
Make Sure You’re Unsure: A Framework for
Verifying Probabilistic Specifications

Leonard Berrada∗† Sumanth Dathathri ∗† Krishnamurthy (Dj) Dvijotham∗†

Robert Stanforth † Rudy Bunel † Jonathan Uesato † Sven Gowal † M. Pawan Kumar †

Abstract

Most real world applications require dealing with stochasticity like sensor noise
or predictive uncertainty, where formal specifications of desired behavior are
inherently probabilistic. Despite the promise of formal verification in ensuring
the reliability of neural networks, progress in the direction of probabilistic
specifications has been limited. In this direction, we first introduce a general
formulation of probabilistic specifications for neural networks, which captures both
probabilistic networks (e.g., Bayesian neural networks, MC-Dropout networks)
and uncertain inputs (distributions over inputs arising from sensor noise or other
perturbations). We then propose a general technique to verify such specifications
by generalizing the notion of Lagrangian duality, replacing standard Lagrangian
multipliers with "functional multipliers" that can be arbitrary functions of the
activations at a given layer. We show that an optimal choice of functional multipliers
leads to exact verification (i.e., sound and complete verification), and for specific
forms of multipliers, we develop tractable practical verification algorithms.
We empirically validate our algorithms by applying them to Bayesian Neural
Networks (BNNs) and MC Dropout Networks, and certifying properties such as
adversarial robustness and robust detection of out-of-distribution (OOD) data. On
these tasks we are able to provide significantly stronger guarantees when compared
to prior work – for instance, for a VGG-64 MC-Dropout CNN trained on CIFAR-
10 in a verification-agnostic manner, we improve the certified AUC (a verified
lower bound on the true AUC) for robust OOD detection (on CIFAR-100) from
0%→ 29%. Similarly, for a BNN trained on MNIST, we improve on the `∞ robust
accuracy from 60.2%→ 74.6%. Further, on a novel specification – distributionally
robust OOD detection – we improve on the certified AUC from 5%→ 23%.

1 Introduction

While neural networks (NNs) have shown significant promise in a wide-range of applications (for
e.g., [He et al., 2016, Yu and Deng, 2014]), a key-bottleneck towards their wide-spread adoption in
safety-critical applications is the lack of formal guarantees regarding safety and performance. In
this direction, there has been considerable progress towards developing scalable methods that can
provide formal guarantees regarding the conformance of NNs with desired properties [Katz et al.,
2017, Dvijotham et al., 2018b, Raghunathan et al., 2018]. However, much of this progress has been in
the setting where the specifications and neural networks do not exhibit any probabilistic behaviour, or
is mostly specialized for specific probabilistic specifications [Weng et al., 2019, Wicker et al., 2020].

∗Equal contribution. Authors listed in alphabetical order. Correspondance to lberrada@deepmind.com,
sdathath@deepmind.com, dvij@cs.washington.edu.
†DeepMind, London, United Kingdom.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



In contrast, we introduce a general framework for verifying specifications of neural networks that
are probabilistic. The framework enables us to handle stochastic neural networks such as Bayesian
Neural Networks or Monte-Carlo (MC) dropout networks, as well as probabilistic properties, such as
distributionally robust out-of-distribution (OOD) detection. Furthermore, the specification can be
defined on the output distribution from the network, which allows us to handle operations such as the
expectation on functions of the neural network output.

Probabilistic specifications are relevant and natural to many practical problems. For instance, for
robotics applications, there is uncertainty arising from noisy measurements from sensors, and
uncertainty regarding the actions of uncontrolled agents (e.g. uncertainty regarding the behaviour of
pedestrians for a self-driving vehicle). Often these uncertainties are modelled using a probabilistic
approach, where a distribution is specified (or possibly learnt) over the feasible set of events [Thrun
et al., 2005]. In such cases, we want to provide guarantees regarding the network’s conformance
to desired properties in the distributional setting (e.g. given a model of the pedestrian’s uncertain
behaviour, guarantee that the probability of collision for the autonomous vehicle is small). A
more general problem includes scenarios where there is uncertainty regarding the parameters of the
distribution used to model uncertainty. Here, in this general setting, we seek to verify the property
that the network behaviour conforms with the desired specification under uncertainty corresponding
to an entire set of distributions.

The key to handling the aforementioned complexity in the specifications being verified through our
framework is the generalization of the Lagrangian duality. Specifically, instead of using the standard
Lagrange duality where the multipliers are linear, we allow for probabilistic constraints (constraints
between distributions) and use functional multipliers to replace the linear Lagrange multipliers. This
allows us to exploit the structure of these probabilistic constraints, enabling us to provide stronger
guarantees and facilitates the verification of verification-agnostic networks (networks that are not
designed to be verifiable). In our paper, we focus on verification-agnostic networks as this is desirable
for many reasons, as noted in Dathathri et al. [2020]. To summarize, our main contributions are:

• We derive a general framework that extends Lagrangian duality to handle a wide range
of probabilistic specifications. Our main theoretical result (Theorem 1) shows that our
approach (i) is always sound and computes an upper bound on the maximum violation of
the specification being verified, and (ii) is expressive enough to theoretically capture tight
verification (i.e. obtaining both sound and complete verification).
• We develop novel algorithms for handling specific multipliers and objectives within our

framework (Propositions 1, 2). This allows us to apply our framework to novel specifications
(such as distributionally robust OOD detection, where input perturbations are drawn from
entire sets of distributions) by better capturing the probabilistic structure of the problem.

