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Abstract

Text-to-image models often struggle to gener-
ate images that precisely match textual prompts.
Prior research has extensively studied the eval-
uation of image-text alignment in text-to-image
generation. However, existing evaluations pri-
marily focus on agreement with human assess-
ments, neglecting other critical properties of
a trustworthy evaluation framework. In this
work, we first identify two key aspects that a
reliable evaluation should address. We then em-
pirically demonstrate that current mainstream
evaluation frameworks fail to fully satisfy these
properties across a diverse range of metrics and
models. Finally, we propose recommendations
for improving image-text alignment evaluation.

1 Introduction

Text-to-Image (T2I) models have demonstrated re-
markable capabilities in generating high-quality,
realistic images (Betker et al., 2023; Esser et al.,
2024). Despite these advances, they still face chal-
lenges in accurately interpreting and adhering to
user prompts. Common failures include generat-
ing incorrect object counts, attributes, or spatial
relationships (Li et al., 2024). Nevertheless, eval-
uating text-image alignment remains a persistent
and unresolved problem in the field.

Several frameworks exist for evaluating image-
text alignment. Model-based approaches include
CLIPScore (Hessel et al., 2021) and VQAScore
(Lin et al., 2024). Component-based methods de-
compose text prompts into fine-grained elements
and assess alignment through techniques like ques-
tion generation and answering (QG/A) (Hu et al.,
2023; Cho et al., 2023). Additionally, detector-
based frameworks such as UniDet-Eval (Huang
et al., 2023) leverage object detection for evalua-
tion.

Despite the vast number of evaluation frame-
works, few studies have thoroughly investigated
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Figure 1: A robustness failure case of VQAScore. The
right image is visually the same as the left one, yet their
calculated VQAScore differs a lot.

the trustworthiness of image-text alignment assess-
ment. Most existing work focuses narrowly on
aligning automatic evaluation results with human
judgments (Li et al., 2024; Wiles et al., 2025).
When addressing trustworthiness, researchers pri-
marily concentrate on improving human evalua-
tion protocols to better validate automatic metrics
(Otani et al., 2023; Wiles et al., 2025). However,
these approaches overlook the critical point that a
truly trustworthy evaluation framework must en-
compass more dimensions than mere correlation
with human assessment. Additional discussion of
related works is provided in Appendix A.

In this work, we identify two critical properties
for trustworthy evaluation frameworks: Robust-
ness and Significance. Through empirical analysis,
we demonstrate that current evaluation methods fail
to fully satisfy these criteria, highlighting an im-
portant research direction for improving text-image
alignment assessment. For example, as illustrated
in Figure 1, while two visually similar images re-
ceive substantially different VQAScore evaluations,
revealing clear deficiencies in Robustness.

In summary, our work makes two key contribu-
tions: (1) identifying Robustness and Significance
as fundamental requirements for trustworthy eval-
uation frameworks, and (2) systematically demon-



strating how current frameworks fail to meet these
criteria.

2 Methodology

2.1 Preliminaries

We would like to briefly introduce the common
image-text alignment evaluation framework that
we discuss in this research. Generally, given a
benchmark consisting a set of N prompts P =
{p1,...,pN}, a text-to-image model M is used to
generate images I = {I1, ..., Iy} based on these
prompts. | An automatic metric .J is used to eval-
uate the alignment between the image-text pair
(ps, I;), and outputs a score s; = J(p;, I;). The
final evaluation result is the average of all scores:

SM = — vaz 1 si- If there are multiple models
My, ..., Mk, the scores sy, , ..., Sy, also provides
a ranking of these models, which is also a part of

the evaluation result that people focus on.

2.2 Aspects

We would like to propose two important aspects
that a trustworthy image-text alignment evaluation
should focus on.

Robustness Robustness requires that evaluation
results remain consistent under reasonable pertur-
bations of the input pair (p;, I;). In this work, we
specifically examine two critical dimensions of ro-
bustness: (1) robustness to randomness and (2)
robustness to image perturbations.

