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Abstract
Hybrid modeling aims to augment traditional
theory-driven models with machine learning com-
ponents that learn unknown parameters, sub-
models or correction terms from data. In this
work, we build on FluxRGNN, a recently de-
veloped hybrid model of continental-scale bird
migration, which combines a movement model
inspired by fluid dynamics with recurrent neu-
ral networks that capture the complex decision-
making processes of birds. While FluxRGNN has
been shown to successfully predict key migration
patterns, its spatial resolution is constrained by
the typically sparse observations obtained from
weather radars. Additionally, its trainable compo-
nents lack explicit incentives to adequately predict
take-off and landing events. Both aspects limit
our ability to interpret model results ecologically.
To address this, we propose two major modifica-
tions that allow for more detailed predictions on
any desired tessellation while providing control
over the interpretability of model components. In
experiments on the U.S. weather radar network,
the enhanced model effectively leverages the un-
derlying movement model, resulting in strong ex-
trapolation capabilities to unobserved locations.

1. Introduction
Bird migration is a fascinating biological phenomenon with
important implications for biodiversity and ecosystem func-
tioning (Bauer & Hoye, 2014). To effectively mitigate
human-wildlife conflicts occurring during these seasonal
mass movements (Loss et al., 2015; Van Doren et al., 2017;
McLaren et al., 2018), near-term forecast models are essen-
tial tools. They enable stakeholders to anticipate peak mi-
gration events several hours to days in advance and prepare
appropriate actions at the most critical times and locations
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(Van Belle et al., 2007; Dietze et al., 2018; Horton et al.,
2021; Bradarić et al., 2024).

Operational weather radar networks have become an invalu-
able data source for developing such forecasts. These radars
can provide real-time information on bird densities and
velocities across large geographical extents, making them
particularly well suited for monitoring the long-distance
migrations of nocturnally migrating songbirds (Dokter et al.,
2011; Bauer et al., 2017; Nilsson et al., 2019). However,
the biological signals extracted from low-level radar scans
typically provide only aggregated information about aerial
movements within a relatively small area around each radar,
leaving large gaps in-between (Dokter et al., 2011).

To handle these spatially sparse observations, current
continental-scale forecasting systems rely on purely data-
driven models that link local environmental conditions such
as wind, temperature and air pressure to observed bird den-
sities (Van Doren & Horton, 2018). While this approach is
easy to implement in practice, it does not account for the
underlying movement process and its spatio-temporal de-
pendencies. This not only limits the accuracy of the forecast,
but also prevents ecologists from gaining deeper insights
into migration strategies, biomass flows, and connectivity.

On the other hand, recent studies have explored a fluid
dynamics perspective on bird migration, where the spatio-
temporal distribution of migrants is modeled with the conti-
nuity equation (Nussbaumer et al., 2021; 2024). This allows
information from weather radars to be integrated into a
coherent description of biomass flows, capturing take-off,
flight, and landing dynamics. Building on this idea, Lippert
et al. (2022) have developed FluxRGNN, a hybrid fore-
cast model that generates explicit predictions of bird fluxes
across space and time while ensuring conservation of mass.

Hybrid or gray-box modeling aims to augment traditional
theory-driven models with state-of-the-art machine learning
(Willard et al., 2022; Yin et al., 2021; Takeishi & Kalousis,
2021). This approach has gained popularity especially in
biology, ecology and the Earth sciences, where theoretical
models are typically misspecified or only partially known
(Senouf et al., 2023; Reichstein et al., 2019). In the case
of FluxRGNN, the continuity equation is discretized using
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a finite volume scheme, which is then parameterized with
recurrent neural networks that capture poorly understood
decision making processes of birds and their complex de-
pendencies on environmental conditions. This results in an
end-to-end differentiable recurrent graph neural network ar-
chitecture that produces accurate and physically consistent
forecasts while providing ecologically valuable insights into
the migration process.

FluxRGNN handles spatially sparse radar observations by
modeling migratory movements on the Voronoi tessellation
of radar locations. This, however, means that the forecast
resolution is inherently restricted by the spatial distribu-
tion of radars. In contrast, local data-driven models like
Van Doren & Horton (2018) can, once trained, generate pre-
dictions for any location for which environmental predictors
are available.

To bridge this gap, we propose an extension to FluxRGNN
which decouples the underlying computational grid from
the radar observation network and thereby allows for higher
resolution forecasts on any desired tessellation. In addition,
we introduce an alternative flux parameterization which fa-
cilitates a straightforward integration with available velocity
measurements, and therefore ensures meaningful estimates
of implicitly learned take-off and landing processes. Using
data from the Next Generation Weather Radar (NEXRAD)
network (Crum & Alberty, 1993; Ansari et al., 2018), which
monitors bird migration across the contiguous United States,
in combination with relevant environmental predictors we
demonstrate the ability of our modified hybrid model to
effectively balance forecast accuracy and interpretability, at
both observed and unobserved locations.

2. Problem setting
Consider a bounded spatial domain Ω ⊂ R2 representing
the air space above a geographic region of interest. We
assume Ω to be partially observed by a set of M radars
R. Each radar provides measurements ym = [ρm,vm] of
the vertically integrated bird density ρm ∈ R [birds/km2]
and average velocity vm ∈ R2 [km/h] within a small area
Am ⊂ Ω around the radar location xm ∈ Ω. Given a
sequence of radar measurements Y(−τ)

R , . . . ,Y
(0)
R ∈ R3×M

taken at time points t−τ , . . . , t0, our goal is to predict the
spatial distribution of migrating birds in Ω for K future time
points t1, . . . , tK . In addition to the radar measurements,
we assume access to relevant environmental variables for
both past and future time points (e.g. based on operational
weather forecasts) at the desired spatial resolution of the
migration forecast.

