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Abstract
Molecular dynamics (MD) simulation is widely
used to study protein conformations and dynam-
ics. However, conventional simulation suffers
from being trapped in some local energy minima
that are hard to escape. Thus, most computational
time is spent sampling in the already visited re-
gions. This leads to an inefficient sampling pro-
cess and further hinders the exploration of protein
movements in affordable simulation time. The
advancement of deep learning provides new op-
portunities for protein sampling. Variational au-
toencoders are a class of deep learning models to
learn a low-dimensional representation (referred
to as the latent space) that can capture the key
features of the input data. Based on this char-
acteristic, we proposed a new adaptive sampling
method, latent space assisted adaptive sampling
for protein trajectories (LAST), to accelerate the
exploration of protein conformational space. This
method comprises cycles of (i) variational autoen-
coders training, (ii) seed structure selection on
the latent space and (iii) conformational sampling
through additional MD simulations. The proposed
approach is validated through the sampling of four
structures of two protein systems: two metastable
states of E. Coli adenosine kinase (ADK) and two
native states of Vivid (VVD). In all four confor-
mations, seed structures were shown to lie on the
boundary of conformation distributions. More-
over, large conformational changes were observed
in a shorter simulation time when compared with
conventional MD (cMD) simulations in both sys-
tems. In metastable ADK simulations, LAST
explored two transition paths toward two stable

1Department of Chemistry, Center for Research Computing,
Center for Drug Discovery, Design, and Delivery (CD4), South-
ern Methodist University, Dallas, Texas 75206, United States
2Department of Statistical Science, Southern Methodist University,
Dallas, Texas 75206, United States 3Department of Computer Sci-
ence, Southern Methodist University, Dallas, Texas 75206, United
States. Correspondence to: Peng Tao <ptao@smu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

states while cMD became trapped in an energy
basin. In VVD light state simulations, LAST was
three times faster than cMD simulation with a
similar conformational space.

1. Introduction
Molecular dynamics (MD) simulation has wide application
on the study of protein conformations and dynamics. Re-
cent developments in bio-computing, such as Anton (Shaw
et al., 2009), AMBER (Salomon-Ferrer et al., 2013) and
OpenMM (Eastman et al., 2017), have enabled the simula-
tion time scale to milliseconds, which promotes the research
in sampling protein motions and structure landscapes (Prinz
et al., 2011; Lindert et al., 2013). However, the time scales
of many protein functions exceed the time scales achievable
through traditional MD simulations. Moreover, protein sam-
pling suffers from being trapped within local energy minima,
proving difficult to escape. (Krivov, 2011; Brotzakis et al.,
2018) As a result, most of the computational time is typically
spent in sampling previously visited regions, which hinders
efficient exploration of protein conformational space.

Many enhanced sampling methods have been developed to
address this issue. These methods can be classified into
two types. In the first type, biasing potentials are intro-
duced to expand the sampling space, such as metadynamics
(Barducci et al., 2011; Raiteri et al., 2006) and Gaussian-
accelerated MD (Hamelberg et al., 2004). In the second
type, seed structures are selected as restarts for iterative MD
simulations. This is referred to as adaptive sampling and
numerous methods have been proposed that differ in seed
selection methods. Markov state models have been applied
to cluster conformations into microstates (Bowman et al.,
2010); parallel cascade selection MD (PaCS-MD) (Harada
& Kitao, 2013) and nontargeted PaCS-MD (Harada & Kitao,
2015) calculates the root-mean-square deviation (RMSD) to
select top snapshots; frontier expansion sampling (Zhang &
Gong, 2020) conducts dimensionality reduction with prin-
cipal component analysis and Gaussian mixture models to
select frontier structures.

Recent innovations in deep learning have provided new in-
sights into sampling protein conformational space. (Chen
& Ferguson, 2018; Hawkins-Hooker et al., 2021) Autoen-
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coders (AEs) and variational autoencoders (VAEs) are a
class of deep learning models that learn a representation
(encoding) which can capture the key features of input data.
Several studies have demonstrated the success of AEs and
VAEs in their applications to protein conformations and
functions. (Ramaswamy et al., 2021; Jin et al., 2021; Bandy-
opadhyay & Mondal, 2021; Guo et al., 2021) In a previous
work (Tian et al., 2021), the authors showed that VAEs are
capable of learning a low-dimensional representation (re-
ferred to as the latent space) of protein systems. Through
a quantitative study, the learned latent space is shown to
be able to represent conformational characteristics. This
property indicates that the larger differences two protein
conformations have, the farther their corresponding latent
points are from each other.

