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Abstract
Recent advances in operator learning have pro-
duced two distinct approaches for solving par-
tial differential equations (PDEs): attention-based
methods offering point-level adaptability but lack-
ing spectral constraints, and spectral-based meth-
ods providing domain-level continuity priors but
limited in local flexibility. This dichotomy has
hindered the development of PDE solvers with
both strong flexibility and generalization capa-
bility. This work introduces Holistic Physics
Mixer (HPM), a simple framework that bridges
this gap by integrating spectral and physical in-
formation in a unified space. HPM unifies both
approaches as special cases while enabling more
powerful spectral-physical interactions beyond ei-
ther method alone. This enables HPM to inherit
both the strong generalization of spectral methods
and the flexibility of attention mechanisms while
avoiding their respective limitations. Through
extensive experiments across diverse PDE prob-
lems, we demonstrate that HPM consistently out-
performs state-of-the-art methods in both accu-
racy and computational efficiency, while maintain-
ing strong generalization capabilities with limited
training data and excellent zero-shot performance
on unseen resolutions.

1. Introduction
Solving partial differential equations (PDEs) efficiently re-
mains a major challenge in scientific computing and en-
gineering applications. Traditional numerical solvers rely
on high-precision meshes and substantial computational re-
sources, making them impractical for many real-world sce-
narios. To address this challenge, neural operators (Lu et al.,
2019; Li et al., 2020; Tripura & Chakraborty, 2022) have
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Figure 1. HPM combines domain-level spectral structure and point-
wise physical states in a unified holistic spectral space, enabling
more powerful feature learning beyond either approach alone.

emerged as a data-driven approach that learns continuous
mappings between function spaces for solving parametric
PDEs.

Recent works have developed two main categories of neural
operators. Spectral-based methods (Li et al., 2020; Ko-
vachki et al., 2023; Tran et al., 2021) can efficiently learn
operator mappings with limited training data by approximat-
ing physical functions in truncated spectral spaces. However,
their fixed spectral processing mechanism lacks point-level
flexibility (ability to process individual spatial points differ-
ently based on local features), making them less effective at
capturing high-frequency details and fine-scale variations
in physical systems (George et al., 2024; Qin et al., 2024).
In contrast, attention-based methods (Hao et al., 2023;
Xiao et al., 2023; Wu et al., 2024) can flexibly learn various
physical dynamics through point-wise learning in physical
domains, achieving superior performance with sufficient
training data. However, their pure data-driven framework
without spectral priors tends to overfit with scarce training
data and has limited generalization capability (Xiao et al.,
2023), leading to significant performance degradation.

This work introduces Holistic Physics Mixer (HPM) 1, a
framework that unifies spectral and physical information
in a single holistic space. The key contribution lies in our
holistic spectral space design that simultaneously encodes

1Code: https://github.com/yuexihang/HPM
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both domain-level spectral structure and point-wise physi-
cal states. This strategy naturally balances global continu-
ity constraints with local adaptivity. Through a learnable
coupling mechanism, HPM allows each spatial location to
adaptively modulate different spectral components while
maintaining the benefits of spectral learning. This unified
treatment enables HPM to inherit both the strong general-
ization of spectral methods and the flexibility of attention
mechanisms while avoiding their respective limitations.

Through extensive experiments across diverse PDE prob-
lems, we demonstrate that HPM: (a) consistently outper-
forms both spectral-based and attention-based methods, (b)
maintains strong generalization with limited training data
and excellent resolution generalization capability like spec-
tral methods, (c) efficiently utilizes increased data like at-
tention methods. (d) Our visualization analysis shows that
HPM learns meaningful spectral modulation patterns that
could guide the design of fixed spectral neural operators.

Our core contributions are summarized as follows:

• We present Holistic Physics Mixer (HPM), a unified
framework that processes features in holistic spectral
space, integrating both domain-level structure and point-
wise physical states.

• We present an effective implementation of HPM that (a)
maintains strong performance with limited training data
and excellent resolution generalization through spectral
priors, and (b) efficiently handles increased training data
and fine-scale status variations in physical space via inte-
grating point-wise adaptivity.

• We validate HPM’s superiority in various scenarios
through comprehensive experiments, and find the spectral
processing patterns learned by HPM can help design fixed
spectral neural operators.

2. Background and Related Work
2.1. Neural Operator Learning

In neural operator learning (Lu et al., 2021; Li et al., 2020;
Kovachki et al., 2023), the solution of parametric partial
differential equations is formulated as the operator mapping
between two infinite-dimensional function spaces:

G† : A → U , (1)

A = {a|a : Ω →Rda},U = {u|u : Ω → Rdu}, (2)

where Ω denotes the physical domain, da and du represent
the channel number of input functions and output functions
respectively. For example, in the steady-state problem Darcy
Flow, a denotes the diffusion coefficient and u represents
the solution function. In the time-series problem Navier-
Stokes, a is the vorticity states in previous time steps and u
is the vorticity states of following time steps.

The operator learning problem aims to learn a parameterized
surrogate model G†

θ for approximating the operator mapping
G†. As established in previous works (Li et al., 2020; Wu
et al., 2024), the neural operator is commonly implemented
as a stack of network layers:

G†
θ = V ◦Ml ◦ ... ◦M2 ◦M1 ◦ P, (3)

where P and V are element-wise projecting layers that map
between the input/output functions and latent functions. Mi

takes vi−1 ∈ RN×dv as input and produces vi ∈ RN×dv

as output, mixing features along both token and channel
dimensions. In previous works (Tran et al., 2021; Wu et al.,
2024), Mi is formulated as:

vmid
i−1 = Fmixer(LayerNorm(vi−1)) + vi−1, (4)

vi = FeedForward(LayerNorm(vmid
i−1)) + vmid

i−1, (5)

where Fmixer represents operations like spectral processing
or self-attention for mixing spatial information. Various
neural mixers (Li et al., 2020; Wu et al., 2024; Raonic et al.,
2024) have been explored for neural operator learning.

2.2. Spectral-based Neural Operators

Unlike the classical neural modules such as CNN (LeCun
et al., 1995), RNN (Chung et al., 2014), and Self-Attention
mechanism (Vaswani, 2017) that directly mix features of
spatial tokens in the spatial domain, a significant line of
works (Li et al., 2020; Lee-Thorp et al., 2021; Guibas et al.,
2021; Yue et al., 2024; Liu et al., 2024b; Gao et al., 2025) ex-
plores learning operator mappings in spectrum space, which
reduces learning difficulty through efficient function approx-
imation with spectral basis functions. The spectral-based
token mixer can be formulated as:

Fmixer
spectral(x) = T −1

fourier ◦ Project ◦ Tfourier(x), (6)

where Tfourier(·) represents the spectral transform opera-
tor such as Fourier Transform, yielding spectral feature
x̂ ∈ Rk×dv . k represents the number of retained frequen-
cies in the spectral domain. T −1

fourier(·) denotes the inverse
spectral transform operator. Project represents operations
in the spectral domain, commonly including simple fully
connected layers and normalization operations.

