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Abstract

In unsupervised domain adaptation (UDA), aligning source and target domains improves
the predictive performance of learned models on the target domain. A common method-
ological improvement in alignment methods is to divide the domains and align sub-domains
instead. These sub-domain-based algorithms have demonstrated great empirical success but
lack theoretical support. In this work, we establish a rigorous theoretical understanding of
the advantages of these methods that have the potential to enhance their overall impact
on the field. Our theory uncovers that sub-domain-based methods optimize an error bound
that is at least as strong as non-sub-domain-based error bounds and is empirically verified
to be much stronger. Furthermore, our analysis indicates that when the marginal weights of
sub-domains shift between source and target tasks, the performance of these methods may
be compromised. We therefore implement an algorithm to robustify sub-domain alignment
for domain adaptation under sub-domain shift, o�ering a valuable adaptation strategy for
future sub-domain-based methods. Empirical experiments across various benchmarks vali-
date our theoretical insights, prove the necessity for the proposed adaptation strategy, and
demonstrate the algorithm’s competitiveness in handling label shift.

1 Introduction

Supervised deep learning has achieved unprecedented success in a wide range of real-world applications.
However, obtaining labeled data may be costly, labor-intensive, and/or time-consuming in certain appli-
cations, particularly in medical and biological domains (Lu et al., 2017; Li et al., 2020). To this end,
unsupervised domain adaptation (UDA) transfers knowledge from a labeled source domain to a di�erent but
related unlabeled target domain (Farahani et al., 2021). However, e�cient UDA is challenging due to the
statistical discrepancies between two domains, hereafter referred to as domain shift (Wang & Deng, 2018;
Sankaranarayanan et al., 2018; Deng et al., 2019). To address this challenge, much of the UDA research has
focused on reducing the distributional gap between the source and target domains (Shen et al., 2018; Liu
et al., 2016; Isola et al., 2017; Tzeng et al., 2015; 2017; 2020; Ganin & Lempitsky, 2015; Ganin et al., 2016;
Peng et al., 2018). Recent methods further partition the data into sub-domains and align the sub-domains
instead (Pinheiro, 2018; Long et al., 2018; Deng et al., 2019).

One straightforward definition of the sub-domains is the conditional distributions based on the classification
label. Other strategies for defining sub-domains include cross-domain adaptive clustering (Li et al., 2021b),
classifier-based backprop-induced weighting (Westfechtel et al., 2023), domain consensus clustering (Li et al.,
2021a), joint learning of domain-invariant features and classifiers (Shi & Sha, 2012), and the use of deep
clustering (Gao et al., 2020). These sub-domain-based algorithms have shown substantial empirical success.
However, the benefits of sub-domain alignments have not been rigorously justified.

In this work, we present a theoretical analysis to establish that the sub-domain based methods are in fact
optimizing a generalization bound that is at least as strong as (and empirically much stronger than) the
full-domain-based objective functions. Our analysis further reveals that when the marginal weights of the
sub-domains shift between source and target, the sub-domain based methods can fail. We then present a novel
UDA algorithm, Domain Adaptation via Rebalanced Sub-domain Alignment (DARSA), that is motivated by
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(a) One-dimensional space

(b) Sub-domain 1 (c) Sub-domain 2

(d) Visualization of high-dimensional space

(e) DARSA illustration

Figure 1: Conceptual overview of our motivation. Listed distances are Wasserstein-1 distances. (a): Rep-
resentation of data prior to training. The source domain DS (coral) consists of two Gaussian centered at
≠1.5 and 1.5 with weights 0.7 and 0.3, respectively. The target domain DT (darkblue) is a mixture of two
Gaussians centered at ≠1.4 and 1.6 with inverse weights. We split into subdomains at x = 0. (b-c): Rep-
resentation of data after training. The sub-domain distances are trivial compared to the domain distance
in (a). (d) MNIST to MNIST-M UDA task. The features are projected to 2-D with UMAP. The legend
indicates distances between corresponding sub-domains (with red sub-domain indices labeled in the figure),
and the sub-figure title shows the overall distance. These sub-domain distances are small compared to the
overall distance given at the top. (e) DARSA illustration with wk

T
indicating target sub-domain weights,

showing DARSA’s applicability under label shifting.

our analysis and addresses the case when sub-domain marginal weights shift. DARSA optimizes reweighted
classification error and discrepancy between sub-domains of the source and target tasks. The reweighting
scheme follows a simple intuition: important sub-domains in the target domain need more attention. To
illustrate the concept visually, Figure 1 highlights the strengths of sub-domain alignment, providing insight
into how our method operates and the benefits it brings.

The contribution of our work is two-fold:

• Theoretical Contribution: Our work analyzes and provides a theoretical foundation for sub-
domain based methods in domain adaptation, addressing their previous lack of rigorous understand-
ing. Our theoretical framework not only supports our algorithm but can be extended to other
methods, contributing to broader impact and value in the field.

