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Abstract

We introduce MusclePose as an end-to-end learnable physics-infused 3D human
pose estimator that incorporates muscle-dynamics modeling to infer human dy-
namics from monocular video. Current physics pose estimators aim to predict
physically plausible poses by enforcing the underlying dynamics equations that
govern motion. Since this is an underconstrained problem without force-annotated
data, methods often estimate kinetics with external physics optimizers that may
not be compatible with existing learning frameworks, or are too slow for real-time
inference. While more recent methods use a regression-based approach to over-
come these issues, the estimated kinetics can be seen as auxiliary predictions, and
may not be physically plausible. To this end, we build on existing regression-
based approaches, and aim to improve the biofidelity of kinetic inference with a
multihypothesis approach — by inferring joint torques via Lagrange’s equations
and via muscle dynamics modeling with muscle torque generators. Furthermore,
MusclePose predicts detailed human anthropometrics based on values from biome-
chanics studies, in contrast to existing physics pose estimators that construct their
human models with shape primitives. We show that MusclePose is competitive with
existing 3D pose estimators in positional accuracy, while also able to infer plausi-
ble human kinetics and muscle signals consistent with values from biomechanics
studies, without requiring an external physics engine.

1 Introduction

3D human pose estimation (HPE) is a fundamental task in computer vision that involves the localiza-
tion of 3D human joints from images, which allows the user to track human movement from videos,
leading to a plethora of potential downstream applications. However, since many pose estimators
are purely data-driven, the inferred motion is modeled implicitly, which may lead to physically
impossible poses and movements.

Physics-based human pose estimation (PHPE) methods aim to mitigate these artifacts by enforcing
the underlying dynamics equations that govern the kinematic state = {q, ¢, G},

M(q, A)-G+¢q,q,A) =7, +F 1)

where q are generalized coordinates that describe motion, often in terms of translational (e.g. 3D
position of the root) and rotational (e.g. joint rotations) degrees of freedom (DoF). We denote “dot"
(") as the time derivative and “double dot" () as the 2nd time derivative of a variable. 90 is the
mass matrix and € contains the Coriolis, centrifugal, and gravitational forces, for a human with
anthropometric features A at a given state K. Here, we loosely lump together a human’s dimensions,
mass and inertia properties, and other intrinsic and mobility features using the anthropometrics term
A. On the right hand side, 7, describes the human joint torques generated by each DoF, and § are
external forces, both in the generalized space.

In this paper, we deal with monocular pose estimation, where our only input source is a monocular
video, without force sensors. When only one unknown external force § is applied on the human,
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Figure 1: Overall framework of MusclePose.

we can solve for 7, by enforcing the entries of 7, that corresponds to the root link to be zero.
However, when there are more than one external force applied to the human simultaneously at
different locations, which is often the case (e.g. when both feet are in contact with the ground), Eq. (1)
becomes underconstrained.

Without large-scale force-annotated video datasets, many methods estimate the corresponding kinetics
via optimization with an external physics engine [20, (19,77, 41]]. However, these physics engines are
often either non-differentiable and cannot be trained end-to-end, or are too slow for real-time inference.
Furthermore, as discussed in [85], these methods are often combined with reinforcement learning to
reach a desired outcome, but the effects of changing inputs on the outputs are unknown. Since joint
torques can be hard to agree on in the biomechanics community, as they are often computed from
different models, with different assumptions and post-processing, a more flexible learning framework
may be preferred. More recently, PHPE methods have began regressing kinetics directly with neural
networks [185, 37, 163]. While the regression-based approach improves the kinematic reliability of
the predicted motion, the inferred kinetics can be seen as auxiliary predictions, which may not be
directly constrained and may be physically implausible. Although these kinetic predictions are not
the main focus of these pose estimators, they may still be of interest for downstream applications. In
sports for example, in addition to kinematics, practitioners and researchers are often interested in
analyzing the whole-body musculoskeletal dynamics of athletes. To do so, a multibody model of
skeletal dynamics is commonly used in combination with an optimal control algorithm to generate
predictive simulations of athlete movements [5, 28, 149]]. However, these optimal control algorithms
can take hours or days to produce results.

To this end, we build on existing regression-based PHPE approaches, to infer human kinetics
simultaneously with kinematics, without a physics engine, and propose MusclePose (Fig. |1)) to
improve the plausibility of the predicted kinetics. To mitigate the underconstrained problem of
regressing kinetics, we use a multihypothesis approach, and compute torques via Lagrange’s equations,
and also via muscle dynamics modeling with muscle torque generators (MTGs) 51} 25]).

To maintain fidelity when modeling human movement, classical muscle models often represent
muscles as linear actuators, and capture the nonlinear dependence of muscle tension on muscle
length and the rate of lengthening [66l 132] using various Hill-type muscle models [23]]. However,
incorporating detailed muscles requires solving the actuator redundancy problem [3]] and computing
complex and varying musculoskeletal geometries [60} [12]. To overcome these drawbacks, parametric
MTG models were proposed to mimic the behavior of muscles crossing a given joint to directly
approximate joint torque by modeling kinematic dependence on active torque generation and passive
impedance (Eq. (II)). Essentially, MTGs infer net joint torques from a joint’s kinematics and
activation levels, which is what we ultimately want, as we are not interested in isolated muscle
tensions or granular joint contact forces. And since MTGs consist of differentiable equations, we are
able to incorporate them into our learning framework, and train our pose estimator end-to-end.

Moreover, for computational efficiency, existing PHPE methods rely on human models with anthropo-
metrics estimated from the predicted human dimensions, or use the intrinsics properties (e.g. inertia



and mass properties) of primitive shapes (e.g. spheres and simple rods), as proxies. From, Eq. (I), we
see that, even if the kinematics state X and external forces § are accurate, but A is not, the inferred
torques 7, may not correspond to the actual human performing the motion. For example, existing
pose estimators may infer the center of mass (CoM) of body parts by taking the mean of the predicted
surface mesh, assuming constant density [85]]. However, since the composition of bones, muscles,
internal organs, etc. is different, the human body’s density is not uniform [14]. For example, the
CoM of the upper torso is slightly towards the left side [16], whereas taking the mean vertices will be
in the center. As such, we further predict detailed anthropometrics for each human, and keep them
close to values taken from biomechanics studies.