Different spectral transforms have been explored: FNO (Li
et al., 2020) learns operators in Fourier spectral space,
LNO (Cao et al., 2024) learns in Laplacian spectral space,
and WMT (Gupta et al., 2021) learns in wavelet spec-
tral space. Additional works investigate complex physical
domain processing (Li et al., 2023a; Bonev et al., 2023;
Lingsch et al., 2023; Liu et al., 2024a;c; 2023a), computa-
tional efficiency enhancement (Poli et al., 2022; Tran et al.,
2021; Wang & Wang, 2024), and multi-scale feature pro-
cessing (Rahman et al., 2022; Zhang et al., 2024).
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However, spectral-based methods employ static spectral
eigenfunctions, which restricts their point-level adaptability
and makes them struggle to process high-frequency details
and fine-scale status variations in physical systems. As
training data increases, the fixed frequency design limits
significant improvement in prediction accuracy.

2.3. Attention-based Neural Operators

Recent works extensively explore learning operator map-
pings based on attention mechanisms (Vaswani, 2017), en-
abling flexible handling of diverse physical domains. Given
the input feature x ∈ RN×dv , the vanilla attention mecha-
nism could be simply formulated as follows:

Fmixer
attn = Norm(Q(x)KT (x))V(x), (7)

where Q(·), K(·) and V(·) are all fully connected layers
that map the feature x into xq ∈ RN×dattn

qk , xk ∈ RN×dattn
qk

and xv ∈ RN×dattn
v respectively. Norm(·) represents the

normalization operation such as Softmax.

To address the quadratic complexity of attention, previ-
ous works (Li et al., 2023b; Cao, 2021; Hao et al., 2023;
Calvello et al., 2024) employ efficient attention variants.
Factformer (Li et al., 2023c) enhances efficiency with multi-
dimensional factorized attention. Additionally, HT-Net (Liu
et al., 2023b) introduces hierarchical transformers for bet-
ter multi-scale features, and ONO (Xiao et al., 2023) im-
proves generalization with orthogonal attention. And some
works (McCabe et al., 2023; Ye et al., 2024; Hao et al.,
2024; Chen et al., 2024; Li et al., 2024; Alkin et al., 2024;
Shen et al.) have explored large scale pretraining for neural
operators with attention-based methods.

While attention-based methods achieve impressive perfor-
mance on various PDEs (Wu et al., 2024), their lack of
spectral constraints results in subpar performance under
limited training data and unseen resolution samples com-
pared to spectral-based methods. This motivates our work
to combine the advantages of both approaches.

3. Methodology
We introduce Holistic Physics Mixer, a unified form of
spectral-based and attention-based neural operators, for in-
tegrating complementary advantages of both approaches.

3.1. Holistic Physics Mixer: A Unified Formulation

Physical systems often involve complex field quantities
represented as features x ∈ RN×d defined on a discrete
sampling of the physical domain Ω with N points, where
each point is characterized by a d-dimensional state vec-
tor encoding physical properties. Traditional approaches to
processing such features often rely on fixed spectral trans-

forms (e.g., FNO) that fail to capture the complex interplay
between local physical states and global domain structure.

Holistic Spectral Space. The key insight is that effec-
tive feature processing should simultaneously consider both
point-wise physical states and domain-level spectral prop-
erties. We achieve this through a new coupling function
H : RN×d × RN×k → RN×k (where k is the number
of spectral basis functions) that integrates physical states
x with spectral basis functions Φ ∈ RN×k (e.g., Fourier
basis) to generate adaptive spectral eigenfunctions. This
coupling enables a unified representation space where fea-
tures dynamically respond to local physical variations while
preserving global spectral properties.

Holistic Physics Mixer. Based on holistic spectral space,
we propose the Holistic Physics Mixer Fmixer

Holi that adaptively
processes features through spectral transformation:

Fmixer
Holi (x) = T −1

HPT ◦ Project ◦ THPT(x), (8)

THPT(x) = H(x,Φ)Tx, (9)

T −1
HPT(x̂) = H(x,Φ)x̂. (10)

Here, THPT and T −1
HPT denote our proposed Holistic Physics

Transform and its inverse operation. The transform maps
input features to a transformed representation x̂ ∈ Rh×d

in the holistic spectral space. This dual encoding in x̂ -
capturing both intrinsic domain structure and point-specific
variations - establishes a new paradigm for operator learning
that naturally balances global continuity constraints with
local adaptivity. Additionally, Tang et al. (2024) shows that
integrating spectral and spatial features potentially improves
the model’s robustness.

Degraded Cases. Both spectral and attention based meth-
ods can be viewed as simplified cases of Holistic Physics
Mixer Fmixer

Holi by degraded instantiations of H:

• Fixed Spectral Neural Operators. When H(x,Φ) = Φ,
Fmixer

Holi reduces to fixed spectral neural operators like
FNOs (Li et al., 2020; Kovachki et al., 2023). This classi-
cal formulation enforces strong domain-level structure but
capability for capturing fine-scale variations in physical
systems and utilizing enough training samples.

• Linear Attention Mechanism. When H(x,Φ) =
ψ(MLP(x)) where ψ is a normalization function,
Fmixer

Holi becomes equivalent to linear attention mecha-
nism (Katharopoulos et al., 2020; Cao, 2021). While this
enables flexible point-wise processing, it fails to leverage
domain-level continuity constraints, potentially compro-
mising stability and generalization.

These special cases reveal how existing approaches subopti-
mally prioritize either domain structure Φ or point states x.
To overcome these limitations, we introduce a few instanti-
ations of coupling functions H that effectively harmonize
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Figure 2. (a) Overall architecture of Holistic Physics Solver. (b) Structure of Holistic Physics Mixer. (c) Visualization of Fixed Spectral
Eigenfunctions and Holistic Spectral Eigenfunctions.

spectral structure with point-wise adaptivity.

Difference with Spectral Modes Selection. While some
previous works (Guibas et al., 2021; George et al., 2024)
also incorporate data-dependent modulation on spectral fea-
tures, HPM differs with them in several aspects: (a) Dif-
ferent Objective. Guibas et al. (2021); George et al. (2024)
aim to improve efficiency and robustness of spectral fea-
tures by sparsifying the frequency modes. In contrast, HPM
focuses on enhancing the flexibility of preset spectral fea-
tures via point-wise modulation. (b) Different Methodology.
Guibas et al. (2021); George et al. (2024) select modes
in the spectral domain post-transformation, while HPM
introduces spatial domain modulation pre-transformation,
enabling point-wise flexibility while preserving spectral
structure. (c) Different Application. AFNO (Guibas et al.,
2021) targets computer vision tasks and iFNO (George et al.,
2024) focuses large-scale meshes, whereas HPM addresses
the PDE learning challenge requiring both global spectral
coherence and local adaptivity.