3. Background
3.1. Physical process model

The highly synchronized mass movements of nocturnally
migrating birds within a spatial domain Ω can be modeled
with the continuity equation

∂ρ

∂t
+∇ · (ρv) = s, (1)

where ρ is the density of birds in the air, v is the velocity
field along which migrants fly across the continent and s is a
source/sink term capturing birds entering and leaving the sky
(Nussbaumer et al., 2021; Lippert et al., 2022). Importantly,
both v and s are the result of many migrants with different
biological traits, strategies and past experiences making
decisions based on dynamically changing environmental
conditions. As migratory movements may extend beyond
the considered domain Ω, Neumann boundary conditions
∂ρ
∂n (t,x) = 0 ∀x ∈ ∂Ω, with n denoting the normal to ∂Ω,
can be used to allow for varying biomass flow into and out
of Ω.

3.2. FluxRGNN

FluxRNN (Lippert et al., 2022) combines this mechanis-
tic movement model with the flexibility of deep neural
networks to account for complex dependencies of bird be-
haviors on environmental conditions. As a result, it gen-
erates accurate and physically-consistent migration fore-
casts, while providing ecologically valuable insights into the
spread and accumulation of migrants across space and time.
As FluxRGNN builds on the finite volume method (FVM)
for spatial discretization, it ensures local mass conserva-
tion and is applicable to arbitrary (sparse and unstructured)
observation networks.

Discretization More specifically, the spatial domain Ω is
partitioned into N finite volumes or cells C = {Ci}Ni=1,
defined by the Voronoi tessellation of radar locations
{xm}Mm=1, for which the integral form of eq. 1 is solved.
The dual of this tessellation is a graph G = (C, EC) with
NC(i) = {Cj | (i, j) ∈ EC} denoting the local neighbor-
hood of cell Ci. In combination with a forward Euler time
discretization scheme, one obtains a system of algebraic
equations

ρ
(k+1)
i = ρ

(k)
i − 1

|Ci|
∑

j∈NC(i)

F
(k→k+1)
i→j + s

(k→k+1)
i (2)

for all cells Ci ∈ C. This defines an explicit update scheme
for cell averages ρi in terms of average source/sink terms si
and numerical flux terms Fi→j that capture the net move-
ment from cell Ci to a neighboring cell Cj . Here, super-
scripts (k) represent quantities at time point tk, and super-
scripts (k → k + 1) refer to terms that have been integrated
over the time interval [tk, tk+1].
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Hybrid neural-numerical architecture Given knowl-
edge about current bird densities ρ

(0)
C ∈ RN across the

tessellation C, eq. 2 can in principle be used to simulate
the system forward in time and generate forecasts of future
bird densities ρ(1)

C , . . . ,ρ
(K)
C . In practice, however, the nec-

essary flux and source/sink terms are unknown and their
dependencies on dynamic environmental conditions only
poorly understood. Therefore, FluxRGNN employs a set of
neural networks to learn mappings from environmental con-
ditions and past radar observations to fluxes and source/sink
terms. This results in a hybrid neural-numerical architecture
that inherits its graph structure from the FVM discretiza-
tion. As eq. 2 is differentiable, the model can be trained
end-to-end to minimize the mismatch between observed
bird densities and the corresponding cell predictions.

Encoder-decoder backbone The learnable fluxes and
source/sink terms are the result of individual migrants con-
tinuously taking decisions based on past and current experi-
ences. To adequately capture these complex temporal depen-
dencies, FluxRGNN uses a recurrent encoder-decoder back-
bone, which iteratively integrates information about environ-
mental conditions U(−τ), . . . ,U(K), radar measurements
Y(−τ), . . . ,Y(0), and predicted densities ρ̂(0), . . . , ρ̂(K)

into cell representations

Z(k) = RNNenc(Z
(k−1),Y(k),U(k),G) ∀k ≤ 0, (3)

Z(k) = RNNdec(Z
(k−1), ρ̂(k−1),U(k),G) ∀k > 0, (4)

where G are static features of the tessellation G. These rep-
resentations are then used to predict fluxes and source/sink
terms.

4. Improved hybrid modeling
In the following, we introduce two major modifications to
the FluxRGNN framework: (i) an extension allowing for
migration forecasts on arbitrary tessellations, and (ii) an
adjusted neural flux parameterization which, in combina-
tion with additional supervision of predicted movements,
facilitates more reliable insights into the migration process.

4.1. From Voronoi cells to arbitrary tessellations

The original FluxRGNN framework (Lippert et al., 2022)
models movements on the Voronoi tessellation of radar lo-
cations. While this ensures a one-to-one mapping between
observations and grid cells, making it straight forward to
process radar data in the encoder (eq. 3) and to initialize
cell predictions at t0, it also significantly limits the spatial
resolution of predictions and may lead to artifacts due to
highly irregular cell shapes and sizes. To facilitate more de-
tailed and robust forecasts on any desired grid, we propose
an extension which makes the definition of C independent of

R. This requires adjustments to the encoder, initial state and
comparison to radar observations, establishing connections
between cell space and measurement space. The resulting
model operates on a graph (C,R, EC , ER→C , EC→R) with
cell-to-cell edges EC , radar-to-cell edges ER→C , and cell-to-
radar edges EC→R.

