
Frame Mining: a Free Lunch for Learning Robotic
Manipulation from 3D Point Clouds

Anonymous Author(s)
Affiliation
Address
email

Abstract: We study how choices of input point cloud coordinate frames affect1

learning of manipulation skills from 3D point clouds. There exist a variety of coor-2

dinate frame choices to normalize captured robot-object-interaction point clouds.3

We find that different frames lead to distinct agent learning performance, and the4

trend is similar across 3D backbone networks. In particular, the end-effector frame5

and the target-part frame achieve higher training efficiency than the commonly6

used world frame and robot-base frame in many tasks, intuitively because they7

provide helpful alignments among point clouds across time steps and thus can sim-8

plify visual module learning. Moreover, the well-performing frames vary across9

tasks, and some tasks may benefit from multiple frame candidates. We thus pro-10

pose FrameMiners to adaptively select candidate frames and fuse their merits in11

a task-agnostic manner. Experimentally, FrameMiners achieves on-par or signifi-12

cantly higher performance than the best single-frame version on five fully physical13

manipulation tasks adapted from ManiSkill and OCRTOC. Without changing ex-14

isting camera placements or adding extra cameras, point cloud frame mining can15

serve as a free lunch to improve 3D manipulation learning.16

Keywords: point cloud, coordinate frame, robot manipulation, 3D, RL17

1 Introduction18

With the rapid development and proliferation of low-cost 3D sensors, point clouds have become19

more accessible and affordable in robotics tasks [1]. Also, the tremendous progress in building20

neural networks with 3D point clouds [2, 3, 4, 5, 6, 7] has enabled powerful and flexible frameworks21

for 3D visual understanding tasks such as 3D object detection [5, 8, 9], 6D pose estimation [10,22

11], and instance segmentation [12, 13]. Very recently, point cloud started to be used as the input23

to deep reinforcement learning (RL) for object manipulation [14, 15, 16], which aims at learning24

mappings directly from raw 3D sensor observations of unstructured environments to robot action25

commands. These end-to-end learning methods avoid highly structured pipelines and laborious26

human engineering required by conventional robot manipulation systems.27

When building an agent with point cloud input, existing works [14, 15, 16] typically incorporate off-28

the-shelf point cloud backbone networks (e.g., PointNet [2]) into the pipeline as a feature extractor of29

the scene. However, some facets in constructing point cloud representations have been overlooked.30

For example, in the literature of 3D deep learning, the choice of coordinate frame significantly31

affects task performance [2, 17, 18, 19, 20, 21]. On 3D instance segmentation benchmarks for32

autonomous driving, previous work such as [5] showed a pipeline to process input point clouds in33

the camera frame, frustum frame, and object frame subsequently, leading to a large performance34

boost in comparison to using the camera frame alone. For our goal of manipulation skill learning,35

point clouds describe dynamic interactions between robots and objects, including frequent contacts36

and occlusions. This is a novel and more complex setting that differs from well-explored scenarios37

in 3D supervised learning (e.g., single objects, outdoor scenes for autonomous driving). Under this38

setting, choices of coordinate frames are more flexible and diverse as multiple entities (e.g., robot39

and manipulated object) and dynamic movements are involved.40

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.



In this work, we first examine whether and how different coordinate frames may affect the per-41

formance and sample efficiency of point cloud-based RL for object manipulation tasks. We study42

four candidate coordinate frames: world frame, robot-base frame, end-effector frame, and target-43

part frame. These frames differ in positions of origin and orientations of axes, and canonicalize44

inputs in different manners (e.g., a fixed third-view, ego-centric, hand-centric, object-centric). The45

comparison and analysis are performed on five distinct physical manipulation tasks adapted from46

ManiSkill [22] and OCRTOC [23], covering various numbers of arms, robot mobilities, and camera47

settings. Results show that the choice of frames has profound effects. In particular, the end-effector48

frame and the target-part frames, rarely considered in previous works, lead to significantly better49

sample efficiency and final convergence than the widely used world frame and robot-base frame on50

many tasks. Visualization and analysis indicate that, by using different coordinate frames to rep-51

resent input point clouds, we are actually performing various alignments of input scenes through52

SE(3) transformations, which may simplify the learning of visual modules.53

However, the well-performing single coordinate frame may vary from task to task, and in many54

cases, we may need coordination between decisions made according to multiple coordinate frames.55

For example, tasks equipped with dual-arm robots may benefit from both left-hand and right-hand56

frames. For mobile manipulation tasks involving both navigation and manipulation, different frames57

could favor different skills (e.g., robot-base frame for navigation skills, end-effector frame for ma-58

nipulation skills). We thus propose three task-agnostic strategies to adaptively select from multiple59

candidate coordinate frames and fuse their merits, leading to more efficient and effective object60

manipulation policy learning. Because we do not need to capture additional camera views or rely61

on task-specific frame selections, our frame mining strategies can be used as a free lunch to im-62

prove existing methods on point cloud-based policy learning. We call these fusion approaches as63

FrameMiners. Experimentally, we find that it matters to fuse information from multiple frames, but64

the specific FrameMiner to choose does not create much performance difference. In particular, we65

use one of the FrameMiners, MixAction, to interpret the importance of different frames in the policy66

execution process, and the interpretation agrees with our intuitions.67

In summary, the main contributions of this work are as follows:68

• We find that the choice of coordinate frame has a profound impact on point cloud-based RL for69

object manipulation. In particular, the end-effector frame and the target-part frame lead to much70

better sample efficiency than the widely-used world frame and robot-base frame on many tasks;71

• We find that well-performing frames differ task by task, necessitating task-agnostic ways to select72

and fuse frames. This observation is consistent across 3D backbone networks;73

• We propose FrameMiners, a collection of methods to fuse information from multiple candiate74

frames. FrameMiners provide a free lunch to improve existing point cloud-based manipulation75

learning methods without changing camera placements or requiring additional camera views.76

2 Related Work77

Manipulation Learning with Point Clouds Visual representation learning for object manipula-78

tion has been extensively studied [24, 25, 26, 27, 28, 29, 30, 31]. With the flourishment of 3D deep79

learning [2, 3, 4, 5, 6, 7], a major line of work learns representations from 3D point clouds for80

object manipulation [32, 33, 34, 35, 36, 37, 38]. Recently, people have also started to incorporate81

point clouds into deep reinforcement learning (RL) pipelines for manipulation learning [14, 15, 16].82

However, existing point cloud-based manipulation learning methods have not paid enough attention83

to coordinate frame selections of input point clouds, which is fundamental in 3D visual learning.84

Some very recent work [39, 40] explored placement and selection of camera views and fusion of85

multi-view images. We differ from them in that we focus on the preprocessing of captured input86

point clouds without modifying existing camera configurations or adding additional cameras.87

Normalization and View Fusion in Point Cloud Learning Normalizing input point clouds is88

a common practice in 3D deep learning literature. For example, in single object analysis (e.g.,89

classification and part segmentation), people often normalize input point clouds into a categorical90

canonical pose with unit scale [2, 3], simplifying network training. Prior works find that existing91

point cloud networks [2, 3, 7, 41, 42] are very sensitive to input normalization [21, 43, 44], and92