• Algorithmic Contribution: Our theoretical analysis leads to our algorithm DARSA. DARSA
addresses shifted marginal sub-domain weights, which adversely impact existing sub-domain-based
methods. We empirically verify its competitive performance under label shifting on various bench-
marks, confirming our theoretical insights and validating the proposed adaptation strategy.

2 Related Work

Discrepancy-based Domain Adaptation. UDA commonly tries to reduce the distribution gap between
the source and target domains. One approach to achieve this is discrepancy-based methods in the extract
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feature space (Tzeng et al., 2014; Long et al., 2015; Sun et al., 2016), which often use maximum mean
discrepancy (MMD) (Borgwardt et al., 2006). While MMD is a well-known Reproducing Kernel Hilbert
Space (RKHS) metric, it is weaker than the Wasserstein-1 distance (Lu & Lu, 2020). Therefore, we use
Wasserstein-1 distance in our work. Futhermore, many discrepancy-based methods enforce the sharing of
the first few layers of the networks between the source and target domains (HassanPour Zonoozi & Seydi,
2022). In contrast, our method allows a more flexible feature space.

Adversarial-based Domain Adaptation. Adversarial-based domain adaptation methods aim to encour-
age domain similarity through adversarial learning (Shen et al., 2018; Liu et al., 2016; Isola et al., 2017;
Tzeng et al., 2015; 2017; 2020; Ganin & Lempitsky, 2015; Ganin et al., 2016; Peng et al., 2018; Ho�man
et al., 2018). These methods are divided into generative methods, which combine discriminative models
with a generating process, and non-generative methods, which use a domain confusion loss to learn domain-
invariant discriminative features (Wang & Deng, 2018). However, many existing algorithms fail to align
multi-modal distributions under label shifting scenarios. Additionally, training adversarial networks can be
challenging due to mode collapse and oscillations (Liang et al., 2018).

Sub-domain-based Domain Adaptation. The use of sub-domain adaptation has proven e�ective in
aligning multi-modal distributions, enhancing performance across various tasks (Deng et al., 2019; Long et al.,
2018; Pinheiro, 2018; Shi & Sha, 2012; Jiang et al., 2020; Snell et al., 2017). (Deng et al., 2019) introduces the
Cluster Alignment with a Teacher (CAT) approach that aligns class-conditional structures across domains.
(Long et al., 2018) o�ers conditional adversarial domain adaptation, enhancing alignment through classifier
predictions. (Pinheiro, 2018) proposes an unsupervised domain adaptation approach based on similarity
learning, wherein classification is conducted by computing similarities between target domain images and
prototype representations of each category. On the other hand, (Shi & Sha, 2012) introduces a method that
concurrently learns domain-invariant features and classifiers. (Jiang et al., 2020) elucidates a sampling-based
implicit alignment technique, addressing concerns of class imbalance. (Snell et al., 2017) presents prototypical
networks designed for few-shot classification, employing distances to class prototype representations for the
process. While these methods have demonstrated empirical success, a detailed theoretical perspective on the
benefits of incorporating sub-domain structures has yet to be fully explored. Our work aims to complement
these existing methodologies by providing a comprehensive theoretical understanding of the advantages
inherent in these structures.

Theoretical Analysis of Domain Adaptation. Many existing domain adaptation methods are inspired
by generalization bounds based on the H-divergence (Ben-David et al., 2006). The H-divergence (Ben-
David et al., 2006) is a modified version of the total variation distance (L1) that restricts the hypothesis to
a given class. These generalization bounds can be estimated by learning a domain classifier with a finite
Vapnik–Chervonenkis (VC) dimension. However, this results in a loose bound for most neural networks
(Li et al., 2018). In our method, we use the Wasserstein distance for two reasons. First, the Wasserstein-
1 distance is bounded above by the total variation distance (Ben-David et al., 2010). Additionally, the
Wasserstein-1 distance is bounded above by the Kullback-Leibler divergence (a special case of the Rényi
divergence when – goes to 1 (Fournier & Guillin, 2015)), giving stronger bounds than those presented by
Redko et al (Redko et al., 2017) and Mansour et al (Mansour et al., 2012). Additionally, the Wasserstein
distance has stable gradients even when the compared distributions are far apart (Gulrajani et al., 2017).

Expanding Theoretical Insights into Domain Adaptation. Our work contributes to the understanding
and improvement of sub-domain alignment methods, a type of popular but yet to be rigorously investigated
domain adaptation method. In contrast to our work, (Mansour et al., 2009) studies the adaptation perfor-
mance of various loss functions and models; (Dhouib et al., 2020) focuses on the margin violation rate; (Wang
et al., 2022) addresses the problem of learning features that align with human understanding of data; (Zhang
et al., 2019) proposes generalization theory for classifiers with scoring function and margin loss; (Germain
et al., 2016) studies the generalization theory for the weighted majority vote framework; (Blanchard et al.,
2021; Albuquerque et al., 2019; Zhao et al., 2018) focus on the setting with multiple source domain.
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3 Preliminaries

Assume a labeled source dataset {(xi

S
, yi

S
)}NS

i=1 from a source domain XS with distribution PS and an
unlabeled target dataset {xi

T
}

NT

i=1 from a target domain XT with distribution PT . The source dataset
has NS labeled samples, and the target dataset has NT unlabeled samples. We assume that the samples
xi

S
œ X ™ R

d and xi

T
œ X ™ R

d are independently drawn from PS and PT , respectively. The goal is to
learn a classifier f(x) that predicts labels {yi

T
}

NT

i=1 for the target dataset. We further assume that PS and
PT are probability densities of Borel probability measures in the Wasserstein space P1(Rd), i.e., the space
of probability measures with finite first moment.

