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Abstract

Understanding the properties of well-generalizing minima is at the heart of deep
learning research. On the one hand, the generalization of neural networks has
been connected to the decision boundary complexity, which is hard to study in the
high-dimensional input space. Conversely, the flatness of a minimum has become
a controversial proxy for generalization. In this work, we provide the missing
link between the two approaches and show that the Hessian top eigenvectors
characterize the decision boundary learned by the neural network. Notably, the
number of outliers in the Hessian spectrum is proportional to the complexity of the
decision boundary. Based on this finding, we provide a new and straightforward
approach to studying the complexity of a high-dimensional decision boundary.

1 Introduction

The loss landscape of a deep neural network is a high-dimensional non-convex object exhibiting
multiple equivalent local minima and saddle points [5, 8, 7, 37, 2]. The complex geometry of the
loss landscape makes it notoriously difficult to analyze. In the context of gradient descent-based
optimization, it is widely observed that the network converges to a local minimum that generalizes
reasonably well [23]. Still, the properties of well generalizing minima are highly debated.

To understand those properties, some works study the decision boundary corresponding to a given
minimum. Researchers often follow Occam’s razor by assuming that among minima with similarly
high training accuracy, the ones with simpler decision boundaries will have a higher test accuracy [17].
Other works study minima by analyzing their curvature in the model parameter space and developing
heuristics indicating their generalization abilities. A few notable results suggest that flat minima

∗Equal contribution.
†Corresponding author.

Mathematics of Modern Machine Learning Workshop at NeurIPS 2023.



generalize better than sharp minima [23, 42, 21, 19]. One approach to analyzing the curvature of the
minimum is through the Hessian of the training loss. In particular, a sum of Hessian eigenvalues
(trace) is sometimes used as a straightforward metric for generalization [20, 23]. However, these
results are extensively contested and discussed [38, 22, 44, 35, 3], since flatness is not a well-defined
concept in non-convex landscapes of deep models [10].

Despite the intuitive understanding that the simple decision boundary and a properly defined flatness
of minima together promote good generalization of neural networks, to the best of our knowledge,
no explicit connection between the two has been established so far. Advancing an understanding of
this connection is precisely the goal of this work. To do so, we take a closer look at properties of the
Hessian that are observed to be universal across different deep learning setups. Firstly, the spectrum
of the Hessian at a minimum separates into the bulk centered around zero and a few outliers, whose
number is roughly equal to the number of classes in the data [37, 38, 15, 31, 32]. We ask what is the
significance of those outliers, and why is their number approximately equal to the number of classes?
Secondly, why does the gradient information reside in a small subspace spanned by the Hessian top
eigenvectors as noted by Gur-Ari et al. [18]?

In our work, we give an understanding of these properties by revealing their connection to the decision
boundary. In particular, we compare the gradient directions of the loss for individual data points with
the Hessian eigenvectors and see that they align when the samples are at the decision boundary. As a
consequence, we propose a new generalization measure and a margin estimation technique that show
promising empirical success in capturing the generalization of neural networks in Appendix I.

Contributions. We perform a rigorous numerical analysis of the deep neural network loss landscape
for classification tasks using the Hessian of training loss, and we observe the following:
(1) The top eigenvectors of the Hessian of training loss encode the decision boundary learned by the
neural network. In particular, there is a clear information separation across the eigenvectors, which
encode separate sections of the decision boundary.
(2) The number of encoding eigenvectors is usually equal to the number of spectrum outliers, which
is directly proportional to the complexity of the decision boundary. To elaborate, more eigenvectors
are needed to encode a complex, highly non-linear decision boundary than a simpler counterpart.

2 Definitions and numerical details

We consider a C class classification problem with training data D = {xi, yi}ni=1 where xi ∈ Rd

and yi ∈ {1, . . . , C} is the class label. Let the neural network be fθ : Rd → RC parameterized by
θ ∈ Rp where we focus on the over-parameterized setting, that is, p ≫ nd. We obtain the class
prediction as ŷi = argmax fθ(xi). We train the network fθ using stochastic gradient descent (SGD)
and cross-entropy loss L(θ;D). We define the geometric complexity of the decision boundary as the
number of its linear segments following Kienitz et al. [24].