In summary, we introduce MusclePose to comprehensively predict human kinematics, kinetics,
muscle signals, and detailed anthropometrics from monocular video. Specifically, we want a pose
estimator with (i) a flexible learning framework easily adaptable for different scenarios, (ii) a
reasonable degree of biofidelity, (iii) inference speed and (iv) positional accuracy both on par with
purely kinematic pose estimators. To satisfy (i) and (iii), MusclePose is regression-based, consists of
customizable and swappable components, can be trained end-to-end, and does not require an external
physics engine. For (ii), MusclePose is the first pose estimator to incorporate muscle dynamics
modeling and predict detailed human anthropometrics. We demonstrate improvements in the inferred
kinetics on actions including walking from the H36M dataset [27]] and baseball pitching and golf
swings from PennAction [84]. Also, the use of MTGs allows us to further assess human motion
at a musculoskeletal level, and we show that our inferred muscle signals are comparative to those
from biomechanics studies, as well as to EMG data of pertinent muscle groups. Lastly, for (iv), we
evaluate our method on benchmark 3D HPE datasets, H36M [27]] and 3DPWoc, [71], to show that
MusclePose is kinematically competitive with state-of-the-art (SOTA) pose estimators.

Figure 2: Examples of MTG curves for hip flexion. Tpqssive
models the passive torque [79] as a double exponential function.
\ o : - T, models the active-torque—angular-speed relationship [69] [67]]
e : " as a piecewise function. 79 models the active-torque-angle rela-
tionship [21} [33] as the non-negative portion of a polynomial.

Extension

0 (rac) w (rads) 0(rac)

2 Related work

Monocular 3D human pose estimation. Early deep learning 3D HPE approaches use convolutional
neural networks to directly estimate human 3D keypoint positions from images, with intermediate
values represented by 3D heatmaps [57]], location maps [S0], or 2D heatmaps with depth regression
[87]. The more recent and popular approach lifts 2D keypoints to 3D, essentially forming a monocular
sparse-depth estimation task. The lifting network can be fully-connected layers [47], temporal
convolution networks [[10, 58], graph convolution networks [74, [7,[11]], or transformers [89} 139, [86].
Human pose and shape estimation (HPSE) refers to predicting a 3D surface mesh of humans. The
popular model-based HPSE approach [38 35, [31]] predicts input parameters of a parametric human
model, such as SMPL, which infers a 3D mesh from rotation and shape parameters. Non-parametric
approaches [42] 52| [36] directly regress 3D coordinates of mesh vertices. Other methods combine
both approaches, such as [[70], which predicts a volumetric representation before fitting a SMPL
model, or [45]], which calibrates model-based mesh predictions with 3D keypoints.

Physics based pose estimation. To achieve more physically plausible human motion, PHPE methods
apply dynamic constraints to encourage contact and penalize motion jitter, ground penetration, and
unbalanced postures. [[77} 163161} 164] model contact forces between the foot and ground, [20 19, [82]]
include contact points between the full body and ground, while [41]] also models human interaction
with stick-like hand tools. Optimization-based frameworks [20, 19,77, 164, 141] simulate physically
plausible human motion from a physics engine and minimize an objective function to keep the
simulated motion close to the detections obtained from a kinematic pose estimator. These frameworks
are also combined with reinforcement learning [82} 59]]. Recently, to overcome the need of an external
physics engine, regression-based frameworks [[85, 137, [63]] directly estimate human kinetics using
neural networks. As discussed in Sec.[T} this is an underconstrained problem, for which we hope to
mitigate, and further inject biofidelity. We incorporate MTGs to do so.



Muscle torque generators (MTGs). Due to their simplicity, MTGs have been increasingly popular
in multibody dynamics simulations as they reduce computational cost while maintaining a reasonable
degree of biofidelity. Recently, MTGs have been incorporated to simulate human movement post
hip and knee replacement surgeries [13]], human interactions with exoskeletons [22}126], and manual
wheelchair propulsion [3]]. For more dynamic movements, such as in sports, examples of MTG-driven
simulations of athlete motor control include golf [49] and cycling [28]].

3 MusclePose

We propose MusclePose (Fig.[1) as a physics-based pose estimator to directly regress comprehensive
human dynamics from a monocular video of length 7. We use a transformer encoder to refine
initial pose estimates, and produce latent motion features ¢':7}, which are used as inputs for 5
customizable modules to infer human anthropometrics .4, kinematics /C, external forces F, joint
torques via Lagrange’s equations 7, and joint torques via MTGs Ta;7c. We describe our prototype
in the following subsections, where we extract muscle signals a{7} and residual terms &, §{1:7},
3 from ¢11T} as inputs for the 5 modules. All variables described in this section are sequences of
length T, except &£, 3 and shape parameters 3, and we drop the superscript ({57},

Compared to the most recent regression-based PHPE method, PhysPT [85]], we do not use a trans-
former decoder to directly regress joint torques, and instead, regress the input parameters of MTG
models. Our motivation stems from the popular HPSE approach that regresses SMPL parameters
instead of the human mesh directly, which not only reduces the computation complexity but also
geometrically constrains the predicted human, as SMPL infers the mesh via forward kinematics. In
parallel, we use MTGs to avoid estimating complex musculoskeletal geometries and granular joint
contact forces, while enforcing a constraint on the inferred torques from Lagrange’s equations.