Robustness to Randomness Most state-of-
the-art text-to-image models employ denoising dif-
fusion processes, where the generation output for a
given prompt p; depends on the sampled noise prior.
This inherent randomness introduces variability in
evaluation results. A trustworthy evaluation frame-
work must maintain consistent model rankings de-
spite this randomness - otherwise, the evaluation
fails to reliably indicate which model performs bet-
ter. To assess robustness under randomness, we
systematically evaluate model performance across
different random seeds.

Robustness to Image Perturbation We make
a fundamental assumption that for visually similar
images I; and I;, their evaluation scores J(p;, ;)

'Though there can be multiple images generated using a
certain prompt, many practices only generate one image per
prompt.

and J(p;, I;) should also be close. Large discrep-
ancies would indicate potential metric flaw rather
than true model capability. To assess robustness
against image perturbations, we apply a minimal
transformation: given an image I with pixel values
Iopw € [0,255], ¢, h, w corresponds to the chan-
nels, height and width of the image, we achieve a
perturbed image 1 " with pixel values 2:

;o {chh,w +1 ifIp, < 255

otherwise

ey

c,hyw —
Ic,h,w

The robustness metric is computed by calculating
the performance gap as:

AJ; = |J(pi, I;) — J(pi, )| )

Significance The property of Significance exam-
ines whether an observed performance difference
(e.g., sam, > sar,) reflects a meaningful superiority
of model M; over Ms. To quantify this, we employ
two complementary approaches:

1. Statistical Testing: For evaluation score
1 N
sets Sy, = (Sygs - Spy,) and Sy, =
(3}\427 cee S]\N/[Q), we conduct a paired t-test to
assess statistical significance.

2. Dominance Ratio: We compute the empirical
probability of M; over M, as:

N
1 7 7
R = N ;H[SMl > 3]\/[2] (3)

3 Experiment Setup

For our evaluation, we select four widely-used text-
to-image generation models that represent diverse
architectures and capabilities: Stable-Diffusion-3
(SD3) (Esser et al., 2024), Stable-Diffusion-XL
(SD-XL) (Podell et al., 2023), Stable-Diffusion-1.5
(SD1.5) (Rombach et al., 2022), and PixArt-Sigma-
XL (Pixart) (Chen et al., 2024a). This carefully
chosen set ensures comprehensive coverage of the
current state-of-the-art in diffusion-based text-to-
image generation.

For metrics, we employ three widely applicable
metrics: CLIPScore (Hessel et al., 2021) , VQAS-
core (Li et al., 2024) , and DSGScore (Cho et al.,
2023). For benchmarking, we use MSCOCO (Lin

2We confirm the perturbation’s visual imperceptibility

through manual inspection of multiple cases, verifying that
modified images remain indistinguishable from originals.



Model Name | VQAScore CLIPScore DSGScore
‘ 42 3407 5096 ‘ 42 3407 5096 ‘ 42 3407 5096
Stable-Diffusion-3 | 91.18(1) 90.90(1) 91.06(1) | 26.39(1) 26.34(1) 26.36(1) | 93.66(1) 91.99(1) 93.52(1)
Stable-Diffusion-XL | 86.63(3) 86.01(3) 85.77(3) | 25.93(2) 25.81(2) 25.85(2) | 89.68(3) 90.04(3) 90.44(2)
Pixart-Sigma-XL | 87.04(2) 87.16(2) 86.72(2) | 25.78(3) 25.71(3) 25.75(4) | 90.52(2) 90.53(2) 89.99(3)
Stable-Diffusion-1.5 | 76.26(4) 75.79(4) 77.32(4) | 25.76(4) 25.58(4) 25.76(3) | 83.23(4) 82.64(4) 83.88(4)

Table 1: Results on MSCOCO using different metrics and different random seeds. The value under metric name is
the corresponding random seed used. The value in the brackets is the ranking under the same seed.

et al., 2014), selecting 1,000 prompts from its vali-
dation split to assess general text-to-image genera-
tion capabilities following common practice (Esser
et al., 2024). Additional implementation details are
provided in Appendix B.