At the heart of our work are the gradients of loss of individual data points gθ : Rd → Rp of x, where
for labels we take the current prediction of fθ at an input x:

gθ(x) =
∂

∂θ
L (θ; {x, ŷ}) . (1)

Note that x can be taken outside the training set. Finally, let the Hessian matrix of the training loss
on data D be the square matrix H ∈ Rp×p such that λi and vi ∈ Rp denote the eigenpair of H .
Therefore, the top k Hessian eigenvectors correspond to the first k largest Hessian eigenvalues. Then,
we define the alignment between the gradient gθ(x) of an input x with the eigenvector vi in terms of
cosine similarity as

Ai(x) =
⟨gθ(x), vi⟩
∥gθ(x)∥∥vi∥

, (2)

where ⟨·, ·⟩ is the scalar product, and ∥ ·∥ is the Euclidean norm of the vector. Note that this alignment
crucially depends on θ in the parameter space from which the Hessian H is derived.

Datasets and architectures. We consider five various two-dimensional (2D) simulated datasets and
validate our findings on real datasets such as Iris, MNIST, and CIFAR-10. We study both two-layered
fully-connected neural networks and convolutional neural networks. Detailed descriptions of the
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Figure 1: Decision boundaries of different complexities for gaussian. Alignment plots and his-
tograms of the Hessian spectra for models obtained from normal training, an adversarial initialization
[27], and a large norm initialization.

datasets and the models are provided in the code available here. In the main body of the manuscript,
we focus on gaussian with three classes sampled from Gaussian mixtures. We present results for
the toy example and other setups in Appendices A-B and K. When the models and datasets are of
tractable sizes, we compute the Hessian exactly using the torch.autograd module from PyTorch
[33], otherwise we approximate Hessian based on Golmant et al. [16].

We measure the alignment of gθ(x) and each Hessian eigenvector for a converged network fθ̂ and
conduct an extensive empirical analysis that leads to the following results.

3 Results

Top Hessian eigenvectors encode the decision boundary. We plot the alignment of gradients
gθ(x) and each of the top k = 7 eigenvectors for the 2D gaussian dataset for three different decision
boundary in Figure 1. For the topmost eigenvectors, we observe a close-to-one absolute alignment
with gradients of loss of the points on the decision boundary learned by the network. Moreover, for
these points, we see a transition from maximal positive to negative cosine similarity values, i.e., a
switch of the alignment sign. These results hold for all other 2D datasets as presented in Appendix B.

We strengthen this observation mathematically by expanding the loss around a minimum θ∗ using the
second-order Taylor approximation at θ∗ +∆θ and considering ∆θ = gθ(x)

||gθ(x)|| , resulting in

L
(
f (θ∗,X ) +∇θf (θ∗,X )

T gθ(x)

||gθ(x)||
,Y

)
=

1

2

p∑
i=1

λiAi(x)
2. (3)

Let’s consider the maxima of both sides of (3) with respect to x. On the left side, the maximum loss
is when the gradient of x aligns with the direction of the steepest ascent of f(θ∗,X ) that happens for
x at the decision boundary. On the right side, the maximal value of the sum occurs for gθ(x) perfectly
aligned with the Hessian top eigenvector with the largest eigenvalue λ1. From this, we infer that the
alignment of x with the top Hessian eigenvectors is larger for x near the boundary than for data points
farther away, explaining our numerical observation. A detailed analysis is provided in Appendix C.

Additionally, we see that each top eigenvector may capture only a section of the complete boundary.
The information on the sections of decision boundary can be well separated across eigenvectors (see
Figure 1). Moreover, the alignment does not necessarily switch between extreme values +1 and −1
across the decision boundary. The exact values do not seem informative in contrast to the sign switch
itself. Finally, the largest alignment across the input space is always for points on the boundary.