3.1 Kinematics estimation

We follow the common approach in PHPE and clean initial kinematic estimates {6, 3, 'i‘} generated
by some existing kinematic pose estimator, to obtain the refined {0, 3, T, c} as our prediction.
Here, T € R? represents 3D pelvis translation in the world frame, and c are binary contact labels.
Rotation parameters 8 = {6, ..., 023} represents local rotations of the 24 SMPL keypoints, relative
to their parents in the SMPL kinematic tree, with 8y being the pelvis orientation in the world frame.
We follow prior work [34] and predict the 6D continuous rotation representation [88]] for each
0:. € RS. Shape parameter 3 € R'C denotes the first 10 principal components of SMPL’s shape
space. Since our inputs lack the shape information that RGB images provide, we follow the hybrid
approach in [89] to regress shape residuals that are combined with initial predictions. We also use the
same approach and regress anthropometric residuals £ later on in Sec. and force residuals ¢ in

Sec.33

The parametric human model, SMPL, then uses a collection of linear functions to map these parame-
ters to a triangulated mesh ) of 6890 vertices that represents the surface of the human body, and 24
SMPL keypoint positions P:

{V,P} =SMPL(6,3) + T )

We define the kinematic loss L, with weights Ay, as
Ekin = Akzn . ['Cp 'Cu £0 »CB ['norm »CC]T (3)

where the first five losses are from [89]] which penalize joint position, linear velocity, SMPL parameter
prediction L1 errors, and minimize the L2 norms of the SMPL parameters; and L. is the binary
contact loss from [83]].

To facilitate multibody dynamics modeling in the following sections, we convert the predicted
coordinates to generalized coordinates, ¢ = [Xo,qo, q1, ..., qn,]T € RVPor | where X, € R?
is the global root translation, and each g describes the joint’s rotational DoFs. Specifically, each
g; € gy, are ZXY euler angles converted from the predicted 6y, to match the International Society
of Biomechanics (ISB) format, where a joint’s local z-direction corresponds to flexion/extension, x
for abduction/adduction and y for internal/external rotation. We denote the predicted kinematics as
K =1{q,4q, {} , with the velocity and acceleration terms estimated via finite differences.



3.2 Human estimation

Human model. We assume a rigid multibody dynamics model of a human with N, = 18 segments
and Np,r = 47 total degrees of freedom (DoF). The 3D positions of the 18 joints, each corresponding
to a segment, are the 24 SMPL keypoint positions minus the 5 end-effectors and the spine3 SMPL
keypoint. The wrists, elbows, scapulas, each contain 2 rotational DoFs, knees each with 1 rotational
DoF, root with 3 rotational and 3 translational DoFs, and 3 rotational DoFs for each of the remaining
joints, for a total of 47 DoFs. We selected this configuration as it aligns best with biomechanics
studies with anthropometric measurements that we use in the remaining sections.

Anthropometrics prediction. To predict the human’s anthropometrics A = Ui {my, Io 1, CoM}},
specifically the mass my, inertia tensor at zero rotation Iy 5, and CoM of all segments, we scale
literature values .4 from [[16] based on the predicted human shapes 8 and add the predicted offsets £,

A:S,@A-Fg 4

The scaling term sg is computed from the predicted 3, with details in the supplementary material.

3.3 Kinetics estimation

Ground reaction forces and moments (GRFM) prediction. Let 7, = [Fy, M| be the GRFM
applied on the CoM of each segment k. We infer 7 = ), F} from our previous predictions and our
regressed force residuals 9,

F = GRFM model(K, A, §) 5)

Since we trained our model on the AMASS dataset [46]] and feet-ground contact labels from RoHM
[83]], we assume feet-ground contact only for simplicity, as with many PHPE methods [37} 20, [82].
Omitting subscript k, let F = [Fx, Fy, Fz]T be the force in world cartesian coordinates where Y
is the vertical direction, and let z = [z, z,, 2|7 be the center of pressure (CoP) in the foot’s local
coordinates where z is along the length of the foot (i.e. M = R? ..z x F where R? .. is the
ankle’s world orientation). From the regressed residuals d;y,;; C ¢ and the kinematics of each foot
K ¢o0t, we estimate the vertical force applied on the foot scaled by bodyweight F)KV = Fy /W, and

the CoP along the foot scaled by foot length zi = z,/l foots

{F)‘//V» Zi’} = nlcfoot + 5{Y,l} (6)

where linear coefficients 17 were fitted on the forceplate data in [[72]. The remaining § terms are
scaling factors between -1 and 1 to ensure the values in the other directions are physically possible
(ie. F3 + F2 < (5ZF}2, and z is within the foot’s dimensions)

Fx =6x0,Fy, FZ:(SZ\/(SELF%—F)Q( @)

Zy = —|5hlh|, Zy = 5S(lw/2) (8)

where [,,, [;, are the foot’s width and height, respectively. Additional details of our GRFM model can
be found in the supplementary material.

Inverse dynamics via Lagrange’s. From here, we can analytically compute the mass matrix 91,
Coriolis term €, external forces in the generalized space §, and infer joint torques in the generalized
space T, from the equations of motion:

7, = Lagrange’s(KC, A, F) = MG+ € — § 9)
We include the calculations of these terms in the supplementary material. We define a residual force

loss L,.s to minimize the resulting forces and torques at the root, which correspond to the first 6
entries of 7,

£res = |Tq[:6]| (10)



Inverse dynamics via MTGs. Simultaneously, we use parametric MTG models [51] to infer joint
torques Ty from the predicted kinematics K and muscle activations . Specifically, this kinematic
dependence is separated into active torque generation T,qtive and passive impedance Tpqssive. FOr
each joint rotational DoF ¢ € g(g;) with angular velocity ¢, let muscle signal o € [0, 1] represent the
joint’s corresponding activation level for this DoF, we compute the corresponding torque as

TMTG = MTG(]Ca -Av «, 3) = Tactive + Tpassive (1 1)

The active torque is further broken down into
Tactive — O * Ty (q) *To (CI) : TO(A7 3) (12)

where 7,,(¢; ,,) models the active-torque—angular-speed relationship [69][67]] and 74 (g; ve) models
the active-torque-angle relationship [211[33]], as shown in Fig. 2] These relationships are parameterized
by the v coefficients, which are unique for each joint’s DoF and direction, and are identified via
dynamometry. This joint-dependent parameterization preserves physiological realism (e.g., hip
flexion and knee extension should exhibit different peak torque and passive stiffness profiles), unlike
uniform torque models that assume identical properties across the body. For this paper, we use the set
of ~ values summarized in [54 53]