Notation In the remainder of this paper, we distinguish
cell-level quantities from radar-level quantities using sub-
scripts C and R, respectively.

Figure 1. Map of the NEXRAD weather radar network, with black
circles indicating measurement areas Am, and the hexagonal tes-
sellation on which movements are modeled. During encoding,
fR→C maps sparse radar measurements to cell space (bottom left),
in which the forecast is generated based on within-cell source/sink
terms si and cell-to-cell fluxes Fj→i (bottom center). Finally,
fC→R maps cell-level predictions back to measurement space
(bottom right).

Radar-to-cell mapping To incorporate sparse radar mea-
surements into cell-level encoder representations, we intro-
duce a radar-to-cell mapping fR→C , which transforms each
Y

(k)
R ∈ R3×M into pseudo-measurements Ỹ(k)

C ∈ RHY ×N .
Note that this operation on ER→C can be anything from
a simple spatial interpolation to a graph neural network
layer. The cell-level pseudo-measurements are then fed
to the encoder as before (see eq. 3). After encoding all
data up to time t0, we predict the initial cell states as
ρ
(0)
C = finitial(Ỹ

(0)
C ,Z

(0)
C ). Again, finitial can be anything

from a copy of interpolated radar measurements to a graph
neural network layer.
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Cell-to-radar mapping During model training and evalu-
ation, cell-level predictions need to be compared to ground
truth radar measurements. For this purpose, we introduce a
cell-to-radar mapping or observation model fC→R, which
transforms cell-level quantities into radar-level quantities by
taking a weighted average on EC→R, where (n,m) ∈ EC→R
if the measurement area Am overlaps with cell Cn. The cor-
responding weight is proportional to the area of the overlap,
simulating uniform observations across Am.

Learning to predict long sequences To guide the model
in learning to make accurate predictions at large forecasting
horizons without severe amplification of errors over time,
Lippert et al. (2022) use scheduled sampling (Bengio et al.,
2015) with an exponentially decaying teacher forcing rate.
With C being independent of R, however, cell-level predic-
tions cannot simply be replaced by radar observations to
stabilize training. Instead, we gradually increase the fore-
casting horizon during training, similarly to (Lam et al.,
2023). This allows the model to initially focus on learn-
ing basic short-term dynamics and only later on improve
long-term stability.

4.2. Balancing accuracy and interpretability

To accommodate settings where no reliable velocity mea-
surements are available, the original FluxRGNN framework
learns both spatial fluxes and local source/sink terms im-
plicitly, only through supervision of bird densities. While
Lippert et al. (2022) find that the inferred quantities corre-
late well with the underlying ground truth in a simulated
setting, this unsupervised setup bears the risk of ignoring
spatial dependencies caused by aerial movements and in-
stead explaining all dynamics via local source/sink terms.

One way to avoid severe over-estimation of take-off and
landing events would be to follow other hybrid modeling
frameworks (Yin et al., 2021; Takeishi & Kalousis, 2021)
and interpret the source/sink term as a learnable correction
term which should be minimized so that spatial fluxes ex-
plain as much of the data as possible. However, take-off and
landing are integral parts of the migration process. Such
an approach would thus lead to severe under-estimation of
mass migration events, which in turn limits the practical use
of the resulting forecast model.

Instead, we exploit available velocity measurements for
additional supervision. For this purpose, we introduce a
modified flux model that relies on explicit predictions of
average cell velocities. These velocities can than be included
in the optimization objective to encourage agreement with
observed movement patterns.

Flux parameterization Originally, FluxRGNN parame-
terizes the numerical flux terms Fi→j in terms of the pro-

portions of birds moving between adjacent cells (Lippert
et al., 2022), circumventing the need for approximate FVM
schemes. To facilitate velocity-based supervision, we in-
stead propose a neural parameterization of velocities vi,
which are used to compute numerical flux terms

F
(k→k+1)
i→j = FFVM(ρ

(k)
i , ρ

(k)
j ,v

(k)
i ,v

(k)
j ,G), (5)

where FFVM can be any numerical FVM scheme that ap-
proximates fluxes based on cell averages. For more details,
see Appendix B.

Loss function Using the same observation model fC→R
for both bird densities and velocities, we extend the
FluxRGNN loss function by a weighted velocity-based loss
term. The overall loss of a forecast up to time tK becomes

L1:K =
1

K

K∑
k=1

[
Lρ

(
ρ
(k)
R , fC→R

(
ρ
(k)
C

))
+ λ · Lv

(
v
(k)
R , fC→R

(
v
(k)
C

))]
,

(6)

where λ ≥ 0 determines the trade-off between accurate bird
density predictions and reliable estimates of aerial move-
ments and take-off/landing events. The value of λ should be
chosen carefully depending on the model purpose and the
faithfulness of the respective radar measurements.

5. Experiments and results
We apply our modified hybrid model (FluxRGNN+) to data
from the Next Generation Weather Radar (NEXRAD) net-
work (Crum & Alberty, 1993; Ansari et al., 2018), consist-
ing of 143 radars distributed across the continental United
States. To capture the effects of environmental conditions
on migration behaviors, we consider a range of atmospheric
variables extracted from the ERA5 reanalysis dataset (Hers-
bach et al., 2020). In addition, we use NLCD landcover data
(Yang et al., 2018) to include information on habitat types
and other landscape characteristic.