Sub-domains. We assume that both XS and XT are mixtures of K sub-domains. In other words, we have
PS =

q
K

k=1 wk

S
P k

S
and PT =

q
K

k=1 wk

T
P k

T
where we use P k

S
and P k

T
to respectively represent the distribution

of the k-th sub-domain of the source domain and that of the target domain, and wk

S
/wk

T
correspond to the

weights of each sub-domain. Note that wS
.= [w1

S
, . . . , wK

S
] and wT

.= [w1
T

, . . . , wK

T
] belong to �K (the K ≠1

probability simplex). It is straightforward to define sub-domains as conditional distributions, such that the
k-th sub-domain is represented as P k

S
= P (XS |YS = k) and P k

T
= P (XT |YT = k), where YS and YT are

the source and target labels, respectively. However, we note that the framework presented in this work is
applicable across various sub-domain methods.

Probabilistic Classifier Discrepancy. For a distribution D, we define the discrepancy between two
functions f and g as:

“D(f, g) = Ex≥D [|f(x) ≠ g(x)|] .

We use gT and gS to represent the true labeling functions of the target and source domains, respectively.
We use “S(f) .= “PS

(f, gS) and “T (f) .= “PT
(f, gT ) to respectively denote the discrepancies of a hypothesis

f to the true labeling function for the source and target domains.

Wasserstein Distance. The Kantorovich-Rubenstein dual representation of the Wasserstein-1 dis-
tance (Villani, 2009) between two distributions PS and PT is defined as

W1(PS , PT ) = sup
||f ||LÆ1 Ex≥PS

[f(x)] ≠ Ex≥PT
[f(x)],

where the supremum is over the set of 1-Lipschitz functions (all Lipschitz functions f with Lipschitz constant
L Æ 1. For notational simplicity, we use D(X1, X2) to denote a distance between the distributions of any
pair of random variables X1 and X2. For instance, W1(�(XS), �(XT )) denotes the Wasserstein-1 distance
between the distributions of the random variables �(XS) and �(XT ) for any transformation �.

4 Understanding Sub-domain-based Methods

We now present our theoretical analysis of sub-domain-based methods. We first present a generalization
bound for domain adaptation that is closely related to existing work, and then establish a novel general-
ization bound for sub-domain-based methods, aligning with the objectives used by these existing methods.
Furthermore, we demonstrate that the sub-domain-based generalization bound is at least as strong as the
non-sub-domain-based generalization bound, which establishes a rigorous theoretical understanding of the
advantages of these methods. Our analysis also uncovers that when the marginal weights of sub-domains
shift between the source and the target task, sub-domain methods can potentially fail.

4.1 Generalization Bounds for Domain Adaptation

Before presenting our novel theoretical results about sub-domain-based domain adaptation, we first present
an upper bound closely related to Ben-David et al. (2010) and Li et al. (2018) Theorem A.8. It is worth
noting that we use the Wasserstein-1 distance in our analysis, as it provides a stronger bound than the total
variation distance Redko et al. (2017) employed by Ben-David et al. (2010). The proof of Theorem 4.1 is
deferred to the Appendix A.4.
Theorem 4.1 (Full Domain Generalization Bound). For a hypothesis f : X æ [0, 1],

“T (f) Æ “S(f) + (⁄ + ⁄H)W1(PS , PT ) + “ı, (1)

4



Under review as submission to TMLR

where “ı = min
fœH

“S(f) + “T (f), H is a hypothesis class included in the set of ⁄H-Lipschitz functions, and the

true functions gT and gS are both ⁄-Lipschitz functions (as defined in Appendix A.1).