• We empirically validate our method by verifying neural networks, which are verification-
agnostic, on a variety of probabilistic specifications. We demonstrate that even with relatively
simple choices for the functional multiplier, our method strongly outperforms prior methods,
which sometimes provide vacuous guarantees only. This further points towards the potential
for significant improvements to be had by developing tractable optimization techniques for
more complex and expressive multipliers within our framework.

2 Probabilistic Specifications

2.1 Notation

Let us consider a possibly stochastic neural network φ : X → P (Y), where X is the set of possible
input values to the model, Y is the set of possible output values, and P (Y) is the set of distributions
over Y . We assume that Y is a subset of Rl (unless specified otherwise), where l is the number of
labels, and the output of the model are logits corresponding to unnormalized log-confidence scores
assigned to the labels {1, . . . , l}.
The model is assumed to be a sequence of K layers, each of them possibly stochastic. For k ∈
{1, . . . ,K}, πk (xk|xk−1) denotes the probability that the output of layer k takes value xk when its
input value is xk−1. We write xk ∼ πk (xk−1) to denote that xk is drawn from the distribution over
outputs of layer k given input xk−1 to layer k. We further assume that each πk (x) has the form
σ(w̃x+ b̃), where σ is a non-linear activation function (e.g., ReLU, sigmoid, MaxOut), and w̃ and b̃

2



are random variables. The stochasticity for layer πk is assumed to be statistically independent of
the stochasticity at other layers. For a BNN, w̃ and b̃ follow a diagonal Gaussian distribution (i.e., a
Gaussian distribution with a diagonal covariance matrix), and for a MC-Dropout network they follow
a Bernoulli-like distribution.

Given a distribution p0 over the inputs X , we use φ(p0) to denote (with a slight abuse) the distribution
of the random variable φ(X0), where X0 ∼ p0.

2.2 Problem Formulation.

We now introduce the general problem formulation for which we develop the verification framework.
Definition 1 (Probabilistic verification problem). Given a (possibly stochastic) neural network
φ : X → P (Y), a set of distributions over the input P0 and a functional ψ : P (Y) 7→ R, the
probabilistic verification problem is to check that the following is true:

∀ p0 ∈ P0, ψ (φ (p0)) ≤ 0. (1)

2.3 Examples of Specifications

Below we provide examples of probabilistic specifications which are captured by the above problem
formulation, and that we further empirically validate our framework on. In Appendix A, we provide
further examples of relevant specifications (e.g., ensuring reliable uncertainty calibration) that can be
handled by our problem setup.

Distributionally Robust OOD Detection. We consider the problem of verifying that a stochastic
neural network assigns low confidence scores to all labels for OOD inputs, even in the presence of
bounded noise perturbations to the inputs. Given a noise distribution perturbing an OOD image xood,
we require that the expected softmax is smaller than a specified confidence threshold pmax for each
label i. Since the precise noise distribution is most often unknown, we wish to consider an entire
class Pnoise of noise distributions. Denoting by δx the Dirac distribution around x, the problem is
then to guarantee that for every p0 in P0 = {δxood + ω : ω ∈ Pnoise} and for each possible label
i, ψ(φ(p0)) := Ey∼φ(p0)[softmax (y)i] − pmax ≤ 0. Robust OOD detection under bounded `∞
perturbations as considered in Bitterwolf et al. [2020] is a special case of this problem where Pnoise
is restricted to a set of δ distributions over points with bounded `∞ norm.

Robust Classification. We also extend the commonly studied robust classification problem [Madry
et al., 2017] under norm-bounded perturbations, to the setting of probabilistic neural networks
(e.g. BNNs). Define P0 to be the set of δ input distributions centered at points within an ε-ball
of a nominal point xnom, with label i ∈ {1, . . . , l}: P0 = {δx : ‖x− xnom‖ ≤ ε}. For every
p0 ∈ P0, we wish to guarantee that the stochastic NN correctly classifies the input, i.e. for each
j, ψ(φ(p0)) := Ey∼φ(p0)[softmax (y)i − softmax (y)j ] ≤ 0. Note that it is important to take the
expectation of the softmax (and not logits) since this is how inference from BNNs is performed.

3 The Functional Lagrangian Framework

We consider the following optimization version:
OPT = max

p0∈P0

ψ (φ (p0)) , (2)

Having OPT ≤ 0 here is equivalent to satisfying specification (1) . However, solving problem (2)
directly to global optimality is intractable in general, because it can possibly be a challenging
nonlinear and stochastic optimization problem. However, to only verify that the specification is
satisfied, it may suffice to compute an upper bound on OPT. Here, we describe how the functional
Lagrangian framework allows to derive such bounds by decomposing the overall problem into smaller,
easier sub-problems.