7o (A; vi,ve) is the peak isokinetic torque that controls peak MTG output at zero joint velocity, which
can be measured with a dynamometer. 7 is estimated in [54} 53] as a linear approximation of the
human’s intrinsic, scaled by certain external factors such as the human’s fitness or activity level.
Since these external factors (and some intrinsic properties) are not readily known, we take the mean
effects ~;, 7. from [54, 53], and add regressed offsets 3. We compute 7y as

T0 = (71A+ 31)(’7(2 + 35’) (13)

Furthermore, to account for stability, we assume each joint is driven by a pair of agonist-antagonist
MTGs — a flexor (+) and an extensor (-), that corresponds to the movement direction. Hence, for
each joint rotational DoF, we regress 2 muscle signals {af'® "}, and the active torque becomes:

Tactive = aflexTqulewTéflEQJ Toflew + aethsxtTeextTOext (14)
Tpassive (q; Yp) 18 the passive torque [1]] of a joint that arises when the surrounding muscles, tendons,
and ligaments are strained and intensifies near anatomical joint limits [[1} [81]]. The joint’s viscous
damping and nonlinear stiffness are parameterized by -y, which encourages the joint to move within
its range of motion, as a large restoring torque is produced otherwise, as shown in Fig. 2] Equations
to compute 7, Tg, Tpassive Can be found in the supplementary material.

We define the torque loss £, as the absolute difference between the two sets of predicted joint torques,
and another regularizing term L. for all regressed residuals:

Ly = |Tg6) = TMTG (15)
Le = €]|2 +1I6]]2 + 113]]2 (16)

Finally, we have dynamic loss with weights Agyy,

Ldyn = )\dyn ' [[’T »Cres »Ce]T (17)

4 Experiments

4.1 Implementation and datasets

For training, we used the AMASS dataset [46]], with feet-ground contact labels from [83]]. As such,
we trained and evaluated on sequences with feet-ground contact only (denoted T), which is also the
case for many PHPE experiments [37, 20, [82]]. We trained MusclePose end-to-end with a sequence
input length of 16 frames, using total loss Liota1 = Liin + Layn for 25 epochs, using the AdamW
optimizer [44] with a weight decay of 10~* and an initial learning rate of 10~* that decreases by 20%
every 5 epochs. Following common curriculum learning [2f] practices, we split the training into two
phases — for the first 20 epochs, we trained using the ground truth as input, followed by 5 epochs
using the model’s predictions as inputs.



For evaluation, we assessed positional accuracy on the inference results of the H36M test set [27] and
object-occlusion subset of 3DPW (3DPWoc) [71]. As with training, we removed input sequences
containing non feet-ground contact, the sitting and sitting down actions in H36M, and courtyard
laceshoe, flat guitar, outdoors climbing, outdoors freestyle, outdoors parcours, downtown stairs in
3DPWoc. We further assessed kinetic biofidelity from 3 actions — walking from H36M, and baseball
pitch and golf swing from the PennAction dataset (PA) [84]]. As with existing large-scale human video
datasets, since neither datasets include force-annotations, we compared our inference results with
existing biomechanics studies of these movements, and commented on overall trends and plausibility.
We selected walking because human gait is heavily studied in biomechanics [[72, [18}, 76l 18} 29\ [75]],
and is a relatively consistent and cyclic movement. We included the latter two actions to evaluate
faster movements, for which we were able to find published lab measurements [55} 180, 62]. During
inference, to promote a closer comparison with the SOTA regression-based physics pose estimator
PhysPT [85]], we used the same kinematic estimator, CLIFF [40], to extract initial kinematic estimates,
and the global trajectory predictor in [85]] to extract initial root DoFs. The rationale for using CLIFF
in [85]] is that it produces competitive positional accuracy but lacks in physical plausibility.

4.2 Positional accuracy

We followed standard evaluation protocol and reported the mean per-joint positional error (MJE)
and procrustes-aligned MJE (PJE) in Tab. (1] for the 14 LSP [30] keypoints in millimetres. MJE is
the root-aligned mean Euclidean distance in millimeters between the predicted and ground truth
3D keypoints. PJE is the MJE after aligning the predicted pose with the ground truth in translation,
rotation, and scale using the Procrustes method. For 3DPWoc, since the data is captured using a
moving camera with unknown extrinsics, and our method predicts the global root DoFs directly, we
reported PJE only, with additional ablations in Tab. [3]to show consistency of results.

We see that MusclePose outperforms other PHPE methods on H36M but is slightly worse than
PhysPT on 3DPWoc. This, along with the overall worse positional accuracy of PHPE compared to
purely kinematic methods, could be due to a kinematics-kinetics trade-off, as our method produced a
lower residual force (Tab.[d)). Specifically, the root DoFs in 3DPW may be harder to estimate due
to the moving camera, leading to higher residual forces, which the model may try to reduce (lower
kinetic error) by estimating a set of local joint kinematics slightly different from the original motion
(higher kinematic error).

H36M 3DPWoc
Kinetics MIJE| PJE| PJE|
Table 1: Positional accuracy on H36M and g HybrIK [38 - 554 f33.6 -
3DPWoc. “opti" denotes kinetics obtained from £ HybrIK [38 1264 1367
. S o g CLIFF [40 522 36.8
an external physics optimizer, and “regr" de- =

|

|

J -
CLIFF [40] - 46,5 732.4 24.0

notes regressed by a neural network. Tdenotes SimPoE [82]  opti. 7567 T41.6 -

|

|

|

)

sequences with feet-ground contact only. DiffPhy [20] ~ opti. 7817 1556
D&D [37 regr. t52.5 1355

PhysPT [85 regr. 50.6 1355 25.9
MusclePose(ours regr. T48.4 1335 7276

PHPE

4.3 Biofidelity

Since most PHPE methods do not report kinetics results, we mainly compared ours with values we
reproduced from PhysPT. For even comparison, for both pose estimators, we computed joint torques
in the generalized space T, via Lagrange’s equations (9) from the predicted motion, anthropometrics,
and GRFM. Unlike the biomechanics studies, we did not apply additional signal post-processing or
smoothing to 7,. Hence, we see more noise and spikes in the pose estimators’ results, which could
also be amplified by the low frame rate of PennAction.