These spectral processing techniques (Guibas et al., 2021;
George et al., 2024) could complement HPM, potentially
combining both benefits for diverse applications.

3.2. Instantiations

The coupling function H(x,Φ) in Holistic Physics Mixer
can be implemented in various ways to achieve different
balances between spectral structure and point-wise flexibil-
ity. In this section, we explored several designs to find the
effective way to integrate spectral structure with point-wise
adaptivity under minimal overhead:

Form 1: Point-wise Softmax Coupling. A straightforward
approach using point-wise coupling with Softmax normal-
ization:

H(x,Φ) = Softmax(MLP(x))⊙Φ, (11)

where ⊙ represents element-wise multiplication. The Soft-
max ensures balanced feature scales and lets each point
adaptively focus on different spectral components. This de-
sign provides an effective balance of stability and flexibility,
making it our preferred choice.

Form 2: Point-wise Sigmoid Coupling. A variation using
Sigmoid instead of Softmax:

H(x,Φ) = Sigmoid(MLP(x))⊙Φ, (12)

This removes the sum-to-1 constraint of Softmax, allowing
multiple frequency components to be active simultaneously.

Form 3: Global-pooled Coupling. An approach that first
aggregates spatial information:

H(x,Φ) = Softmax(AvgPool(MLP(x)))⊙Φ, (13)

While computationally efficient, this global pooling sac-
rifices the fine-grained adaptivity that makes point-wise
coupling effective.

Form 4: Additive Coupling. A simple additive approach:

H(x,Φ) = Softmax(MLP(x)) +Φ, (14)

This directly adds transformed point-wise features to the
spectral basis.
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Form 5: Concatenation Coupling. A direct concatenation
approach:

H(x,Φ) = Softmax(MLP(Concat(x,Φ))), (15)

This processes the physical states and spectral basis jointly
by concatenating them before applying the transformation.

Discussion. Through empirical evaluation (Table 5), we
found that the first form - Point-wise Softmax Coupling -
achieves superior performance. Although simple, this de-
sign effectively balances several key requirements: (a) The
point-wise coupling enables adaptive spectral processing
at each spatial location. (b) The Softmax normalization
ensures stable training and consistent feature scales. (c) The
direct multiplication with basis functions maintains spectral
structure while allowing flexibility. Moreover, the simple
point-wise multiplication design maintains interpretability
- we can directly analyze how each spatial location modu-
lates different frequency components, enabling insights into
learned spectral processing patterns (see Section 4.6).

While more sophisticated coupling designs are possible,
we found this straightforward integration provides effective
point-wise adaptivity and stability, outperforming previous
methods. We believe developing more advanced instantia-
tions could potentially lead to better performance.

3.3. Universal Approximation Property

Theorem 3.1 (Universal Approximation Property). Holistic
Physics Mixer is a learnable integral neural operator (Ko-
vachki et al., 2023), indicating it possesses universal ap-
proximation capability for continuous operator mappings
between function spaces. The proof is provided in Sec-
tion A.1.2 of the Appendix.

The universal approximation capability provides the theoret-
ical guarantee that Holistic Physics Solver can approximate
any continuous operator mapping with arbitrary precision,
making it suitable for learning solutions of various PDEs.

3.4. Implementation of Holistic Physics Solver

We implement Holistic Physics Mixer based PDE Solver (de-
noted as HPM) by inserting Holistic Physics Mixer Fmixer

Holi
into existing model architectures (Wu et al., 2024). We used
the toolkit of PaddlePaddle to develop this new model and
solved the problem.

Network Architecture. Following previous works (Wu
et al., 2024; Tran et al., 2021), we implement the Holistic
Physics Solver as a stack of Holistic Physics Blocks, along
with projecting layers P and V at the beginning and end:

GHoli
θ = V ◦MHoli

l ◦ ... ◦MHoli
2 ◦MHoli

1 ◦ P, (16)

where each block MHoli
i employs Holistic Physics Mixer

for token mixing:

vmid
i−1 = Fmixer

Holi (LayerNorm(vi−1)) + vi−1, (17)

vi = FeedForward(LayerNorm(vmid
i−1)) + vmid

i−1, (18)

We instantiate Project in Fmixer
Holi as LayerNorm(·) followed

by an MLP layer. Following Wu et al. (2024), we adopt a
multi-head design where features are processed by multi-
ple parallel Holistic Physics Mixers and then concatenated.
This enables the model to capture different aspects of the
operator mapping simultaneously. The detailed multi-head
implementation is described in Section A.2.1.

Calculation of Φ. Following Chen et al. (2023), we employ
the eigenfunction of Laplace-Beltrami operator as Φ for its
flexibility in handling both regular and irregular domains.
Given the discrete representation of physical domain, we
use the robust-laplacian library2 to compute these eigenfunc-
tions (Sharp & Crane, 2020). This allows processing both
structured grids and unstructured meshes.

Discussion. Holistic Physics Solver presents following ad-
vantages: (a) It unifies spectral-based and attention-based
approaches in a single representation space, enabling simul-
taneous modeling of domain-level structure and point-wise
adaptivity for complex PDEs. (b) Benefiting from the in-
tegration of domain-level spectral priors and point-level
flexibility, it not only preserves strong generalization on
samples with unseen resolutions and in limited training data
scenarios but also presents flexible adaptivity for handling
fine-scale local details and utilizing increased training sam-
ples. (c) It maintains computational efficiency through a
simple coupling mechanism, avoiding attention’s quadratic
complexity (Wu et al., 2024) while adding minimal over-
head to fixed spectral methods (Chen et al., 2023).

4. Experiment
4.1. Overview

Baselines. We compare HPM against a lot of existing neural
operators, including both spectral-based and attention-based
approaches. For attention methods, we use Transolver (Wu
et al., 2024) as the primary baseline due to its leading perfor-
mance across diverse PDE problems. For spectral methods,
we construct SpecSolver as our main spectral baseline by
adapting fixed spectral operators into the same modern ar-
chitecture as Transolver (Wu et al., 2024), ensuring fair
comparison by maintaining architecture consistency while
preserving the core benefits of spectral approaches.

Main Results. Our results lead to following findings:

• HPM consistently outperforms both spectral-based and

2Robust-laplacian library link: https://github.com/
nmwsharp/nonmanifold-laplacian
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Table 1. Performance comparison on structured mesh problems.