3.1 General Framework

Let Xk denote the feasible space of activations at layer k, and let pk denote the distribution of
activations at layer k when the inputs follow distribution p0 (so that pK = φ (p0)).

3



Assumptions. In order to derive our verification framework, we make the following assumptions:
(A1): ∃ l0 ≤ u0 ∈ Rn such that for each input distribution p0 ∈ P0, Support (p0) ⊆ X0 = [l0, u0].
(A2): Each layer is such that if x ∈ Xk = [lk, uk], then Support (πk (x)) ⊆ Xk+1 = [lk+1, uk+1].

Assumption (A1) is natural since the inputs to neural networks are bounded. Assumption (A2) can
be restrictive in some cases: it requires that the layer output is bounded with probability 1, which
is not true, for example, if we have a BNN with a Gaussian posterior. However, we can relax this
assumption to requiring that the output is bounded with high probability, as in Wicker et al. [2020].

Functional Lagrangian Dual. In order to derive the dual, we begin by noting that problem (2) can
be equivalently written in the following constrained form:

max
p0∈P0,p1,...,pK

ψ (pK) s.t. ∀ k ∈ {0, . . . ,K − 1},∀ y ∈ Xk+1, pk+1 (y) =

∫
Xk
πk (y|x) pk (x) dx.

For the k-th constraint, let us assign a Lagrangian multiplier λk+1(y) to each possible y ∈ Xk+1.
Note that λ (y) is chosen independently for each y, hence λ is a functional multiplier. We then
integrate over y, which yields the following Lagrangian penalty to be added to the dual objective:

−
∫
Xk+1

λk+1 (y) pk+1 (y) dy +

∫
Xk,Xk+1

λk+1 (y)πk (y|x) pk (x) dxdy. (3)

We now make two observations, which are described here at a high level only and are available in
more details in appendix B. First, if we sum these penalties over k and group terms by pk, it can be
observed that the objective function decomposes additively over the pk distributions. Second, for
k ∈ {1, . . . ,K − 1}, each pk can be optimized independently (since the objective is separable), and
since the objective is linear in pk , the optimal pk is a Dirac distribution, which means that the search
over the probability distribution pk can be simplified to a search over feasible values xk ∈ Xk. This
yields the following dual:

max
pK∈PK

(
ψ (pK)−

∫
XK

λK (x) pK (x) dx

)
+

K−1∑
k=1

max
x∈Xk

(∫
Xk+1

λk+1 (y)πk (y|x) dy − λk (x)

)
+ max
p0∈P0

∫
X0

(∫
X1

λ1 (y)π0 (y|x) dy

)
p0 (x) dx, (4)

where we define PK , φ(P0). In the rest of this work, we refer to this dual as g (λ), and we use the
following notation to simplify equation (4):

g (λ) = max
p0∈P0

g0(p0, λ1) +

K−1∑
k=1

max
xk∈Xk

gk(xk, λk, λk+1) + max
pK∈PK

gK(pK , λK). (5)

The dual g (λ) can be seen as a generalization of Lagrangian relaxation [Bertsekas, 2015] with the
two key modifications: (i) layer outputs are integrated over possible values, and (ii) Lagrangian
penalties are expressed as arbitrary functions λk (x) instead of being restricted to linear functions.

Main Result. Here, we relate the functional Lagrangian dual to the specification objective (2).

Theorem 1. For any collection of functions λ = (λ1, . . . , λK) ∈ RX1 × . . .× RXK , we have that
g (λ) ≥ OPT. In particular, if a choice of λ can be found such that g (λ) ≤ 0, then specification (1) is
true. Further, when ψ (pK) = Ey∼pK [c (y)], the dual becomes tight: g (λ?) = OPT if λ? is set to:

λ?K (x) = c (x) ;∀ k ∈ {K − 1, . . . , 1}, λ?k (x) = E
y∼πk(x)

[
λ?k+1 (y)

]
.

Proof. We give a brief sketch of the proof - the details are in Appendix B. The problem in constrained
form is an infinite dimensional optimization with decision variables p0, p1, . . . , pK and linear
constraints relating pk and pk+1. The Lagrangian dual of this optimization problem has objective
g (λ). By weak duality, we have g(λ) ≥ OPT. The second part of the theorem is easily observed by
plugging in λ? in g (λ) and observing that the resulting optimization problem is equivalent to (2).