Qualitative. Since the different biomechanics studies computed torques differently from different
datasets, we comment on general trends and evaluate qualitatively. In Fig. [3] we plotted median
torques scaled by predicted body weight, with a 25-75% quantile band, for select joints of the 3
actions, for which we found reference values. Overall, compared to PhysPT (gray), we see that
MusclePose (ours, purple) more closely follows the trends and magnitudes of the reference values
(greens and yellow).
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Figure 3: Median predicted joint torques scaled by bodyweight, with a 25-75% quantile band, for
gait cycles, the downswing phase of golf drives, and the arm acceleration phase of baseball pitches,
compared to values from biomechanics studies.

The 2 leftmost columns of Fig. |§| correspond to flexion/extension of the hip, knee, and ankle torques
for walking, scaled such that the toe-off occurs at 60% of the gait cycle, and compared to reference
torques from [[73,[18}[75]. We see that MusclePose produced more reasonable trends overall, whereas
PhysPT produced torques with low magnitudes but with higher extreme values. For hip flexion, our
results resembled more of the yellow curve that was computed from a wearable system in [73]], where
the authors attributed their errors to a lack of shear force measurement, leading to more noticeable
errors in the hips than more distal joints due to the increase in moment arms. Since the subjects in
H36M walk in a small circle with slower and varying speeds, a discrepancy can arise in the generated
shear force, leading to the discrepancy in hip torque, as the subjects in the biomechanics studies
walk in a straight line at a consistent pace. This could also contribute to the low magnitude of ankle
torque, where different timings (toe-off/heel-off/touch-down) could affect ankle power generation, as
explained in [6].

The middle 2 columns of Fig. [3]correspond to lumbar torques during the downswing phase of golf
drives, scaled such that the maximum lumbar rotation occurs at 2/3 of the motion, and compared to
reference torques from [55)]. While we see noticeable spikes from both pose estimators, the extreme
values for lumbar lateral bending and axial rotation were much higher for PhysPT.

The 2 rightmost columns of Fig. [3]correspond to shoulder lateral/medial rotation torque during the
arm acceleration phase of baseball pitches, scaled such that the maximum moment occurs at 80%
of the motion, and compared to reference torques from professional pitchers (darker green) in [62],
as well as amateurs (lighter green) in [80]. Although the peak of our 75% quantile slightly exceeds
the shoulder medial rotation limit reported in [62], our band was able to cover values from both skill
groups, whereas PhysPT’s band was below the amateurs, even though the pitchers in PA range from
teenage amateurs to adult professionals.

Quantitative. In the bottom right of Fig. [3| we reported the mean residual forces { Fy.cs, Tres }»
mean out of range joint torques Toor, and the median value of the sum of GRFs in the direction
opposite of gravity GRF,.. Residual Fi..s and 7,.; were computed as the mean L2 norms of the
entries of 7, that correspond to the translational and rotational DoFs of the root. Toor Was computed
as the mean absolute amount outside of joint torque limits (red and blue values in Fig. [3) reported in
[1. 1431 62]. These values are further scaled by predicted body weight and denoted (/*V). In the last
column, we also reported the mean predicted segment mass m/M as a percentage of body mass M.

Overall, we see that MusclePose inferred more reasonable kinetics, indicated by the lower residual
forces, less extreme joint torques, and a median GRF, closer to body weight. Similar to its joint
torques, PhysPT’s GRF, values were overall lower in magnitude, with occasional spikes. While
MusclePose’s maximum GRF, were very large for the golf swing and baseball pitch, our 99%
quantiles were more comparable to the maximum values of about 1.3 times body weight for golf
reported in [55]], and about 2.3 for pitching in [9]].



Figure 4: Mean predicted muscle activations (dashed) for gait cycles compared to EMG data and
predictions of pertinent muscles from literature. Min-max scaling applied to all values.

4.4 Ablations and additional evaluation

We reported ablations results in Tab. 2} Row 2 includes results without custom anthropometrics, and
instead computed directly from the SMPL mesh, assuming constant density. Row 3 includes results
without MTGs. Row 4 includes results using kinematic-based muscle activations, with details in the
next paragraph. We see that, overall, MusclePose has better positional accuracy, along with lower
residual forces (Fes = (Fres + Tres)/2), and median GRF, closest to bodyweight.

Table 2: Ablations results.

TH36M 3DPWoc H36M - Walk PA - Golf swing PA - Pitch
MIE, FY L | PIEL FX 1| FY L medGRFY | F/Y | med GRE/W | F/% | med GRF/W
MusclePose 484 0.08 | 27.6 025 | 0.08 0.98 0.56 0.98 0.68 0.99
wio A 495 026 | 279 035 | 022 0.74 0.61 0.64 0.67 0.39
wloTyre 497 014 | 272 030 | 0.5 0.94 0.66 0.88 0.74 0.90
witha 509  0.16 | 284 026 | 0.13 0.93 0.59 0.97 0.69 0.90

Furthermore, due to the lack of extrinsics information in 3DPWoc, we reported results from using
different kinematic estimators in Tab. [3|to show consistency.

Table 3: 3DPWoc | Ours+CLIFF  CLIFF [40] | Ours+tWHAM WHAM [65] | Ours+CoMotion CoMotion [56]
results with different g 27.6 24.0 285 27 326 30.7
kinematic estimators. FL 0.3 0.3 - 0.2

Muscle activations. Since we were not able to find public video datasets with corresponding MTG
activation signals to directly compare with, we followed the evaluation procedure in [29] to assess
general trends, and overlayed our mean muscle activation predictions (black, dashed) for gait cycles
from H36M with EMG data of pertinent muscles from other gait studies [72, (76} 8, 129] in rows 1 and
3 of Fig.[d with min-max scaling applied to all values. We also included the predicted activations
(dotted) from [29]; however, they use a different muscle model. While muscle activations can be seen
as surrogate representations of EMGs, the two are not exactly the same. Hence, mismatches in timing
and magnitude will exist, and peaks and valleys may be further amplified by the min-max scaling
applied. In general, raw EMG values can vary widely due to electrode placement.