Model Darcy Flow
(Regular, Steady)

Airfoil
(Irregular, Steady)

Navier-Stokes
(Regular, Time)

Plasticity
(Irregular, Time)

Spectral
Methods

FNO (Li et al., 2020) 1.08e-2 - 1.56e-1 -
WMT (Gupta et al., 2021) 8.20e-3 7.50e-3 1.54e-1 7.60e-3
U-FNO (Wen et al., 2022) 1.83e-2 2.69e-2 2.23e-1 3.90e-3
Geo-FNO (Li et al., 2023a) 1.08e-2 1.38e-2 1.56e-1 7.40e-3
U-NO (Rahman et al., 2022) 1.13e-2 7.80e-3 1.71e-1 3.40e-3
F-FNO (Tran et al., 2021) 7.70e-3 7.80e-3 2.32e-1 4.70e-3
LSM (Wu et al., 2023) 6.50e-3 5.90e-3 1.54e-1 2.50e-3
NORM (Chen et al., 2023) 9.71e-3 5.44e-3 1.15e-1 4.39e-3
SpecSolver 5.41e-3±1.15e-4 5.13e-3±1.75e-4 9.46e-2±1.24e-3 1.21e-3±3.61e-5

Attention
Methods

Galerkin (Cao, 2021) 8.40e-3 1.18e-2 1.40e-1 1.20e-2
HT-Net (Liu et al., 2023b) 7.90e-3 6.50e-3 1.85e-1 3.33e-2
OFORMER (Li et al., 2023b) 1.24e-2 1.83e-2 1.71e-1 1.70e-3
GNOT (Hao et al., 2023) 1.05e-2 7.60e-3 1.38e-1 3.36e-2
FactFormer (Li et al., 2023c) 1.09e-2 7.10e-3 1.21e-1 3.12e-2
ONO (Xiao et al., 2023) 7.60e-3 6.10e-3 1.20e-1 4.80e-3
Transolver (Wu et al., 2024) 5.70e-3±1.00e-4 5.30e-3±1.00e-4 9.00e-2±1.30e-3 1.23e-3±1.00e-4

HPM 4.59e-3±1.94e-4 4.72e-3±1.51e-4 7.34e-2±9.22e-4 8.00e-4±4.58e-5

attention-based approaches across various PDE problems
(Section 4.2 and 4.3).

• HPM exhibits strong generalization and adaptation ca-
pabilities, maintaining robust performance with limited
training data while efficiently utilizing additional data
when available. It also demonstrates excellent zero-shot
generalization to unseen resolutions (Section 4.4).

• Analysis of learned holistic spectral processing patterns
reveals meaningful physical insights that could guide fixed
spectral operator design (Section 4.6).

• Additional results show that HPM achieves faster con-
vergence during training (Figure 5), requires minimal
computational overhead compared to fixed spectral meth-
ods (Table 6), and maintains superior performance even
with reduced frequency numbers k (Table 9).

4.2. Structured Mesh Problems

This section compares HPM with previous neural operators
on structured mesh problems, where the physical domains
are represented with meshes aligned with standard rectangle
grids. For these problems, we implement HPM with LBO
eigenfunctions calculated on standard rectangle grids.

Setup. (a) Problems. The experimental problems include
two regular domain problems Darcy Flow and Navier-Stokes
from Li et al. (2020), and two irregular domain problems
Airfoil and Plasticity from Li et al. (2023a). Darcy Flow
and Airfoil are steady-state solving problems, while Navier-
Stokes and Plasticity are time-series solving problems. (b)
Metric. Same as previous works (Li et al., 2020; Wu et al.,
2024; Gao & Wang, 2023), we use Relative L2 between the
predicted results and ground truth (the simulated results) as

the evaluation metric, lower value indicating higher PDE
solving accuracy. (c) Baselines. We compare HPM with a
lot of neural operators, covering both spectral-based meth-
ods and attention-based methods. Section A.3 presents more
experimental setup detail.

Quantitative Comparison. Table 1 presents the quantita-
tive results. HPM significantly improves the performance
over past spectral-based methods LSM (Wu et al., 2023) and
NORM (Chen et al., 2023), and outperforms the most per-
formed attention-based method Transolver (Wu et al., 2024).
This concludes that holistic spectral processing effectively
integrates domain-level spectral prior with point-level adap-
tivity, leading to better feature learning for operator learning
on various problems.

Qualitative Comparison. In Figure 3, we visualize the
prediction error of HPM and Transolver on different prob-
lems. The prediction error of HPM is evidently reduced,
especially on physical boundaries and some regions with
sharp status changes. This further demonstrates the superior
operator learning capability of HPM.

4.3. Unstructured Mesh Problems

This section compares HPM with previous works on un-
structured mesh problems, where the physical domains are
represented with irregular triangle meshes. For handling
these problems, we independently calculate LBO eigenfunc-
tions for each problem based on their triangle meshes.

Setup. (a) Problems. The evaluated problems include Ir-
regular Darcy, Pipe Turbulence, Heat Transfer, Composite,
and Blood Flow from Chen et al. (2023). All problems
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Figure 3. Prediction error visualization on different problems.

Table 2. Performance comparison on unstructured mesh problems.

Model Irregular Darcy
(2290 Nodes)

Pipe Turbulence
(2673 Nodes)

Heat Transfer
(7199 Nodes)

Composite
(8232 Nodes)

Blood Flow
(1656 Nodes)

GraphSAGE (Hamilton et al., 2017) 6.73e-2±5.30e-4 2.36e-1±1.41e-2 - 2.09e-1±5.00e-4 -
DeepOnet (Lu et al., 2019) 1.36e-2±1.30e-4 9.36e-2±1.07e-3 7.20e-4±2.00e-5 1.88e-2±3.40e-4 8.93e-1±2.37e-2

POD-DeepOnet (Lu et al., 2022) 1.30e-2±2.30e-4 2.59e-2±2.75e-3 5.70e-4±1.00e-5 1.44e-2±6.00e-4 3.74e-1±1.19e-3

FNO (Li et al., 2020) 3.83e-2±7.70e-4 3.80e-2±2.00e-5 - - -
NORM (Chen et al., 2023) 1.05e-2±2.00e-4 1.01e-2±2.00e-4 2.70e-4±2.00e-5 9.99e-3±2.70e-4 4.82e-2±6.10e-4

SpecSolver 7.96e-3±7.19e-5 1.11e-2±1.00e-3 1.11e-3±3.25e-4 1.00e-2±5.24e-4 3.73e-2±5.83e-4

HPM 7.38e-3±6.20e-5 8.26e-3±7.60e-4 1.84e-4±2.27e-5 9.34e-3±2.71e-4 2.89e-2±3.25e-3

come from realistic industry scenarios and include both
steady-state problems and time-series problems. (b) Met-
ric. Same as Section 4.2, Relative L2 between the pre-
dicted results and ground truth (the simulated results) is
used as the evaluation metric, lower value indicating better
performance. (c) Baselines. The compared methods include
GraphSAGE (Hamilton et al., 2017), DeepOnet (Lu et al.,
2019), POD-DeepOnet (Lu et al., 2022), FNO (Li et al.,
2020) and NORM (Chen et al., 2023). Section A.3 presents
more experimental setup detail.