Remark 4.2. The upper bound in Theorem 4.1 consists of three components: (i) “S(f) is the performance
of the hypothesis on the source domain, (ii) W1(PS , PT ) is the distance between the source and the target
domains, and (iii) “ı is a constant related to the di�erence between the source and the target problems that
cannot be addressed by domain adaptation. For succinctness and clarity of the following analysis, we assume
without loss of generality that ⁄ + ⁄H Æ 1, simplifying the bound to

“T (f) Æ “S(f) + W1(PS , PT ) + “ı. (2)

Numerous works attempt to solve the domain adaptation problem by designing algorithms that minimize
similar generalization bounds to the one in equation 2, e.g., Theorem 1 in Ben-David et al. (2010). These
approaches consist of two components: (i) a mapping � : X æ H that transforms the original problem by
embedding XS and XT into a shared hidden space H, and (ii) a hypothesis h : H æ [0, 1] for prediction. Since
“T (h ¶ �) = “�(XT )(h), with Theorem 4.1, we have a generalization bound of the function h ¶ � : X æ [0, 1]
on the original target problem:

“T (h ¶ �) = “�(XT )(h) Æ “�(XS)(h) + W1(�(XS), �(XT )) + “ı

�. (3)

If the distance between �(XS) and �(XT ), i.e., W1(�(XS), �(XT )), is close and the classification error of
h on the transformed source problem, i.e., “�(XS)(h), remains low, then the performance of the hypothesis
h ¶ � on the original target problem can be guaranteed. This motivation has led to a variety of domain
adaptation frameworks with objectives of the following format:

min �:X æH

h:Hæ[0,1]
“�(XS)(h) + – D(�(XS), �(XT )), (4)

where “�(XS)(h) is the classification error of h on the transformed source problem, D is a distance between
distributions and – is the balancing weight. In this work, we use Wasserstein-1 distance.

4.2 Analysis of Sub-domain-based Methods

We first present several results that will be used to build the main theorem. These results themselves may
be of interest.

First of all, Theorem 4.1 directly leads to the following proposition:
Proposition 4.3 (Individual Sub-domain Generalization Bound). For k œ {1, . . . , K}, where K represents

the total number of distinct sub-domains, for sub-domain Xk

S
with distribution P k

S
and Xk

T
with distribution

P k

T
, it holds any f œ H that

“k

T
(f) Æ “k

S
(f) + W1(P k

S
, P k

T
) + (“k)ı, (5)

where “k

S
(f)/“k

T
(f) is the performance of the hypothesis on the sub-domain Xk

S
/Xk

T
, (“k)ı = minfœH “k

S
(f)+

“k

T
(f), H is a hypothesis class included in the set of ⁄H-Lipschitz functions, the true functions gT and gS

are both ⁄-Lipschitz functions, and ⁄ + ⁄H Æ 1.

The second result below shows that the classification error of any hypothesis f on a domain can be de-
composed into a weighted sum of the classification errors of f on its sub-domains (proofs deferred to the
Appendix A.5).
Lemma 4.4 (Decomposition of the Classification Error). For any hypothesis f œ H,

“S(f) =
q

K

k=1 wk

S
“k

S
(f), “T (f) =

q
K

k=1 wk

T
“k

T
(f). (6)

With above results, we present a generalization bound with sub-domain information (proofs deferred to the
Appendix A.6).
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Theorem 4.5 (Sub-domain-based Generalization Bound).

“T (f) Æ
q

K

k=1 wk

T
“k

S
(f) +

q
K

k=1 wk

T
W1(P k

S
, P k

T
) +

q
K

k=1 wk

T
(“k)ı. (7)

In particular, in a balanced domain adaptation setting where for all k, wk

S
= wk

T
, we have that

“T (f) Æ “S(f) +
q

K

k=1 wk

S
W1(P k

S
, P k

T
) +

q
K

k=1 wk

S
(“k)ı. (8)

Remark 4.6. Note that the format of the RHS of equation 8 is reminiscent of the objectives used by the
majority of the sub-domain-based methods.

We next show that, under reasonable assumptions, the weighted sum of distances between corresponding
sub-domains of the source and target domains is at most as large as the distance between the marginal
distribution of the source domain and that of the target domain.
Theorem 4.7 (Benefits of Sub-domain Alignment). Under the following assumptions:

A1. For all k, P k

S
/ P k

T
are Gaussian distributions with mean mk

S
/ mk

T
and covariance �k

S
/ �k

T
.

A2. Distance between the paired source-target sub-domain is less or equal to distance between the non-paired

source-target sub-domain, i.e., W1(P k

S
, P k

T
) Æ W1(P k

S
, P k

Õ

T
) for k ”= kÕ

.

A3. There exists a small constant ‘ > 0, such that max
1ÆkÆK

(tr(�k

S
)) Æ ‘ and max

1ÆkÆK

(tr(�k
Õ

T
)) Æ ‘. Then the

following inequality holds: q
K

k=1 wk

T
W1(P k

S
, P k

T
) Æ W1(PS , PT ) + ”c, (9)

where ”c is 4
Ô

‘. In particular, when wk

S
= wk

T
for all k,

q
K

k=1 wk

S
W1(P k

S
, P k

T
) Æ W1(PS , PT ) + ”c. (10)

Proof. Note that wS
.= [w1

S
, . . . , wK

S
] and wT

.= [w1
T

, . . . , wK

T
] belong to �K (the K ≠1 probability simplex).