We perform a similar step-by-step analysis of the alignment using a toy example in Appendix A.
We show that the cosine similarity is more informative than the scalar product in Appendix D.
Moreover, in Appendix E, we show that the first few eigenvectors are sufficient to encode the entire
decision boundary, and the other directions in the parameter space do not exhibit the same property.
Interestingly, when we analyze the Hessian with respect to the loss that only considers a specific
class c, we observe that the top eigenvectors are now restricted to the boundaries that are relevant
to deciding the “all-against-one” for the class c (Appendix F). In Appendix G, we show that this
observation is invariant to the architecture, loss function and optimizer. Finally, we highlight that it
holds throughout the training (Appendix H).
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Figure 2: Alignment of all training data with the top 25 Hessian eigenvectors for gaussian with
classes {0, 1, 2} and different initializations. The dark lines show the mean of each class alignment.

A complex boundary is characterized by many eigenvectors. Past works indicate that the number
of outliers in the Hessian spectrum is roughly equal to the number of classes in the dataset. However,
we hypothesize that the number of outliers depends on the simplicity of the learned decision boundary.
An increased number of eigenvectors, corresponding to an increased number of outliers, is needed to
characterize a more complex decision boundary.

To verify our hypothesis, we follow different training procedures to reach poorly generalizing minima
which, by Occam’s razor, usually imply complex decision boundaries. We use two such methods.
One is an adversarial initialization as introduced by Liu et al. [27]. Briefly, the procedure consists in
initializing the network with parameters θ that fit the data with random labels. We notice that such an
initialization always exhibits a large L2 norm. Therefore, another method we use consists in simply
large norm initialization of the model. Usually, the adversarial and large norm initializations lead
to much more complex and slightly more complex decision boundary than the regular initialization,
respectively, as presented in the first column of Figure 1. We compute the alignment of gradients
with the top Hessian eigenvectors corresponding to the outliers for all the initialization methods on
gaussian as shown in Figure 1, which demonstrates more eigenvectors are needed to describe the
learned decision boundary from both adversarial and large norm initializations.

To complete the picture, the last column of Figure 1 shows the histogram of Hessian eigenvalues for
gaussian dataset illustrating that different training procedures lead to a different number of outliers. In
particular, normal training leads to 2 outliers following the conjectures from the past works, whereas
the adversarial initialization shows more outliers. It is important to note that the number of the top
Hessian eigenvectors that encode sections of the decision boundary does not correspond one-to-one
to the number of outliers in the spectra.

Localization of gradients happens for well generalizing minima. We plot the alignment of
gradients of loss of training samples with the top Hessian eigenvectors in Figure 2 and confirm
that our main observation holds also for this subset of the input space: indeed, a more complex
decision boundary leads to a larger number of Hessian eigenvectors with non-zero alignment with
training gradients. Moreover, for simpler decision boundary aka well generalizing minimum (normal
initialization) the gradients are much more localized in the Hessian space, that is, the alignment is
significantly greater than 0 only for the top eigenvectors, than in the other initializations. Interestingly,
we also see that gradients at the well generalizing minimum are more aligned with one another
according to their classes.

Validation of our results on real data We validate our observations on high dimensional datasets
and more complex architecture trained with both normal and adversarial initialization. We obtain
the results for Iris, MNIST and CIFAR-10. We present the results for MNIST-017, where numbers
indicate selected classes of digits, and provide the full analysis in Appendix K. We visualize the
dataset using t-SNE in Figure 3 and color code the alignment between the training gradients and
top Hessian eigenvectors. While t-SNE does not necessarily have the same data representation as a
trained neural network, the alignment behavior for models obtained with the normal and adversarial
initialization training follows the one for the 2D datasets. It suggests that the top eigenvectors encode
the decision boundary. Finally, we also see a higher number of outliers in the eigenspectrum for
complex boundary (last column of Figure 3).