2



PickObject
Single Arm 
Fixed Base
3rd-View 

OpenCabinetDoor
Single Arm 

Mobile
Panoramic on Head

OpenCabinetDrawer
Single Arm 

Mobile
Panoramic on Head

PushChair
Dual Arm 

Mobile
Panoramic on Head

MoveBucket
Dual Arm 

Mobile
Panoramic on Head

Task
Robot Arm
Mobility
Cameras

Figure 1: We study coordinate frame mining on manipulation tasks adapted from OCRTOC [23] and
ManiSkill [22] covering various setups (e.g., #arms, mobility, camera). Simulation is fully physical.

many recent attempts explore rotation invariant [45, 46, 47] and equivariant methods [21, 48, 49] for93

3D deep learning. Compared to well-studied scenarios (e.g., single object and autonomous driving),94

normalizations of point clouds under robot-object interactions are under-explored.95

In LiDAR point cloud learning for autonomous driving, many work focuses on the fusion of multiple96

views [17, 18, 19, 20]. Unlike fusing multiple camera scans, there is only one point cloud. They97

propose to process the point cloud from different views (e.g., perspective view and birds-eye view)98

to combine their merits, which has proven to be helpful. Our work shares a similar idea, but we99

focus on robotic object manipulation settings, and the choice of coordinate systems is more diverse.100

3 Point Cloud Coordinate Frame Selection Matters101

3.1 Problem Setup102

3D (Fused)
Point Cloud

3D Backbone
(e.g., PointNet) Policy MLP Robot Action 

Proprioceptive
Robot State Value MLP Value

Figure 2: Architecture of a 3D point cloud-based agent,
which is optimized by actor-critic RL algorithms. We study
coordinate frame selection of input (fused) point cloud.

We aim to learn agents with point103

cloud input for object manipulation104

tasks via RL. A task is formally105

defined as a Partially-Observable106

Markov Decision Process (POMDP),107

which is represented by a tuple M =108

(S,A, µ, T,R, γ,Ω, O). Here S and109

A are the environment state space and110

the action space. µ(s), T (s′|s, a), R(s, a), and γ are the initial state distribution, state transition111

probability, reward function, and discount factor, respectively. O(s) : S → Ω is the observa-112

tion function that maps environment states to the observation space Ω. Our agent is represented113

by a policy π : Ω → A, which aims to maximize the expected accumulated return given by114

J(π ◦ O) = Eµ,T,π[
∑∞

t=0 γ
tr(st, at)]. Note that π does not have access to the environment state s115

and only has access to the observation O(s). In this work, O(s) consists of two parts: (1) a 3D point116

cloud captured by depth cameras; (2) proprioceptive states for the robot, such as joint positions and117

joint velocities. For the first part, if there are multiple cameras, we fuse all point clouds into a single118

one by transforming them into the same coordinate frame and concatenating the points together.119

Fig. 2 shows the architecture of a 3D point cloud-based agent, which we use to discuss in this section.120

It first exploits a 3D backbone (e.g., PointNet [2]) to extract visual features from a 3D (fused) point121

cloud. The extracted features are then concatenated with proprioceptive robot states and fed into122

separate multi-layer perceptrons (MLP) for action and value prediction. The input (fused) point123

cloud can be represented in different coordinate frames before being fed into the 3D backbone124

network, and the choice of coordinate frame is independent of camera views. For example, a point125

cloud captured by a camera mounted on the robot’s head can be transformed into the end-effector126

frame. In this work, we study how point cloud coordinate frames affect sample efficiency and final127

convergence of object manipulation learning. Unlike prior works [39, 40], we do not change robot128

camera configurations (e.g., camera placement, inclusion of additional cameras).129

As shown in Fig. 1, we exemplify the frame selection problem on five fully-physical manipulation130

tasks, covering various numbers of robot arms, mobilities, and camera settings. Among them, Pick-131

3



Figure 3: Illustration of four coordinate frames, which provide different alignments across time
steps. We visualize three point clouds (three time steps) of an OpenCabinetDoor trajectory. Each
row shows the same point cloud represented in different coordinate frames. Please zoom in for
details. Robot arm, cabinet door handle, cabinet door, and cabinet body are colored in blue, red,
yellow, and brown, respectively. RGB arrows indicate the corresponding origin and axes for each
frame. All of our experiments use partial and occluded point clouds captured by cameras. While
the point clouds used for policy learning can be rather sparse, we show dense point clouds here for
better visualization.

Object is adapted from OCRTOC [23], and the other four tasks are adapted from ManiSkill [22].132

On PickObject, a fixed-base single-arm robot learns to physically grasp an object from the table, lift133

it up to a target height, and keep it static for a while. Point clouds are captured from a 3rd-view134

camera. On ManiSkill tasks, agents learn generalizable physical manipulation skills (i.e., opening135

cabinet doors / drawers, pushing chairs / moving buckets to target positions) across objects with136

diverse topology, geometry, and appearance. We utilize mobile robots with one or two arms. Point137

clouds come from a panoramic camera mounted on the robot’s head. Action space includes joint138

velocities of the arm(s) and the mobile robot base, along with joint positions of the gripper(s).139

3.2 Choices of Point Cloud Coordinate Frame140

For 3D supervised learning tasks such as object classification and detection, it’s a common prac-141

tice to normalize input point clouds, and the choice of coordinate frames significantly affects task142

performance [2, 21, 17, 18, 19, 20]. In point cloud-based manipulation learning, we are faced with143

an underexplored, yet more challenging, setting. First, point clouds describe more complex robot-144

object interactions, possibly including frequent contacts and occlusions. Furthermore, compared145

to supervised learning, 3D visual modules receive weaker supervision signals during RL training.146

Therefore, it may become even more important to lessen the burden of visual module learning by147

properly normalizing input point clouds. Unlike previous well-studied point cloud learning scenar-148

ios (e.g., single-object point clouds, LiDAR point clouds for autonomous driving), there exist more149

diverse choices of coordinate frames. In this paper, we compare and analyze four candidates:150

• A world frame is attached to a fixed point in the world (e.g., the start point of a trajectory).151

• A robot-base frame is attached to the robot base, offering an egocentric perspective on a mobile152

robot. For a fixed-base robot, world frame and robot-base frame could be equivalent.153

• In many object manipulation tasks, movements of robot end-effector(s) play important roles, and154

we can attach an end-effector frame to each of them. Note that for dual-arm robots, there are two155

end-effectors and thus two end-effector frames.156

• A target-part frame is attached to the object part the robot intends to interact with (e.g., target157

door handle for the OpenCabinetDoor task).158

When we transform captured point clouds into the world frame, the robot-base frame, and the end-159

effector frame, we may need proprioceptive robot states and potential robot movement tracking,160

which is typically accessible in modern robots. When we transform point clouds into the target-part161