In this study, we proposed a new adaptive sampling method,
latent space assisted adaptive sampling for protein trajecto-
ries (LAST), to accelerate the exploration of protein confor-
mational space. This method iterates through three steps.
First, a VAE is trained using previous MD simulations.
Then, seed structures are selected on the learned latent
space. Finally, additional simulations are conducted with
these selected seeds. To quantify the performance, we ap-
plied LAST on four conformations in two protein systems:
two metastable states of E. Coli adenosine kinase (ADK)
and two native states of Vivid (VVD). ADK conformations
are projected onto two intrinsic angles while VVD confor-
mations to RMSDs of two native structures. Our results
showed that seed structures were consistently located on
the boundary of sampled conformational distributions in all
four conformations regardless of protein projection methods
on reduced coordinates. We further compared the sampling
efficiency between LAST and conventional MD (cMD). In
both systems, large conformational changes were observed
in a shorter time in LAST simulations. To be specific, LAST
explored two transition paths toward two stable states while
cMD being trapped in an energy basin in the metastable
ADK simulations. In VVD simulations, LAST only took
one third of cMD simulation time to discover a similar con-
formational space.

2. Methods
2.1. Variational Autoencoder

An autoencoder is a type of deep learning models that aims
to encode a high-dimensional input to a low-dimensional la-
tent space through an encoder module and decode it back to
the original dimensions through a decoder module. By min-
imizing the differences between inputs and outputs, known
as reconstruction loss, the latent space is expected to learn
a low-dimensional representation of the input space. How-
ever, the latent space in an AE is not well-constrained and
leads to unsatisfying results when sampling in the latent

space. (Wetzel, 2017) To overcome this issue, variational
autoencoders add an optimization constraint on the latent
space to follow a certain distribution.

The encoder module qφ(z|x) is an inference model that
transforms data x into output latent variable z, being
parametrized with φ. In reverse, the decoder module pθ(x|z)
is a generative model that transforms latent variable z
into output data x̂, being parametrized with θ. Both mod-
els are trained simultaneously with a joint distribution as
p(x, z) = pθ(x|z)p(z). p(z) is the constraint distribution
for latent space and typically is chosen as a normal distri-
bution. (Doersch, 2016) The tractable variational Bayes
approach is used to approximate the intractable posterior
pθ(z|x) = pθ(x|z)p(z)/(

∫
pθ(x|z)p(z)dz) by maximizing

the Evidence Lower Bound (ELBO):

L(φ, θ;x) =Eqφ(z|x)[log pθ(x|z)]
−KL(qφ(z|x)||p(z)) ≤ log pθ(x)

(1)

where KL is the Kullback-Leibler divergence.

In our implementation, the VAE model is developed us-
ing Keras package (Chollet et al., 2015) with Tensorflow
backend (Abadi et al., 2016).

2.2. Molecular Dynamics Simulations

The initial structures of four conformations in two protein
systems: two metastable states (PDB ID 1DVR and 2AK3)
of E. Coli adenosine kinase (ADK) and two native states
(PDB ID 2PD7 and 3RH8) of Vivid (VVD) were taken
from the Protein Data Bank (PDB) (Berman et al., 2000)
. In each conformation, ligands and crystal waters were
removed and chain A was extracted as the starting structure.
The system was further solvated in a box of TIP3P water
molecules and neutralized using Na+ and Cl−. Simulation
files were generated using tleap (Case et al., 2005) with the
AMBER ff14SB force filed (Maier et al., 2015). 100 ps
NVT Langevin MD simulations were carried out, followed
by 200 ps NPT simulations at 1 atm and 300 K. In each
round of LAST method, one 100 ps MD simulation was
conducted for each seed structure. Particle Mesh Ewald
(PME) algorithm was used to calculate long-range electro-
static interactions. The simulation time step was set as 2 fs.
All simulations were conducted with OpenMM 7 (Eastman
et al., 2017).

2.3. Latent Space Assisted Adaptive Sampling for
Protein Trajectories

LAST method includes three steps, and its workflow is
shown in Figure 1. First, a variational autoencoder is trained
using all previous simulations. Second, outliers are selected
on the latent space and their corresponding protein structures
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Figure 1. Workflow of LAST method. Heavy atoms in protein simulations are extracted as features to train a variational autoencoder
model. In the latent space, outliers are selected based on the joint distribution of multivariate points in the latent space. Protein structures
corresponding to these outliers are treated as seed structures to initiate additional simulations. LAST iterative conducts these steps until
convergence.

are treated as seeds. Third, additional MD simulations are
conducted from seed structures.