With this understanding, we propose a generalization measure that quantifies the complexity of
the decision boundary and shows promising preliminary empirical results. To avoid overlooking
the simplicity bias when it hurts generalization, we propose a novel margin estimation technique
of the decision boundary using the alignment with the top Hessian eigenvector. We discuss these
aspects elaborately with extensive experiments in Appendix I. While our results are promising, it is
crucial to analytically understand the connection between the Hessian eigenvectors and the decision
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Figure 3: Normal and adversarial initialization training for MNIST-017 with t-SNE visualization.
It shows the alignments of gradients with the top 5 eigenvectors. (Last column) The eigenspectrum.

boundary, also with the Hessian eigenvalues if any. Nevertheless, our results inspire techniques
to improve pruning, fight catastrophic forgetting by freezing the parameters corresponding to the
decision boundary, assess the uncertainty of the prediction using the distance to the closest decision
boundary, etc.
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Supplementary material
accompanying “Unveiling the Hessian’s Connection to the Decision Boundary”

We provide the following results in the supplementary material.

• Section A: Illustration of our Hessian-gradient analysis on a toy example
• Section B: The top Hessian eigenvectors and decision boundary for the additional two-

dimensional datasets
• Section C: Theoretical analysis
• Section D: Alignment of vectors: cosine similarity vs scalar product
• Section E: Directions other than the top Hessian eigenvectors do not align with the decision

boundary
• Section F: Decision boundary per class
• Section G: Results are invariant to an architecture, loss, and optimizer: gaussian

• Section H: Decision boundaries during the training
• Section I: Generalization measure and margin estimation technique for simulated datasets
• Section J: Generalization measure is invariant to model reparameterization
• Section K: Validation of the observations on real datasets (Iris, MNIST, and CIFAR-10)
• Section L: Discussion and related works
• Section M: The gradient covariance matrix vs the Hessian at the minimum

A Our approach using a toy example
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fθ(x) = W2 · ReLU(W1 · x+ b1)
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Figure 4: Analysis of the Hessian. (A) 1D toy dataset with 5 input points and 2 classes {pink, cyan}.
(B) A model fθ parameterized by θ that takes an input x and returns logit probabilities for each class.
(C.1) Predictions of fθ̂ across the input space with θ̂ being a specific set of parameters that correctly
classify the training data. (C.2) There are two outliers in the Hessian eigenspectrum of the training
loss calculated at the minimum θ̂. They correspond to the eigenvectors v1 and v2 that are directions
in the parameter space shown in (C.4). When measuring their cosine similarity with gradients of the
loss of individual points from the input space (C.3), we obtain the alignment in (C.5). Each outlier
encodes one section of the decision boundary of fθ̂ respect to the data that induced the loss landscape.
To detail our approach, consider a simple two-layer fully-connected ReLU network fθ trained to
classify one-dimensional (1D) training data into two classes as presented in Figure 4 (A)-(B). In this
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1D input space, the network learns a decision boundary located at two points, xL and xR (Figure 4
(C.1)). Consider gradients of the loss function of individual data points in the input space as in
Figure 4 (C.3). Those gradients align with the directions in the parameter space corresponding to
the largest increase of error on the data. Overall, the largest error is made on the data that is on the
boundary by shifting it across the boundary. Moreover, gradients on the opposite sides of the boundary
point in opposite directions as moving the boundary benefits samples from one class but hurts samples
from another. Indeed, we see that gradients on either side of xL and xR point in opposite directions.
These directions align with the top two Hessian eigenvectors v1 and v2 corresponding to the two
outliers in its eigenspectrum (Figure 4 (C.2,C.4)). We see that gradients around xR align perfectly
with the top eigenvector v1: The cosine similarity flips from −1 to 1 as the decision boundary is
crossed (Figure 4 (C.5)). The gradients around xL align with the second top eigenvector v2. We
conclude that the top Hessian eigenvectors encode separate pieces of the decision boundary learned
by the network.

B The top Hessian eigenvectors and decision boundary for the additional
simulated datasets

Within this work, we use five simulated 2D datasets: gaussian with three classes, concentric circle
and half-moon datasets with two classes, hierarchical gaussian with four classes, and checkerboard
dataset with two classes. Details on their generation can be found in the code available here (link is
anonymized) (src/datasets.py).

In Figure 5, we present the alignment of the gradients of input samples with the top five Hessian
eigenvectors for all the simulated datasets. We see consistently that the top Hessian eigenvectors
align maximally with the gradients of loss of samples at the boundary.