4



Example. Let P0 be the set of probability distributions with mean 0, variance 1, and support [−1, 1],
and let N[a,b](µ, σ

2) denote the normal distribution with mean µ and variance σ2 with truncated
support [a, b]. Now consider the following problem, for which we want to compute an upper bound:

OPT = max
p0∈P0

EX1
[exp(−X1)] s.t. X1|X0 ∼ N[0,1](X

2
0 , 1) and X0 ∼ p0. (6)

This problem has two difficulties that prevent us from applying traditional optimization approaches
like Lagrangian duality [Bertsekas, 2015], which has been used in neural network verification
Dvijotham et al. [2018b]. The first difficulty is that the constraint linking X1 to X0 is stochastic,
and standard approaches can not readily handle that. Second, the optimization variable p0 can take
any value in an entire set of probability distributions, while usual methods can only search over sets
of real values. Thus standard methods fail to provide the tools to solve such a problem. Since the
probability distributions have bounded support, a possible way around this problem is to ignore the
stochasticity of the problem, and to optimize over the worst-case realization of the random variable
X1 in order to obtain a valid upper bound on OPT as: OPT ≤ maxx1∈[0,1] exp(−x1) = 1. However
this is an over-pessimistic modeling of the problem and the resulting upper bound is loose. In contrast,
Theorem 1 shows that for any function λ : R→ R, OPT can be upper bounded by:

OPT ≤ max
x1∈[0,1],p0∈P0

exp(−x1)− λ(x1) + EX0∼p0 [EX1|X0∼N[0,1](X
2
0 ,1)[λ(X1)]].

This inequality holds true in particular for any function λ of the form x 7→ θx where θ ∈ R, and thus:

OPT ≤ inf
θ∈R

max
x1∈[0,1],p0∈P0

exp(−x1)− θx1 + EX0∼p0 [EX1|X0∼N[0,1](X
2
0 ,1)[θX1]],

= inf
θ∈R

max
x1∈[0,1],p0∈P0

exp(−x1)− θx1 + θEX0∼p0 [X2
0 ],

= inf
θ∈R

max
x1∈[0,1]

exp(−x1)− θx1 + θ ≈ 0.37.

Here, our framework lets us tractably compute a bound on OPT that is significantly tighter compared
to the naive support-based bound.

3.2 Optimization Algorithm

Parameterization. The choice of functional multipliers affects the difficulty of evaluating g (λ). In
fact, since neural network verification is NP-hard [Katz et al., 2017], we know that computing g (λ?)
is intractable in the general case. Therefore in practice, we instantiate the functional Lagrangian
framework for specific parameterized classes of Lagrangian functions, which we denote as λ (θ) =

{λk (x) = λk (x; θk)}Kk=1. Choosing the right class of functions λ(θ) is a trade-off: for very simple
classes (such as linear functions), g(λ(θ)) is easy to compute but may be a loose upper bound on (2),
while more expressive choices lead to tighter relaxation of (2) at the cost of more difficult evaluation
(or bounding) of g(λ(θ)).

Algorithm 1 Verification with Functional Lagrangians

Input: initial dual parameters θ(0), learning-rate η, number of iterations T .
for t = 0, . . . , T − 1 do {optimization loop}

for k = 0 to K do {potentially in parallel}

d
(k)
θ = ∇θ

[
max
xk

gk(xk, λk, λk+1)

]
{potentially approximate maximization}

end for
θ(t+1) = θ(t) − η

∑K
k=0 d

(k)
θ {or any gradient based optimization}

end for
Return: Exact value or guaranteed upper bound on g(λ(θ(T ))) {final evaluation}

Optimization. With some abuse of notation, for convenience, we write g0 (x0, λ0, λ1) :=
g0 (p0, λ1) and gK (xK , λK , λK+1) := gK (pK , λK), with λ0 = λK+1 = 0. Then the problem
of obtaining the best bound can be written as: minθ

∑K
k=0 maxxk gk (xk, λk, λk+1), where the inner

maximizations are understood to be performed over the appropriate domains (P0 for x0, Xk for xk,

5



l = 1, . . . ,K−1 and PK for xK ). The overall procedure is described in Algorithm 1: θ is minimized
by a gradient-based method in the outer loop; in the inner loop, the decomposed maximization
problems over the xk get solved, potentially in parallel. During optimization, the inner problems can
be solved approximately as long as they provide sufficient information about the descent direction
for θ.

Guaranteeing the Final Results. For the final verification certificate to be valid, we do require the
final evaluation to provide the exact value of g(λ(θ(T ))) or an upper bound. In the following section,
we provide an overview of novel bounds that we use in our experiments to certify the final results.

3.3 Bounds for Specific Instantiations

The nature of the maximization problems encountered by the optimization algorithm depends on
the verification problem as well as the type of chosen Lagrangian multipliers. In some easy cases,
like linear multipliers on a ReLU layer, this results in tractable optimization or even closed-form
solutions. In other cases however, obtaining a non-trivial upper bound is more challenging. In
this section, we detail two such situations for which novel results were required to get tractable
bounds: distributionally robust verification and expected softmax-based problems. To the best of our
knowledge, these bounds do not appear in the literature and thus constitute a novel contribution.