4 Experiment Results and Analysis

4.1 Analysis of Robustness

Robustness to Randomness Our investigation
first examines evaluation robustness under random
seed variations. Table 1 reveals that both CLIP-
Score and DSGScore produce inconsistent model
rankings across different random seeds, demon-
strating their failure to maintain robust evaluation
outcomes.

Notably, this inconsistency cannot be solely at-
tributed to narrow score margins between models.
For instance, CLIPScore with seed 3407 shows a
0.10 performance gap between Pixart and SD-XL,
compared to a larger 0.13 gap between Pixart and
SD-1.5. Despite this greater margin, CLIPScore
inconsistently ranks Pixart versus SD-1.5 while
maintaining stable rankings for SD-XL.

We emphasize that our analysis does not pre-
suppose the rankings produced by VQAScore are
inherently “correct." Rather, our core argument es-
tablishes that any metric failing to maintain consis-
tent rankings under random seed variations cannot
be considered trustworthy, as there exists no reli-
able basis to determine which ranking might be
"correct" when results fluctuate.

Furthermore, while 1000 prompts constitute a
large-scale evaluation in text-to-image research,
our findings reveal significant robustness failures
even at this scale. This persistent inconsistency un-
derscores fundamental challenges in current evalu-
ation practices.

Takeaway 1: An evaluation failing to provide
robust ranking under randomness should be
viewed less trustworthy, like CLIPScore and
DSGScore.

Robustness to Image Perturbation For our im-
age perturbation analysis, we utilize SD-3 (selected
for its superior generation performance). The eval-
uation employs a fixed random seed of 42, with
complete results presented in Table 2.

| Avg. AJ;  Max. AJ;
VQAScore 0.44 10.36
CLIPScore 0.74 7.30
DSGScore 3.09 50.00

Table 2: The average and maximum performance gap
between original image and perturbated image of differ-
ent metrics.

The results reveal that even a minimal pertur-
bation of 1 pixel value creates significant perfor-
mance variations. While VQAScore demonstrates
relatively better robustness with an average perfor-
mance gap of 0.44, both CLIPScore and DSGScore
exhibit unacceptably large variations, indicating
fundamental robustness limitations.

More concerning are the worst-case scenarios,
where this simple perturbation produces dramatic
performance gaps across all metrics. Figure 1 illus-
trates one such failure case for VQAScore. These
extreme cases are particularly problematic as they
not only occur unpredictably, but also reveal po-
tential for metric exploitation. Further, this worse
case may confuse model development when visu-
ally identical inputs produce substantially different
evaluations.

Takeaway 2: All three metrics fail to main-
tain a worst case robustness under a simple
slight perturbation of image. CLIPScore and
DSGScore even fail on average case, revealing
a worrying fact of the trustworthiness of their
evaluation result.

4.2 Analysis of Significance

We present the p-value of paired T-test and dom-
inance ratio R to explore the significance of the
comparison using different metrics in Figure 2.
We first examine the statistical significance of
model comparisons. Following conventional stan-
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Figure 2: The T-test p-value and better ratio R between models. The value at ¢-th row and j-th column in a matrix
represents the result of model ¢ compared against model j. The random seed used is shown in the title of the

corresponding heatmap.

dards, we consider results with p-value < 0.05 as
statistically significant. Our analysis using VQAS-
core reveals several notable findings: SD-3 demon-
strates statistically significant superiority over SD-
XL, Pixart, and SD-1.5. More surprisingly, Pixart
shows significant improvement over SD-XL (87.16
vs 86.01) in Table 1, seed 3407), indicating that
even a score difference of 1 can reflect meaningful
performance gaps between models.