Figure 5: Top Hessian eigenvectors and decision boundaries for all simulated datasets. (First
column) The decision boundary in the data space obtained by training a two-layered fully connected
network. (Other columns) The alignment with the top five eigenvectors illustrates that the top
eigenvectors encode the decision boundary.
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C Theoretical analysis

We consider that the converged minimum θ := θ∗ is an exact minimum, meaning that the loss and its
gradient at θ∗ is zero, i.e., L(θ∗;D) = 0 and ∇θL(θ∗;D) = 0. Using this information, we expand
the loss using the second-order Taylor’s approximation at θ := θ∗.

L(θ∗ +∆θ;D) = L(θ∗;D) +∇θL(θ∗;D)T∆θ +
1

2
∆θT∇2

θL(θ∗;D)∆θ

L(θ∗ +∆θ;D) =
1

2
∆θTHθ∗∆θ

Hθ∗ is the Hessian of the training loss function evaluated at the minimum. We denote its eigenvectors
and corresponding eigenvalues as vi and λi. Now, let’s consider ∆θ := gθ(x)

||gθ(x)|| to be a gradient of
some input x in the dataset D := {X ,Y}, and an overparametrized classifier (e.g., neural network)
with p parameters denoted by f(θ,X ).

L
(
f
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)
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)
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||gθ(x)||

p∑
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λiviv
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1
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λi
⟨gθ(x), vi⟩
||gθ(x)||

⟨gθ(x), vi⟩
||gθ(x)||

L
(
f (θ∗,X ) +∇θf (θ∗,X )

T gθ(x)

||gθ(x)||
,Y

)
=

1

2

p∑
i=1

λiAi(x)
2 (4)

From Equation (4), for the loss to have a maximal change, the gradient of x should be aligned with
the direction of the steepest ascent of f(θ∗,X ). This implies that moving data x in the direction
of the gradient of f(θ∗,X ) potentially changes the predicted class for x, thus increasing the loss.
In other words, the alignment of the gradient of x with the function’s gradient is high for x near
the decision boundary. From this understanding, we infer that the alignment of x with the Hessian
eigenvectors is larger for x near the boundary than data points farther away from the right-hand side
of Equation (4). As the alignment A(x) considers a normalized gθ(x), this variability comes only
from a different alignment of gθ(x) for x’s close and far from the boundary with different Hessian
eigenvectors. As stated multiple times, the behavior of the Hessian spectra in deep learning setups is
universal. Its spectrum has a small number of positive non-zero eigenvalues, λ0, λ1, . . . , λt, and the
rest of the eigenvalues is close to zero. This, in turn, implies that the right side of the equation is large
when gθ(x) is aligned with the top Hessian eigenvectors with the largest eigenvalues λ0, λ1, . . . , λt.
This implication strengthens our numerical observations about the top Hessian eigenvectors being
aligned with the gradients of loss of data at the boundary.

D Alignment of vectors: cosine similarity vs scalar product

In Equation (2), we have defined the alignment between the gradient gθ(x) from Equation (1) of an
input x with eigenvector vi in terms of the cosine similarity as

Ai(x) =
⟨gθ(x), vi⟩
∥gθ(x)∥∥vi∥

, (5)

where ⟨·, ·⟩ is the scalar product, and ∥ · ∥ is the Euclidean norm of the vector.

As the main findings of our work result from comparing gradients of loss of individual training
samples with the Hessian top eigenvectors, one may ask why we chose cosine similarity as the
measure of similarity between the vectors instead, e.g., of the scalar product itself, ⟨gθ(x), vi⟩. We
compare the two similarity metrics in Figure 6, where we immediately see the main weakness of the
scalar product when it comes to studying the input space. First of all, due to the lack of gradients’
normalization, the overlap highlights only points on the decision boundary. Large norm of gradients
on the boundary dominates any existing alignment between the Hessian eigenvectors and gradients of
samples far from the boundary. Secondly, contrary to the cosine similarity, the scalar product has no
maximal value, which could guide the analysis of the decision boundary decomposition in terms of
the Hessian eigenvectors.
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Figure 6: Comparison of similarity metrics for gaussian. (Top) Cosine similarity. (Bottom) Scalar
product with a color bar limited to [−1,+1] (without normalizing the scalar product values).