4



Robot-Base Frame End-Effector Frame Target-Part FrameWorld Frame 

Figure 4: Comparison of four coordinate frames on five fully-physical manipulation tasks. The
(fused) point cloud is transformed to a single coordinate frame before being fed to the visual back-
bone network. For dual-arm tasks (i.e., PushChair and MoveBucket), we use the right-hand frame
as the end-effector frame. For PickObject, which has a fixed base, the world frame is the same as
the robot-base frame. Mean and standard deviation over 5 seeds are shown.

frame, we may need to leverage off-the-shelf 3D object detection and pose estimation techniques.162

However, in this paper, we mainly focus on the choices of coordinate frames themselves. In our163

simulated experiments, we use ground truth object poses for the target-part frame.164

In Fig. 3, we visualize an example trajectory under four coordinate frames. As shown in the figure,165

different coordinate frames canonicalize inputs in different manners (e.g., a fixed third-view, ego-166

centric, hand-centric, and object-centric), which is essentially performing various alignments among167

point clouds across multiple time steps. For example, in the end-effector frame, the end-effector is168

always aligned at the origin throughout a trajectory. Such alignments may simplify the learning of169

visual modules in distinct ways. With the end-effector frame, the network does not need to locate170

the end-effector in point clouds (always at the origin). Similarly, with the target-part frame, it can171

be easier to determine the relative position between the target part and the robot end-effector. The172

robot-base frame naturally aligns its frame axes with the moving directions of the robot’s base.173

3.3 Single-Frame Comparison on Manipulation Tasks174

We compare the four coordinate frames on the five manipulation tasks by training PPO [50] agents175

using PointNet [2] as the 3D visual backbone. In this section, the (fused) point cloud is transformed176

into a single coordinate frame. For PushChair and MoveBucket tasks that use a dual-arm robot, we177

use the right hand frame as the end-effector frame (we observe almost identical performance using178

the left hand frame). For the target-part frame, we choose the handle frame for OpenCabinetDoor179

and OpenCabinetDrawer tasks, chair seat frame for the PushChair task, bucket for the MoveBucket180

task, and the target object for the PickObject task. Further details are presented in the supplementary.181

Fig. 4 shows the results. We observe that distinct coordinate frames lead to very different agent train-182

ing performances. Overall, the world frame is the least effective, especially in PushChair and Move-183

Bucket that involve more pronounced movement of the robot base. This suggests that the alignment184

of a static point in the world-frame is less helpful for the tasks. Compared to the commonly-used185

world-frame and robot-base frame, the end-effector frame has much higher sample efficiency on all186

single-arm tasks (i.e., OpenCabinetDoor, OpenCabinetDrawer, and PickObject), demonstrating the187

benefits of end-effector alignment. However, it shows similar or worse performance on PushChair188

and MoveBucket, intuitively because these tasks rely on dual-arm coordination, but our point cloud189

is normalized to a single end-effector frame (i.e., right hand frame). In addition, the target-part frame190

achieves the best sample efficiency on most tasks, suggesting that the target-part alignment across191

time could be of great help for point cloud-based visual manipulation learning.192

3.4 Further Analysis193

In robot manipulation tasks, it’s challenging to infer binary relations between subjects (e.g., relative194

pose between the end-effector and the cabinet handle). By aligning point clouds under certain frames195

(e.g., end-effector frame), these tasks may be reduced to single-subject location tasks (e.g. simply196

copying the handle pose), which become much easier to solve. To confirm this hypothesis, we per-197

form a diagnosis experiment on OpenCabinetDoor, where we intentionally remove all robot points198

(i.e., blue points in Fig. 3) and see its effect on different coordinate frames. As shown in Fig. 5, after199

5



Robot-Base Frame End-Effector Frame Target-Part FrameWorld Frame 

Figure 6: Using SparseConvNet [51] as the 3D visual backbone, we observe similar trends as Fig 4.
Mean and standard deviation over 5 seeds are shown.

the robot points are removed, the end-effector frame performs the same, while the robot-base frame200

performs worse (the task is still solvable since the end-effector position is also provided in the pro-201

prioceptive robot state). This suggests that the end-effector frame allows an agent to always focus202

on the target object, along with its interaction with the robot hand, which verifies our hypothesis.203

0 5 10 15
Environment Steps (x1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s 

R
at

e

OpenCabinetDoor
Base-Full_Pts
Base-No_Robot_Pts
EE-Full_Pts
EE-No_Robot_Pts

Figure 5: Removing robot points
does not harm the performance of
the EE frame on OpenCabinetDoor.

We utilized PointNet [2] as our 3D visual backbone for its fast204

speed and general good performance. However, it’s unclear205

whether point cloud frame selection is also crucial for other206

3D backbones, especially those more complex and powerful.207

Therefore, we conduct the same experiments as Sec 3.3 using208

SparseConvNet [51], a heavier 3D backbone network, on the209

four ManiSkill tasks (further details in the supplementary).210

As shown in Fig. 6, we observe similar relative performance211

between frames as before (e.g., the world frame performs212

poorly; the end-effector frame outperforms the world frame213

and the robot-base frame on OpenCabinetDoor and Open-214

CabinetDrawer). Interestingly, using SparseConvNet doesn’t215

improve the overall performance over PointNet.216

4 Mining Multiple Coordinate Frames217

We have shown that different point cloud coordinate frames lead to distinct sample efficiencies and218

final performances in manipulation learning. However, a single frame can perform well on some219

tasks but poorly on others, and we wish to find good frames in a task-agnostic manner. Moreover,220

for complex manipulation tasks, a single frame could be insufficient, and synergistic coordination221

between multiple frames could provide unparalleled advantages. For example, when robots are222

equipped with multiple arms, each arm may have its preferred coordinate frame (e.g., left-hand223

frame and right-hand frame). In addition, in tasks that involve simultaneous navigation and ma-224

nipulation (e.g., on PushChair and MoveBucket, an agent needs to move towards the target while225

manipulating chairs or buckets), different frames could benefit different skills (e.g., robot-base frame226

for navigation skills, and end-effector frame for manipulation skills). Therefore, it is of great help227

to propose a prior-agnostic method that can automatically select the best frame from multiple candi-228

dates or combine the merits of them. Again, we are not talking about fusing multiple camera views.229

Point clouds from multiple camera views are first fused together into a single point cloud, before230

being transformed to each coordinate frame.231

In this section, we will present a collection of three strategies to adaptively select and fuse multiple232

candidate coordinate frames, and we call them FrameMiners. In particular, we will first introduce233

FrameMiner-MixAction in Section 4.1 in detail to interpret the importance of different frames in the234

policy execution process. We will then briefly introduce the other two FrameMiners and compare235

different approaches with single-frame baselines.236

4.1 FrameMiner-MixAction237

Inspired by the idea of mixture of experts [52], we propose a general and interpretable framework,238

FrameMiner-MixAction (FM-MA). As shown in Fig. 7, FM-MA takes a (fused) point cloud and n239

candidate coordinate frames as input, and first transforms the point cloud into n coordinate frames.240

For each transformed point cloud, FM-MA employs an expert network, consisting of a 3D visual241

6



Robot-Base Frame Left-Hand Frame Right-Hand Frame (a) (b) (c)