5.1. Experimental setup

We restrict our experiments to the autumn migration season,
between 1 August and 15 November. To avoid information
leakage between training and test datasets, we split our
data by entire years, using 2013-2018 for model training,
2019 for hyperparameter tuning and model selection, and
2020-2021 for final model evaluation. Each dataset is then
split into 94h-sequences, where the first 24h are fed to the
encoder as context information (if applicable), while the
remaining hours are used to determine model performance.
During training we use a maximum forecast horizon of
K = 48h, which we increase to K = 72h during testing.

4



Towards detailed and interpretable hybrid modeling of continental-scale bird migration

5.2. FluxRGNN+ setup

Tessellation The FluxRGNN+ extension allows us to
model migratory movements on any desired tessellation.
Here, we use a regular grid based on Uber’s Hexagonal Hi-
erarchical Spatial Index (H3), a standardized global tessella-
tions consisting of approximately equally sized hexagons,
which is particularly well suited for movement modeling
(Birch et al., 2007). The resulting tessellation consists of
1091 cells with diameters ranging between 125 and 150km.
At this resolution, regional variation due to urban areas,
coastlines or mountain ranges can be (partially) resolved.
At the same time, cells remain large enough to model move-
ments at an hourly resolution without violating the conti-
nuity assumption, which reduces computational costs com-
pared to finer temporal resolutions.

Radar-to-cell mapping To ensure that all cells receive
information on radar measurements, we define ER→C based
on the k-nearest-neighbor graph connecting each cell Cn

to the k = 10 closest radars. Cell-level quantities are then
computed as weighted averages

ỹ(k)n =
∑

(m,n)∈ER→C

wn,m · y(k)m (7)

where weights wn,m scale inversely with the distance
d(xn,xm) between the cell center and the respective radar
location. The same interpolation scheme is used to define
initial cell states ρ(0)

C .

Flux computation For ease of implementation, we use
a simple upwind scheme to compute flux terms based on
predicted cell densities and velocities. For more details, see
Appendix B.

5.3. Predictive performance

Modeling movements on a regular hexagonal grid instead of
the coarse Voronoi tessellation of radar locations has the po-
tential to reduce artifacts related to irregular cell shapes and
sizes. At the same time, the required radar-to-cell mapping
may introduce interpolation errors and result in information
loss. To investigate this trade-off, we compare the predictive
performance of FluxRGNN+ to the original FluxRGNN,
as well as a local regression model (XGBoost) similar to
Van Doren & Horton (2018), and a radar-specific historical
average capturing typical daily and seasonal patterns. To
ensure a fair comparison, all models are trained only on bird
densities, i.e. using λ = 0.

We evaluate bird density predictions in terms of the RMSE
across all radars and forecast horizons (up to 72h), excluding
daytime hours. In addition, we compute precision and recall
based on a threshold of 150 birds/km2 (ca. 95% quantile)
to determine how well a model identifies rare high intensity
migration events, which are of particular interest for conflict
mitigation.

Table 1. Evaluation of bird density predictions. All metrics are
reported as mean ± std across 5 different random seeds.

RMSE
[
birds/km2

]
↓ precision [%] ↑ recall [%] ↑

historical avg 63.77 ± 0.00 32.05 ± 0.00 18.79 ± 0.00
XGBoost 47.25 ± 0.06 61.18 ± 0.14 43.92 ± 0.14
FluxRGNN 31.49 ± 0.67 62.59 ± 3.04 54.90 ± 4.84

FluxRGNN+ 31.64 ± 0.40 63.94 ± 3.27 53.11 ± 5.69

In line with previous results from Lippert et al. (2022), we
find that FluxRGNN generates more accurate bird density
predictions than both the historical average and the local

Figure 2. Spatial cross-validation of bird density predictions. Box plots show the variability of evaluation metrics across 10 cross-validation
folds, where different subsets of radars were held out during training. Note that the subsets of training radars for different folds overlap,
which naturally leads to less variability in evaluation metrics than for the distinct subsets of test radars.
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Figure 3. Evaluation of flight speeds and directions predicted by FluxRGNN+ trained with varying λ. Left: Results of the spatial
cross-validation for training and test radars respectively. Right: Histograms of predicted and measured quantities for held out test radars
across all 10 cross-validation folds.

XGBoost model (see Table 1). In particular, we observe a
substantial improvement in terms of recall, i.e. the percent-
age of correctly identified peak migration hours, which is
of particular importance for conflict mitigation. The perfor-
mance of our modified FluxRGNN+ model is on par with
the original FluxRGNN across all evaluation metrics, in-
dicating that the reduction of tessellation-related artifacts
compensates for any information loss due to radar-to-cell
interpolation errors. Importantly, this means that we are able
to generate more informative, higher resolution forecasts
without losing predictive power.

5.4. Extrapolation to unobserved locations

By extending FluxRGNN to arbitrary tessellations, we aim
to resolve more local variability in migratory movements,
for example in response to fine-scale weather patterns and
habitat types. To assess the quality of predictions at unob-
served locations in-between radars, we perform a spatial
cross-validation where we divide all available radars into
10 random subsets and train all models on 9 out of 10 of
these subsets, leaving the rest for independent evaluation.
Importantly, radar measurements of test radars are only used
for evaluation, and not for providing context information to
the encoder. Repeating this process for all subsets gives an
estimate of how well our model generalizes to unobserved
locations. As both the original FluxRNN and the historical
average are tied to available radar measurements, we do not
include them in this analysis.

