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Abstract001

Text-to-image models often struggle to gener-002
ate images that precisely match textual prompts.003
Prior research has extensively studied the eval-004
uation of image-text alignment in text-to-image005
generation. However, existing evaluations pri-006
marily focus on agreement with human assess-007
ments, neglecting other critical properties of008
a trustworthy evaluation framework. In this009
work, we first identify two key aspects that a010
reliable evaluation should address. We then em-011
pirically demonstrate that current mainstream012
evaluation frameworks fail to fully satisfy these013
properties across a diverse range of metrics and014
models. Finally, we propose recommendations015
for improving image-text alignment evaluation.016

1 Introduction017

Text-to-Image (T2I) models have demonstrated re-018

markable capabilities in generating high-quality,019

realistic images (Betker et al., 2023; Esser et al.,020

2024). Despite these advances, they still face chal-021

lenges in accurately interpreting and adhering to022

user prompts. Common failures include generat-023

ing incorrect object counts, attributes, or spatial024

relationships (Li et al., 2024). Nevertheless, eval-025

uating text-image alignment remains a persistent026

and unresolved problem in the field.027

Several frameworks exist for evaluating image-028

text alignment. Model-based approaches include029

CLIPScore (Hessel et al., 2021) and VQAScore030

(Lin et al., 2024). Component-based methods de-031

compose text prompts into fine-grained elements032

and assess alignment through techniques like ques-033

tion generation and answering (QG/A) (Hu et al.,034

2023; Cho et al., 2023). Additionally, detector-035

based frameworks such as UniDet-Eval (Huang036

et al., 2023) leverage object detection for evalua-037

tion.038

Despite the vast number of evaluation frame-039

works, few studies have thoroughly investigated040

Figure 1: A robustness failure case of VQAScore. The
right image is visually the same as the left one, yet their
calculated VQAScore differs a lot.

the trustworthiness of image-text alignment assess- 041

ment. Most existing work focuses narrowly on 042

aligning automatic evaluation results with human 043

judgments (Li et al., 2024; Wiles et al., 2025). 044

When addressing trustworthiness, researchers pri- 045

marily concentrate on improving human evalua- 046

tion protocols to better validate automatic metrics 047

(Otani et al., 2023; Wiles et al., 2025). However, 048

these approaches overlook the critical point that a 049

truly trustworthy evaluation framework must en- 050

compass more dimensions than mere correlation 051

with human assessment. Additional discussion of 052

related works is provided in Appendix A. 053

In this work, we identify two critical properties 054

for trustworthy evaluation frameworks: Robust- 055

ness and Significance. Through empirical analysis, 056

we demonstrate that current evaluation methods fail 057

to fully satisfy these criteria, highlighting an im- 058

portant research direction for improving text-image 059

alignment assessment. For example, as illustrated 060

in Figure 1, while two visually similar images re- 061

ceive substantially different VQAScore evaluations, 062

revealing clear deficiencies in Robustness. 063

In summary, our work makes two key contribu- 064

tions: (1) identifying Robustness and Significance 065

as fundamental requirements for trustworthy eval- 066

uation frameworks, and (2) systematically demon- 067
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strating how current frameworks fail to meet these068