E Directions other than the top Hessian eigenvectors do not align with the
decision boundary

Figure 7: Comparison of different directions in parameter space and their alignment with the
gradients of input points in the 2D plane. Alignment color normalized to the interval between
[−1,+1]. We show the top eigenvectors v1, . . . , v5 and compare them to the eigenvectors with the
smallest eigenvalues where v−1 has the smallest eigenvalue and v−5 the fifth-smallest eigenvalue.
We also sample some random directions from the Hessian eigenspace and finally compare to random
directions in parameter space where each entry of the vector is sampled from a standard Gaussian.

To test our finding connecting the top Hessian eigenvectors and decision boundary, we check the
alignment of gradients of individual input samples with vectors pointing in other directions in
parameter space. In Figure 7 we compare the gradients’ alignment with (1) the top five Hessian
eigenvectors, (2) the bottom five Hessian eigenvectors (that correspond to the five smallest eigenvalues,
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i.e., five largest negative eigenvalues), (3) five randomly selected Hessian eigenvectors, and (4) five
random directions in parameter space where each vector element is sampled from a standard Gaussian.
Within this comparison, the color bar is normalized across the plots to [−1,+1]. We immediately see
that directions other than the top Hessian eigenvectors are not aligned with gradients in the slightest.

Interestingly, when we use separate color bars for each plot and repeat the comparison in Figure 8, we
see that the random directions may sometimes reflect the alignment of the gradients resulting from the
decision boundary. Tiny alignment values around 10−2 show, however, that it reflects the coherence
of gradients rather than encodes relevant directions in parameter space. The average of the maximal
alignment of training gradients with five randomly sampled directions in the parameter space serves
therefore as a threshold ϵ in Equation 6 for counting Hessian eigenvectors with “non-zero” alignment
with gradients.

Figure 8: Comparison of different directions in parameter space and their alignment with the
gradients of input points in the 2D plane - The color bars are normalized per plot. We show
the top eigenvectors v1, . . . , v5 and compare them to the eigenvectors with the smallest eigenvalues
where v−1 has the smallest eigenvalue and v−5 the fifth-smallest eigenvalue. We also sample some
random directions from the Hessian eigenspace and finally compare to random directions in parameter
space where each entry of the vector is sampled from a standard Gaussian.

F Decision boundary per class

The Hessian eigenvectors crucially depend on the loss landscape, which in turn depends on the data.
When we analyze the Hessian with respect to the loss that only considers a specific class c, we
observe that the top eigenvectors are now restricted to the boundaries that are relevant to deciding
the “all-against-one” for the selected class c. The results are presented in Figure 9.

G Results are invariant to an architecture, loss, and optimizer: gaussian

Here, we show that while the decision boundary may shift and the alignment values change, the con-
nection between the topmost eigenvectors and the decision boundary is invariant to the architecture
(Figure 10), the choice of the optimizer (Figure 11), and loss function (Figure 12).

Interestingly, while SGD, Adam, AdamW, and RMSprop in Figure 11 reach similar decision bound-
aries, values of alignment of gradients across the input space with the top eigenvectors vary signif-
icantly. In particular, in SGD, the non-zero alignment with the top eigenvectors is preserved for
gradients far from the boundary. In Adam, AdamW, and RMSprop, the alignment goes quickly to
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Figure 9: Loss decomposed into separate classes. The decision boundaries are equivalent to those
from the top row of Figure 1. Here, the training loss is decomposed into the losses of individual
training points associated with a given class. The Hessian eigenvectors look different for each
decomposition, and the top eigenvectors exactly show the decision boundary enclosing this class.
Only the relevant class is shown.