To mimic methods that regress joint torques as a linear combination of joint kinematics, we experi-
mented with estimating the muscle activation as a "kinematic effort term” (denoted &), specifically as
a joint’s angular velocity relative to its limit plus an additionally regressed offset term:

ad=q?/qt .+ 39, d € {flex, ext} (18)

We plotted & results (gray, dashed) in rows 2 and 4 of Fig.[d] In comparison, MusclePose (rows 1
and 3) seems to better follow literature trends overall, such as having a more noticeable hitch (or
second peak) for hip adduction, external rotation, knee flexion, etc. Furthermore, for the & case, ankle



plantarflexion seems to be deactivated during the middle of the gait cycle, when it should peak. Row
4 of Tab.[2]also shows that MusclePose quantitatively outperforms the & case.

Kinematic plausibility. In addition to the joint positional errors in Sec. metrics such as
acceleration loss (ACC), foot skating (FS), and ground penetration (GP) were introduced to further
evaluate kinematic plausibility. We computed these values for H36M and 3DPWoc in Tab.
where ACC is the mean L2 norm in mm/frame? between the predicted and ground truth keypoint
accelerations to access jitter. We also included mean torque variation (MTV) as the mean absolute
change in joint torques over consecutive frames (in Newton*metres/frame) to assess torque continuity.
FS is the average displacement in mm of vertices in contact with the ground in consecutive frames.
GP is the average vertical distance to the ground in mm of vertices below the ground.

Table 4: Plausibility metrics. P indicates Procrustes aligned. (%f) indicates % of frames.

Pos. Kinematic plausibility Float (%f) Kinetic plausibility GRFﬁW GRF{.W (%ft)
MIE| | ACCL FS GP Humin>{1,10,20}mm | FLlY] MTV {med @99 max} < {0.01,0.1,0.5}

s CLIFF 465 | 263 - - - - - -
2 PhysPT 506 | 13.7 347 68 {590 316 85} | 04 53 {04 24 100} {72 208 60.0}

T MusclePose 484 | 129 372 260 {80 3.0 13} | 01 25 {10 12 30} {30 30 52}
8 CLIFF 24.07 | 13.87 - - - - - -

£ PhysPT 2597 | 3.0° 78 112 {829 739 572} | 09 270 {05 12 39} {53 11.8 524}

§ MusclePose  27.67 | 4.37 128 308 {60 47 37| 03 121 {10 1.6 43} {53 53 63}

While we see an improvement in jitter from both physics pose estimators, as indicated by a lower
ACC compared to CLIFF, a lower FS or GP may not be strictly better. For one, foot sliding may
occur naturally. And in terms of the latter, while human bodies deform under pressure and contact,
the SMPL mesh does not model this deformation, and will instead penetrate the object it is in contact
with [68]. During walking for example, minimizing GP while assuming this rigidity may restrict
natural ankle rotation, potentially leading to the smaller ankle torques compared to literature values
in Fig. 3] On the other hand, we should also check for floating. We reported the percentage of frames
(%f) when the minimum vertex height H,,;,, is above certain thresholds (1, 10, 20mm). Since we
removed the non-feet-ground contact sequences, there are very minimal frames where “floating”
occurs. We see that while PhysPT has less GP, it also includes more floating.

Ground reaction force. We can also characterize floating as when GRF,, is small. As such, we
also reported the percentage of frames when GRF,, is below certain thresholds (1%, 10%, 50% of
body weight) in Tab.[4] The results are consistent with 7{,,;,,, both indicating less floating (lower %f)
for MusclePose. In Fig.[5] we plotted the predicted median vertical GRF of a foot, divided by body
weight, for gait cycles in H36M. Compared to PhysPT (gray), we see that MusclePose’s predictions
(purple) are closer to literature values (greens) from [18 [75]].

Figure 5: Median vertical GRF divided
by body weight, of a foot for gait cycles
in H36M, with a 25-75% quantile band.

5 Conclusion

In conclusion, we introduced MusclePose as the first PHPE method to simultaneously predict human
kinematics, kinetics, muscle signals, and detailed anthropometrics from monocular video. In Sec. @]
and[4.4] we showed how the additions of muscle-dynamics modeling and detailed anthropometrics
predictions improve the kinetic plausibility of regression-based PHPE, while being competitive with
purely-kinematic pose estimators in positional accuracy in Sec.[d.2] Our framework consists of
customizable components, does not require an external physics engine, and can be trained end-to-end.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: our contributions are summarized in the last paragraph of Sec.[I] with corre-
sponding results in Sec. ]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: limitations are discussed in the supplementary material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: all formulas used can be found in Sec. 3] with details in the supplementary
material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: all models implemented can be found in Sec. [3| with details, such as model
coefficients or hyperparameters, listed in the supplementary material. Experiment implemen-
tation information, for both training and evaluation, can be found in Sec. @ with additional
details in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: while our code is not yet ready for open source, we included in the supplemen-
tary material, all necessary details required to reproduce our model and results, including
implementation details of all novel components, as well as all the publicly available code
repositories we borrowed from to implement and train our model, and to produce and
evaluate our results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: training and test information can be found in Sec. with additional details
in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: we include quantile bands in Fig. 3]
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: computing information is included in the supplementary material.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: the research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: societal impacts are discussed in the supplementary material.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: assets used in this paper are cited in the main text, and the license and terms
are respected and mentioned in the supplementary material.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: the paper introduces MusclePose as a novel human pose estimation framework,
with details on implementation and application.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: this paper does not involve crowdsourcing, and uses human data from publicly
available datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: this paper does not involve crowdsourcing, and uses human data from publicly
available datasets.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used for research development nor any part of this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary material for 3D Human Pose Estimation with Muscles