criteria.069

2 Methodology070

2.1 Preliminaries071

We would like to briefly introduce the common072

image-text alignment evaluation framework that073

we discuss in this research. Generally, given a074

benchmark consisting a set of N prompts P =075

{p1, ..., pN}, a text-to-image model M is used to076

generate images I = {I1, ..., IN} based on these077

prompts. 1 An automatic metric J is used to eval-078

uate the alignment between the image-text pair079

(pi, Ii), and outputs a score si = J(pi, Ii). The080

final evaluation result is the average of all scores:081

sM =
1

N

∑N
i=1 si. If there are multiple models082

M1, ...,MK , the scores sM1 , ..., sMK
also provides083

a ranking of these models, which is also a part of084

the evaluation result that people focus on.085

2.2 Aspects086

We would like to propose two important aspects087

that a trustworthy image-text alignment evaluation088

should focus on.089

Robustness Robustness requires that evaluation090

results remain consistent under reasonable pertur-091

bations of the input pair (pi, Ii). In this work, we092

specifically examine two critical dimensions of ro-093

bustness: (1) robustness to randomness and (2)094

robustness to image perturbations.095

Robustness to Randomness Most state-of-096

the-art text-to-image models employ denoising dif-097

fusion processes, where the generation output for a098

given prompt pi depends on the sampled noise prior.099

This inherent randomness introduces variability in100

evaluation results. A trustworthy evaluation frame-101

work must maintain consistent model rankings de-102

spite this randomness - otherwise, the evaluation103

fails to reliably indicate which model performs bet-104

ter. To assess robustness under randomness, we105

systematically evaluate model performance across106

different random seeds.107

Robustness to Image Perturbation We make108

a fundamental assumption that for visually similar109

images Ii and I
′
i , their evaluation scores J(pi, Ii)110

1Though there can be multiple images generated using a
certain prompt, many practices only generate one image per
prompt.

and J(pi, I
′
i) should also be close. Large discrep- 111

ancies would indicate potential metric flaw rather 112

than true model capability. To assess robustness 113

against image perturbations, we apply a minimal 114

transformation: given an image I with pixel values 115

Ic,h,w ∈ [0, 255], c, h, w corresponds to the chan- 116

nels, height and width of the image, we achieve a 117

perturbed image I
′

with pixel values 2: 118

I
′
c,h,w =

{
Ic,h,w + 1 if Ic,h,w < 255

Ic,h,w otherwise
(1) 119

The robustness metric is computed by calculating 120

the performance gap as: 121

∆Ji = |J(pi, Ii)− J(pi, I
′
i)| (2) 122

Significance The property of Significance exam- 123

ines whether an observed performance difference 124

(e.g., sM1 > sM2) reflects a meaningful superiority 125

of model M1 over M2. To quantify this, we employ 126

two complementary approaches: 127

1. Statistical Testing: For evaluation score 128

sets SM1 = (s1M1
, ..., sNM1

) and SM2 = 129

(s1M2
, ..., sNM2

), we conduct a paired t-test to 130

assess statistical significance. 131

2. Dominance Ratio: We compute the empirical 132

probability of M1 over M2 as: 133

R =
1

N

N∑
i=1

I[siM1
> siM2

] (3) 134

3 Experiment Setup 135

For our evaluation, we select four widely-used text- 136

to-image generation models that represent diverse 137

architectures and capabilities: Stable-Diffusion-3 138

(SD3) (Esser et al., 2024), Stable-Diffusion-XL 139

(SD-XL) (Podell et al., 2023), Stable-Diffusion-1.5 140

(SD1.5) (Rombach et al., 2022), and PixArt-Sigma- 141

XL (Pixart) (Chen et al., 2024a). This carefully 142

chosen set ensures comprehensive coverage of the 143

current state-of-the-art in diffusion-based text-to- 144

image generation. 145

For metrics, we employ three widely applicable 146

metrics: CLIPScore (Hessel et al., 2021) , VQAS- 147

core (Li et al., 2024) , and DSGScore (Cho et al., 148

2023). For benchmarking, we use MSCOCO (Lin 149

2We confirm the perturbation’s visual imperceptibility
through manual inspection of multiple cases, verifying that
modified images remain indistinguishable from originals.

2



Model Name VQAScore CLIPScore DSGScore

42 3407 5096 42 3407 5096 42 3407 5096

Stable-Diffusion-3 91.18(1) 90.90(1) 91.06(1) 26.39(1) 26.34(1) 26.36(1) 93.66(1) 91.99(1) 93.52(1)
Stable-Diffusion-XL 86.63(3) 86.01(3) 85.77(3) 25.93(2) 25.81(2) 25.85(2) 89.68(3) 90.04(3) 90.44(2)

Pixart-Sigma-XL 87.04(2) 87.16(2) 86.72(2) 25.78(3) 25.71(3) 25.75(4) 90.52(2) 90.53(2) 89.99(3)
Stable-Diffusion-1.5 76.26(4) 75.79(4) 77.32(4) 25.76(4) 25.58(4) 25.76(3) 83.23(4) 82.64(4) 83.88(4)

Table 1: Results on MSCOCO using different metrics and different random seeds. The value under metric name is
the corresponding random seed used. The value in the brackets is the ranking under the same seed.