Distributionally Robust Verification with Linexp Multipliers. We consider the setting where
we verify a deterministic network with stochastic inputs and constraints on the input distribution
p0 ∈ P0. In particular, we consider P0 = {µ + ω : ω ∼ Pnoise}, where Pnoise denotes a class of
zero-mean noise distributions that all satisfy the property of having sub-Gaussian tails (this is true for
many common noise distributions including Bernoulli, Gaussian, truncated Gaussian):

Sub-Gaussian tail: ∀i,∀t ∈ R, E [exp (tωi)] ≤ exp
(
t2σ2/2

)
.

We also assume that each component of the noise ωi is i.i.d. The functional Lagrangian dual g (λ)
only depends on the input distribution p0 via g0, which evaluates to g0 (p0, λ1) = Ex∼p0 [λ1 (x)]. If
we choose λ1 to be a linear or quadratic function, then g (λ) only depends on the first and second
moments of p0. This implies that the verification results will be unnecessarily conservative as they
don’t use the full information about the distribution p0. To consider the full distribution it suffices to
add an exponential term which evaluates to the moment generating function of the input distribution.
Therefore we choose λ1 (x) = αTx+ exp

(
γTx+ κ

)
and λ2 (x) = βTx. The following result then

gives a tractable upper bound on the resulting maximization problems:

Proposition 1. In the setting described above, and with s as the element-wise activation function:

max
p0∈P0

g0 (p0, λ1) ≤ αT (wµ+ b) + exp
(∥∥wT γ∥∥2

σ2/2 + γT b+ κ
)
,

max
x∈X1

g1 (x, λ1, λ2) ≤ max
x∈X2,z=s(x)

βT (w2z + b2)− αTx− exp
(
γTx+ κ

)
.

The maximization in the second equation can be bounded by solving a convex optimization problem
(Appendix C.3).

Expected Softmax Problems. Several of the specifications discussed in Section 2.3 (e.g.,
distributionally robust OOD detection) require us to bound the expected value of a linear function
of the softmax. For specifications whose function can be expressed as an expected value:
ψ (pK) = Ex∼pK [c (x)], by linearity of the objective w.r.t. the output distribution pK , the search
over the distribution pk can be simplified to a search over feasible output values xK :

max
pK∈PK

ψ (pK)−
∫
XK

λK (x) pK (x) dx = max
x∈XK

c (x)− λK (x) . (7)

Given this observation, the following lets us certify results for linear functions of the softmax (x):

Proposition 2. For affine λK , and c(x) with the following form c (x) = µT softmax (x),
maxx∈XK c (x)− λK (x) can be computed in time O(3d), where XK ⊆ Rd.

6



We provide a proof of this proposition and a concrete algorithm for computing the solution in
Appendix C.2. This setting is particularly important to measure verified confidence and thus to
perform robust OOD detection. We further note that while the runtime is exponential in d, d
corresponds to the number of labels in classification tasks which is a constant value and does not grow
with the size of the network or the inputs to the network. Further, the computation is embarassingly
parallel and can be done in O(1) time if 3d computations can be run in parallel. For classification
problems with 10 classes (like CIFAR-10 and MNIST), exploiting this parallelism, we can solve
these problems on the order of milliseconds on a cluster of CPUs.

4 Related Work

Verification of Probabilistic Specifications. We recall that in our work, P0 refers to a space of
distributions on the inputs x to a network φ, and that we address the following problem: verify that
∀p ∈ P0, φ (p) ∈ Pout, where Pout represents a constraint on the output distribution. In contrast,
prior works by Weng et al. [2019], Fazlyab et al. [2019], and Mirman et al. [2021] study probabilistic
specifications that involve robustness to probabilistic perturbations of a single input for deterministic
networks. This setting can be recovered as a special case within our formalism by letting the class P0

contain a single distribution p. Conversely, Dvijotham et al. [2018a] study specifications involving
stochastic models, but can not handle stochasticity in the input space.

Wicker et al. [2020] define a notion of probabilistic safety for BNNs:
Pw∼pw [∀x ∈ X , φw(x) ∈ C] ≥ pmin, where P is the probability of any event, φw denotes
the network with parameters w, pw denotes the distribution over network weights (e.g., a Gaussian
posterior) and C is a set of safe outputs, and this allows for computation of the probability that a
randomly sampled set of weights exhibits safe behaviour. However, in practice, inference for BNNs
is carried out by averaging over predictions under the distribution of network weights. In this less
restrictive and more practical setting, it suffices if the constraint is satisfied by the probabilistic
prediction that averages over sampled weights: ∀x ∈ X , Pw∼pw [φw(x) ∈ C] ≥ pmin, where φw(x)
denotes the distribution over outputs for x ∈ X . Further, Wicker et al. [2020] also observe that
minx∈X Pw∼pw [φw(x) ∈ C] ≥ Pw∼pw [∀x ∈ X , φw(x) ∈ C], making the second constraint less
restrictive. Cardelli et al. [2019] and Michelmore et al. [2020] consider a similar specification, but
unlike the approaches used here and by Wicker et al. [2020], these methods can give statistical
confidence bounds but not certified guarantees.

