a model checkpoint, or other means that are636

appropriate to the research performed.637

• While NeurIPS does not require releasing code, the conference does require all submis-638

sions to provide some reasonable avenue for reproducibility, which may depend on the639

nature of the contribution. For example640

(a) If the contribution is primarily a new algorithm, the paper should make it clear how641

to reproduce that algorithm.642

(b) If the contribution is primarily a new model architecture, the paper should describe643

the architecture clearly and fully.644

(c) If the contribution is a new model (e.g., a large language model), then there should645

either be a way to access this model for reproducing the results or a way to reproduce646

the model (e.g., with an open-source dataset or instructions for how to construct647

the dataset).648

(d) We recognize that reproducibility may be tricky in some cases, in which case649

authors are welcome to describe the particular way they provide for reproducibility.650

In the case of closed-source models, it may be that access to the model is limited in651

some way (e.g., to registered users), but it should be possible for other researchers652

to have some path to reproducing or verifying the results.653
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5. Open access to data and code654

Question: Does the paper provide open access to the data and code, with sufficient instruc-655

tions to faithfully reproduce the main experimental results, as described in supplemental656

material?657

Answer: [NA]658

Justification: The simulations do not involve any data, since all simulations are done for659

random (Erdős-Rényi) graphs.660

Guidelines:661

• The answer NA means that paper does not include experiments requiring code.662

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/663

public/guides/CodeSubmissionPolicy) for more details.664

• While we encourage the release of code and data, we understand that this might not be665

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not666

including code, unless this is central to the contribution (e.g., for a new open-source667

benchmark).668

• The instructions should contain the exact command and environment needed to run to669

reproduce the results. See the NeurIPS code and data submission guidelines (https:670

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.671

• The authors should provide instructions on data access and preparation, including how672

to access the raw data, preprocessed data, intermediate data, and generated data, etc.673

• The authors should provide scripts to reproduce all experimental results for the new674

proposed method and baselines. If only a subset of experiments are reproducible, they675

should state which ones are omitted from the script and why.676

• At submission time, to preserve anonymity, the authors should release anonymized677

versions (if applicable).678

• Providing as much information as possible in supplemental material (appended to the679

paper) is recommended, but including URLs to data and code is permitted.680

6. Experimental Setting/Details681

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-682

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the683

results?684

Answer: [NA]685

Justification: No experiments involving any training were done in this work.686

Guidelines:687

• The answer NA means that the paper does not include experiments.688

• The experimental setting should be presented in the core of the paper to a level of detail689

that is necessary to appreciate the results and make sense of them.690

• The full details can be provided either with the code, in appendix, or as supplemental691

material.692

7. Experiment Statistical Significance693

Question: Does the paper report error bars suitably and correctly defined or other appropriate694

information about the statistical significance of the experiments?695

Answer: [Yes]696

Justification: All plots include error bars.697

Guidelines:698

• The answer NA means that the paper does not include experiments.699

• The authors should answer "Yes" if the results are accompanied by error bars, confi-700

dence intervals, or statistical significance tests, at least for the experiments that support701

the main claims of the paper.702

• The factors of variability that the error bars are capturing should be clearly stated (for703

example, train/test split, initialization, random drawing of some parameter, or overall704

run with given experimental conditions).705
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• The method for calculating the error bars should be explained (closed form formula,706

call to a library function, bootstrap, etc.)707

• The assumptions made should be given (e.g., Normally distributed errors).708

• It should be clear whether the error bar is the standard deviation or the standard error709

of the mean.710

• It is OK to report 1-sigma error bars, but one should state it. The authors should711

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis712

of Normality of errors is not verified.713

• For asymmetric distributions, the authors should be careful not to show in tables or714

figures symmetric error bars that would yield results that are out of range (e.g. negative715

error rates).716

• If error bars are reported in tables or plots, The authors should explain in the text how717

they were calculated and reference the corresponding figures or tables in the text.718

8. Experiments Compute Resources719

Question: For each experiment, does the paper provide sufficient information on the com-720

puter resources (type of compute workers, memory, time of execution) needed to reproduce721

the experiments?722

Answer: [NA]723

Justification: The simulations are classical Monte-Carlo simulations that do not require724

extensive runtime or hardware.725

Guidelines:726

• The answer NA means that the paper does not include experiments.727

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,728

or cloud provider, including relevant memory and storage.729

• The paper should provide the amount of compute required for each of the individual730

experimental runs as well as estimate the total compute.731

• The paper should disclose whether the full research project required more compute732

than the experiments reported in the paper (e.g., preliminary or failed experiments that733

didn’t make it into the paper).734

9. Code Of Ethics735

Question: Does the research conducted in the paper conform, in every respect, with the736

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?737

Answer: [Yes]738

Justification: The Code of Ethics was strictly adhered to during all stages of this research.739

Guidelines:740

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.741

• If the authors answer No, they should explain the special circumstances that require a742

deviation from the Code of Ethics.743

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-744

eration due to laws or regulations in their jurisdiction).745

10. Broader Impacts746

Question: Does the paper discuss both potential positive societal impacts and negative747

societal impacts of the work performed?748

Answer: [Yes]749

Justification: The potential for graph matching through transitive closure is motivated750

through its application to social network de-anonymization.751

Guidelines:752

• The answer NA means that there is no societal impact of the work performed.753

• If the authors answer NA or No, they should explain why their work has no societal754

impact or why the paper does not address societal impact.755
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• Examples of negative societal impacts include potential malicious or unintended uses756