Figure 8: Left: learned weights of FrameMiner-MixAction over a MoveBucket trajectory, where
three coordinate frames are fused. We divide robot joints into three groups and show the average
weights of each group in each coordinate frame. Right: three stages of the trajectory. (a) Approach-
ing the bucket. (b) Moving the bucket to the platform. (c) Placing the bucket on the platform.

backbone (e.g., PointNet [2]) and an MLP, to propose full robot actions (e.g. target velocity of m242

joints). Since different experts use different coordinate frames, they are encouraged to specialize243

PC in 
Frame 1

PointNet 1

MLP 1

Action 1
(m)

 Softmax & Linear Combination

PC in 
Frame 2

PointNet 2

MLP 2

Action 2
(m)

PC in 
Frame n

PointNet n

MLP n

Action n
(m)

Final Robot Action
(m)

Proprioceptive
Robot State

…
…

Concat & 
MLP

Weight
(n x m)

Frame 1 Frame 2 Frame n

Transformation

(Fused) Point 
C

loud

…
…

Figure 7: The pipeline of FrameMiner-
MixAction (FM-MA). Each frame out-
puts an action proposal. Actions are then
fused through input-dependent and joint-
specific weights.

different skills and controls of different joints. Finally,244

we combine actions from the n experts through input-245

dependent weights. Specifically, we concatenate ex-246

tracted visual features from all n frames with the pro-247

prioceptive robot state, feed it into an MLP, and pre-248

dict a weight for each pair of expert and joint (there are249

n×m weights in total). For each joint, we normalize the250

weights over n experts via softmax and fuse the actions251

through weighted linear combination.252

FM-MA fuses actions by predicting joint-specific253

weights, since we believe that, for different joints, we254

need to extract information from different coordinate255

frames. Furthermore, the weights are input-dependent,256

potentially allowing the model to capture dynamic joint-257

frame relations at different stages of a task. Fig. 8 con-258

firms these hypotheses. On MoveBucket trajectories,259

we observe distinct frame preferences between different260

robot joints. The left and right-hand frames contribute261

significantly to their respective joint actions. In addi-262

tion, the weight distribution changes greatly over differ-263

ent trajectory stages. Initially, when the robot is moving264

towards the bucket but not interacting with it, the base frame contributes more. However, when265

hands start to manipulate the bucket, the weights of the hand frames increase. In particular, when266

the robot places the bucket onto the platform, we need careful coordination among all joints, and267

thus similar weights from each frame.268

4.2 Comparison of Different FrameMiners269

Base EE FM-FC FM-MA FM-TG

Door 54±7 80±2 79±3 84±2 70±6
Drawer 88±2 93±1 94±1 93±1 93±2
Chair 7±3 2±1 32±4 36±4 34±6

Bucket 23±6 19±4 77±5 81±3 90±2

Table 1: Success rates (%) on four
ManiSkill tasks.

To study how network architectures influence coordinate frame270

fusion, we also propose other two strategies: FrameMiner-271

FeatureConcat (FM-FC) and FrameMiner-TransformerGroup272

(FM-TG). For each transformed point cloud, FM-FC uses an273

individual PointNet to extract visual feature. All visual fea-274

tures are then concatenated and fed into an MLP to predict275

robot action. FM-TG decomposes our robot action into three276

groups: base joint actions, left-hand joint actions, and right-277

hand joint actions (only two groups for single-arm tasks). After visual features are extracted from278

PointNets, they are fused through a Transformer [53] to produce a feature for each action group,279

which passes through an MLP to predict its respective joint actions (see supplementary for details).280

We compare our three FrameMiners with single-frame baselines. Specifically, in this section, we281

focus on frame mining among the robot-base frame and end-effector frame(s). For the dual-arm282

tasks (i.e., PushChair and MoveBucket), the end-effector frames include both the left-hand frame283

7



Robot-Base Frame FM-FC FM-MA FM-TGEnd-Effector Frame

Figure 9: Comparison of different frame mining approaches on the four ManiSkill tasks, where the
robot-base frame and end-effector frame(s) are fused. Black lines indicate single-frame baselines.
Mean and standard deviation over 5 seeds are shown.

and the right-hand frame. We will discuss the inclusion of target-part frame in Section 4.3. Fig. 9284

and Tab. 1 show the comparison results. On single-arm tasks (i.e., OpenCabinetDoor/Drawer), our285

FrameMiners perform on par with the end-effector frame, which suggests that FrameMiners can au-286

tomatically select the best single frame. On dual-arm tasks (i.e., PushChair and MoveBucket), our287

FrameMiners significantly outperform single-frame baselines, demonstrating the advantage of coor-288

dination between multiple coordinate frames (see Sec. 4.1 and Fig. 8 for more analysis). While it289

matters to fuse information from multiple frames, the specific FrameMiner to choose does not create290

much performance difference. Empirically, we find FM-MA less sensitive to training parameters,291

and FM-TG more computationally expensive.292

4.3 Target-Part Frame293

FM-MA w/o TP Frame FM-MA w/ TP Frame

Robot-Base Frame Target-Part Frame

Figure 10: Fusion of target-part frame
could further boost the performance.

In Section 4.2, we focus on the fusion of robot-base frame294

and end-effector frames, since the target-part frame relies295

on pose estimation of target objects, which requires ex-296

tra efforts in real-world settings. As shown in Fig. 10, if297

object poses are estimated, we sometimes observe further298

performance boost of FrameMiners from the target-part299

frame. For example, on PushChair, by incorporating the300

target-part frame, the success rate of FM-MA increases301

from 36±4% to 53±3%. On PickObject, FM-MA already302

achieves good performance without the target-part frame303

(94±2%); incorporating it slightly improves the success rate to 97±1%.304

5 Real World Experiments305

Figure 11: Real robot setup.

To further verify that our learned policies can be deployed on real-306

world robots without introducing extra domain gaps, we test on Pick-307

Object with a Kinova Jaco2 Spherical 7-DoF robot, an Intel Re-308

alSense [54] D435 camera for uncolored point cloud capture, and a309

Rubik’s cube from YCB objects [55, 56] (see Fig. 11). We use a310

3-DoF end-effector position controller and a 1-DoF gripper position311

controller. We train the FM-MA policy (Section 4.1) by fusing the312

robot-base frame and the end-effector frame. At test time, we build313

a digital twin in the simulator over 25 sampled initializations of the314

real environment with a vision-based pipeline like Jiang et al. [57].315

By following trajectories from policy rollout, we obtain a 84% suc-316

cess rate with FM-MA, compared to an 80% success rate with the317

end-effector frame. The robot-base frame is unable to achieve successful picks under our training318

budget. Note that the performance differences in the real world are very similar to the simulation319

environment (as in Fig. 4 & 10), indicating that point cloud frame selection or mining does not affect320

original domain gap, and FM-MA is an effective strategy for real robots. More details are presented321

in supplementary.322

6 Conclusion and Limitations323

We find that choices of point cloud coordinate frames have a profound impact on learning manipu-324

lation skills. Our proposed FrameMiners can adaptively select and fuse multiple candidate frames,325