et al., 2014), selecting 1,000 prompts from its vali-150

dation split to assess general text-to-image genera-151

tion capabilities following common practice (Esser152

et al., 2024). Additional implementation details are153

provided in Appendix B.154

4 Experiment Results and Analysis155

4.1 Analysis of Robustness156

Robustness to Randomness Our investigation157

first examines evaluation robustness under random158

seed variations. Table 1 reveals that both CLIP-159

Score and DSGScore produce inconsistent model160

rankings across different random seeds, demon-161

strating their failure to maintain robust evaluation162

outcomes.163

Notably, this inconsistency cannot be solely at-164

tributed to narrow score margins between models.165

For instance, CLIPScore with seed 3407 shows a166

0.10 performance gap between Pixart and SD-XL,167

compared to a larger 0.13 gap between Pixart and168

SD-1.5. Despite this greater margin, CLIPScore169

inconsistently ranks Pixart versus SD-1.5 while170

maintaining stable rankings for SD-XL.171

We emphasize that our analysis does not pre-172

suppose the rankings produced by VQAScore are173

inherently “correct." Rather, our core argument es-174

tablishes that any metric failing to maintain consis-175

tent rankings under random seed variations cannot176

be considered trustworthy, as there exists no reli-177

able basis to determine which ranking might be178

"correct" when results fluctuate.179

Furthermore, while 1000 prompts constitute a180

large-scale evaluation in text-to-image research,181

our findings reveal significant robustness failures182

even at this scale. This persistent inconsistency un-183

derscores fundamental challenges in current evalu-184

ation practices.185

Takeaway 1: An evaluation failing to provide186

robust ranking under randomness should be187

viewed less trustworthy, like CLIPScore and188

DSGScore.189

Robustness to Image Perturbation For our im- 190

age perturbation analysis, we utilize SD-3 (selected 191

for its superior generation performance). The eval- 192

uation employs a fixed random seed of 42, with 193

complete results presented in Table 2. 194

Avg. ∆Ji Max. ∆Ji

VQAScore 0.44 10.36
CLIPScore 0.74 7.30
DSGScore 3.09 50.00

Table 2: The average and maximum performance gap
between original image and perturbated image of differ-
ent metrics.

The results reveal that even a minimal pertur- 195

bation of 1 pixel value creates significant perfor- 196

mance variations. While VQAScore demonstrates 197

relatively better robustness with an average perfor- 198

mance gap of 0.44, both CLIPScore and DSGScore 199

exhibit unacceptably large variations, indicating 200

fundamental robustness limitations. 201

More concerning are the worst-case scenarios, 202

where this simple perturbation produces dramatic 203

performance gaps across all metrics. Figure 1 illus- 204

trates one such failure case for VQAScore. These 205

extreme cases are particularly problematic as they 206

not only occur unpredictably, but also reveal po- 207

tential for metric exploitation. Further, this worse 208

case may confuse model development when visu- 209

ally identical inputs produce substantially different 210

evaluations. 211

Takeaway 2: All three metrics fail to main- 212

tain a worst case robustness under a simple 213

slight perturbation of image. CLIPScore and 214

DSGScore even fail on average case, revealing 215

a worrying fact of the trustworthiness of their 216

evaluation result. 217

4.2 Analysis of Significance 218

We present the p-value of paired T-test and dom- 219

inance ratio R to explore the significance of the 220

comparison using different metrics in Figure 2. 221

We first examine the statistical significance of 222

model comparisons. Following conventional stan- 223
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Figure 2: The T-test p-value and better ratio R between models. The value at i-th row and j-th column in a matrix
represents the result of model i compared against model j. The random seed used is shown in the title of the
corresponding heatmap.