�(wS , wT ) represents the simplex �K◊K with marginals wS and wT. With w œ �(wS, wT), we can write
out wk

T
as

q
K

kÕ=1 wk,kÕ , then based on assumption A.2, we have:

Kÿ

k=1
wk

T
W1(P k

S
, P k

T
) =

Kÿ

k=1

Kÿ

kÕ=1
wk,kÕW1(P k

S
, P k

T
)

Æ

Kÿ

k=1

Kÿ

kÕ=1
wk,kÕW1(P k

S
, P k

Õ

T
).

Thus we have (MW1(PS , PT ) defined in Appendix A.7),

Kÿ

k=1
wk

T
W1(P k

S
, P k

T
) Æ min

wœ�(wS,wT)

Kÿ

k=1

Kÿ

kÕ=1
wk,kÕW1(P k

S
, P k

Õ

T
)

= MW1(PS , PT ).

(11)

Also we prove in Theorem A.10 that:

MW1(PS , PT ) Æ W1(PS , PT ) + 4
Ô

‘.

Then we conclude our proof and show that:

Kÿ

k=1
wk

T
W1(P k

S
, P k

T
) Æ MW1(PS , PT ) Æ W1(PS , PT ) + 4

Ô
‘ = W1(PS , PT ) + ”c. (12)
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Remark 4.8. In Appendix B, we provide empirical evidence to verify that these assumptions are satisfied
on real-world datasets. We note that the assumption of a Gaussian distribution for Xk is not unreasonable
since it is often the result of a complex transformation, �, and the Central Limit Theorem indicates that
the outcome of such a transformation is approximately normally distributed under regularity assumptions
(please see Appendix B.1 for empirical evidence).
Remark 4.9. ”c is a constant dependent only on the variance of the features but not the covariance between
features in di�erent dimensions. Moreover, the inequality holds empirically without ”c as demonstrated in
Figure 3, as well as Figure 7 and Figure 8 in Appendix F.2.

4.3 Challenges of Imbalanced UDA

Theorem 4.7 shows that the objective function of sub-domain methods is at least as strong as the objective
function of domain alignment methods, explaining its improved performance. However, if the marginal
weights of the sub-domain shifts, i.e., wk

S
”= wk

T
, the inequality in equation 10 is not likely to hold and the

framework can collapse. One such example is the scenario of shifted label distributions where wk

T
and wk

S

(class weights for target and source domains) can be vastly di�erent.

To overcome this, we propose to minimize an objective with the simple intuition that important sub-domains

in the target domain need more attention. With this motivation, we propose the following objective function
for UDA with shifted label distribution:

L(f) =
q

K

k=1 wk

T
“k

S
(f). (13)

In particular, L reweighs the losses of sub-domains so that the sub-domain with more weight in the target
domain can be emphasized more. We next prove that through the proposed approach (proofs deferred to
the Appendix A.12), we can again obtain a sub-domain-based generalization bound that is at least as strong
as the full domain generalization bound without the sub-domain information.
Theorem 4.10. Let H

.= {f |f : X æ [0, 1]} denote a hypothesis space. Under the assumptions in Theo-

rem 4.7, for any f œ H such that:

q
K

k=1 wk

T
“k

S
(f) Æ

q
K

k=1 wk

S
“k

S
(f), (14)

then we have
q

K

k=1 wk

T
(“k)ı

Æ “ı
. Further, let

‘c(f) .=
q

K

k=1 wk

T
“k

S
(f) +

q
K

k=1 wk

T
W1(P k

S
, P k

T
) +

q
K

k=1 wk

T
(“k)ı

denote the sub-domain-based generalization bound and let

‘g(f) .= “S(f) + W1(PS , PT ) + “ı

denote the generalization bound without any sub-domain information, we have,

‘c(f) Æ ‘g(f) + ”c.

Remark 4.11. In Section 6.1 and Appendix F.2, we provide extensive empirical evidence to establish
that equation 14 can easily hold, as the left hand side is the optimization objective. Moreover, in these
sections, we o�er empirical evidence to further verify the value of this theoretical result by showing that our
proposed bound is empirically much stronger than the existing one.

Inspired by our analysis, we propose a framework, Domain Adaptation with Rebalanced Sub-domain Align-

ment (DARSA), for imbalanced UDA, a special case of the sub-domain weight shifting scenario where the
class weights of the target domain shifts from that of the source domain.

5 Methods

In DARSA, we divide the source domains into sub-domains based on class labels, and divide target domains
into sub-domains using predicted class labels (serving as pseudo labels, which have shown success in previous
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Figure 2: The DARSA framework. Orange lines representing the clustering loss LC , green lines indicating
domain discrepancy LD, and purple lines indicating source classification loss LY .

research (Deng et al., 2019; Lee et al., 2013)) for unlabeled target domains. Motivated by Theorem 4.10, the
framework of DARSA, shown in Figure 2, is composed of a source encoder fS

E
parameterized by ◊S

E
, a target

encoder fT

E
parameterized by ◊T

E
, and a classifier fY parameterized by ◊Y . The pseudo-code for DARSA can

be found in Appendix D.