Wicker et al. [2021] improve the classification robustness of Bayesian neural networks by training
them to be robust based on an empirical estimate of the average upper bound on the specification
violation, for a fixed set of sampled weights. In contrast, our approach provides meaningful guarantees
for BNNs trained without considerations to make them more easily verifiable, and the guarantees our
framework provides hold for inference based on the true expectation, as opposed to a fixed set of
sampled weights.

Our work also generalizes Bitterwolf et al. [2020], which studies specifications of the output
distribution of NNs when the inputs and network are deterministic. In contrast, our framework’s
flexibility allows for stochastic networks as well. Furthermore, while Bitterwolf et al. [2020] are
concerned with training networks to be verifiable, their verification method fails for networks trained
in a verification-agnostic manner. In our experiments, we provide stronger guarantees for networks
that are trained in a verification-agnostic manner.

Lagrangian Duality. Our framework subsumes existing methods that employ Lagrangian duality
for NN verification. In Appendix D.1, we show that the functional Lagrangian dual instantiated with
linear multipliers is equivalent to the dual from Dvijotham et al. [2018b]. This is also the dual of
the LP relaxation [Ehlers, 2017] and the basis for other efficient NN verification algorithms ([Zhang
et al., 2018, Singh et al., 2018], for example), as shown in Liu et al. [2021]. For the case of quadratic
multipliers and a particular grouping of layers, we show that our framework is equivalent to the
Lagrangian dual of the SDP formulation from Raghunathan et al. [2018] (see Appendix D.2).

We also note that similar mathematical ideas on nonlinear Lagrangians have been explored in the
optimization literature [Nedich and Ozdaglar, 2008, Feizollahi et al., 2017] but only as a theoretical
construct - this has not lead to practical algorithms that exploit the staged structure of optimization
problems arising in NN verification. Further, these approaches do not handle stochasticity.

7



Table 1: Robust OOD Detection: MNIST vs EMNIST (MLP and LeNet) and CIFAR-10 vs CIFAR-
100 (VGG-*). BP: Bound-Propagation (baseline); FL: Functional Lagrangian (ours). The reported
times correspond to the median of the 500 samples.

OOD Task Model #neurons #params ε
Time (s) GAUC (%) AAUC (%)

BP FL BP FL

(E)MNIST MLP 256 2k
0.01 40.1 +38.8 55.4 65.0 86.9
0.03 40.1 +37.4 38.5 53.1 88.6
0.05 38.4 +36.2 18.9 36.1 88.8

(E)MNIST LeNet 0.3M 0.1M
0.01 53.2 +52.4 0.0 29.8 71.6
0.03 52.4 +51.1 0.0 14.1 57.6
0.05 55.4 +54.1 0.0 3.1 44.0

CIFAR
VGG-16 3.0M 83k 0.001 50.8 +35.0 0.0 25.6 60.9
VGG-32 5.9M 0.2M 0.001 82.3 +40.9 0.0 25.8 64.7
VGG-64 11.8M 0.5M 0.001 371.7 +48.7 0.0 29.5 67.4

5 Experiments

Here, we empirically validate the theoretical flexibility of the framework and its applicability to across
several specifications and networks. Crucially, we show that our framework permits verification of
probabilistic specifications by effectively handling parameter and input stochasticity across tasks. For
all experiments, we consider a layer decomposition of the network such that the intermediate inner
problems can be solved in closed form with linear multipliers (See Appendix C.4). We use different
bound-propagation algorithms to compute activation bounds based on the task, and generally refer to
these methods as BP. Our code is available at https://github.com/deepmind/jax_verify.

5.1 Robust OOD Detection on Stochastic Neural Networks

Verification Task. We consider the task of robust OOD detection for stochastic neural networks
under bounded `∞ inputs perturbation with radius ε. More specifically, we wish to use a threshold
on the softmax value (maximized across labels) to classify whether a sample is OOD. By using
verified upper bounds on the softmax value achievable under ε-perturbations, we can build a detector
that classifies OOD images as such even under ε perturbations. We use the Area Under the Curve
(AUC) to measure the performance of the detector. Guaranteed AUC (GAUC) is obtained with
verified bounds on the softmax, and Adversarial AUC (AAUC) is based on the maximal softmax
value found through an adversarial attack. We consider two types of stochastic networks: i) Bayesian
neural networks (BNNs) whose posterior distribution is a truncated Gaussian distribution. We
re-use the MLP with two hidden layers of 128 units from Wicker et al. [2020] (denoted as MLP)
and truncate their Gaussian posterior distribution to three standard deviations, ii) we consider MC-
Dropout convolutional neural networks, namely we use LeNet (as in Gal and Ghahramani [2016])
and VGG-style models [Simonyan and Zisserman, 2015]. For MLP and LeNet, we use MNIST as
training data, and EMNIST as out-of-distribution data. For the VGG models, we use CIFAR-10 as
training data, and CIFAR-100 as out-of-distribution data.