Figure 2 summarizes the results of this spatial cross-
validation. As expected, predictions for independent test

radars are on average less accurate than for training radars.
Nevertheless, FluxRGNN+ continues to perform better than
XGBoost across all evaluation metrics. A radar-specific eval-
uation reveals that for FluxRGNN+ (λ = 0) the RMSE for
an excluded radar increases on average by 9.67% compared
to a setting where this radar is included during training. For
XGBoost, this value is almost three times as large (26.45%),
suggesting that even with λ = 0, i.e. no supervision on
velocities, the underlying movement model helps to make
spatially consistent predictions.

5.5. Improving interpretability

To investigate the trade-off between forecast accuracy and
interpretability encoded by λ (see Section 4.2), we gradually
increase λ and evaluate the effect on predicted bird densities,
flight speed and directions, using the same spatial cross-
validation setup as before. To avoid issues with unreliable
velocity measurements when hardly any birds are in the
air, we only include moments with ρ

(k)
m > 5 birds/km2 in

our evaluation of velocity predictions and when computing
historical averages.

As expected, increasing λ results in predicted and observed
flight speeds and directions matching more closely (see Fig-
ure 3). Notably, already a rather small contribution to the
overall loss yields movement predictions that are more ac-
curate than a simple historical average, which is a relatively
strong baseline due to consistent continental-scale migration
routes. Overall, flight speeds seem to be more challenging
to predict correctly, especially during peak migration where
birds move much faster due to favorable wind conditions.
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Figure 4. An example forecast of three consecutive high intensity migration nights (numbers 1-3) in September 2021 generated by
FluxRGNN+ trained with λ = 0.1 on years 2013-2020. The three time series on the left correspond to the radars marked in the maps on
the right. To distinguish between take-off and landing, we separate hours with positive and negative source/sink term and aggregate them
respectively. Red arrows on the maps indicate average velocities in areas with substantial migration.

However, with increased supervision (λ = 0.1) the predic-
tions of these high speed movements improve considerably.

At the same time, we observe a gradual degradation of bird
density predictions in terms of RMSE and recall, indicat-
ing that forecasts of mass departure events become more
conservative as the model focus is shifted towards accurate
velocity predictions. This is supported by the accompanied
increase in precision. Nevertheless, the decrease in perfor-
mance is rather small compared to the respective gain in
terms of flight speed and directions. Even for the highest
considered λ, bird density predictions remain more accurate
or at least comparable to XGBoost. Finally, when consider-
ing the relative increase in RMSE when excluding a radar
during training (see Section 5.4), we find that increasing
λ actually improves the extrapolation capabilities of the
model (9.45% for λ = 0.01 and 7.69% for λ = 0.1). This
is likely due to FluxRGNN+ tending to under-predict flight
speeds for small λ (see Figure 3), resulting in very little

information flow between distant locations. In contrast, as
λ increases aerial fluxes increase as well, which helps the
model to exploit information from surrounding radars to
make more accurate predictions at unobserved locations.

For applications where reliable extrapolation and inter-
pretability of predicted movements are key, we thus rec-
ommend a setting of λ = 0.1. Figure 4 shows an example
forecast of three consecutive high intensity migration nights
generated with this setting. The migration wave passing
through the East of the continent, with distinct density peaks
at radars falling within this wave, is clearly captured by the
model. Take-off and landing areas overlap substantially,
confirming previous finding by Nussbaumer et al. (2024).

6. Discussion and conclusion
We have presented FluxRGNN+, an extension to a recently
developed hybrid model of continental-scale bird migration
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which allows us to make more detailed and interpretable
bird migration forecasts on any desired tessellation. The
resulting bird density predictions at observed radar locations
are on par with those generated by the original FluxRGNN
model. At the same time, the underlying movement model
enables FluxRGNN+ to make more accurate predictions at
unobserved locations in-between radars than a purely local
XGBoost baseline. Increasing supervision on predicted bird
velocities naturally yields more realistic movement patterns,
which in turn facilitates even more robust extrapolation to
unobserved locations.

Nevertheless, there exists an inevitable trade-off between
accurate forecasts of peak migration and reliable disentan-
glement of the underlying processes. The balance between
the two objectives depends on the specific purpose of the
forecast. For example, for effective mitigation of colli-
sions with wind turbines, aircraft or illuminated buildings,
a focus on peak migration events is key (Bradarić et al.,
2024; Kranstauber et al., 2022; Horton et al., 2021; Burt
et al., 2023). Conversely, reliable estimates of aerial fluxes,
take-off and landing can provide valuable insights into the
redistribution and accumulation of migrants on the ground,
which cannot be measured by weather radars directly (Nuss-
baumer et al., 2024). Combining this information with
citizen science data (Sullivan et al., 2014) could help predict
changes in spatio-temporal species distributions as well as
local species compositions.

For simplicity, we have used a rather simple spatial interpo-
lation to define the mapping from sparse radar observations
to grid cells during encoding and model initialization. Aug-
menting this by a learned correction term or replacing it
by a graph neural network layer similar to van der Linden
et al. (2023) could reduce information loss and thus further
improve prediction quality. Alternatively, the FluxRGNN+
approach could be combined directly with some form of
data assimilation (or state estimation) to obtain the best pos-
sible estimates of previous system states while accounting
for uncertainties due to both imperfect measurements and
model errors, as it is common in the Earth sciences (Reichle,
2008; Bauer et al., 2015).

Generally, hybrid forecast models like FluxRGNN+ have
broad potential for ecological applications where complex
spatio-temporal dynamics are sparsely observed and only
incomplete theoretical models are available. In such set-
tings, black-box deep learning models designed for data-
rich contexts and purely numerical simulations relying on
fully specified models fall short. Instead, hybrid models
can explore the continuum between these two approaches,
providing high-quality predictions and strong extrapolation
capabilities, while offering opportunities to advance existing
scientific knowledge and theories.
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Appendices
Appendix A provides additional information about the data used in our experiments. Appendix B discusses the FluxRGNN+
architecture and the considered baselines in more detail. Finally, we present additional results in Appendix C.