A Technical appendix

A.1 Human model

We assume a rigid multibody dynamics model of a human with N, = 18 joints — pelvis, lumbar
Jjoint, thoracic joint, neck, scapulas, shoulders, elbows, wrists, hips, knees, and ankles. The pelvis
is set as the root, with 3 rotational and 3 translational degrees of freedom (DoFs). The scapulas
have 2 DoFs, corresponding to depression/elevation and protraction/retraction. The elbows have 2
DoFs, corresponding to flexion/extension and forearm pronation/supination. The wrists have 2 DoFs,
corresponding to flexion/extension and ulnar/radial deviation. The knees have 1 DoF, corresponding
to flexion/extension. All remaining joints have 3 DoFs, for a total of 47 DoFs. We selected this
configuration as it aligns best with existing biomechanics models that we implemented, such as for
anthropometrics estimation [[16]] and MTGs [511 25]].

Anthropometrics estimation. We predict the human’s anthropometrics by combining our regressed
residuals £ with initial estimates based on literature values A scaled by our predicted human dimen-
sions. Specifically, we want to predict A = Ug{my, Iy, Xx}, Where my, is the mass of segment
k, with Iy ;. as its inertia tensor at zero rotation with scaling matrix Ay, and xy, as its local CoM
position relative to its segment length. For the remainder of the section, we assume relevant units to
be in seconds, radians, meters, kilograms, Newtons.

From the predicted 3 and Eq. (2)), we can compute the human’s volume and all segment lengths Ly,.
We further compute the human’s initial bodymass estimate M as its volume multiplied by a constant
density of 985 kg/m?. For segment k, let s1, , = Ly /H be its segment length relative to height, and
Sm.,k = my /M be its mass relative to bodymass. Let “bar" (7) denote the human values measured by
Dumas ef al. in [16]. We set our initial estimates as A scaled by SL,k/gL,k:

~ _ S — _
{M, 5, o Ay X0} = {M,sm,kﬁ,Ak,xk} +E (19)
Stk
My = S M, where s, p = —<—— (20)
225 Sm.j
I())k = kaiA}g (2])

Lastly, we compute the body weight W of the human in Newtons, with g = 9.8m/s? as
W=g) m (22)
E

A.2 GRFM Model

Let 7 = [F,M]T be the ground reaction forces and moments (GRFM) applied at the CoM of a
foot in global cartesian coordinates. Let F = [Fx, Fy, F'z]T where Y is the vertical direction, and
Z = (24, 2y, 2,7 be the center of pressure (CoP) in the foot’s local coordinates where x is along the
length of the foot, such that

M=R’ ,zxF (23)

ankle
where Ry, is joint k’s local rotation matrix, and Rz = Rg( k)Rk describes the chain of rotational

transformations from the world frame to its local frame. We use lower case x, , z to denote the foot’s
local coordinates, and its dimensions {l;, L, I } as shown in Fig. @

We predict the force in the vertical direction scaled by body weight FY¥ = Fy /W, and CoP along
the foot scaled by foot length 2. = 2z, /I;, from initial estimates based on the foot’s kinematics ¥ and
linear coefficients 1. Furthermore, let 1 be the coefficient of friction, initialized at 0.8. With our
regressed residuals ¢, and binary contact c, we infer:

{FX‘//V> Zi:a IU/} = {nFY\I}a 'r’z:xv\l]7 08} + 5{Y,l,,u} (24)
Fy = FYY - body weight (25)
Ze =21, (26)
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SPeCiﬁcaHY, v = [17 Pank:le,Y7 PoppAnkle,Yu Pankle,Yu Pankle,Yu Gankle,z, (jankle,za dankle,zy ] in-
cludes the ankle’s linear kinematics in the direction opposite of gravity, and angular kinematics
corresponding to plantar/dorsiflexion. Linear coefficients were fitted on the forceplate data in [[72]],
with nrpy =[0.3116, 3.1785, -2.2963, 0.4151, 0.0088, 0.3374, -0.1206, -0.0089] and ., = [0.68996,
-3.1508, 0.5925, 0.21997, 0.0035, 0.18502, -0.03311, -0.00212].

The remaining § terms are scaling factors between -1 and 1 to ensure the values in the other directions
are physically possible (i.e. F% + Fz < p?F2 and z is within the foot’s dimensions)

FX:§XMFy, Fzzéz\/m (27)

Zy = _|5hlh‘7 Zy = (55(lw/2) (28)
y
Abduction/Adduction
Plantar/Dorsi Flexion &vcrsiun/ﬁvcrsion
7 « X
’ [ . Figure 6: Foot local coordinate system and dimen-
lp 2 @ Foot CoM . . .
[ _‘ sions, with length ; = Iy + I3, width [, = 2I,,
N o and CoM height [},.

A.3 Muscle torque generators

We compute MTG torque 7,7 using the equations below that are parameterized by the v coefficients
that can be found in the tables of [54,53]]. For each joint rotational DoF ¢ € g6}, with angular
velocity ¢, let muscle signal « € [0, 1] represent the joint’s corresponding activation level for this
DoF, we separate its 7)1 into active torque generation T,ctjve and passive impedance Tpqssive

TMTG = Tactive + Tpassive (29)

We compute the active torque as
Tactive — ATy THTO (30)
where 7, models the active-torque—-angular-speed relationship [[69,67]] and is paramterized as a
piecewise function with coefficients 7;.3.
(1 B 71)|wma:r| — (’72 + 1)71’}/3(1 1 <0 |wmaz| - q )
(1 - ’Yl)|wm(l$| =+ (’72 =+ 1)714 = |wmax| =+ ’YQQ

The peak velocity wy,q, for each joint we use the values from [54} I53]]. The coefficient v, is the
ratio of the maximum eccentric isokinetic torque over the maximum isometric torque [69} [15], 2
is the slope of the eccentric and concentric functions when the angular velocity is zero [69], and
3 is a shape factor that influences the curvature of the hyperbola in the torque-velocity concentric
relationship [4].

