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Slow Transition to Low-Dimensional Chaos
in Heavy-Tailed Recurrent Neural Networks

Abstract

Growing evidence suggests that synaptic weights in the brain follow heavy-tailed distribu-
tions, yet most theoretical analyses of recurrent neural networks (RNNs) assume Gaussian
connectivity. We systematically study the activity of RNNs with random weights drawn
from biologically plausible Lévy alpha-stable distributions. While mean-field theory for the
infinite system predicts that the quiescent state is always unstable—implying ubiquitous
chaos—our finite-size analysis reveals a sharp transition between quiescent and chaotic
dynamics. We theoretically predict the gain at which the finite system transitions from
quiescent to chaotic dynamics, and validate it through simulations. Compared to Gaussian
networks, finite heavy-tailed RNNs exhibit a broader gain regime near the edge of chaos,
namely, a slow transition to chaos. However, this robustness comes with a tradeoff: heavier
tails reduce the Lyapunov dimension of the attractor, indicating lower effective dimension-
ality. Our results reveal a biologically aligned tradeoff between the robustness of dynamics
near the edge of chaos and the richness of high-dimensional neural activity. By analytically
characterizing the transition point in finite-size networks—where mean-field theory breaks
down—we provide a tractable framework for understanding dynamics in realistically sized,
heavy-tailed neural circuits.

Keywords: theoretical neuroscience; recurrent neural networks; heavy-tailed connectivity;
finite-size effects; Lyapunov exponents

1. Introduction

Advances in connectomics are revealing increasingly detailed wiring diagrams across species
and brain regions (Dorkenwald et al., 2024; The MICrONS Consortium, 2025), prompting
questions about the structural principles that govern neural computation. A striking and
ubiquitous feature is the heavy-tailed distribution of synaptic weights, observed in mam-
malian cortex, mammalian hippocampus, and even Drosophila (Song et al., 2005; Lefort
et al., 2009; Tkegaya et al., 2013; Scheffer et al., 2020), yet absent from most theoretical
neuroscience models (e.g., Kadmon and Sompolinsky, 2015), which typically assume Gaus-
sian connectivity, and from common machine learning initialization schemes (Glorot and
Bengio, 2010; He et al., 2015). Such heavy tails can be modeled using Lévy a-stable dis-
tributions (Feller, 1971; Borak et al., 2005), parameterized by a stability index « where
smaller o produces more extreme outliers, potentially altering network dynamics. In re-
current neural networks (RNNs), a central phenomenon is the transition between quiescent
and chaotic regimes—the “edge of chaos”—long hypothesized to optimize information flow
(Bertschinger et al., 2004; Schuecker et al., 2018). While Gaussian random matrices exhibit
a well-defined transition determined by eigenvalue spectra (Rajan and Abbott, 2006; Aljad-
eff et al., 2015), heavy-tailed matrices feature unbounded eigenvalue densities (Bordenave
et al., 2011), which in the infinite-size limit can abolish the transition entirely (Kusmierz
et al., 2020). Understanding how such connectivity shapes dynamics is timely, as RNNs are
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increasingly used to model neural population activity (Sussillo and Abbott, 2009; Pandar-
inath et al., 2018), simulate cognitive tasks (Yang et al., 2019; Driscoll et al., 2024), and
generate hypotheses for experiments (Pinto et al., 2019; Pagan et al., 2025), yet theoretical
insight into RNNs with biologically realistic heavy-tailed weights remains scarce.

Related Work Prior theoretical work has shown that infinite-width feedforward networks
with Gaussian weights converge to Gaussian processes (Neal, 1996), whereas Lévy a-stable
weights yield richer a-stable process priors (Favaro et al., 2020; Jung et al., 2021; Bordino
et al., 2023; Favaro et al., 2023). While these studies focus on feedforward architectures,
our annealed analysis reveals a distinct transition in heavy-tailed feedforward networks
and extends the investigation to recurrent networks. Heavy-tailed connectivity has been
linked to extended critical regimes in both RNNs and feedforward nets (Wardak and Gong,
2022; Qu et al., 2022); our work builds on this by explaining the phenomenon via maximal
Lyapunov exponents, showing size-dependent transition locations, and identifying a tradeoff
between regime size and neural manifold dimensionality. For the tanh activation function
studied here, Cauchy RNNs (o = 1) were found by Kus$mierz et al. (2020) to exhibit
perpetual chaos in the infinite-size limit, but our results demonstrate that finite networks
can still exhibit well-defined transitions, underscoring the importance of finite-size effects.