The objective function of DARSA is defined as follows:

min◊Y ,◊
S

E
,◊

T

E

⁄Y LY + ⁄DLD + LC , (15)

where LY , LD, LC are losses described below with relative weights given by ⁄Y and ⁄D.

Weighted source domain classification error LY . The weighted source domain classification error in
Theorem 4.10 can be further expressed as:

q
K

k=1 wk

T
“k

S
(f) =

q
K

k=1 wk

T

s
PS(x|c = k)|f(x) ≠ gS(x)|dx

=
q

K

k=1 wk

T

s
PS(c=k|x)PS(x)

PS(c=k) |f(x) ≠ gS(x)|dx =
q

K

k=1
w

k

T

w
k

S

Ex≥Ds
wk

S
(x)|f(x) ≠ gS(x)|,

(16)

where variable c represents class, wk

T
= PT (c = k), wk

S
= PS(c = k), wk

S
(x) = PS(c = k|x). We set

PS(c = k|x) = 1 only when data point x is in class k, otherwise PS(c = k|x) = 0. wk

S
can be set to the

marginal source label distribution, and wk

T
can be estimated from the target predictions. From equation 16,

LY (◊Y , ◊S

E
) is defined as:

LY (◊Y , ◊S

E
) = 1

NS

q
xiœXS

yi=k

w
k

T

w
k

S

¸(ŷi, yi),

where ŷi = fY (fS

E
(xi)) is the predicted label and ¸ can be any non-negative loss function (e.g., cross-entropy

loss for classification tasks).

Weighted source-target subdomain discrepancy LD. The weighted source-target domain discrepancy
in Theorem 4.10 can be further expressed as:

LD(◊S

E
, ◊T

E
, ◊Y ) =

q
K

k=1 wk

T
W1(P k

S
, P k

T
) =

q
K

k=1 wk

T
W1(fS

E
(xk

S
), fT

E
(xk

T
)), (17)

where xk

S
are source samples with labels yS = k, and xk

T
are target samples with predicted labels ŷT = k.

We leverage the Sinkhorn algorithm (Cuturi, 2013) to approximate the Wasserstein metric.

Clustering loss LC . The clustering loss LC = ⁄cLintra + ⁄aLinter is comprised of two components:
the intra-clustering loss, Lintra, and the inter-clustering loss, Linter. The role of Lintra is to satisfy the
assumption A.3 in Theorem 4.7. It encourages embeddings of the same label to cluster tightly together,

8
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while also pushing embeddings of di�erent labels to separate by at least a user-specified distance, m (Luo
et al., 2018). The inter-clustering loss Linter further enhances sub-domain alignment by aligning the centroids
of source sub-domains with those of their corresponding target sub-domains in the representation space. We
define Lintra and Linter as follows:

Lintra(◊S

E
, ◊T

E
, ◊Y ) = Lintra(fS

E
(XS)) + Lintra(fT

E
(XT )), (18)

Lintra(fS

E
(X )) = 1

N2
q

N

i,j=1

Ë
”ijDij + (1 ≠ ”ij) max (0, m ≠ Dij)

È
;

Linter(◊S

E
, ◊T

E
, ◊Y ) = 1

K

q
K

k=1 ÎC
!
fS

E
(xk

T
)
"

≠ C(
!
fT

E
(xk

T
)
"
Î

2, (19)

where N represents the number of samples in the domain X and C(·) calculates the centroids of the sub-
domains, ”ij = 1 only if xi and xj have the same label; otherwise, ”ij = 0. We use the ground truth label
or the predicted label if x is in source domain or target domain, respectively. m is a pre-defined distance
controlling how separated each sub-domain should be. Dij = ÎfE(xi)≠fE(xj)Î2 represents distance between
xi and xj .

6 Experiments

In this section, we verify our theoretical results and assess DARSA’s e�cacy through real-world experi-
ments. We begin by empirically confirming the superiority of the sub-domain-based generalization bound
(Theorem 4.10) in Section 6.1. Then, we verify that the assumptions for Theorem 4.10 are empirically
satisfied on real-world datasets (details in Appendix B). Next, we demonstrate the vital role of subdomain
weight re-balancing in Section 6.2 and show DARSA’s robustness to minor weight estimation discrepancies.
Lastly, given that our theoretical analysis guarantees that DARSA should have competitive performance
in scenarios where the number of classes is not overwhelming, we evaluate DARSA on real-world datasets
with this property. Comparing with other state-of-the-art UDA baselines, we verify the correctness of our
analysis as well as an advantage of DARSA that its strong performance can be guaranteed on particular
real-world applications such as those in medical and operations research. We base the following confirmatory
experiments on two sets of datasets.

Experiments on the Digits Datasets. In our Digits datasets experiments, we evaluate our performance
across four datasets: MNIST (M) (LeCun et al., 1998), MNIST-M (MM) (Ganin et al., 2016), USPS (U), and
SVHN (S), all modified to induce label distribution shifts. Here, the parameter – denotes the class imbalance
rate, representing a ratio such as 1:– and –:1 for the odd:even distribution in the source and target datasets,
respectively. Weak and strong imbalance correspond to – = 3 and – = 8. For comprehensive details, refer
to Appendix F.