This phenomenon is not unique to VQAScore.
CLIPScore exhibits a similar pattern, showing SD-
XL significantly superior to Pixart (25.93 vs 25.78).
Similarly, DSGScore suggests potential superior-
ity of Pixart over SD-XL (p = 0.10), despite their
small score difference (90.52 vs 89.68). These
consistent findings across metrics challenge con-
ventional assumptions, suggesting that statistically
significant improvements may occur with smaller
metric differences than previously believed. So
are current standards for determining meaningful
model improvements excessively stringent?

To further investigate this phenomenon, we ex-
amine the dominance ratio - the probability that
model 7 generates superior results to model j for a
given prompt. We reach another shocking observa-
tion that, even if model ¢ is significantly better than
model j, the generation result of model ¢ may not
bear a large probability of being better than model ;.
Considering the significance derived using VQAS-

core as mentioned before, actually SD-XL bears a
50% probability generating a “better” result, while
Pixart bears 49%, even less than SD-XL! Further,
SD-3 just bears 60% probability of generating bet-
ter results, while SD-XL still bears 40% probability
of generating better results, even with a VQAScore
gap of 4.5.

In this context, the problem is not about metrics
only. The problem is, how we view “significance".
If we simply view “significance" as a statistical
test, we can happily accept a small improvement in
metrics since it is enough to demonstrate this sig-
nificance. However, if we would like to guarantee
a better generation performance, it is still essential
to seek an even larger metric improvement.

Takeaway 3: A small difference between met-
rics is enough to reveal a “significance' in statis-
tical analysis. However, this “significance' may
not be directly interpreted to actual model per-
formance, while a trustworthy evaluation should
take both aspects into account.

5 Conclusion

In this work, we introduce two important aspects,
Robustness and Significance, that evaluation frame-
works should focus. We conduct a wide range of
experiments and reveal some important conclusions
that should be taken into consideration when con-
ducting future evaluation on image-text alignment.



Limitations

The main limitation of this work is that it does not
provide a better evaluation framework to address
the problems discussed in this paper. A better eval-
uation framework is left for future works.
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A Related Works

There are many metrics and benchmarks focus-
ing on evaluating image-text alignment in text-to-
image generation.

CLIP-Score (Radford et al., 2021; Hessel et al.,
2021) evaluates image-text alignment by comput-
ing the cosine similarity of CLIP embeddings.
VQAScore (Lin et al.,, 2024) queries a VQA
model to determine if the image corresponds to
the prompt, using the "Yes" logit as the metric.
T2I-CompBench (Huang et al., 2023) leverages
MiniGPT-4 (Zhu et al., 2023) CoT to generate an
alignment score.

Decomposition-based metrics break down text
prompts into smaller components and assess the
accuracy of each part. TIFA (Hu et al., 2023) gen-
erates visual questions and uses a VQA model to
verify the correctness of each component. T2I-
CompBench (Huang et al., 2023) employs Blip-
VQA (Li et al., 2022), while DavidSceneGraph
(Cho et al., 2023) and VQ? (Yarom et al., 2024) are
similar to TIFA. MHalu-Bench (Chen et al., 2024b)
builds a pipeline of tools to check the correctness
of each component directly. ConceptMix(Wu et al.,
2024) is a more complicated benchmark.

Some other benchmarks includes (Gokhale et al.,
2023; Patel et al., 2024), GenEval (Ghosh et al.,
2023).

However, all these works consider only align-
ment with human annotation to evaluate the valid-
ity of their evaluation. (Wiles et al., 2025) takes a
step forward and points out different human evalu-
ation template influences evaluation results, but it
still focuses only on human annotation. To the best
of our knowledge, we are the first to explore image-
text alignment evaluation from the inner properties
of the evaluation.

B Experiment Details

We use the default inference hyper-parameter of
each model used. We list the details as follows:

Model Name ‘ T ‘ w

Stable-Diffusion-3 |28 |7.0
Stable-Diffusion-XL | 50 | 5.0
Stable-Diffusion-1.5 | 50 | 7.5

PixArt-3-XL 2014.5

Table 3: Details of our inference hyper-parameter. 7'
represents total denoising steps and w represents guid-
ance scale.
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