2. Methods

We study discrete-time RNNs with tanh activation, z;(t + 1) = tanh( > Wijzi(t) + Li(t)),
where W;; N Ly(0) is drawn from a symmetric Lévy a-stable distribution with scale
o = g/N'? gain g, and o € (0,2] (o = 2 is Gaussian). We consider autonomous (I = 0),
stimulus-driven, and annealed settings, the latter resampling W each step (equivalent to a
depth-T" feedforward net).

Dynamical stability is quantified by the maximum Lyapunov exponent (MLE) Apyax via a
QR-based algorithm (Vogt et al., 2022), with A\jpax > 0 indicating chaos, < 0 stability, and ~
0 the edge of chaos. Attractor dimensionality is measured by the Lyapunov (Kaplan—Yorke)
Zf:l Ai

Akl - _
index with Zle A; > 0, and by the participation ratio PR = (3, \;)?/>_; A? from the
eigenvalues {5\2} of the steady-state covariance. PR reflects linear dimensionality, Dgy
nonlinear complexity; their comparison shows how heavy-tailed connectivity shapes stability

and manifold geometry.

dimension Dky = k + , where {)\;} are ordered exponents and k is the largest

3. Results

3.1. Finite heavy-tailed networks exhibit a predictable quiescent-to-chaotic
transition

We asked whether finite-size recurrent networks with Lévy a-stable weights retain a well-
defined quiescent—chaotic transition, absent in the infinite-width limit for o < 2 (Kuémierz
et al., 2020). An annealed analysis of the linearized dynamics (Appendix A) yields g* =

exp(—(Ena)), ZENna= éln(% Zjvzl ]zj]a) , 2j ~ Lo(1). The theory predicts g* decreases
with NV for all a, approaching the mean-field limit quickly for e = 2 but only logarithmically
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Figure 1: Finite heavy-tailed networks exhibit a predictable and tail-dependent
slow transition to chaos. (A) Theoretical prediction of the critical gain g*
as a function of network size N for different tail indices «. In the Gaussian case
(a = 2), g* rapidly converges to the mean-field limit (dashed line), whereas heavy-
tailed networks (o < 2) show a much slower, logarithmic decay toward zero. (B)
Fraction of near-zero state components f-. (¢ = 0.1) in linearized networks with
a =1 and N = 3000 evolved for T' = 100 steps. Annealed networks (orange)
display a sharp transition at the predicted ¢g*, while quenched networks (blue)
show realization-dependent shifts, which average to a smoother curve but remain
centered near the theory. (C) Maximum Lyapunov exponent Apax for N = 3000
as a function of ¢ and «, showing that heavier-tailed networks transition more
gradually and remain near the edge of chaos over a broader range of g.

for < 2 (Fig. 1A). Simulations of annealed and quenched linear networks match these
predictions: in the quenched case, g* varies across realizations but centers near the annealed
value, with larger fluctuations at smaller N (Fig. 1B; Appendix B).

3.2. Heavier-tailed RNNs exhibit a slower, more robust transition to chaos

We next examine how the network transition depends on the tail index «. Simulations of
autonomous RNNs (Fig. 1C; noisy-input results in Appendix) show that for o > 1, Apax
increases from negative to positive values as g grows, verifying a transition to chaos numeri-
cally. The shape and position of this transition vary systematically with a: in the Gaussian
case (o = 2), Apax rises steeply, while for heavier-tailed networks (smaller «) the growth
is more gradual, keeping the network close to the edge of chaos over a broader range of g.
This extended critical-like regime may offer robustness benefits to parameter drift, enabling
high-capacity dynamics without precise tuning (Bertschinger et al., 2004; Legenstein and
Maass, 2007; Toyoizumi and Abbott, 2011). Increasing N shifts the transition to lower g
(Appendix C), with heavier-tailed networks showing a stronger shift, consistent with our
finite-size scaling theory (Fig. 1A).

3.3. Heavy-tailed RNNs compress the chaotic attractor into a
lower-dimensional slow manifold

The robustness of the transition to chaos in heavy-tailed RNNs raises a natural question:
does the attractor geometry also vary systematically with the tail index «a? At the av-



erage critical gain (¢*), Lyapunov spectra show that Gaussian networks have many expo-
nents near zero, indicating a broad slow manifold, whereas heavier-tailed networks have
fewer (Fig. 2A). Accordingly, the Lyapunov dimension Dgy drops sharply with smaller «
(Fig. 2B), and the participation ratio, a variance-based measure of activity dimensionality,
also declines (Fig. 2C), though less steeply. This tradeoff persists under stimulus-driven
dynamics (Appendix D): heavier-tailed networks gain robustness near the edge of chaos but
compress activity into a lower-dimensional manifold.
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Figure 2: Heavy-tailed RNNs operate on lower-dimensional attractors near the
edge of chaos. All panels: N = 1000, mean +1 SD across 10 trials; see Appen-
dices for noisy-input and ablation results. (A) Lyapunov spectra at the average
critical gain (g*) reveal that heavier-tailed networks have fewer exponents near
zero, indicating a compressed slow manifold. (B) Lyapunov dimension is lower
for smaller «, reflecting fewer locally expanding or marginally stable directions.
(C) Participation ratio also decreases with smaller «, indicating reduced variance
spread across activity modes.