Figure 10: Top eigenvectors of the Hessian for alternative model architectures. (First row) A
two-layer neural network with 100 neurons per layer and the ReLU activation function. (Second
row) The same with sigmoid activations. (Third row) The same as first but with 50 neurons per layer
instead.

zero with the distance from the boundary. It may suggest that in such cases, the gradient-based
interpretation methods such as influence functions [25] may fail to find examples that are similar to a
sample far from the boundary. At the same time, the connection between the decision boundary itself
and the top Hessian eigenvectors is preserved regardless of the optimizer.
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Figure 11: Top eigenvectors of the Hessian for different optimizers: (First row) SGD, (Second
row) Adam, (Third row) AdamW, and (Fourth row) RMSprop with the same learning rate of 0.2 and
a batch size of 64. For optimizers besides SGD, the boundaries are more “clear cut”; The gradient at
many places in the input space has zero alignment with their counterparts on the boundary.

Figure 12: Top eigenvectors of the Hessian for the negative log-likelihood loss (NLLLoss): (Top)
gaussian dataset. (Middle) circle dataset. (Bottom) half-moon dataset.
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Figure 13: Top Hessian eigenvectors encode boundaries also away from the minimum. The
overlap plots during different epochs in for normal training on gaussian. Epoch 0 is the boundary at
initialization before training.

H Decision boundaries during the training

Interestingly, we see that the top Hessian eigenvectors encode the decision boundary also away from
the minimum during the training dynamics. We believe that the gradient covariance matrix will not
exhibit this behavior since it is not at the minimum. We present the usual alignment analysis between
gradients of loss of input samples and the top five Hessian eigenvectors for selected epochs of the
regular training in Figure 13 and training starting from the adversarial initialization of Liu et al. [27]
in Figure 14.
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Figure 14: Top Hessian eigenvectors encode boundaries also away from the minimum for an
adversarial initialization on gaussian. Epoch 0 is the boundary at initialization before training.
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I Generalization measure and margin estimation technique

Going with the conventional wisdom that a simple decision boundary generalizes better than a
complex one and the results from Section 2, we naturally define a generalization measure Gθ that
counts the number of eigenvectors needed to describe the decision boundary. Mathematically, we
define Gθ to be the ratio of Hessian eigenvectors with non-zero absolute mean alignment A with the
training samples to the total number of eigenvectors, computed at the minimum θ:

mi =
1

n

n∑
s=1

|Ai(xs)| ; Gθ =
1

p

p∑
i=1

1[mi > ϵ], (6)

where ϵ is close to zero,3 | · | is the absolute value, and mi denotes the mean of absolute alignment of
the training samples with respect to eigenvector vi. A better generalizing minimum has a smaller
number of eigenvectors with a non-zero alignment of individual training data gradients, Gθ, signifying
a simpler (therefore, better generalizing) decision boundary compared to other minima of the same
network on the same data. In other words, there are fewer directions in the parameter space whose
shift corresponds to large errors in the training data. Finally, as Gθ depends crucially on training
samples and the number of Hessian eigenvectors, the comparison of Gθ between minima is meaningful
only when they are reached with models with the same architecture and trained on the same data. Note
that its value changes between training procedures with fixed hyperparameters due to randomness in
the initialization.

I.1 Our generalization measure captures the complexity of the decision boundary

We compute our generalization measure Gθ as in (6) for all simulated 2D datasets trained from normal,
adversarial and large norm initializations, leading to decision boundaries of varied complexity and
observe that Gθ captures the correct generalization order of the three minima in all cases, as seen
in Table 1. We also compare Gθ with standard flatness measures such as the Hessian trace and its
spectral norm. We confirm their superfluousness, as the Hessian trace and spectral norm of the
normally initialized network with the simplest decision boundary are larger than for networks with
adversarial and large norm initializations. Interestingly, the L2 norm of the parameters also fails
as a generalization measure despite the observation that well-generalizing solutions tend to have a
minimum norm [41]. Those observations hold in the real datasets as presented in Appendix K.4.

Table 1: Generalization measures comparison for the five simulated 2D datasets. We provide
the mean of those measures and their standard deviation over 5 runs. A bold font marks the best
generalizing minimum according to the studied metric, green (red) color indicates whether the
indication is correct (wrong). With yellow, we mark correct indications with standard deviations
being larger than the difference of compared means.