Results. The results are shown in Table 2. Compared
to previous methods, HPM obtains consistent enhanced
performance across all problems. This validates the benefits
of our holistic spectral processing approach that effectively
integrates domain-level structure with point-wise adaptivity
on complex physical domains and operator mappings.

4.4. Generalization Capability Comparison

This section compares the generalization performance
of HPM with the attention-based neural operator Tran-
solver (Wu et al., 2024) and the spectral-based SpecSolver.

Zero-shot Resolution Generalization. We evaluate the
zero-shot capabilities of HPM, Transolver, and SpecSolver
on samples with unseen resolutions on Airfoil. The model
is trained on the 211 × 51 resolution and then tested on
lower resolutions including 111× 26 and 45× 11, as well
as varied ratio resolutions including 221× 26 and 111× 51.
We utilize Relative L2 as the performance metric, with a

Table 3. Zero-shot resolution generalization on Airfoil.
Resolution Transolver SpecSolver HPM

Training
Resolution 221× 51 5.24e-3 5.33e-3 4.38e-3

Consistent
Ratio

111× 26 7.68e-2 1.90e-2 1.74e-2
45× 11 9.73e-2 7.30e-2 5.34e-2

Inconsistent
Ratio

221× 26 7.85e-2 1.91e-2 1.69e-2
111× 51 1.26e-2 5.80e-3 5.37e-3

lower value indicating preferred performance.

Table 3 presents the quantitative comparison results, where
significant performance gaps between Transolver and HPM
are observed. Additionally, we visualize the prediction error
of different resolutions in Figure 3 (d) (more in Figure 8).
In contrast to Transolver, HPM apparently diminishes pre-
diction error, particularly on lower-resolution samples.

This indicates that HPM retains remarkable resolution gen-
eralization ability like spectral-based methods while main-
taining the flexibility of attention mechanisms, thus outper-
forming both Transolver and SpecSolver.

Limited Training Numbers. We additionally evaluate the
generalization ability of HPM, Transolver (Wu et al., 2024),
and SpecSolver with limited training data amount. Specif-
ically, for Darcy Flow and Navier-Stokes, we train neural
operators with 200, 400, 600, 800, and 1000 trajectories re-
spectively, and then test on additional 200 trajectories. Same
as other experiments, we use Relative L2 as the performance
measure, with a lower value meaning better performance.
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Table 4. Comparison on different training numbers.

Problem
Training
Number

Transolver SpecSolver HPM

Darcy Flow

200 1.75e-2 1.10e-2 1.06e-2
400 1.04e-2 7.32e-3 6.66e-3
600 6.87e-3 6.20e-3 6.03e-3
800 6.33e-3 5.64e-3 4.98e-3

1000 5.24e-3 5.33e-3 4.38e-3

Navier-Stokes

200 3.76e-1 1.93e-1 1.85e-1
400 3.14e-1 1.48e-1 1.26e-1
600 2.87e-1 1.21e-1 1.17e-1
800 2.49e-1 1.04e-1 8.25e-2

1000 9.60e-2 9.34e-2 7.44e-2

Table 5. Comparison of different forms of H(x,Φ).
Implementation of H(x,Φ) Relative Error

Form1: Softmax(MLP(x))⊙Φ 4.38e-3
Form2: Sigmoid(MLP(x))⊙Φ 4.86e-3
Form3: Softmax(AvgPool(MLP(x)))⊙Φ 5.47e-3
Form4: Softmax(MLP(x)) +Φ 4.69e-3
Form5: Softmax(MLP(Concat(x,Φ))) 5.24e-3

Table 6. Comparison of inference time.
Model Parameter Count Inference Time

SpecSolver 601,537 14.8 ms
Transolver 2,819,521 30.9 ms
HPM 751,041 17.4 ms

Table 4 shows the results. HPM outperforms both base-
lines across all training data quantities. With limited data,
HPM matches SpecSolver while significantly outperform-
ing Transolver, showing the benefits of spectral continuity
prior. As the data amount increases, HPM leverages its
point-level flexibility to fully exploit additional training data
and surpass both baselines.

This illustrates that HPM effectively combines domain-level
spectral structure with point-wise adaptivity for strong per-
formance across different data regimes.

4.5. Additional Comparison

Different Holistic Instantiations. We compare several
instantiations to find the effective way to fuse spectral struc-
ture with point-wise adaptivity under minimal overhead.

The results in Table 5 highlight two crucial coupling insights:
First, point-wise processing is essential. As Form 3 shows,
local adaptivity cannot be achieved through global opera-
tions. Second, enforcing competition between frequency
components via Softmax proves more effective, likely due
to explicit frequency trade-offs at each point. We believe
developing more sophisticated coupling mechanisms that
better balance local flexibility with global spectral structure
could potentially achieve better performance.

Inference Time Comparison. We compare the inference
time of different methods on the Airfoil problem, using a sin-
gle RTX 3090 with batch size 1. As shown in Table 6, HPM
adds minimal overhead over SpecSolver while maintaining
fewer parameters and faster inference than attention-based
method Transolver (Wu et al., 2024).

4.6. Analysis of Learned Modulation Patterns

This section studies how HPM learns to modulate spectral
patterns. Benefiting from the straightforward point-wise
multiplication design of H(·, ·), we can directly visualize
how the model adjusts different spectral components across
network layers, providing insights into its learned spectral-

physical integration strategies.

Modulation Pattern Definition. We use H(x,Φ) =
Softmax(MLP(x)) ⊙ Φ as coupling function and study
how each point modulates different spectral basis functions
by visualizing M(x) = Softmax(MLP(x)). To show this
clearly, for each point, we calculate the difference between
how much it uses high frequencies (last half of basis func-
tions) versus low frequencies (first half). This gives us a
score from -1 to 1, where positive means stronger high
frequencies and negative means stronger low frequencies.

Pattern Analysis Results. In Figure.4 (more in Figure.6, 7),
we show how a 4-layer HPM for Darcy Flow and an 8-layer
HPM for Airfoil problem. We found three main patterns:
(a) Spatially Adaptive Modulation. Different parts of the
space use different patterns - some areas focus on high-order
functions, others on low-order ones. This shows that HPM
adjusts its processing based on local features. (b) Layer-wise
Evolution. The patterns change in a clear way through the
layers. Early layers generally use uniform patterns across
space, middle layers vary more and use more high-order
functions where needed, and later layers return to uniform
patterns across space. (c) Physical Feature Enhancement.
At boundaries and areas where solutions change rapidly, the
model uses more high-order functions, showing these areas
need finer detail for prediction.