8



serving as a free lunch for 3D point cloud-based manipulation learning. Currently, our FrameMiners326

need to process each frame separately, leading to more network computation. In the future, we would327

like to explore more advanced fusion strategies to further improve network efficiency as well as per-328

formance. In addition, the target-part frame relies on 6D pose estimation of objects (which requires329

extra efforts), and human judgment is also required to determine the target-part frame candidates,330

although we have shown our method can also achieve great improvements without the target-part331

frame (Section 4.2).332

9



References333

[1] Kinova. https://www.kinovarobotics.com, 2022. Accessed: 2022-06-14.334

[2] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d335

classification and segmentation. In Proceedings of the IEEE conference on computer vision336

and pattern recognition, pages 652–660, 2017.337

[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on338

point sets in a metric space. Advances in neural information processing systems, 30, 2017.339

[4] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,340

S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint341

arXiv:1512.03012, 2015.342

[5] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object detec-343

tion from rgb-d data. In Proceedings of the IEEE conference on computer vision and pattern344

recognition, pages 918–927, 2018.345

[6] H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object reconstruction346

from a single image. In Proceedings of the IEEE conference on computer vision and pattern347

recognition, pages 605–613, 2017.348

[7] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph349

cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.350

[8] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars: Fast en-351

coders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on352

Computer Vision and Pattern Recognition, pages 12697–12705, 2019.353

[9] C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep hough voting for 3d object detection in354

point clouds. In proceedings of the IEEE/CVF International Conference on Computer Vision,355

pages 9277–9286, 2019.356

[10] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun. Pvn3d: A deep point-wise 3d keypoints357

voting network for 6dof pose estimation. In Proceedings of the IEEE/CVF conference on358

computer vision and pattern recognition, pages 11632–11641, 2020.359

[11] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and S. Savarese. Densefusion: 6d360

object pose estimation by iterative dense fusion. In Proceedings of the IEEE/CVF conference361

on computer vision and pattern recognition, pages 3343–3352, 2019.362

[12] B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, and N. Trigoni. Learning object363

bounding boxes for 3d instance segmentation on point clouds. Advances in neural information364

processing systems, 32, 2019.365

[13] L. Yi, W. Zhao, H. Wang, M. Sung, and L. J. Guibas. Gspn: Generative shape proposal network366

for 3d instance segmentation in point cloud. In Proceedings of the IEEE/CVF Conference on367

Computer Vision and Pattern Recognition, pages 3947–3956, 2019.368

[14] W. Huang, I. Mordatch, P. Abbeel, and D. Pathak. Generalization in dexterous manipulation369

via geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.370

[15] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. In Confer-371

ence on Robot Learning, pages 297–307. PMLR, 2022.372

[16] Y.-H. Wu, J. Wang, and X. Wang. Learning generalizable dexterous manipulation from human373

grasp affordance. arXiv preprint arXiv:2204.02320, 2022.374

10

https://www.kinovarobotics.com


[17] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo, J. Ngiam, and V. Vasude-375

van. End-to-end multi-view fusion for 3d object detection in lidar point clouds. In Conference376

on Robot Learning, pages 923–932. PMLR, 2020.377

[18] Y. A. Alnaggar, M. Afifi, K. Amer, and M. ElHelw. Multi projection fusion for real-time378

semantic segmentation of 3d lidar point clouds. In Proceedings of the IEEE/CVF Winter Con-379

ference on Applications of Computer Vision, pages 1800–1809, 2021.380

[19] M. Gerdzhev, R. Razani, E. Taghavi, and L. Bingbing. Tornado-net: multiview total variation381

semantic segmentation with diamond inception module. In 2021 IEEE International Confer-382

ence on Robotics and Automation (ICRA), pages 9543–9549. IEEE, 2021.383

[20] V. E. Liong, T. N. T. Nguyen, S. Widjaja, D. Sharma, and Z. J. Chong. Amvnet:384

Assertion-based multi-view fusion network for lidar semantic segmentation. arXiv preprint385

arXiv:2012.04934, 2020.386

[21] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas. Vector neu-387

rons: A general framework for so (3)-equivariant networks. In Proceedings of the IEEE/CVF388

International Conference on Computer Vision, pages 12200–12209, 2021.389

[22] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill:390

Generalizable manipulation skill benchmark with large-scale demonstrations. arXiv preprint391

arXiv:2107.14483, 2021.392

[23] Z. Liu, W. Liu, Y. Qin, F. Xiang, M. Gou, S. Xin, M. A. Roa, B. Calli, H. Su, Y. Sun, et al.393

Ocrtoc: A cloud-based competition and benchmark for robotic grasping and manipulation.394

IEEE Robotics and Automation Letters, 7(1):486–493, 2021.395

[24] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Had-396

sell, N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills.397

arXiv preprint arXiv:1802.09564, 2018.398

[25] B. Chen, P. Abbeel, and D. Pathak. Unsupervised learning of visual 3d keypoints for control.399

In International Conference on Machine Learning, pages 1539–1549. PMLR, 2021.400

[26] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute, T. Rothörl, C. Schuster,401

R. Hadsell, L. Agapito, and J. Scholz. S3k: Self-supervised semantic keypoints for robotic402

manipulation via multi-view consistency. arXiv preprint arXiv:2009.14711, 2020.403

[27] R. Cheng, A. Agarwal, and K. Fragkiadaki. Reinforcement learning of active vision for manip-404

ulating objects under occlusions. In Conference on Robot Learning, pages 422–431. PMLR,405

2018.406

[28] Y. Zaky, G. Paruthi, B. Tripp, and J. Bergstra. Active perception and representation for robotic407

manipulation. arXiv preprint arXiv:2003.06734, 2020.408

[29] R. Shah and V. Kumar. Rrl: Resnet as representation for reinforcement learning. arXiv preprint409

arXiv:2107.03380, 2021.410

[30] J. Pari, N. Muhammad, S. P. Arunachalam, L. Pinto, et al. The surprising effectiveness of411

representation learning for visual imitation. arXiv preprint arXiv:2112.01511, 2021.412

[31] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-413

tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.414

[32] X. Lin, Y. Wang, Z. Huang, and D. Held. Learning visible connectivity dynamics for cloth415

smoothing. In Conference on Robot Learning, pages 256–266. PMLR, 2021.416

[33] A. Alliegro, M. Rudorfer, F. Frattin, A. Leonardis, and T. Tommasi. End-to-end learning to417

grasp from object point clouds. arXiv preprint arXiv:2203.05585, 2022.418

11



[34] D. Yarats, I. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep419

reinforcement learning from pixels. In International Conference on Learning Representations,420

2020.421

[35] J. Lv, Q. Yu, L. Shao, W. Liu, W. Xu, and C. Lu. Sagci-system: Towards sample-efficient,422

generalizable, compositional, and incremental robot learning. In 2022 IEEE International423

Conference on Robotics and Automation (ICRA). IEEE, 2022.424

[36] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic425

manipulation. IEEE Robotics and Automation Letters, 2022.426

[37] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof427

grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and428

Automation (ICRA), pages 13438–13444. IEEE, 2021.429

[38] B. Eisner, H. Zhang, and D. Held. Flowbot3d: Learning 3d articulation flow to manipulate430

articulated objects. Robotics Science and Systems (RSS), 2022.431

[39] K. Hsu, M. J. Kim, R. Rafailov, J. Wu, and C. Finn. Vision-based manipulators need to also432

see from their hands. International Conference on Learning Representations, 2022.433