VAE TRAINING

In each iteration, some preprocessing procedures are needed.
The simulation trajectories are firstly aligned to the first
frame and heavy atoms are extracted with Cartesian coor-
dinates being expanded as a feature vector (Figure 1A-B).
Then, each feature is transformed to a range of 0 to 1 using
min-max linear scaling, which is used to construct a dataset
for VAE training.

The architecture of VAE model is shown in Figure 1C. In the
current study, we design the encoder model being composed
of three hidden layers with size of 512, 128 and 32 and
decoder model with size of 32, 128 and 512. The number
and size of hidden layers can be adjusted based on the size
of proteins. The dimension of latent space is set as two for
the simplicity and ease of visualization.

SEEDS SELECTION

Appropriate seed selection method is needed to expedite the
sampling of protein conformational space. In LAST, seeds
are selected on the two-dimensional learned latent space
of VAE, which has two important characteristics to enable
an efficient seeds selection. First, as demonstrated in our
previous work, the distance between two data points on the
latent space is meaningful. Two structurally similar proteins
have a shorter distance between their corresponding latent
vectors. Second, the sampling distribution of latent space
in the VAE is similar to a normal distribution due to the KL
divergence term in the loss function. As for the distribution
of the VAE latent space of protein conformations, the most
common protein structures are encoded in the center of the
latent space while structurally different proteins are encoded
on the boundary. In a data distribution, outliers refer to those
points that differ significantly from other data. Based on
the above two points, it is reasonable to treat outliers on
the latent space as seeds to accelerate conformational space
exploration, as their conformations deviate the majority of
the sampled ones.

To implement this method, we propose three improvements
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to make LAST computationally efficient.

1. The latent space of VAE does not strictly follow a
normal distribution. This is mainly because of rel-
atively strong emphasis on reconstruction loss and
lesser emphasis on KL divergence during VAE train-
ing. The reconstruction loss term controls the qual-
ity of latent space data reconstruction (how well the
VAE can reconstruct a protein structure) and KL di-
vergence term constrains the distribution of the latent
space (to what degree the latent space needs to follow
a normal distribution). Therefore, in order to have a
well-constructed and normal regularized latent space,
appropriate weights are needed to be set for both terms.
This is a challenging task with finetuning by hand, as
the sample size keeps growing linearly with additional
MD simulations in each round. Therefore, instead of
trying to find weights to balance the reconstruction
loss and KL divergence, we allow the latent space not
strictly follow a normal distribution and use a non-
parametric multivariate kernel density estimator to fit
the latent space. The estimator is developed in Python
statsmodels library (Seabold & Perktold, 2010).

2. The distribution of the latent space might be skewed or
kurtotic. In such cases, one side of probability density
function (PDF) will have a long tail with low values.
This could lead to the situation that all selected seed
structures lie in the long tail side, and the correspond-
ing protein structures of these seeds might be similar
to each other. Seeds gathering on one side of latent
space distribution decreases the chance to explore more
structurally different conformations and thus leads to
a less efficient protein sampling process. To partially
overcome this issue, we used the cumulative distribu-
tion function (CDF) to select outliers: data points on
the two sides of the CDF are evenly selected. This
improvement prevents sampling similar seeds on the
boundary of protein conformational spaces.

3. Still, seed structures might be similar to each other.
Nontargeted PaCS-MD proposed a nonredundant se-
lection rule which calculates pairwise RMSDs between
the current simulation cycle and seeds selected in all
the past cycles. (Harada et al., 2019) Protein config-
urations with large RMSD are then selected as new
seeds in the current cycle. We took reference from
this idea to select seeds. Outliers from two ends of
the estimated CDF are picked sequentially while the
pairwise RMSDs to previously selected seeds are cal-
culated. We required the RMSD threshold should be
greater than 1 Å. If not, LAST discards this outlier
and moves to the next. Moreover, LAST is a mem-
ory method: the selected seed structures are stored for
RMSD calculation in future iterations, which avoids

repeated sampling in the same conformational region
and further improves the sampling efficiency.

One example of seeds selection result is shown in Figure
1D, where seeds are highlighted in red stars in the latent
space visualization.

ADDITIONAL MD SIMULATIONS

Short MD simulations are conducted in each round. In the
current study, 10 seeds are selected in one round and 100ps
simulation is done starting from each seed. Thus, the total
simulation time in each round is 1ns. The detail of these
simulations is described in section 2.2.