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations757

(e.g., deployment of technologies that could make decisions that unfairly impact specific758

groups), privacy considerations, and security considerations.759

• The conference expects that many papers will be foundational research and not tied760

to particular applications, let alone deployments. However, if there is a direct path to761

any negative applications, the authors should point it out. For example, it is legitimate762

to point out that an improvement in the quality of generative models could be used to763

generate deepfakes for disinformation. On the other hand, it is not needed to point out764

that a generic algorithm for optimizing neural networks could enable people to train765

models that generate Deepfakes faster.766

• The authors should consider possible harms that could arise when the technology is767

being used as intended and functioning correctly, harms that could arise when the768

technology is being used as intended but gives incorrect results, and harms following769

from (intentional or unintentional) misuse of the technology.770

• If there are negative societal impacts, the authors could also discuss possible mitigation771

strategies (e.g., gated release of models, providing defenses in addition to attacks,772

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from773

feedback over time, improving the efficiency and accessibility of ML).774

11. Safeguards775

Question: Does the paper describe safeguards that have been put in place for responsible776

release of data or models that have a high risk for misuse (e.g., pretrained language models,777

image generators, or scraped datasets)?778

Answer: [NA]779

Justification: The paper poses no such risks.780

Guidelines:781

• The answer NA means that the paper poses no such risks.782

• Released models that have a high risk for misuse or dual-use should be released with783

necessary safeguards to allow for controlled use of the model, for example by requiring784

that users adhere to usage guidelines or restrictions to access the model or implementing785

safety filters.786

• Datasets that have been scraped from the Internet could pose safety risks. The authors787

should describe how they avoided releasing unsafe images.788

• We recognize that providing effective safeguards is challenging, and many papers do789

not require this, but we encourage authors to take this into account and make a best790

faith effort.791

12. Licenses for existing assets792

Question: Are the creators or original owners of assets (e.g., code, data, models), used in793

the paper, properly credited and are the license and terms of use explicitly mentioned and794

properly respected?795

Answer: [Yes]796

Justification: The subroutines for GRAMPA and Degree Profiles have been cited.797

Guidelines:798

• The answer NA means that the paper does not use existing assets.799

• The authors should cite the original paper that produced the code package or dataset.800

• The authors should state which version of the asset is used and, if possible, include a801

URL.802

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.803

• For scraped data from a particular source (e.g., website), the copyright and terms of804

service of that source should be provided.805

• If assets are released, the license, copyright information, and terms of use in the806

package should be provided. For popular datasets, paperswithcode.com/datasets807

has curated licenses for some datasets. Their licensing guide can help determine the808

license of a dataset.809
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• For existing datasets that are re-packaged, both the original license and the license of810

the derived asset (if it has changed) should be provided.811

• If this information is not available online, the authors are encouraged to reach out to812

the asset’s creators.813

13. New Assets814

Question: Are new assets introduced in the paper well documented and is the documentation815

provided alongside the assets?816

Answer: [NA]817

Justification: The paper does not release new assets.818

Guidelines:819

• The answer NA means that the paper does not release new assets.820

• Researchers should communicate the details of the dataset/code/model as part of their821

submissions via structured templates. This includes details about training, license,822

limitations, etc.823

• The paper should discuss whether and how consent was obtained from people whose824

asset is used.825

• At submission time, remember to anonymize your assets (if applicable). You can either826

create an anonymized URL or include an anonymized zip file.827

14. Crowdsourcing and Research with Human Subjects828

Question: For crowdsourcing experiments and research with human subjects, does the paper829

include the full text of instructions given to participants and screenshots, if applicable, as830

well as details about compensation (if any)?831

Answer: [NA]832

Justification: The paper does not involve crowdsourcing or research with human subjects.833

Guidelines:834

• The answer NA means that the paper does not involve crowdsourcing nor research with835

human subjects.836

• Including this information in the supplemental material is fine, but if the main contribu-837

tion of the paper involves human subjects, then as much detail as possible should be838

included in the main paper.839

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,840

or other labor should be paid at least the minimum wage in the country of the data841

collector.842

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human843

Subjects844

Question: Does the paper describe potential risks incurred by study participants, whether845

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)846

approvals (or an equivalent approval/review based on the requirements of your country or847

institution) were obtained?848

Answer: [NA]849

Justification: The paper does not involve crowdsourcing nor research with human subjects.850

Guidelines:851

• The answer NA means that the paper does not involve crowdsourcing nor research with852

human subjects.853

• Depending on the country in which research is conducted, IRB approval (or equivalent)854

may be required for any human subjects research. If you obtained IRB approval, you855

should clearly state this in the paper.856

• We recognize that the procedures for this may vary significantly between institutions857

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the858

guidelines for their institution.859

• For initial submissions, do not include any information that would break anonymity (if860

applicable), such as the institution conducting the review.861
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