Experiments on the TST Dataset. We use the Tail Suspension Test (TST) dataset (Gallagher et al.,
2017) of local field potentials (LFPs) from 26 mice with two genetic backgrounds: Clock-�19 (a bipolar
disorder model) and wildtype. This dataset is publicly available (Carlson et al., 2023). Our study involves
two domain adaptation tasks, predicting the current condition - home cage (HC), open field (OF), or tail-
suspension (TS) - from one genotype to the other. We subsample datasets to induce label distribution shifts
with imbalance rate = 2. For comprehensive details, refer to Appendix G.

6.1 Empirical Analysis of our Proposed Generalization Bound

We first verify the pivotal result in Theorem 4.10 that the sub-domain based generalization bound is at least
as tight as the the non-sub-domain bound. We empirically evaluate the proposed bound on the Digits datasets
under weak imbalance. As shown in Figure 3, our empirical results demonstrate that the sub-domain-based
generalization bound in Theorem 4.5 is empirically much stronger than the non-sub-domain-based bound
in Theorem 4.1, corroborating our insights for the e�ectiveness of sub-domain based methods. Additional
experiments on the other UDA tasks in the Digits datasets under weak and strong imbalance also support
this claim, and full results are in Appendix F.2.

1
The code to replicate all experiments is available at: https://anonymous.4open.science/r/DARSA/
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(a) Domain Discrepancy (b) Source Classification Loss

Figure 3: For MNIST to MNIST-M task under weak imbalance. (a) Compare the domain discrepancy term
(LD) in our proposed bound to that in Theorem 4.1. (b) Compare the source classification term (LY ) in
our proposed bound to that in Theorem 4.1

6.2 Importance of Re-weighting

Here, we experiment on the Digits datasets under weak imbalance to demonstrate the importance of (i)
weights re-weighting and (ii) the accuracy of target sub-domain weights estimation. We compare DARSA
with one variation of DARSA which employs uniform weights for all sub-domains and another variation
which swaps sub-domain weights estimation of source with target. We also include two other baselines
where the weights of the target domain are chosen to be deviating from the truth. Specifically, we compare
DARSA with the following configurations:

• DARSA: Full algorithm where weights are inferred.
• DARSA Oracle: Utilizing true values of wk

T
.

• DARSA Small Divergence: Setting wk

T
to be 20% divergent from true values.

• DARSA Large Divergence: Setting wk

T
to be 50% divergent from true values.

• DARSA Flip: Swapping wk

T
with wk

S
, e�ectively flipping importance weighting.

• DARSA Uniform: Assigning uniform weights for all sub-domains.

The results of these experiments are in Table 1. We verify the importance of subdomain weights re-balancing
by showing that the performance of DARSA degrades significantly without the weights re-balancing or
wrong sub-domain weights, further corroborating the value of our insights. Aditionally, while the oracle
case provides the best performance, inferring the weights in the DARSA algorithm provides nearly the same
quality of predictions. In addition, we found our method, DARSA is robust to minor divergence in weights
estimation and varying imbalance rates.

Table 1: Evaluation of the importance of re-weighting on Digits datasets under weak imbalance. Performance
is measured by prediction accuracy (%) on the target domain.

M æ MM MM æ M U æ M S æ M
DARSA Oracle 96.2 98.4 92.7 92.6

DARSA Uniform 67.9 96.6 75.9 71.7
DARSA Small Divergence 95.6 98.3 91.4 92.4
DARSA Large Divergence 85.0 98.2 86.1 85.2

DARSA Flip 55.7 65.7 57.4 65.7
DARSA 96.0 98.8 92.6 90.1
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Table 2: Summary of UDA results on the Digits datasets with shifted label distribution, measured in terms
of prediction accuracy (%) on the target domain.

M æ MM
– = 3

MM æ M
– = 3

U æ M
– = 3

S æ M
– = 3

M æ MM
– = 8

MM æ M
– = 8

U æ M
– = 8

S æ M
– = 8

DANN (Ganin et al., 2016) 63.1 93.0 59.8 64.9 61.1 90.2 49.1 57.3
DSN (Bousmalis et al., 2016) 62.3 98.4 59.9 15.2 57.5 95.3 30.3 17.8
ADDA (Tzeng et al., 2017) 88.2 90.7 44.8 42.4 47.9 89.4 45.7 45.3

pixelDA(Bousmalis et al., 2017) 95.0 96.0 72.0 68.0 81.0 95.6 29.2 60.4
CDAN (Long et al., 2018) 58.7 96.0 42.0 38.3 37.1 90.6 34.8 32.5