The above three steps are iteratively done until convergence.
Here, we design the convergence criterion by calculating the
mean RMSD of Cα atoms with regard to the starting protein
structure. The iterative sampling process is terminated once
the mean RMSD stops to increase for successive five rounds
or reaches the maximum round number.

Algorithm 1 Latent space assisted adaptive sampling for
protein trajectories

Prepare simulation files.
Conduct 100 ps NVT and 200 ps NPT simulations.
while iteration is not reaching the maximum round do

Align trajectories and extract Cartesian coordinates.
Train a VAE model.
Fit latent space with a non-parametric multivariate ker-
nel density estimator.
Select 10 outliers based on CDF and get seed struc-
tures.
Conduct 100 ps simulation for each seed.
if mean RMSD is converged then

Stop iteration.
end if

end while

The LAST algorithm is summarized in Algorithm 1.

3. Results
Four structures of two protein systems (ADK and VVD)
were prepared for MD simulations as described in section
2.2. For each protein structure, 100 ps NVT and 200 ps NPT
simulations were conducted. During the iterative process,
all previous simulations were aligned to the first frame with
Cartesian coordinates of heavy atoms being extracted as
a feature vector to represent protein conformation. After-
wards, a variational autoencoder model was trained. 10 seed
structures were selected with additional 100 ps simulation
starting from each of them. Therefore, each iteration takes 1
ns simulation time.
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Figure 2. Structures of (A) ADK and (B) VVD. ADK is composed
of a CORE domain (grey), a LID domain (orange) and a NMP
domain (blue). LID-CORE and NMP-CORE angles are calculated
by four vectors to represent protein conformations. VVD protein
is colored at secondary structure level using VMD.

Figure 3. Seed structure distribution on low-dimensional protein
representations. (A-B) ADK protein conformations are represented
in LID-CORE and NMP-CORE angle vectors. (C-D) VVD protein
conformation are represented in RMSDs with regard to the native
dark and native light states. Seed structures are represented in red
stars. Two less sampled regions are shown in grey circles.

ADK protein is composed of a rigid CORE domain, a lid-
shaped ATP-binding domain (LID) and an AMP-binding
domain (NMP). Many computational studies have shown
ADK to carry out large conformational transitions between
the closed state to the open state during the ATP-ADP cat-
alyzation process. (Unan et al., 2015; Matsunaga et al.,
2012) Four vectors that form NMP-CORE and LID-CORE
angles have been widely used to characterize ADK protein
conformation. VVD is a light-oxygen-voltage domain that
undergoes global conformational changes upon perturba-

tion. VVD is shown to be flexible in the native light state
and relatively stable in the native dark state. (Matsunaga
et al., 2012) ADK and VVD structures are illustrated using
ChimeraX (Goddard et al., 2018) (Figure 2).

Proper low-dimensional protein representations are needed
to evaluate the quality of seed selection. In the current study,
ADK protein structure is projected to LID-CORE and NMP-
CORE 2D angle plot. We followed the same reside selection
rule to calculate vectors and angles. (Tian et al., 2021) For
VVD structure, 2D root-mean-square deviation (RMSD)
with reference to the native dark and light structures was
used to show the sampled protein conformational space.

Both the angle plot in ADK and RMSD plot in VVD were
used to display the protein conformation of seed structures
(Figure 3). In each subplot, seed structures are highlighted
as red stars. In two metastable ADK conformations (Figure
3A-B), seed structures mainly locate in the less sampled
regions with small or large LID/NMP angles. It should be
noted that there are two significantly less sampled regions
in both plots (grey regions in Figure 3A and B).

This indicates that the variational autoencoder can capture
the structural differences of protein conformations within
the learned latent space. In the native dark and native light
VVD conformations (Figure 3C-D), seed structures are also
shown to be evenly distributed in the boundary of protein
conformational space defined by RMSD to two native VVD
structures.

To compare the effectiveness of LAST to conventional
molecular dynamics simulations, the sampled protein con-
formational space in each round of LAST method is dis-
played together with cMD sampled conformations under the
same simulation time. Figure 4 shows the protein conforma-
tions in 1 ns, 5 ns, 10 ns and 15 ns for both LAST and cMD.
Specifically, cMD was conducted twice independently. It
is shown that under the same simulation time, LAST can
explore more protein conformations than cMD. Moreover,
the trained variational autoencoder can consistently learn a
low-dimensional protein representation in the latent space,
regardless of the growing number of simulations and chang-
ing shape of conformational space, and guide MD simula-
tions to explore less sampled regions. In contrast, there are
limited new conformations being explored in cMD simula-
tions from 10 ns to 15 ns, indicating that it might be trapped
in a local energy minimum.