4. Discussion

Our results reveal a finite-size phenomenon absent from mean-field theory: recurrent net-
works with Lévy-distributed synaptic weights exhibit a clear quiescent-to-chaotic transition
whose location and sharpness depend systematically on both the tail index o and network
size N. Heavier-tailed connectivity widens the parameter range over which networks re-
main near the edge of chaos, conferring robustness to gain variations—a property that may
be advantageous for biological circuits operating across multiple states or in variable en-
vironments. However, this robustness comes at a cost: both the Lyapunov dimension and
participation ratio decrease with heavier tails, indicating that dynamics are compressed
into a lower-dimensional slow manifold. This tradeoff implies that, for tasks requiring
high-dimensional activity, heavier-tailed networks may need to be larger than Gaussian
ones, whereas tasks relying on low-dimensional dynamics may benefit from the extended
critical-like regime. These findings highlight the importance of finite-size corrections for
interpreting neural activity and suggest that anatomical connectivity statistics can directly
inform predictions about circuit-level computational capacity. Future work should inves-
tigate how these dynamical properties translate to information-processing performance,
and whether learning, task structure, and biological constraints modulate or exploit the
robustness-dimensionality tradeoff identified here.
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Appendix A. Mathematical analysis of the transition in annealed
networks

Our goal is to show that networks with a-stable weight distributions exhibit a transition
between two regimes, and to find the location of this transition, which we denote as g*. As
in Gaussian networks, the quiescent state is stable and any small perturbation around it
shrinks if weights are generated from a narrow enough distribution (i.e., g < ¢*). Similarly,
the quiescent state is unstable if the underlying distribution is wide enough (¢ > ¢*).
In contrast to Gaussian networks, however, this effect can only be observed through the
analysis of finite-size effects.

As described in the main text, we study the linear stability of the quiescent fixed point
by analyzing the dynamics of small perturbations around it. Since weights are randomly
redrawn at each step, the evolution () is a stochastic process. To quantify its behavior
we focus our attention on the conditional distribution e(*t1) given (). Components of this
vector are independent due to the assumed independence of rows of the weight matrix. The
conditional distribution of a single component can be characterized in the Fourier space as

N
o (D) _(t _ ; () _(t) _ (t)
<exp (zk:ei E )>>W = <exp zkz Wii'e; > =exp | —|k|%¢"— ‘ ‘
ij
(1)
where we used WZ.(;) ~ L, <g/Nt1/ a). Thus, for ¢ > 1, the perturbation, when conditioned
on the previous step, is an a-stable random variable. More specifically, it can be written as

t+1 ]5 ~ L, (’y(tﬂ)), where the conditional scale at step ¢ + 1

1/a

’Y(t“ Nt Z ‘ ) 2)

is a deterministic function of state at time ¢, which itself is a random variable. We can un-
pack this relation one step backwards by conditioning on =1 instead, with E(t) |€(t D~ Ly (fy(t)).
We utilize the fact that this can also be expressed as

sgt)|6(t—1) _ ,y(t)zi(t) (3)
where () depends on the perturbation at time t — 1, and zgt)
This leads to the recursive formula for scalar ~()

are i.i.d. a-stable variables.

D) o (D(0) (4)

where (¢0)) >

1 1s a sequence of independent random variables distributed as

1/a

¢V =g (5)

with i.i.d. zj(-l) ~ Lo(1). If layers have the same width Ny = N, €®) are i.i.d. and (4) is a
scalar multiplicative process with i.i.d. entries. Thus, we have reduced our problem to a
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simpler special case of purely multiplicative scalar Kesten process. We can easily solve this
recursion and rewrite the solution as a sum

t
Iny*) = In~y® 4 Z Ing® (6)
i=1

where ’y(l) is deterministically specified by the input perturbation £ Tt is known (Kesten,
1973; Statman et al., 2014) that this sum diverges to —oo almost surely if (In§) < 0
and diverges to oo almost surely if (In&) > 0. Accordingly, the sequence (’y(t))zl either
converges to 0 or diverges. Therefore, the critical width of the synaptic weight distribution

is given by

9" =exp(—(En,a)) (7)
where
N
_ 1 1 o
Zva =gl |y 2 (®)
]:

with z; ~ L (1).