Guiding Fixed Basis Design. HPM’s learned patterns can
help improve fixed spectral methods. We test if adding more
high-frequency components in the middle layers, based on
HPM’s layer evolution patterns, could help. As Table 7
shows, manually adding high-frequency components in mid-
dle layers works better than adding in early or late layers.
This shows that HPM’s patterns reveal useful information
about how to process spectral features.

In summary, HPM learns patterns that change across both
space and network layers, balancing local flexibility with
domain spectral structure. These patterns help us understand
how HPM works and design better fixed spectral methods.
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Figure 4. Visualization of learned holistic spectral modulation patterns on Darcy Flow and Airfoil.

Table 7. Fixed basis design guided by HPM’s modulation patterns.

Basis Enhancement Strategy Relative Error

Enhanced High-Freq in Early Layers 5.12e-3
Enhanced High-Freq in Middle Layers 4.84e-3
Enhanced High-Freq in Late Layers 4.97e-3

SpecSolver (No Enhancement) 5.33e-3
HPM (Adaptive Modulation via H(·, ·)) 4.38e-3

5. Limitation and Future Work
Despite obtaining superior performance in a lot of scenarios,
the introduced Holistic Physics Mixer inevitably suffers
certain limitations that do not affect the core conclusion of
this work, and they are worth further exploration in future
works. (a) Firstly, the current coupling function H(x,Φ)
remains a fundamental design, without considering demands
in particular circumstances. Therefore, it is meaningful
to develop more sophisticated coupling mechanisms for
specific requirements. (b) Additionally, although this work
has explored a broad PDE solving problems, numerous real-
world physical systems still warrant further investigation.
It is significant to investigate the application of Holistic
Physics Transform in general deep learning tasks such as
time-series signal prediction and computer vision learning.

6. Conclusion
This work presents Holistic Physics Mixer based Neural
Operators (HPM), which integrates domain-level spectral
structure and point-level physical states into a unified repre-
sentation space for operator learning. The proposed Holistic
Physics Transform holds significant potential applications
in numerous physics-informed deep learning tasks, as it en-
ables adaptive processing that considers both local physical
variations and global spectral properties. Comprehensive
experiments validate the superior performance of HPM in
various PDE solving scenarios, benefiting from its ability to
simultaneously capture domain-level continuity constraints
and point-level physical dynamics. We hope HPM’s unified
treatment of physical systems can inspire future explorations
in neural operator learning.
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A. Appendix
A.1. Theoretical Foundations

We first introduce the preliminary lemmas about neural operator learning in Section A.1.1. Next, we provide the theoretical
demonstration (Theory A.4) that Holistic Physics Mixer is the learnable integral neural operator in Section A.1.2.

A.1.1. PRELIMINARY THEOREM: INTEGRAL NEURAL OPERATOR LEARNING

The following theorems are summarized from previous works (Li et al., 2020; Kovachki et al., 2023; Wu et al., 2024), which
provide the theoretical basis of the proposed Holistic Physics Mixer.
Theorem A.1. PDEs could be solved by learning integral neural operators.

Kovachki et al. (2023) formulate the common architecture of neural operators for PDE solving as a stack of network layers.

Gθ = Q ◦ σ(Wl +Kl) ◦ · · · ◦ σ(Wi +Ki) ◦ · · · ◦ σ(W1 +K1) ◦ P, (19)

where P and Q are both linear point-wise projectors as shown in Equation 3. Wi is the point-wise fully connected layer and
Ki is the non-local integral operator.

In each network layer, the key is to learn the non-local integral operator Ki defined as follows:

Ki(u)(x) =

∫
Ω

κi(x, ξ,u(x),u(ξ))u(ξ)dξ, (20)

where u is the input function and Ω is the physical domain. As presented in (Kovachki et al., 2023), the learnable integral
kernel operator enables the mapping between continuous functions, similar to the weight matrix operation that enables
the mapping between discrete vectors. It could be demonstrated that various neural operators (Li et al., 2020; Cao, 2021;
Chen et al., 2023; Wu et al., 2024) are learning different kernel functions of the stacked integral neural operators shown in
Equation 20.
Lemma A.2. FNO (Li et al., 2020) learns integral neural operators.

This is demonstrated in (Li et al., 2020) and (Kovachki et al., 2023). By setting the kernel function as κ(x, ξ,u(x),u(ξ)) =
κ(x− ξ), it could be demonstrated that the kernel integral operator could be implemented with Fourier Transform. For more
details you can refer to (Li et al., 2020).
Lemma A.3. The standard Transformer (Vaswani, 2017) learns integral neural operators.

(Kovachki et al., 2023) demonstrates that the canonical attention mechanism (Vaswani, 2017) is a special case of integral
neural operators. This could be demonstrated by setting the kernel function as follows:

κ(x, ξ,u(x),u(ξ)) = (

∫
Ω

exp(Wqu(ξ
′
)(Wku(x))

T )dξ
′
)−1exp(Wqu(x)(Wku(ξ))

T )R, (21)

where Wq ∈ Rd×d, Wk ∈ Rd×d and R ∈ Rd×d are all the training parameter of the neural network. For simplification, we
eliminate the division operation with

√
d. With this formulation, we can derive the attention mechanism based on the kernel

integral operator shown in Equation 20 and Monte-Carlo approximation. The proof can be found in (Kovachki et al., 2023).
Therefore, the attention mechanism could be employed for PDE solving.

A.1.2. HOLISTIC PHYSICS MIXER AS INTEGRAL NEURAL OPERATORS

Theorem A.4. Holistic Physics Mixer is a learnable integral neural operator.

Proof. The Holistic Physics Mixer is represented in the following form:

Fmixer
Holi (x) = T −1

HPT ◦ Project ◦ THPT(x), (22)

where x ∈ RN×d is the input feature, THPT and T −1
HPT represent the Holistic Physics Transform and its inverse transform:

THPT(x) = H(x,Φ)Tx, (23)

T −1
HPT(x̂) = H(x,Φ)x̂. (24)
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To prove this is an integral neural operator, we construct the kernel function of the integral operator as follows:

κ(x, ξ,u(x),u(ξ)) = H(x,Φ)(x)H(x,Φ)(ξ)TR (25)

where H(x,Φ)(x) represents the x-th row of matrix H(x,Φ) ∈ RN×k, and R ∈ Rd×d is a learnable parameter matrix.