[40] R. Jangir, N. Hansen, S. Ghosal, M. Jain, and X. Wang. Look closer: Bridging egocentric and434

third-person views with transformers for robotic manipulation. IEEE Robotics and Automation435

Letters, 2022.436

[41] M. Atzmon, H. Maron, and Y. Lipman. Point convolutional neural networks by extension437

operators. arXiv preprint arXiv:1803.10091, 2018.438

[42] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn: Convolution on x-transformed439

points. Advances in neural information processing systems, 31, 2018.440

[43] J. Sun, Q. Zhang, B. Kailkhura, Z. Yu, C. Xiao, and Z. M. Mao. Benchmarking robustness441

of 3d point cloud recognition against common corruptions. arXiv preprint arXiv:2201.12296,442

2022.443

[44] T. Lorenz, A. Ruoss, M. Balunović, G. Singh, and M. Vechev. Robustness certification for444

point cloud models. In Proceedings of the IEEE/CVF International Conference on Computer445

Vision, pages 7608–7618, 2021.446

[45] C. Chen, G. Li, R. Xu, T. Chen, M. Wang, and L. Lin. Clusternet: Deep hierarchical cluster net-447

work with rigorously rotation-invariant representation for point cloud analysis. In Proceedings448

of the IEEE/CVF conference on computer vision and pattern recognition, pages 4994–5002,449

2019.450

[46] X. Li, R. Li, G. Chen, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. A rotation-invariant framework451

for deep point cloud analysis. IEEE Transactions on Visualization and Computer Graphics,452

2021.453

[47] Z. Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung. Rotation invariant convolutions for454

3d point clouds deep learning. In 2019 International Conference on 3D Vision (3DV), pages455

204–213. IEEE, 2019.456

[48] F. Fuchs, D. Worrall, V. Fischer, and M. Welling. Se (3)-transformers: 3d roto-translation457

equivariant attention networks. Advances in Neural Information Processing Systems, 33:1970–458

1981, 2020.459

[49] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley. Tensor field460

networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv461

preprint arXiv:1802.08219, 2018.462

12



[50] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization463

algorithms. arXiv preprint arXiv:1707.06347, 2017.464

[51] B. Graham and L. van der Maaten. Submanifold sparse convolutional networks. arXiv preprint465

arXiv:1706.01307, 2017.466

[52] S. Masoudnia and R. Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-467

gence Review, 42(2):275–293, 2014.468

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-469

sukhin. Attention is all you need. Advances in neural information processing systems, 30,470

2017.471

[54] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik. Intel realsense stereo-472

scopic depth cameras. In Proceedings of the IEEE conference on computer vision and pattern473

recognition workshops, pages 1–10, 2017.474

[55] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar. Benchmarking475

in manipulation research: The ycb object and model set and benchmarking protocols. arXiv476

preprint arXiv:1502.03143, 2015.477

[56] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and478

model set: Towards common benchmarks for manipulation research. In 2015 international479

conference on advanced robotics (ICAR), pages 510–517. IEEE, 2015.480

[57] Z. Jiang, C.-C. Hsu, and Y. Zhu. Ditto: Building digital twins of articulated objects from481

interaction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern482

Recognition, pages 5616–5626, 2022.483

[58] B. Wen, W. Lian, K. Bekris, and S. Schaal. You only demonstrate once: Category-level manip-484

ulation from single visual demonstration. In Proceedings of Robotics: Science and Systems,485

2022.486

[59] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-487

mann. Neural descriptor fields: Se(3)-equivariant object representations for manipulation.488

2022.489

[60] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han. Searching efficient 3d archi-490

tectures with sparse point-voxel convolution. In European Conference on Computer Vision,491

2020.492

13



PC in 
Frame 1

PointNet 1

PC in 
Frame 2

PointNet 2

Concat & MLP

Robot Action
(m)

PC in 
Frame n

PointNet n

Proprioceptive
Robot State

Frame 1 Frame 2 Frame n

Transformation

(Fused) Point 
C

loud

…
…

…
…

(a) FrameMiner-FeatureConcat

PC in 
Base Frame 

PointNet
for Base Frame

MLP
for Base Joints

Actions
for Base Joints

Concat

PC in LH 
Frame

PointNet
for LHand Frame

MLP
for LHand Joints

Actions
for LHand Joints

PC in RH 
Frame

PointNet
for RHand Frame

MLP
for RHand Joints

Actions
for RHand Joints

Robot Action
(m)

Proprioceptive
Robot State

Robot-Base 
Frame

Left-Hand
Frame

Right-Hand
Frame

Transformation

(Fused) Point 
C

loud

Transformer Encoder

(b) FrameMiner-TransformerGroup

Figure 12: Architectures of FrameMiner-FeatureConcat and FrameMiner-TransformerGroup.

S.1 Supplementary Video and Code493

Our supplementary video can be viewed at this link, which includes visualizations of learned trajec-494

tories for different methods. For FM-MA, we fuse both the robot-base frame and the end-effector495

frame(s). For each task, an agent is trained on multiple objects.496

Our code can be viewed at this github link.497

S.2 Architecture of the other two FrameMiners498

Fig. 12 shows architectures of the other two FrameMiners, FrameMiner-FeatureConcat (FM-FC)499

and FrameMiner-TransformerGroup (FM-TG).500

S.3 Additional Experiment Results and Discussions501

S.3.1 Imitation Learning502

In the main text, we analyzed the profound impact of coordinate frames on point cloud-based object503

manipulation learning through online RL algorithms. Apart from online RL, some previous work504

[58] have shown that dynamic selection of coordinate frames could benefit demonstration-based505

manipulation learning as well. In this section, we conduct experiments on imitation learning and506

investigate whether our previous findings can generalize to other algorithm domains.507

For each task, we use an expert RL policy to generate 100 successful demonstrations. We then per-508

form Behavior Cloning (BC) by representing input point clouds under different coordinate frames,509

along with using our proposed FrameMiner-MixAction (FM-MA). We utilize the same network ar-510

chitectures as online RL, and we use MSE loss for training. For FM-MA, the robot-base frame and511

the end-effector frame(s) are fused. As shown in Table 2, we observe similar findings to Section512

3.3 and Section 4.2. Specifically, the end-effector frame has much higher performance on single-513

14

https://youtu.be/WfYboLuMPkg
https://github.com/anonymouscode12345680/corl_32_submission


Robot-Base End-Effector FM-MA

OpenCabinetDoor 50±3 85±3 83±4
OpenCabinetDrawer 72±4 88±2 88±2

PushChair 38±3 28±2 42±4
MoveBucket 76±4 80±2 91±2

Table 2: Behavior Cloning (BC) success rates (%) on four ManiSkill tasks. Mean and standard
deviation over 5 seeds are shown.