A. Data
A.1. Weather radar data

We use weather radar data downloaded from the NEXRAD archive (Ansari et al., 2018), covering the autumn migration
season (1 August to 15 November) of 2013-2021. For each of the 143 radars, the vol2bird algorithm (Dokter et al., 2011)
was applied to compute vertical profiles of bird densities and velocities based on measurements within a 5-35 km range
around the radar. The settings of this algorithm, including filtering of meteorological signals, insects, ground clutter, and
artifacts due to beam blockage, as well as velocity dealiasing, are the same as described in Dokter et al. (2018). These
profiles are further aggregated across altitudes, resulting in vertically integrated bird densities [birds/km2] and average
velocities [m/s], covering 3000 km above the radar antenna. Finally, bird density and velocity time series were resampled to
1-hour time intervals.

Additional manual filtering and data selection was performed to obtain high-quality ground truth data. This involved (i)
forcing bird densities and velocities during daytime to be zero, as most migration occurs during nighttime and daytime radar
signals are likely to be contaminated with insect echoes, (ii) excluding measurements that are exactly zero due to high filter
activity, and (iii) manual checks for artifacts or severe precipitation in radar scans with bird densities above 1165 birds /km2.

To stabilize training, final bird densities are scaled by a factor of 0.001, whereas velocities (and other spatial features of the
tessellation like cell faces, areas and distances) are scaled by a factor of 0.01.

A.2. Time-varying input features

Atmospheric reanalysis We downloaded data on zonal and meridional wind components, temperature, specific humidity,
total cloud cover, total precipitation, surface pressure and mean sea level pressure from the ERA5 reanalysis database
(Hersbach et al., 2020) with a time resolution of 1 hour and a spatial resolution of 0.5°. For variables varying with altitude,
we extracted data at three different model levels (135, 128, 115) matching the 10, 50 and 90% quantiles of the average
vertical distribution of bird densities across all years and radars. Model levels are a combination of pressure levels and above
ground elevation, and therefore smoothly follow the topography without bearing the risk of extrapolating below the Earth
surface. For the ICAO Standard Atmosphere Model, the considered levels correspond roughly to 54, 288, and 1329 meters
above ground. To match the spatial resolution to the model tessellation C, all variables were aggregated into a single value
per cell and time point, using the average of all data points falling within a cell. These values are then normalized to [−1, 1].

Daily and annual cycles To capture more general daily and seasonal trends, information on the daily and annual cycles
are included in the form of the local solar position (determined for the cell center), its derivative (i.e. 1h change in solar
position), a binary variable indicating if it is day or night, two binary variables marking civil dusk and dawn, as well as the
day of the year. The day of the year is normalized to [0, 1], whereas solar positions are normalized to [−1, 1].

Together, atmospheric variables and time-related variables form the vector of environmental conditions u(k)
i for each cell Ci

and time point tk respectively.

A.3. Time-invariant input features

In addition to time-varying features, we also consider time-invariant properties of the tessellation. This includes information
on land cover types as well as geographic locations of cell centers.

Land cover types Information on landscape characteristics stems from the National Land Cover Database (NLCD) (Yang
et al., 2018), which classifies land cover types across North America at a 30m resolution. For each cell, we construct a
vector ci ∈ [0, 1]

16, containing the proportions of that cell being covered by the 16 different land cover classes.

Geographic locations The location of each cell center is encoded using a sinusoidal embedding of longitude and latitude,
resulting in a 4-dimensional vector pi = [sin(lon), cos(lon), sin(lat), cos(lat)] ∈ [−1, 1]

4.
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B. Model details
B.1. FluxRGNN+

B.1.1. ENCODER-DECODER BACKBONE

Following Lippert et al. (2022), we use a 1-layer LSTM (Hochreiter & Schmidhuber, 1997) to define RNNenc and RNNdec

respectively. At each time step, the inputs to these LSTMs consist of cell-level radar measurements Ỹ(k)
C (for the encoder)

or predictions ρ(k)
C (for the decoder), as well as time-varying and time-invariant input features. As the spatial context of a

cell (e.g. proximity to the coast or mountain ranges) can affect the responses of birds to atmospheric conditions, we pass the
land cover and location embedding vectors through a 2-layer graph attention network (GAT) (Veličković et al., 2018) before
feeding it to the LSTMs. In addition, we feed the final encoder embedding Z(0) to the decoder at every time step k > 0 to
provide temporal context.

B.1.2. FLUX MODEL

As discussed in Section 4.2, we explicitly predict average cell velocities and compute cell-to-cell fluxes Fi→j based on a
numerical FVM scheme. Similar to the original FluxRGNN parameterization, velocities v(k)

i are the output of a space and
time-invariant multi-layer perceptron (MLP), taking the corresponding decoder hidden state z

(k)
i together with relevant

environmental variables u(k)
i and the location embedding pi as input:

v
(k)
i = MLPv

(
z
(k)
i ,u

(k)
i ,pi

)
(8)

As velocities are unconstrained, no output non-linearity is applied.