Based on this kernel function, we can derive the Holistic Physics Mixer from the integral neural operator formulation:

K(x)(x) =

∫
Ω

κ(x, ξ,u(x),u(ξ))u(ξ)dξ

=

∫
Ω

H(x,Φ)(x)H(x,Φ)(ξ)TRu(ξ)dξ (Equation 25)

= H(x,Φ)(x)R

∫
Ω

H(x,Φ)(ξ)Tu(ξ)dξ

≈ H(x,Φ)(x)R
∑
ξ∈Ω′

H(x,Φ)(ξ)Tu(ξ) (Monte-Carlo approximation)

= H(x,Φ)(x)RTHPT(x)

= T −1
HPT(RTHPT(x))(x)

= (T −1
HPT ◦ Project ◦ THPT(x))(x), (Matrix multiplication as Project),

(26)

where Ω′ is the set of sampled points from domain Ω. The Monte-Carlo approximation requires: (a) The sampling points in
Ω′ are sufficiently dense. (b) The coupling function H is continuous and bounded. Project (including LayerNorm and FC
layer) can be represented as matrix multiplication R that is independent of spatial locations.

The final form in Equation 26 is exactly same as Holistic Physics Mixer defined in Equation 22. This concludes that Holistic
Physics Mixer is equivalent to an integral neural operator with kernel function defined in Equation 25.

A.2. Methodology Extension

A.2.1. MULTI-HEAD HOLISTIC PHYSICS MIXER

Following the multi-head attention mechanism (Vaswani, 2017; Wu et al., 2024), we enhance the Holistic Physics Mixer
by introducing a multi-head architecture that processes features in parallel holistic spectral spaces. Specifically, we
first split the latent features x ∈ RN×dv into h vectors xhead-1, xhead-2, ..., xhead-h along the channel dimension, where
xhead-i = x[:,dhead

v ×(i−1):dhead
v ×i] and h denotes the number of heads. dhead

v = dv/h is the dimension of features in single head.

Next, every vector xhead-i ∈ RN×dhead
v is independently processed by Fmixer

Holi . The Holistic Physics Mixer in each head is
formulated as:

Fmixer
Holi (x) = T −1

HPT ◦ FC ◦ LayerNorm ◦ THPT(x), (27)

where LayerNorm(·) is introduced to normalize the holistic spectral features for more efficient optimization and enhanced
generalization. Additionally, we share the learnable weights of FC for all holistic spectral components.

Finally, all output vectors are concatenated as the final output:

Fmulti-head-mixer
Holi (x) = Concat(Fmixer

Holi (xhead-i)). (28)

The multi-head design brings several benefits:

• Each head can learn different coupling patterns between spectral and physical information, allowing the model to capture
various aspects of the operator mapping simultaneously.

• The parallel computation of multiple heads enables efficient implementation on modern hardware.

• The concatenation of multiple heads provides richer feature representations that combine different aspects of the holistic
spectral space.

In practice, we find that using 4-8 heads typically provides good performance across different PDE problems. The specific
head numbers used for each problem are reported in Table 8.
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A.2.2. SPARSE-FREQUENCY FIXED SPECTRAL TRANSFORM

To enhance the learning capability of fixed spectral methods, we attempt to manually add high-frequency spectral features
in several network layers based on insights gained from HPM’s learned coupling patterns. Specifically, instead of using
the lowest k frequencies, we uniformly take k frequencies from the lowest k × r frequencies, where r is the sparsity ratio.
Higher r indicates using more high frequencies and we set r = 2 and r = 4 for different layers.

We find that using Sparse-Frequency Spectral Transform in partial network layers effectively improves the performance of
fixed spectral methods. However, such manual frequency design relies on prior knowledge and repeated experiments to select
appropriate layers and sparsity ratios, and additional computational cost is required for calculating LBO eigenfunctions with
k × r frequencies. To address this issue, we experiment with the fixed spectral design guided by learned coupling patterns
of HPM, as shown in Table 7.

A.3. Experiment Setups

A.3.1. IMPLEMENTATION DETAIL

We implement HPM with comparable parameter count to the compared baselines (Hao et al., 2023; Wu et al., 2024; Chen
et al., 2023). The same optimizer setup as Transolver (Wu et al., 2024) is employed. All experiments (including all baselines,
ablations and our method) could be conducted with a single A100 device. The implementation detail for each problem is
presented in Table 8.

A.3.2. METRIC

Same as previous works (Li et al., 2020; Wu et al., 2024), the assessed metric in this work is the Relative L2 Error, formulated
as follows:

L2 =
1

Ntest

Ntest∑
i=1

∥ûi − ui∥2
∥ui∥2

, (29)

where Ntest is the number of evaluated samples, ûi represents the predicted trajectory, and ui denotes the ground-truth
trajectory.

A.3.3. EVALUATED PDE PROBLEMS

Darcy Flow. Darcy Flow is a steady-state solving problem from Li et al. (2020). We experiment with the identical setup as
previous works (Li et al., 2020; Tran et al., 2021; Wu et al., 2024). The resolution of input and output functions are 85× 85
and there are 1000 trajectories for training and an additional 200 data for testing.

Navier-Stokes. Navier-Stokes is the PDE solving problem introduced in FNO (Li et al., 2020). We experiment with the
most challenging split where the viscosity coefficient is 1e-5. The input is the vorticity field of the first 10 time steps and the
target is to predict the status of the following 10 steps. The training and test amounts are 1000 and 200 respectively.

Airfoil. Airfoil is an irregular domain problem from Geo-FNO (Li et al., 2023a). In this experiment, the neural operators
take the airfoil shape as input and predict the Mach number on the domain. The irregular domain is represented as structured
meshes aligned with standard rectangles. All airfoil shapes come from the NACA-0012 case by the National Advisory
Committee for Aeronautics. 1000 samples are used for training and additional 200 samples are used for evaluation.

Plasticity. This task requires neural operators to predict the deformation state of plasticity material and the impact from the
upper boundary by an irregular-shaped rigid die. The input is the shape of the die and the output is the deformation of each
physical point in four directions in future 20 time steps. There are 900 data for training and an additional 80 data for testing.

Irregular Darcy. This problem involves solving the Darcy Flow equation within an irregular domain. The function input is
a(x), representing the diffusion coefficient field, and the output u(x) represents the pressure field. The domain is represented
by a triangular mesh with 2290 nodes. The neural operators are trained on 1000 trajectories and tested on an extra 200
trajectories.

Pipe Turbulence. Pipe Turbulence system is modeled by the Navier-Stokes equation, with an irregular pipe-shaped
computational domain represented as 2673 triangular mesh nodes. This task requires the neural operator to predict the next
frame’s velocity field based on the previous one. Same as Chen et al. (2023), we utilize 300 trajectories for training and
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Table 8. Implementation detail for each PDE problem.