0 5 10 15
Environment Steps (x1e6)

1000

800

600

400
R

et
ur

n
MoveBucket

FM-MA-WLC
FM-MA-MW

Figure 13: Comparison between FM-MA-WLC and FM-MA-MW on MoveBucket. Mean and stan-
dard deviation over 5 seeds are shown. FM-MA-WLC achieves 81±3% final success rate, while
FM-MA-MW only has 9±2% final success rate.

arm tasks (OpenCabinetDoor/Drawer), demonstrating the benefits of end-effector alignment. Our514

proposed FrameMiner is capable of automatically selecting the best single frame or combining the515

merits from multiple frames and outperforming single-frame baselines.516

S.3.2 Alternative Designs in FM-MA (Weighted Linear Combination vs. Maximum Weight)517

In the main paper, FrameMiner-MixAction (FM-MA) uses weighted linear combination to fuse518

action proposals from each coordinate frame (see Figure 7). For simplicity, we name this variant FM-519

MA-WLC. An alternative design is to choose the max-weighted action proposal for each joint (we520

name this variant FM-MA-MW). Formally, let A ∈ Rn×m, where Aij denotes the action proposal521

for the j-th robot joint from the i-th coordinate frame. Let W ∈ Rn×m be the weight matrix522

predicted by the network. In FM-MA-MW, the output action a = (a1, a2, . . . , am) satisfies aj =523

Akj where k = argmaxn
k=1Wkj . Note that FM-MA-WLC uses SoftMax to normalize the weights;524

thus FM-MA-WLC can be regarded as a “soft version” of FM-MA-MW.525

To compare the two designs, we conduct two experiments: (1) We train FM-MA-MW from scratch.526

Results are shown in Fig. 13. (2) We resume from the final checkpoint of the original FM-MA-WLC.527

During evaluation, we use the max-weighted action proposal as the action output. Results are shown528

in Table 3. We observe that for both experiments, using FM-MA-MW deteriorates performance. We529

conjecture that FM-MA-WLC alleviates optimization difficulty, which likely comes from the fact530

that it is a “soft version” of FM-MA-MW with well-behaving gradients. On the other hand, since531

FM-MA-MW uses argmax operation over columns of W , there is a lack of gradient for W during532

training, which leads to more difficult optimization.533

S.3.3 Ablation Study on Camera Placements534

As a recap, the five tasks analyzed in our main paper cover both static and moving camera settings.535

The experiments in the main paper were conducted using default camera placements shown in Fig. 1.536

For the four tasks with moving cameras, a panoramic camera is mounted on the robot head.537

15



FM-MA (WLC eval) FM-MA (MW eval)

OpenCabinetDoor 84±2 45±5
OpenCabinetDrawer 93±1 93±2

PushChair 36±4 20±3
MoveBucket 81±3 14±3

Table 3: Success rate (%) comparison between the same FM-MA checkpoint evaluated using
weighted linear combination of actions (WLC) and using maximum-weighted action (MW) on four
ManiSkill tasks. Mean and standard deviation over 5 seeds are shown.

0 5 10 15
Environment Steps (x1e6)

1000

800

600

400
R

et
ur

n
MoveBucket

Robot-Base Frame
End-Effector Frame
FM-MA

Figure 14: Results on MoveBucket with a panoramic camera mounted on the robot base. The
“Robot-Base Frame” and the “End-Effector Frame” indicate the coordinate frames used to represent
captured input point clouds. FM-MA fuses the two end-effector frames (left and right arms) and the
robot-base frame. Mean and standard deviation over 5 seeds are shown.

While FrameMiners do not require changing existing camera placements, camera placements still538

matter, since different camera placements affect the point clouds being captured. Therefore, we per-539

form an experiment where we move the panoramic camera from the robot head to the robot base.540

As shown in Fig. 14, we observe similar phenomena as in Fig. 9. Specifically, fusing multiple co-541

ordinate frames with our FrameMiners still leads to better sample efficiency and final performance,542

demonstrating that FrameMiners are robust under different camera placements.543

S.3.4 Learning Adaptive Frame Transformations from Observations544

In our paper, we use known transformations (e.g., end-effector pose in robot state) to align input545

point clouds in different coordinate frames and propose FrameMiners to fuse merits of multiple co-546

ordinate frames. A potential baseline is to learn a transformation adaptively based on input point547

clouds. To examine the effectiveness of this baseline, we add an additional network before the548

PointNet backbone to learn an adaptive SE(3) transformation based on the input point cloud. This549

transformation is then applied to the input point cloud before passing it through the PointNet back-550

bone (note that we remove spatial transformation layers from the original PointNet in all of our551

experiments). However, as shown in Figure 15, adding this SE(3) transformation layer barely im-552

proves performance.553

We conjecture that it’s very difficult to predict a SE(3) transformation for aligning the input point554

cloud across time due to the large search space (where most transformations are ineffective) and555

weak supervision from RL training loss. Moreover, in many challenging tasks, we may need to fuse556

information simultaneously from multiple coordinate frames (e.g., left-hand and right-hand frames).557

This is not achievable through learning a single transformation. In contrast, for FrameMiners, we558

take advantage of easily-accessible frame information (e.g. end-effector poses) without relying on559

transformation prediction. We then fuse the merits of multiple candidate coordinate frames.560

16



0 5 10 15
Environment Steps (x1e6)

0

100

200

R
et

ur
n

OpenCabinetDoor
Robot-Base Frame
Robot-Base Frame + SE(3)
End-Effector Frame

Figure 15: Ablation study on adding an adaptive SE(3) transformation prediction layer. When the
input point cloud is represented in the robot-base frame, adding such transformation layer barely
improves performance, while representing the point cloud in the end-effector frame significantly
improves performance.

S.3.5 SO(3) and SE(3) Equivariant Point Cloud Backbones561

Recently, there have been several works on designing SO(3) and SE(3) equivariant/invariant back-562

bone networks for point cloud learning [21, 59]. While they are of great benefit for analysis within563

each object (e.g., shape classification, part segmentation, and 6D pose estimation), our robot-object564

interaction setting is a bit different.565

In robot manipulation scenarios, a particular challenge comes from inferring the relations between566

two object parts (e.g., relative pose between the end-effector and the cabinet handle). This binary567

relation inference task is challenging under the weak RL loss supervision, even using SO(3) and568

SE(3) equivariant/invariant backbones. FrameMiners explicitly approach this challenge by aligning569

point clouds (across multiple time steps) with the known transformation matrices (e.g., the end-570

effector pose). This reduces many binary relation inference tasks to single-subject location tasks,571

which has much lower difficulty. For example, when using the end-effector frame in the OpenCabi-572

net task, the network only needs to copy the handle pose to infer the relative pose between the handle573

and the end-effector, as the end-effector is always at the frame origin.574

S.4 More Details of Manipulation Tasks575

Task Descriptions:576

• In OpenCabinetDoor, a single-arm mobile agent needs to approach a cabinet, use the handle to577

fully open the designated cabinet door, and then keep the door static for a while.578

• In OpenCabinetDrawer, a single-arm mobile agent needs to approach a cabinet, use the handle to579

fully open the designated cabinet drawer, and then keep the drawer static for a while.580