We continued the LAST simulation of ADK until conver-
gence. For comparison, two independent 500 ns cMD simu-
lations were conducted. Both protein conformations with
free energy being calculated are shown in Figure 5. The
LAST sampling method took 22 iterations (22 ns simulation
time) and explored two paths from the metastable state to the
two native states. This aligns with the computational finding
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Figure 4. Comparison of ADK conformational spaces of LAST
and cMD. Protein conformations are shown in blue at iteration 1,
5, 10 and 15 in LAST method. Protein conformations produced
by cMD are shown in grey with the same simulation time. In each
round LAST explored a larger conformational space compared
with cMD.

that ADK protein undergoes conformational transitions be-
tween the open and the closed states. (Formoso et al., 2015)
Moreover, the ADK free energy landscape is similar to a
previous study (Unan et al., 2015), which the 2AK3 struc-
ture (NMP angle of 50◦ and LID angle of 155◦) is shown
to lie in a less preferred state and quickly moves to other
stable states. The two energy basins also agree with the free
energy calculation results that the closed states are more
stable than the open state. However, cMD simulation was
being trapped in an energy basin, which is also indicated in
the free energy plot of LAST. This demonstrates that LAST
has a better chance to jump out of energy minimum without
biasing potential energies.

For the VVD system, LAST simulation took 30 iterations
(30 ns simulation time) to converge. The conformational
space is illustrated in Figure 6A. Two cMD simulations
were independently conducted with the same simulation
time. Their conformational space is highlighted as the red
dotted circle in Figure 6B. The region sampled by cMD over-
laps greatly with the LAST sampled region but with small
coverage of the overall conformational space. To compare
the efficiency of two methods, these two cMD simulations
were continued while this 2D RMSD map being monitored.
It took 100 ns simulation time for cMD simulations to have
a similar space shape with LAST.

It is worth noting that the convergence criterion used in this

Figure 5. Free energy spaces of (A) LAST and (B) cMD produced
protein conformations. LAST took 22 iterations to complete. Two
independent 500 ns cMD were conducted for comparison. LAST
explored two paths to the open and closed states while cMD being
trapped in a local free energy minimum.

Figure 6. Comparison of VVD conformational spaces of (A) LAST
and (B) cMD. LAST took 30 iterations to convergence. The con-
formational space in cMD with the same simulation time is circled
on (B) with red dotted lines. cMD simulation was continued to
100 ns to have a similar space.

study does not represent the ”true” convergence of protein
systems. The notion of ”true” convergence, as discussed
in previous studies, (Romo & Grossfield, 2011; Sawle &
Ghosh, 2016; Knapp et al., 2011) is elusive in simulations.
More appropriate criteria are needed for the convergence
signal in adaptive sampling, through either numerical indi-
cators or self-consistency checks.

The mean RMSDs with regard to the starting protein struc-
ture in each iteration were calculated for both systems and
are shown in Figure 7. Mean RMSDs are presented with
black lines and standard deviation shown in red lines for
each round. The maximum and minimum RMSD values are
shown as the upper and lower bound in the colored regions.
Currently, we set the patience as 5: the iteration loop stops
if the maximum mean RMSD does not increase in 5 suc-
cessive rounds. For the simulation in ADK system, RMSD
starts with 2Å, gradually increases to 3.5Å, and stops at
iteration 22. In contrast, the RMSDs in VVD system are
smaller and the total simulation lasts longer with a total of
30 iterations.
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Figure 7. Mean RMSDs in (A) ADK and (B) VVD systems. Mean
RMSD values are connected with black lines. Standard deviation
in each iteration is plotted as vertical red lines. The gap between
minimum and maximum RMSD values are colored as light grey
background.

4. Conclusion
In this study, we present an adaptive sampling method, latent
space assisted adaptive sampling for protein trajectories, to
accelerate the exploration of protein conformational spaces.
LAST iterates through variational autoencoder training, seed
selection and additional short MD simulations. LAST dif-
fers with previous methods in seed selection where the out-
liers in the learned latent space are selected and treated as
seed structures. We tested LAST method in ADK and VVD
protein systems, each with different low-dimensional pro-
tein representations. In both systems, LAST can capture the
key protein characteristics and select seeds that lie in the
boundary of conformational space. For ADK simulations,
LAST explored two transition paths that are in agreement
with previous findings. For VVD simulations, LAST is three
times faster than conventional MD for exploring the same
conformational regions.
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