Problems Model Configurations Training Configurations
Depth Width Head Number k Optimizer Scheduler Initial Lr Weight Decay Epochs Batch Size

Darcy Flow 8 128 8 128 AdamW OneCycleLR 1e-3 1e-5 500 4
Airfoil 8 128 8 128 AdamW OneCycleLR 1e-3 1e-5 500 4
Navier-Stokes 8 256 8 128 AdamW OneCycleLR 1e-3 1e-5 500 4
Plasticity 8 128 8 128 AdamW OneCycleLR 1e-3 1e-5 500 8
Irregular Darcy 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Pipe Turbulence 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Heat Transfer 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Composite 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Blood Flow 4 64 4 32 AdamW OneCycleLR 1e-3 1e-5 2000 4

(b) Navier-Stokes Equation(a) Darcy Flow

Figure 5. Comparison of validation loss curve during training.

then test the models on 100 samples.

Heat Transfer. This problem is about heat transfer events triggered by temperature variances at the boundary. Guided by
the Heat equation, the system evolves over time. The neural operator strives to predict 3-dimensional temperature fields
after 3 seconds given the initial boundary temperature status. The output domain is represented by triangulated meshes of
7199 nodes. The neural operators are trained on 100 data sets and evaluated on another 100 data.

Composite. This problem involves predicting deformation fields under high-temperature stimulation, a crucial factor in
composite manufacturing. The trained operator is anticipated to forecast the deformation field based on the input temperature
field. The structure studied in this paper is an air-intake component of a jet composed of 8232 nodes, as referenced in (Chen
et al., 2023). The training involved 400 data, and the test examined 100 data.

Blood Flow. The objective is to foresee blood flow within the aorta, including 1 inlet and 5 outlets. The flow of blood is
deemed a homogeneous Newtonian fluid. The computational domain, entirely irregular, is visualized by 1656 triangle mesh
nodes. Over a simulated 1.21-second duration, with 0.01-second temporal steps, the neural operator predicts different times’
velocity fields given velocity boundaries at the inlet and pressure boundaries at the outlet. Same as (Chen et al., 2023), our
experiment involves training on 400 data sets and testing on 100 data.

A.4. Additional Experimental Results

This section ablates the core modules of HPM to reveal the main factors affecting its performance.

Optimization Efficiency Comparison. In addition, we compare the validation loss curves of HPM and Transolver during
training, as portrayed in Figure 5. We notice that HPM reaches the same prediction accuracy as Transolver earlier, often
dozens or even hundreds of epochs ahead, especially in the initial and middle stages of training (the first 300 epochs). This
confirms the excellent operator fitting ability of HPM benefiting from the suitable combination of spectral priors (offering
fundamental function approximation basis) and point-wise adaptivity (providing efficient local feature processing).

Frequency Number. We compare the performance of HPM and SpecSolver with different frequency numbers k, as
shown in Table 9. HPM consistently performs better than SpecSolver across all frequency settings. The performance gap is
particularly significant under lower frequency numbers (16, 32, and 64). This leads to the conclusion that holistic spectral
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Table 9. Performance of different frequency numbers on Darcy Flow.

Problem Frequency Number SpecSolver HPM

Darcy Flow

16 1.04e-2 5.10e-3
32 8.08e-3 5.02e-3
64 6.15e-3 4.85e-3

128 5.31e-3 4.38e-3

Navier-Stokes

16 1.18e-1 9.51e-2
32 1.05e-1 8.77e-2
64 9.47e-2 7.44e-2

128 8.37e-2 7.28e-2

processing eliminates the dependency on a large number of frequencies, benefiting from the point-wise adaptive mechanism.
Therefore, HPM potentially performs better in some practical industry scenarios where computing high-frequency basis
functions is computationally expensive.

Head Number Analysis. We evaluate the impact of varying head numbers in HPM on the Darcy Flow problem. As shown
in Table 10, using multiple heads (4, 8, or 16) improves performance compared to a single head. However, HPM remains
relatively insensitive to the specific number of heads chosen, with all multi-head variants achieving similar performance
levels.

Table 10. Impact of head numbers.

Head Number Relative Error

1 4.77e-3
2 4.79e-3
4 4.56e-3
8 4.38e-3

16 4.54e-3

Impact of Parameters. To validate that HPM’s performance gains come from its architecture rather than increased
parameters, we evaluate HPM with reduced depth on the Darcy Flow problem.

Table 11. Performance comparison with different parameter amounts.

Model Layers Parameter Amount L2 Error

Transolver 8 2,835,649 5.24e-3
SpecSolver 8 617,665 5.31e-3

HPM 8 767,169 4.38e-3
HPM 4 408,737 4.71e-3

As shown in Table 11, HPM with only 4 layers still outperforms both Transolver (Wu et al., 2024) and SpecSolver, despite
having significantly fewer parameters. This demonstrates that the performance gains come from the holistic spectral
processing architecture rather than increased model capacity.

Additional Resolution Generalization Experiment. To further evaluate resolution generalization capabilities, we train
models on a middle resolution (111× 26) and test on both higher (221× 51) and lower (45× 11) resolutions on the Airfoil
problem.

As shown in Table 12, HPM maintains strong performance across both upsampling and downsampling scenarios. While
attention-based methods like Transolver excel at training resolution, they struggle to generalize to unseen resolutions. In
contrast, HPM combines high accuracy at the training resolution with robust generalization capabilities inherited from
spectral methods.
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Table 12. Resolution generalization performance on Airfoil.

Model Train Resolution Higher Resolution Lower Resolution

Transolver 4.50e-3 6.95e-2 1.22e-1
SpecSolver 5.37e-3 1.95e-2 5.84e-2
HPM 4.17e-3 1.57e-2 3.85e-2

A.5. Additional Visualization of Point-wise Frequency Preference

Visualization of Modulation Patterns for Samples with Different Resolutions. Figure 6 presents additional visualizations
of holistic spectral modulation patterns on the Airfoil problem for samples with varied resolutions. We observe that
the learned modulation patterns remain consistent as the domain resolution changes. This demonstrates that HPM’s
coupling mechanism maintains stable frequency preferences across different resolutions, contributing to its strong resolution
generalization capability.

Visualization of Modulation Patterns for Different Samples. Figure 7 shows the visualization of learned modulation
patterns for different samples on Darcy Flow. Despite handling different input functions, each head maintains consistent
modulation strategies across samples at specific layers. For example, Head-1 in Layer-1 consistently enhances high-
frequency components near boundaries, while Head-1 in Layer-2 emphasizes high frequencies in regions with sharp state
changes. This indicates that the multi-head architecture in HPM learns specialized modulation strategies, with different
heads focusing on distinct aspects of spectral-physical coupling. These systematic patterns reveal how HPM combines
domain-level spectral structure with point-wise adaptivity to achieve effective operator learning.
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Figure 6. Visualization of learned holistic spectral modulation patterns on Airfoil for samples with different resolutions.
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Figure 7. Visualization of learned holistic spectral modulation patterns on Darcy Flow for different samples.

19



Learning PDEs in a Unified Spectral-Physical Space

Figure 8. More visualization of prediction error on different test resolutions.
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