• In PushChair, a dual-arm mobile agent needs to approach the chair, push the chair to a target581

location, and then keep the chair static for a while.582

• In MoveBucket, a dual-arm mobile agent needs to approach the bucket, move the bucket to a target583

platform, place the bucket onto the platform, and then keep the bucket static for a while.584

• In PickObject, a single-arm fixed-base agent needs to grasp an object from the table, lift it up to a585

certain target height, and keep it static for a while.586

Simulations are fully physical. For OpenCabinetDoor, OpenCabinetDrawer, PushChair, and Move-587

Bucket, there are 66, 49, 26, and 29 different objects (designated parts) during training, respectively.588

Observations and Actions:589

For all ManiSkill tasks, the proprioceptive robot state includes:590

• Positions of all (two if single-arm, four if dual-arm) fingers591

17



• Velocities of all (two or four) fingers592

• x, y position of the mobile robot base593

• Mobile robot base’s rotation around the z-axis594

• x, y velocity of the mobile robot base595

• Angular velocity of the mobile robot base around the z-axis596

• Joint angles of the robot, excluding the joints in the mobile base597

• Joint velocities of the robot, excluding the joints in the mobile base598

• Indicator of whether each joint receives an external torque599

The action space includes:600

• x, y velocity of the mobile robot base601

• Angular velocity of the mobile robot base around the z-axis602

• Height of the robot body603

• Joint velocities of the robot, excluding joints of the mobile base and the gripper fingers604

• Joint positions of the gripper fingers605

Joint positions of the gripper fingers are controlled by position PID. All other action components are606

controlled by velocity PID.607

For the PickObject task, the proprioceptive robot state includes:608

• Joint angles of the robot,609

• Joint velocities of the robot,610

• 1D gripper joint position,611

• Target xyz positions of object.612

The action space includes 3 DoF end-effector position and 1 DoF gripper joint position.613

For all tasks, input point cloud features include xyz coordinates, RGB colors, and one-hot segmen-614

tation masks for each part category.615

Motivations for Our Task Choice616

We aim to cover a wide range of factors that may influence the selection of point cloud coordinate617

frames. Specifically, the tasks are chosen to cover various robot mobilities, numbers of robot arms,618

and camera settings, as demonstrated in Figure 1.619

Different robot mobility results in differences in world frame and robot base frame. These two620

frames are aligned in static robots but not in mobile robots. The robot’s mobility can also change621

the focus of tasks (e.g., navigation or object interaction), which may place different requirements on622

the choice of point cloud frame.623

We cover both single-arm and dual-arm environments, as they pose different requirements for point624

cloud frame selection. In single-arm environments, using the only end-effector frame may already be625

able to achieve good performance. However, in dual-arm environments, there are two end-effector626

frames, and these tasks require precise coordination between the two robot arms, which pose sig-627

nificant challenges for manipulation learning. As each end-effector may have a preferred frame, the628

necessity of frame fusion becomes more pronounced.629

Last but not least, camera placements determine sources of point clouds, which may potentially630

influence the selection of coordinate frames. In our experiments, we cover both static camera settings631

and moving camera settings (mounted on robots).632

18



Si
m

ul
at

io
n

R
ea

l W
or

ld

RGB image 3D Point Cloud

Figure 16: RGB images and 3D point clouds captured in both simulation and the real world. Colored
point clouds for better illustration.

S.5 Detailed Experimental Settings and Hyperparameters633

For our visual backbones, our PointNets are implemented with a three-layer MLP with dimensions634

[64, 128, 300] followed by a max-pooling layer. We do not apply any spatial transformation to635

the inputs. Our SparseConvNets are implemented as a SparseResNet10 using TorchSparse [60].636

SparseResNet10 has a 4-stage pipeline with kernel size 3 and hidden channels [64, 128, 256, 512]637

respectively. We use kernel size 3 and stride 2 for downsampling. Initial voxel size is 0.05. Final638

features in the final-stage voxels are maxpooled as output visual feature.639

All of our agents are trained with PPO (hyperparameters in Tab. 4). Each policy MLP that outputs640

actions has dimensions [192, 128, action dim]. For FM-MA that uses input-dependent joint-specific641

weights to fuse action proposals from different frames, the MLP has dimension [192, n×m], where642

n is the number of frames and m is the dimension of action space. For FM-TG that uses Transformer643

to fuse features from different frames, the Transformer has 3 layers with hidden dimension 300 and644

feed-forward dimension 1024. For all network variants, the value head takes the concatenation of all645

visual features from all frames as input and passes through an MLP with dimensions [192, 128, 1] to646

output value prediction.647

In addition, we found that zero-initializing the last layer of MLP before action output along with the648

joint-specific weights in FM-MA to be very helpful for stabilizing agent training.649

For each task, we train an agent for a fixed number of environment steps. Specifically, for OpenCab-650

inetDoor, OpenCabinetDrawer, and MoveBucket, we train for 15 million steps. For PushChair, we651

train for 20 million steps. For PickObject, we train for 4 million steps. Success rates are calculated652

among 300 evaluation trajectories.653

S.6 More Details of Real-World Experiments654

Fig. 16 shows the captured RGB images and point clouds in both simulation and the real world655

(by RealSense camera). For both simulation and the real-world environment, the ground points are656

removed using z-coordinate threshold or RANSAC, and the distant points are clipped. To reduce the657

sim-to-real gap, we only use xyz coordinates as our input point cloud feature, and we discard RGB658

colors.659

We also demonstrate our real-world experiments at the end of our supplementary video.660

19



Hyperparameters Value

Optimizer Adam
Discount (γ) 0.95

λ in GAE 0.95
PPO clip range 0.2

Coefficient of the entropy loss term of PPO cent 0.0
Advantage normalization True

Reward normalization True
Number of threads for collecting samples 5

Number of samples per PPO update 40000
Number of epochs per PPO update 2
Number of samples per minibatch 330

Gradient norm clipping 0.5
Max KL 0.2

Policy learning rate 3e-4 (non FM-TG); 1e-4 (FM-TG)
Value learning rate 3e-4

Action MLP Last Layer Initialization Zero-init

Table 4: Hyperparameters for PPO.

20


	Introduction
	Related Work
	Point Cloud Coordinate Frame Selection Matters
	Problem Setup
	Choices of Point Cloud Coordinate Frame
	Single-Frame Comparison on Manipulation Tasks
	Further Analysis

	Mining Multiple Coordinate Frames
	FrameMiner-MixAction
	Comparison of Different FrameMiners
	Target-Part Frame

	Real World Experiments
	Conclusion and Limitations
	Supplementary Video and Code
	Architecture of the other two FrameMiners
	Additional Experiment Results and Discussions
	Imitation Learning
	Alternative Designs in FM-MA (Weighted Linear Combination vs. Maximum Weight)
	Ablation Study on Camera Placements
	Learning Adaptive Frame Transformations from Observations
	SO(3) and SE(3) Equivariant Point Cloud Backbones

	More Details of Manipulation Tasks
	Detailed Experimental Settings and Hyperparameters
	More Details of Real-World Experiments