Given the predicted velocities and current (predicted or initial) bird densities, we use a simple upwind scheme to compute
numerical fluxes

F
(k→k+1)
i→j = |fij |

(
a+ρ

(k)
i + a−ρ

(k)
j

)
(9)

with

a+ = max(0,nT
ijv

(k)
ij ) (10)

a− = min(0,nT
ijv

(k)
ij ). (11)

Here, v(k)
ij = 1

2 (v
(k)
i + v

(k)
j ) approximates the velocity across face fij between Ci and Cj , and nij denotes the unit

vector normal to this face and pointing outward of Ci. Importantly, it is F (k→k+1)
i→j = −F

(k→k+1)
j→i , and thus local mass

conservation is ensured.

Note that this first-order approximation may not yield adequate results in modern fluid dynamics simulations, but it is
sufficient for our purposes. Moreover, the neural networks parameterizing velocities and source/sink terms can in principle
learn to counteract small numerical errors in the flux computation.

B.1.3. SOURCE/SINK MODEL

For the source/sink term, we follow Lippert et al. (2022) and parameterize

s
(k→k+1)
i = γ(k→k+1) − δ

(k→k+1)
i ρ

(k)
i , (12)

with learnable 0 ≤ δ
(k→k+1)
i ≤ 1 and γ(k→k+1) ≥ 0 representing the fraction of birds leaving cell Ci to land, and the

average increase in bird density in cell Ci due to take-off, respectively. Note that s(k→k+1)
i can, to a certain extent, act as a

learnable correction term accounting for numerical errors in the flux estimation.

Again, δ(k→k+1)
i and γ(k→k+1) are predicted as a function of the encoder hidden state, environmental conditions, and the

cell location embedding, using a shared space and time-invariant MLP

δ
(k→k+1)
i , γ

(k→k+1)
i = MLPs

(
z
(k)
i ,u

(k)
i ,pi

)
. (13)
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To ensure that δ(k→k+1)
i and α(k→k+1) are in the correct ranges, we use the following output non-linearities:

δ
(k→k+1)
i = (tanh (·))2 and γ

(k→k+1)
i = (·)2 . (14)

Note that this setup encourages initial (random) predicted source and sink terms to be close to zero, while promoting accurate
predictions of extreme migration events.

B.1.4. BOUNDARY CONDITIONS

Assuming a smooth enough process, bird densities and hidden states at boundary cells Bi ∈ B ⊂ C are defined based on the
average of neighboring cells Cj ∈ NC(i) \ B. This can be interpreted as an approximate Neumann boundary condition
∂ρ
∂n (x) = 0 ∀x ∈ ∂Ω where n denotes the normal to the domain boundary ∂Ω.

B.1.5. LOSS FUNCTION

The bird density and velocity components of the FluxRGNN+ loss function (see section 4.2) are defined as

Lρ(ρ
(k)
R , fC→R

(
ρ
(k)
C

)
=

1

M

M∑
m=1

∥ρ(k) − fC→R

(
ρ
(k)
C

)
∥22 (15)

Lv(v
(k)
R , fC→R

(
v
(k)
C

)
=

1

M

M∑
m=1

∥v(k)
x,m − fC→R

(
v
(k)
x,C

)
∥22 + ∥v(k)

y,m − fC→R

(
v
(k)
y,C

)
∥22 (16)

where vx and vy are the East-West and North-South components of velocity vectors.

B.1.6. TRAINING AND EVALUATION

We train FluxRGNN+ on 72-hour sequences, where the first 24 hours are passed to the encoder network and the remaining
48 hours are used for training. Training sequences are constructed using a sliding window, resulting in 2424 partially
overlapping sequences per season. Starting from a maximum horizon of K = 2 hours, we linearly increase K every 10
epochs until K = 48 or the maximum number of epochs is reached.

For model evaluation, we also use a 24-hour context, but generate forecasts up to 72 hours into the future. To mimic an
operational forecast setting, we only consider sequences starting at 13:00 (Eastern Time), which means that 72h-forecasts
cover three complete migration nights. If not indicated otherwise, the reported evaluation metrics are averaged across the
full forecast length, excluding daytime hours.

For both training and evaluation, sequences with more than 10% missing data were excluded.

B.2. FluxRGNN (Voronoi tessellation)

We compare our modified model to the original FluxRGNN model operating on the Voronoi tessellation of radar locations.
To ensure a fair comparison, we match the experimental setup and the number of parameters as much as possible. That means,
we consider a FluxRGNN setup that differs only in two major points from our proposed model: (i) the underlying tessellation
used for spatial discretization of the movement process, and therefore the radar-to-cell and cell-to-radar mappings, and (ii)
the neural parameterization of flux terms.

B.2.1. VORONOI TESSELLATION

We construct the Voronoi tessellation based on the locations of the 143 NEXRAD radars and 60 additional dummy radars
which are positioned in regular intervals along the boundary of the observed domain (defined based on a 450km buffer
around observed radar locations). The cells corresponding to these dummy radars form the (unobserved) boundary B to
which the boundary extrapolation (see section B.1.4) is applied.

B.2.2. FLUX PARAMETERIZATION

In contrast to our velocity-based flux model, Lippert et al. (2022) parameterize fluxes as

F
(k→k+1)
i→j = A

(k→k+1)
ji Viρ̄

(k)
i −A

(k→k+1)
ij Vj ρ̄

(k)
j , (17)
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with learnable A
(k→k+1)
ij ∈ [0, 1] representing mass flow rates, i.e. the fraction of birds moving from cell Cj to cell Ci.

This construction avoids the explicit parameterization of the underlying velocity field v, and thus circumvents the need for
approximate FVM schemes. However, it prevents additional supervision in cases where velocity measurements are available.