Method. We use linear Lagrangian multipliers, which gives closed-form solutions for all
intermediate inner maximization problems (Appendix C.4). In addition, we leverage Proposition 2 to
solve the final inner problem with the softmax specification objective. Further experimental details,
including optimization hyper-parameters, are available in Appendix E.1. We compute activation
bounds based on an extension of Bunel et al. [2020] to the bilinear case, referred to as BP in Table 1.
The corresponding bounds are obtained with probability 1, and if we were to relax these guarantees
to only hold up to some probability lower than 1, we note that the method of [Wicker et al., 2020]
would offer tighter bounds.

Results. The functional Lagrangian (FL) approach systematically outperforms the Bound-
Propagation (BP) baseline. We note that in particular, FL significantly outperforms BP on dropout
CNNs, where BP is often unable to obtain any guarantee at all (See Table 1). As the size of the VGG

8

https://github.com/deepmind/jax_verify


Table 2: Adversarial Robustness for different BNN architectures trained on MNIST from Wicker
et al. [2020]. The accuracy reported for FL and LBP is the % of samples we can certify as robust
with probability 1. For each model, we run the experiment for the first 500 test-set samples.

#layers ε #neurons LBP Acc. (%) FL Acc. (%) LBP Time (s) FL Time (s)

128 67.0 77.2 16.7 +518.3
1 0.025 256 66.2 76.4 16.1 +522.8

512 60.2 74.6 16.0 +522.4
256 57.0 70.0 16.8 +516.5

2 0.001 512 79.6 87.4 17.0 +517.3
1024 39.4 42.4 17.1 +514.1

model increases, we can observe that the median runtime of BP increases significantly, while the
additional overhead of using FL remains modest.

5.2 Adversarial Robustness for Stochastic Neural Networks

Verification Task. For this task, we re-use the BNNs trained on MNIST [LeCun and Cortes,
2010] from Wicker et al. [2020] (with the Gaussian posterior truncated to three standard deviations
bounded). We use the same setting as Wicker et al. [2020] and study the classification robustness
under `∞ perturbations for 1-layered BNNs and 2-layered BNN at radii of ε = 0.025 and ε = 0.001
respectively. We recall, as mentioned earlier in Section 4, that the specification we study is different
from that studied in [Wicker et al., 2020].

Method We use the same solving methodology as in Section 5.1. To compute bounds on the
activations, we use the bilinear LBP method proposed in Wicker et al. [2020].

Results. Across settings (Table 2) our approach is able to significantly improve on the guarantees
provided by the LBP baseline, while also noting that our method incurs an increased compute cost.

5.3 Distributionally Robust OOD Detection

Verification Task. We bound the largest softmax probability across all labels for OOD inputs over
noisy perturbations of the input where the noise is drawn from a family of distributions with only
two constraints for each p ∈ Pnoise: ω ∈ [−ε, ε] with prob. 1,Eω∼p [exp (ωt)] ≤ exp

(
σ2t2/2

)
, for

given constraints ε, σ > 0. The first constraint corresponds to a restriction on the support of the
noise distribution, and the second constraint requires that the noise distribution is sub-Gaussian with
parameter σ. We note that no prior verification method, to the best of our knowledge, addresses this
setting. Thus, as a baseline, we use methods that only use the support of the distribution and perform
verification with respect to worst-case noise realizations within these bounds.

Method. We use a 3-layer CNN trained on MNIST with the approach from Hein et al. [2019]
(details in Appendix E.3), and we employ EMNIST as the out-of-distribution data to be detected. We
use functional multipliers of the form: λk (x) = θTk x for k > 1 and linear-exponential multipliers for
the input layer: λ1 (x) = θT1 x + exp

(
γT1 x+ κ1

)
(method denoted by FL-LinExp). As baselines,

we consider a functional Lagrangian setting with linear multipliers that only uses information about
the expectation of the noise distribution (method denoted by FL-Lin), and a BP baseline that only
uses information about the bounds on the support of the noise distribution (−ε, ε) (activation bounds
are computed using Bunel et al. [2020]). The inner maximization of gk for K − 1 ≥ k ≥ 2 can be
done in closed form and we use approaches described in Propositions 1 and 2 to respectively solve
max g0,max g1 and max gK . We use ε = 0.04, σ = 0.1.

Results. FL-LinExp achieves the highest guaranteed AUC (See Table 3), showing the value of
accounting for the noise distribution, instead of relying only on bounds on the input noise.

9



Table 3: Guaranteed Area Under Curve (GAUC) values in a distributionally robust setting. The
stochastic formulation of the Functional Lagrangian with Linear-Exponential (LinExp) multipliers
gets the highest guaranteed AUC.

Model #neurons GAUC (%) Timing (s)

BP FL-Lin FL-LinExp BP FL-Lin FL-LinExp

CNN 9972 5.4 5.6 23.2 227.7 +661.8 +760.7

6 Conclusion

We have presented a general framework for verifying probabilistic specifications, and shown
significant improvements upon existing methods, even for simple choices of the Lagrange multipliers
where we can leverage efficient optimization algorithms. We believe that our approach can be
significantly extended by finding new choices of multipliers that capture interesting properties of the
verification problem while leading to tractable optimization problems. This could lead to discovery
of new verification algorithms, and thus constitutes an exciting direction for future work.