Appendix B. Derivation of the logarithmic decay of g*(V)

Here, we estimate the expected value of
N
_ 1 1 o
:N@:aln N El|2j‘ y (9)
J:

where z; ~ Lo(1), for large N. We define Yy, = + Zjvzl |z;]* and note that the Laplace
transform of Yy , can be calculated as

Fra(s) = (%) = (P () (10)

where
Fra(s) = <e*s\zl‘*> (11)

z2~La (1)

According to (10), the large N asymptotic of Zy , is dominated by the behavior of F o(s)

around s = 0. This behavior should be similar for all symmetric distributions with the same

stability index. For example, take p,(z) = $|z|~17% for |z| > 1 and p.(z) = 0 otherwise.

The resulting expansion can be found as

<e—8|~’vl°‘> - s/duu_Qe_“ —s[(~Ls)~1-s(1—~—1lns)+0(s2)  (12)
2Pz

S

where I'(a, s) is the upper incomplete gamma function and -y is the Euler-Mascheroni con-
stant. Thus, the asymptotic expansion of Fj o(s) must take the form

Fio(s) =1— Ays(By —Ins) + O(s?) (13)
for some irrelevant constants A,, By. We plug (13) into (10) and arrive at
InFy(s) = —Aas (Ba —Ins+InN)+O (N7 (14)
For N > 1, (14) corresponds to a random variable X that can be constructed as
Xn=X1+A,InN, (15)

where

(exp(—sX1)) = exp(—Aqas (Ba —Ins)) (16)
We can rewrite the desired expected value as
— 1
(ENa) =~ - (In (X1 + AaInN)) 5, (17)
The distribution of X is fixed and does not change with N. Thus, for large N the second

term dominates, and we arrive at

1

)" "

9" = exp(=(Ena)) =

10
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Appendix C. Finite-size dependence of autonomous RNN dynamics

We next examine how network size N modulates the quiescent-to-chaotic transition in
autonomous Lévy RNNs. Figure 3 shows that increasing NV systematically shifts the critical
gain g* leftward, with the effect most pronounced for heavier-tailed connectivity (o < 2).
This finite-size dependence, absent in mean-field predictions, reinforces our theoretical result
that g* varies with both N and «.
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Figure 3: Maximum Lyapunov exponent (Amax) as a function of gain g for au-

tonomous recurrent networks with different tail indices a, shown for:
(A) N = 1000, (B) N = 3000, and (C) N = 10000. Curves show mean
across 10 trials; shaded regions denote +1 SD. We let the networks evolve for
T = 3000 steps, among which the Lyapunov exponents are accumulated over the
last K = 100 steps. See results under noisy stimulus in Appendices D. Heavier-
tailed networks (lower «) exhibit a slower, more gradual increase in Apax near
the transition (where A\pax = 0), resulting in a broader edge-of-chaos regime with
respect to g. Dashed lines and legend mark the average critical gain ¢g* at which
Amax first crosses zero. As N increases, this transition shifts leftward, especially
for lower ¢, in line with our theoretical predictions on finite-size effects.
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Appendix D. Additional results under small noisy input

We replicate our main results under i.i.d. Gaussian noise (variance = 0.01) added at each

time step, testing robustness in more biologically realistic, stimulus-driven settings. As
expected (Molgedey et al., 1992), noise quenches chaos but preserves the autonomous-case
trends.
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Figure 4: Effect of network size under small i.i.d. noisy input. Maximum Lya-
punov exponent (Apax) as a function of gain g in noisy stimulus-driven recurrent
networks with Lévy a-stable weight distributions. Curves show mean across 10
trials; shaded regions denote +1 SD. Each panel corresponds to a different net-
work size: (A) N = 1000, (B) N = 3000, and (C) N = 10000. Curves show
mean across 3 trials; shaded regions denote +1 SD. As in the autonomous case,
if a transition exists, then heavier-tailed networks exhibit a slower transition and
wider critical regime near Amax = 0. The critical gain ¢* (dashed line) shifts
leftward with increasing N, consistent with finite-size theory.
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Figure 5: Attractor geometry under noisy input (N = 1000). Mean across 10 tri-

als; shaded regions denote =1 SD. (A) Lyapunov exponent distributions at ¢*:
heavier-tailed networks have fewer near-zero exponents, indicating a compressed
slow manifold (x-axis truncated for clarity). (B) Lyapunov dimension declines
with heavier tails, as in the autonomous case. (C) Participation ratio shows a
dip near transition before rising, unlike the monotonic autonomous profile, but
remains lower overall for heavier tails.
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