WDGRL (Shen et al., 2018) 60.4 93.6 63.9 64.3 22.3 91.4 46.7 52.2
MCD (Saito et al., 2018) 58.1 98.2 74.6 75.5 37.4 97.5 76.1 66.7
CAT (Deng et al., 2019) 54.1 95.4 81.0 65.8 48.9 93.8 61.3 62.2

MDD (Zhang et al., 2019) 48.7 97.7 82.3 62.4 47.6 93.6 83.2 64.5
DRANet (Lee et al., 2021) 95.2 97.8 86.5 40.2 63.3 96.1 54.2 31.3

Source Only 47.9 91.5 40.8 53.7 39.6 88.4 27.8 47.2
DARSA 96.0 98.8 92.6 90.1 78.8 97.3 87.9 83.5

Table 3: Summary of UDA results on the TST datasets with shifted label distribution, measured in terms
of prediction accuracy (%) on the target domain.

DANN WDGRL DSN ADDA CAT CDAN Source only DARSA

Clock-�19 to Wildtype 79.9 79.6 79.4 75.1 77.3 75.0 73.8 86.6

Wildtype to Clock-�19 81.5 79.5 80.9 72.6 78.6 73.6 70.4 84.8

6.3 DARSA on Real-world Datasets

We now compare DARSA with many competing algorithms on these two datasets. Full details on the
experiments, the rationale for competing algorithms choices, and their settings are in Appendix F and
Appendix G for the Digits and TST datasets, respectively.

Digits. Results shown in Table 2 demonstrates DARSA’s competitiveness in handling label shifting. Addi-
tionally, DARSA performs well with varying imbalance rates (Appendix Table 6) and competes favorably
in scenarios without label distribution shifts (Appendix Table 7).

TST. As demonstrated in Table 3, DARSA achieves competitive performance on this biologically relevant
task. For comprehensive experimental details, refer to Appendix G.

Ablation. To assess the impact of each component within our objective function (Section 5), we conduct
an ablation study under weak imbalance. As demonstrated in Table 4, the ablation analysis confirms that
each component in our objective function contributes to the overall performance. Therefore, we recommend
the use of all components for optimal results. In addition, we have included feature space visualizations
in Appendix C and Appendix Figure 9 which demonstrate that the learned representation of DARSA has
improved separation when using all the components, supporting the e�ectiveness of the proposed objective
function.

7 Conclusion

Sub-domain-based algorithms have demonstrated considerable empirical success across various applications
in domain adaptation. However, a comprehensive theoretical understanding of their advantages had been
elusive. This work addresses this gap and presents a substantial contribution by providing a rigorous theo-
retical perspective on the benefits of sub-domain-based methods, thereby potentially enhancing their overall
impact in the field. Moreover, our analysis leads to an algorithm DARSA with improved robustness to the
shift of sub-domain weights and label distributions. Additionally, our framework can be extended to data
integration and causal e�ect estimation by reframing these tasks as distribution alignment problems.
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Table 4: Ablation study results. Each row represents a configuration with di�erent ⁄ values. The last column
reports the prediction accuracy (%) for each configuration.

Experiment ⁄Y ⁄D ⁄a ⁄c Accuracy
M æ MM 0.4 0.35 0.9 1 96.0

M æ MM 0 0.35 0.9 1 61.3
M æ MM 0.4 0 0.9 1 72.5
M æ MM 0.4 0.35 0 1 61.9
M æ MM 0.4 0.35 0.9 0 33.5
MM æ M 1 0.5 1 1 98.8

MM æ M 0 0.5 1 1 96.7
MM æ M 1 0 1 1 98.4
MM æ M 1 0.5 1 0 15
MM æ M 1 0.5 0 1 98.2
U æ M 1 0.5 1 1 92.6

U æ M 0 0.5 1 1 65.9
U æ M 1 0 1 1 85.8
U æ M 1 0.5 0 1 76.2
U æ M 1 0.5 1 0 58.4
S æ M 0.95 0.11 0.11 0.3 90.1

S æ M 0 0.11 0.11 0.3 77.9
S æ M 0.95 0 0.11 0.3 86.1
S æ M 0.95 0.11 0.11 0 64.3
S æ M 0.95 0.11 0 0.3 84.9

8 Reproducibility Statement

Rigorous definitions and complete proofs of our theoretical analysis are included in the Appendix A, with
empirical evidence to verify assumptions in Appendix B. The code to replicate all experiments is available
at: https://anonymous.4open.science/r/DARSA/. Full details on the experiments, competing algorithms,
and their settings are in Appendix F and Appendix G for the Digits and TST dataset, respectively. The
MNIST, BSDS500, USPS, and SVHN datasets are publicly available with an open-access license. The Tail
Suspension Test (TST) dataset (Gallagher et al., 2017) is available to download at https://research.
repository.duke.edu/concern/datasets/zc77sr31x?locale=en for free under a Creative Commons BY-
NC Attribution-NonCommercial 4.0 International license. The experiments are conducted on a computer
cluster equipped with a NVIDIA GeForce RTX 2080 Ti that has a memory capacity of 11019MiB.
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