The flow rates are the output of a space and time-invariant MLP, taking as input past conditions in the upstream cell (z(k)j ,

and u
(k)
j ), current conditions in the downstream cell (u(k+1)

i ), as well as edge features eij containing information about cell
distances, directions, and face lengths:

A
(k→k+1)
ij = MLPA

(
z
(k)
j ,u

(k)
j ,u

(k+1)
i , eij

)
(18)

B.3. XGBoost baseline

Following Van Doren & Horton (2018), we used XGBoost to predict cube-root-transformed bird densities based on local
environmental conditions. Input features consist of the same time-varying variables as used for FluxRGNN and FluxRGNN+,
together with sinusoidal embeddings of radar locations.

B.4. Model hyperparameters

For FluxRGNN+ and XGBoost, we perform hyperparameter sweeps where we randomly select 5 subsets each consisting of
15 radars which are held out during training and serve as an independent validation set to evaluate model performance for
unseen locations. The hyperparameter setting resulting in the best average performance across these 5 cross-validation folds
is chosen for further experiments. The considered hyperparameters and final settings are summarized in Tables 2 and 3.
Hyperparameters for the FluxRGNN baseline are chosen to match to ones used for FluxRGNN+.

Table 2. Considered hyperparameter space and final settings for FluxRGNN+ and FluxRGNN. Note that the number of hidden channels
was not calibrated independently for each model component, but the same value was used for MLPv,MLPs,RNNenc and RNNdec.

component hyperparameter search space final setting

MLPv
# layers {1, 2} 1
# hidden channels {32, 64, 128} 128

MLPs
# layers {1, 2} 1
# hidden channels {32, 64, 128} 128

GAT # layers {1, 2, 3} 2
# hidden channels {16, 32, 64} 32

RNNenc # hidden channels {32, 64, 128} 128

RNNdec # hidden channels {32, 64, 128} 128

General settings

learning rate {3× 10−6, 10−5, 3× 10−5, 10−4, 3× 10−4} 10−4

dropout {0%, 10%, 25%} 10%
activation function – ReLU
optimizer – Adam
batch size – 32
epochs – 500

C. Additional results
C.1. Predictive performance at observed and unobserved locations

Table 1 in the main text summarizes the predictive performance at observed radar locations across all time steps and radars.
Here, we provide more detailed results where we separate each forecast into 24h-bins and compute evaluation metrics for
each bin respectively. We find that both FluxRGNN and FluxRGNN+ continue to outperform local baseline models even for
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Table 3. Considered hyperparameter space and final settings for XGBoost.

hyperparameter search space final setting

num estimators – 500
max depth {5, 10, 15, 20} 15
learning rate {0.01, 0.05, 0.1} 0.05
min child weight {1, 3, 5} 3
subsample {0.7, 1.0} 0.7
gamma {0, 1, 10} 0

horizons beyond those considered during training, i.e. 48-72h (see Figure 5). This indicates that the hybrid approach results
in robust predictions and minimal error propagation.

Similarly, we separate predictions according to observed bird densities to gain insights into the quality of predictions during
low, medium and high intensity migration events. As expected, Figures 6 and 7 shows that the RMSE for both observed and
unobserved radar locations increases as ground truth bird densities increase. The relative performance of models remains
very similar, however, with FluxRGNN and FluxRGNN+ being more accurate than local baselines for low, medium and
high migration events respectively.

Figure 5. Evaluation of bird density predictions, separated by forecasting horizons. All metrics are reported as mean ± std across 5
different random seeds.

In addition, we perform a radar-specific evaluation. For each radar, we compute both the average RMSE across folds where
the radar is included during training and the RMSE for the fold where it is considered unobserved. We then compute the
relative change in RMSE, indicating by how much the prediction error increases due to missing observations. Figure 8
shows the spatial distribution of this quantity for the different models. Clearly, XGBoost suffers the most from missing
observations. All three FluxRGNN+ variants show very strong extrapolation capabilities, especially for radars away from
the domain boundary.
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Figure 6. Evaluation of bird density predictions, separated by ground truth bird densities. All metrics are reported as mean ± std across 5
different random seeds.

Figure 7. Spatial cross-validation of bird density predictions, separated by ground truth bird densities. Box plots show the variability of
evaluation metrics across 10 cross-validation folds, where different subsets of radars were held out during training.

C.2. Example forecast

Finally, we provide a visual comparison of predictions generated by the original FluxRGNN and our extended model using
different settings for λ (see Figure 9). Overall, the predicted migration flows match well. FluxRGNN+ clearly provides much
more detailed spatial patterns than the original FluxRGNN based on Voronoi cells. In line with findings from Figure 3, we
see that FluxRGNN+ trained with λ = 0.01 tends to underpredict flight speeds resulting in a rather unrealistic combination
of high bird densities but little aerial movements.
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Figure 8. Radar-specific cross-validation of bird density predictions in terms of the relative change in RMSE, indicating the increase in
prediction error of a radar due to missing observations.
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Figure 9. Example forecasts for a high intensity migration night (number 1 in Figure 4) in September 2021 generated by three different
models trained on years 2013-2020. To obtain predictions of total take-off and landing, we separate hours with positive and negative
source/sink term and aggregate them respectively. Red arrows in areas with substantial migration indicate average velocities (for
FluxRGNN+) and cell-to-cell fluxes (for FluxRGNN) respectively. Top: bird density snapshots at different time points throughout the
night (Eastern Time Zone), predicted by FluxRGNN+ with λ = 0.1.
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