(3D

Tw(g) =Lg<o(

Tp models the active-torque-angle relationship [21, 33] and is represented by the non-negative
portion of a polynomial (32) with coefficients 4.6

70(q) = (Y4 + V59 + Y64%) + (32)

T is the peak isokinetic torque that controls peak MTG output at zero joint velocity, which can be
measured via dynamometry.

Tpassive 15 the passive torque [1] of a joint that arises when the surrounding muscles, tendons, and
ligaments are strained and intensifies near anatomical joint limits [, 24} [81]. A joint’s viscous
damping and nonlinear stiffness are commonly described by a double exponential function [79]

_ ~—711(a—min) —Gmax
Tpassive = V10e el — 7126713(q 1 ) — Y14W (33)

where v19_14 are passive coefficients from [48]] and 71, is the rotational damping linear coefficient
[78] to reflect viscoelasticity. This encourages the joint to move within its range of motion (RoM),
as a large restoring torque is produced otherwise.
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A4 TInverse dynamics|]

We compute 7, using Lagrange’s equations derived from d’ Alembert’s Principle of virtual work

Tg=MG+<C—-F (34)
We can write the terms on the right hand side as:
M= JI My, (39)
k
=S M+ 7 [0 0 | Medd (36)
- k k10 [Jakd]s

T = JgFoot]:LFoot + J}EFOOt]:RFoot (37)

where I is the identity matrix, ([-]s) denotes the skew-symmetric form, and

mkIg 0

My = 38
K { 0 R%onk(Rg)T} (38)

To deal with potential energy, we offset the root acceleration in the direction of gravity by -9.8 m/s.
Jacobian matrix J is the mapping from the generalized space to the global Cartesian coordinates,
such that for linear and angular velocities V4, €2, in global Cartesian coordinates, we have:

. J: . V;
Jeq = [ Jgﬂ q= {Qﬂ (39)

J can be computed analytically using a recursive algorithm such as in [17]. For segment &, we define
its parent segment p(k) as its neighboring segment that is closer to the root. Other than the root,
each segment has one and only one parent. We define k’s children ch(k) as its neighboring segments
further away from the root. Let r,_,; denote the 3D displacement from point a to b. For segment k,
with linear velocity V;, at its CoM and linear velocity V;’*""* at its corresponding joint, we have

‘/;Cjoint _ Vb(’@) + Qp(k) X Tp(k)—skioint = ijfolint = JV’P(k) - [Tp(k)ﬁkai’Lt]JQ,p(k‘) (40)
and the velocity at the CoM of segment k becomes:

Vi = ijOint + Qp X Thjoint 1, = Jvi = JV,p(k) - [Tp(k‘-)ﬁkjoint]g]gz’p(k) — [’I“k.jm‘nt_m}‘]g’k

(41)

From (@I)), we can compute the time derivative recursively as:
v = Jvp) = [Ppy—wiem ] Jape) — [Prome il Jok (42)

The global angular velocity of k in skew symmetric form is:

[24] = RQ(RY)T = (RO, Ri)) (RS 4 Rie)T 43)
= e = By (Roq)™ + B (RRRD (BT “44)
= [@p09] + R [wr] (RO (. [wi] = RuR]) @5)
=0 = Q) + Ry @i (" [Ab] = A[b]AT) (46)

. . . L . A . .
To avoid confusion of notation, we also write joint k’s rotation 8, = qi, i.e. we have generalized

coordinates ¢ = Fgo] € RNporx1 where X is the global root translation, 8 is the global

root rotation, @y, describes the local rotation of segment k relative to its parent p(k), and T =

el o7 .. OJTVk]. Let J,,  be the local Jacobian such that wy, = J,, ;6. We can compute €2,
recursively:

Dy = Qi) + Ry S 15 (47)

= 0+ Ju 080 + . + R0 o) Oy + Bogiy oo O (48)

2 Jawd (49)

"Derivations in this section are based on C. Karen Liu and Sumit Jain’s multibody dynamics notes: https
//fab.cba.mit.edu/classes/865.18/design/optimization/dynamics_1.pdf.
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Let Py, denote the set of all ancestors of k and itself (k € Py), we split Jq i into Ny, + 1 blocks of
size 3 X 3:

Jox = [03><3 Ju0 ]l1e7>kRg(1)Jw,1 ]lngka (K)Jw,Nk] € R3*Npor (50)

For segment k, if we represent rotation 8, = [0y 1 62 Ok 3] 2 [@ B 4] € R? using 3 Euler
angles, removing subscript & for notation simplicity, we have

OR o _OR .. OR OR

= . T = = T T DPTA
[w] = RR 20, = RTé 8,6R B+ R (51)
and it remains to compute J’s s.t.
OR OR OR
Jo=[J1 J2 Js], where[Ji] = %RT, [Jo] = 95 —RT, [J3] = a?RT (52)
which satisfies [w] = Z[L]Gz and w = J,,0 (53)

)

Finally, let segment [ € P, be an ancestor of &k and denote {Jq 1 }; 2 Rg(l)Jw,l as the (I + 2)-th
3 x 3 block in Jg j, from (13_61), we can compute its time derivative as:

s 0J,
{JQ k}l p(l)‘]w 1+ Rp(l)Jw 1, with J, 1= Z 89l l ; (54)

following (52), it remains to compute J’s s.t.

. . . . )
Joa & [y iz sl wherer,j=Zaall’J9“ (55)
1 2

A.5 Neural network

We trained a transformer encoder consisting of 8 layers with a latent dimension of 256, using total
loss Liorqr With weights Ay, = [0.5,10,1000, 1,20, 1000] and Ag4yr, = [100,100, 20]. We trained
on AMASS with a sequence input length of 16 frames, after removing sequences containing non
feet-ground contact, with contact labels from [83]], for 25 epochs. We used the AdamW optimizer
[44] with a weight decay of 10~* and an initial learning rate of 10~ that decreases by 20% every 5
epochs. The entire process can be trained in about 12 hours on a single Titan Xp GPU.
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