dards, we consider results with p-value < 0.05 as224

statistically significant. Our analysis using VQAS-225

core reveals several notable findings: SD-3 demon-226

strates statistically significant superiority over SD-227

XL, Pixart, and SD-1.5. More surprisingly, Pixart228

shows significant improvement over SD-XL (87.16229

vs 86.01) in Table 1, seed 3407), indicating that230

even a score difference of 1 can reflect meaningful231

performance gaps between models.232

This phenomenon is not unique to VQAScore.233

CLIPScore exhibits a similar pattern, showing SD-234

XL significantly superior to Pixart (25.93 vs 25.78).235

Similarly, DSGScore suggests potential superior-236

ity of Pixart over SD-XL (p = 0.10), despite their237

small score difference (90.52 vs 89.68). These238

consistent findings across metrics challenge con-239

ventional assumptions, suggesting that statistically240

significant improvements may occur with smaller241

metric differences than previously believed. So242

are current standards for determining meaningful243

model improvements excessively stringent?244

To further investigate this phenomenon, we ex-245

amine the dominance ratio - the probability that246

model i generates superior results to model j for a247

given prompt. We reach another shocking observa-248

tion that, even if model i is significantly better than249

model j, the generation result of model i may not250

bear a large probability of being better than model j.251

Considering the significance derived using VQAS-252

core as mentioned before, actually SD-XL bears a 253

50% probability generating a “better" result, while 254

Pixart bears 49%, even less than SD-XL! Further, 255

SD-3 just bears 60% probability of generating bet- 256

ter results, while SD-XL still bears 40% probability 257

of generating better results, even with a VQAScore 258

gap of 4.5. 259

In this context, the problem is not about metrics 260

only. The problem is, how we view “significance". 261

If we simply view “significance" as a statistical 262

test, we can happily accept a small improvement in 263

metrics since it is enough to demonstrate this sig- 264

nificance. However, if we would like to guarantee 265

a better generation performance, it is still essential 266

to seek an even larger metric improvement. 267

Takeaway 3: A small difference between met- 268

rics is enough to reveal a “significance" in statis- 269

tical analysis. However, this “significance" may 270

not be directly interpreted to actual model per- 271

formance, while a trustworthy evaluation should 272

take both aspects into account. 273

5 Conclusion 274

In this work, we introduce two important aspects, 275

Robustness and Significance, that evaluation frame- 276

works should focus. We conduct a wide range of 277

experiments and reveal some important conclusions 278

that should be taken into consideration when con- 279

ducting future evaluation on image-text alignment. 280
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Limitations281

The main limitation of this work is that it does not282

provide a better evaluation framework to address283

the problems discussed in this paper. A better eval-284

uation framework is left for future works.285
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A Related Works418

There are many metrics and benchmarks focus-419

ing on evaluating image-text alignment in text-to-420

image generation.421

CLIP-Score (Radford et al., 2021; Hessel et al.,422

2021) evaluates image-text alignment by comput-423

ing the cosine similarity of CLIP embeddings.424

VQAScore (Lin et al., 2024) queries a VQA425

model to determine if the image corresponds to426

the prompt, using the "Yes" logit as the metric.427

T2I-CompBench (Huang et al., 2023) leverages428

MiniGPT-4 (Zhu et al., 2023) CoT to generate an429

alignment score.430

Decomposition-based metrics break down text431

prompts into smaller components and assess the432

accuracy of each part. TIFA (Hu et al., 2023) gen-433

erates visual questions and uses a VQA model to434

verify the correctness of each component. T2I-435

CompBench (Huang et al., 2023) employs Blip-436

VQA (Li et al., 2022), while DavidSceneGraph437

(Cho et al., 2023) and VQ2 (Yarom et al., 2024) are438

similar to TIFA. MHalu-Bench (Chen et al., 2024b)439

builds a pipeline of tools to check the correctness440

of each component directly. ConceptMix(Wu et al.,441

2024) is a more complicated benchmark.442

Some other benchmarks includes (Gokhale et al., 443

2023; Patel et al., 2024), GenEval (Ghosh et al., 444

2023). 445

However, all these works consider only align- 446

ment with human annotation to evaluate the valid- 447

ity of their evaluation. (Wiles et al., 2025) takes a 448

step forward and points out different human evalu- 449

ation template influences evaluation results, but it 450

still focuses only on human annotation. To the best 451

of our knowledge, we are the first to explore image- 452

text alignment evaluation from the inner properties 453

of the evaluation. 454

B Experiment Details 455

We use the default inference hyper-parameter of 456

each model used. We list the details as follows: 457

Model Name T w

Stable-Diffusion-3 28 7.0
Stable-Diffusion-XL 50 5.0
Stable-Diffusion-1.5 50 7.5

PixArt-Σ-XL 20 4.5

Table 3: Details of our inference hyper-parameter. T
represents total denoising steps and w represents guid-
ance scale.
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