Limitations. We point out two limitations in the approach suggested by this work. First, the
guarantees provided by our approach heavily depend on the bounding method used to obtain the
intermediate bounds – this is consistent with prior work on verifying deterministic networks [Dathathri
et al., 2020, Wang et al., 2021], where tighter bounds result in much stronger guarantees. Second,
as noted in Section 3.1, our approach can only handle probability distributions that have bounded
support, and alleviating this assumption would require further work.

Broader Impact and Risks. Our work aims to improve the reliability of neural networks in settings
where either the model or its inputs exhibit probabilistic behaviour. In this context, we anticipate this
work to be largely beneficial and do not envision malicious usage. However, the guarantees of our
method crucially depend on having an accurate modeling of the uncertainty. Failing that can result
in an overestimation of the reliability of the system, which can have catastrophic consequences in
safety-critical scenarios. In this regard, we advocate special care in the design of the specification
when applying our approach to real-world use cases.

10



References
Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square

attack: a query-efficient black-box adversarial attack via random search. European Conference on
Computer Vision, 2020.

Dimitri P Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

Julian Bitterwolf, Alexander Meinke, and Matthias Hein. Provable worst case guarantees for the
detection of out-of-distribution data. Advances in Neural Information Processing Systems, 2020.

Rudy Bunel, Oliver Hinder, Srinadh Bhojanapalli, et al. An efficient nonconvex reformulation of
stagewise convex optimization problems. Advances in Neural Information Processing Systems,
2020.

Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Andrea Patane, and Matthew
Wicker. Statistical guarantees for the robustness of bayesian neural networks. International Joint
Conference on Artificial Intelligence, 2019.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Uesato,
Rudy Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy Liang, et al. Enabling
certification of verification-agnostic networks via memory-efficient semidefinite programming.
Advances in Neural Information Processing Systems, 2020.

Krishnamurthy Dvijotham, Marta Garnelo, Alhussein Fawzi, and Pushmeet Kohli. Verification of
deep probabilistic models. NeurIPS 2018 Workshop on Security in Machine Learning, 2018a.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks. Conference on Uncertainty in Artificial
Intelligence, 2018b.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. International
Symposium on Automated Technology for Verification and Analysis, 2017.

Mahyar Fazlyab, Manfred Morari, and George J Pappas. Probabilistic verification and reachability
analysis of neural networks via semidefinite programming. Conference on Decision and Control
(CDC), 2019.

Mohammad Javad Feizollahi, Shabbir Ahmed, and Andy Sun. Exact augmented lagrangian duality
for mixed integer linear programming. Mathematical Programming, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. International Conference on Machine Learning, 2016.

Robert Grone, Charles R Johnson, Eduardo M Sá, and Henry Wolkowicz. Positive definite
completions of partial hermitian matrices. Linear algebra and its applications, 1984.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. Computer Vision and Pattern Recognition, 2016.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the problem. Conference
on Computer Vision and Pattern Recognition, 2019.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. International Conference on Computer Aided
Verification, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. NIST, 2010.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and Mykel J Kochenderfer.
Algorithms for verifying deep neural networks. Foundations and Trends in Optimization, 2021.

11



Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. International Conference on
Learning Representations, 2017.

Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli, Yarin Gal, and Marta
Kwiatkowska. Uncertainty quantification with statistical guarantees in end-to-end autonomous
driving control. International Conference on Robotics and Automation (ICRA), 2020.

Matthew Mirman, Timon Gehr, and Martin Vechev. Robustness certification of generative models.
International Conference on Programming Language Design and Implementation, 2021.

Angelia Nedich and Asuman Ozdaglar. A geometric framework for nonconvex optimization duality
using augmented lagrangian functions. Journal of global optimization, 2008.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. Advances in Neural Information Processing Systems, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. International Conference on Learning Representations, 2015.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T Vechev. Fast and
effective robustness certification. Advances in Neural Information Processing Systems, 2018.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2005.

Lieven Vandenberghe and Martin S Andersen. Chordal graphs and semidefinite optimization.
Foundations and Trends in Optimization, 2015.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network verification. ICML 2021 Workshop on Adversarial Machine Learning, 2021.

Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets, and
Luca Daniel. Proven: Verifying robustness of neural networks with a probabilistic approach.
International Conference on Machine Learning, 2019.

Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska. Probabilistic safety for
bayesian neural networks. Conference on Uncertainty in Artificial Intelligence, 2020.

Matthew Wicker, Luca Laurenti, Andrea Patane, Zhoutong Chen, Zheng Zhang, and Marta
Kwiatkowska. Bayesian inference with certifiable adversarial robustness. International Conference
on Artificial Intelligence and Statistics, 2021.

Dong Yu and Li Deng. Automatic Speech Recognition: A Deep Learning Approach. Springer, 2014.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. Advances in Neural Information
Processing Systems, 2018.

12