Dataset Training Gθ ↓ trace(H) ↓ λmax(H) ↓ ||θ∗||2 ↓

gaussian
normal 0.055 ± 0.004 0.176± 0.010 0.114± 0.010 19.60 ± 0.15
adversarial 0.156± 0.035 0.003 ± 0.001 0.002 ± 0.001 105.00± 0.005
large norm 0.114± 0.040 0.021± 0.018 0.017± 0.012 98.169± 0.413

circle
normal 0.044 ± 0.007 8.028± 0.777 4.965± 0.514 22.884 ± 0.139
adversarial 0.059± 0.003 0.795 ± 0.051 0.439 ± 0.037 41.630± 0.006
large norm 0.057± 0.003 6.320± 0.833 4.350± 0.735 41.840± 0.226

half-moon
normal 0.036 ± 0.003 4.202± 0.637 2.958± 0.479 21.529 ± 0.285
adversarial 0.072± 0.006 0.037 ± 0.001 0.017 ± 0.001 68.988± 0.009
large norm 0.042± 0.004 1.119± 0.563 0.868± 0.431 64.807± 0.201

hierarchical
normal 0.053 ± 0.001 12.450± 0.595 7.102± 0.189 20.034 ± 0.202
adversarial 0.118± 0.024 3.394 ± 1.035 2.645 ± 0.877 121.675± 0.062
large norm 0.059± 0.009 93.104± 12.985 36.787± 3.936 112.579± 0.404

checkerboard narrow-margin 0.046± 0.005 0.240± 0.050 0.127± 0.028 19.267 ± 0.097
wide-margina 0.043 ± 0.001 0.029 ± 0.000 0.014 ± 0.000 19.910± 0.000

aThe standard deviation is almost 0 since we initialize models across runs with the same pretrained solution to promote a wide margin.

3To be precise, ϵ is set to a small number being the average maximum alignment with several random
directions in a parameter space (see Appendix E). Usually, it is around 10−2.
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The proposed generalization measure also overcomes another weakness of the standard Hessian
measures and is invariant to reparametrization as presented in Appendix J, as it relies on the decision
boundary complexity which is also invariant to reparametrization. The Gθ has also limitations. As it
arises from the alignment of the gradients of loss of training samples with the Hessian eigenvectors
encoding various sections of the boundary, it may fail to signal an increased complexity of the
decision boundary far from any training sample, as we elaborate in the next subsection. The second
limitation is related to the simplicity bias of neural networks, and we address it in Section I.3.

I.2 Limitations of Gθ

The Gθ gives ambiguous results when distinguishing between the minima obtained with the normal
and large norm training for hierarchical gaussian, marked in yellow in Table 1. While on average
Gθ successfully indicates that minima obtained with normal initialization have simpler decision
boundaries than those obtained with the large norm initialization, the standard deviation exceeds the
difference between the means. We identify a single case where our Gθ fails to distinguish minima with
different complexities of decision boundaries and make a full analysis of the alignment in Figures 15
and 16 for the hierarchical gaussian with four classes. Firstly, we see from the first column of
Figure 15 that the complexity of the decision boundary increases in the region with a small number
of training samples. It indicates a limitation of our measure that is based on the “interaction” between
the training samples and the neighboring decision boundary. If the decision boundary is simple close
to the training samples but complex away from them, Gθ may struggle to detect this. Secondly, the
number of outliers in the Hessian spectrum in the large norm case remains larger than in the normal
case, as visible in the last column of Figure 15. Finally, we take a closer look at the alignment of the
top Hessian eigenvectors and gradients of loss of training samples in Figure 16 at the minima studied
in Figure 15. We still see that for simpler decision boundaries, the alignment of the training gradients
localizes much more in the top Hessian subspace than for the complex boundaries. At the same time,
Gθ is almost the same for both cases, which means that it is an imperfect measure of the localization
of the gradient alignment that seems to be a prevailing characteristic of minima with simple decision
boundaries. We leave the improvement of this scalar measure for further study. At the same time,
we stress that Gθ has correctly distinguished between minima with simple and complex decision
boundaries from adversarial initializations in all the studied cases, and the ambiguity arises only in
the large norm initializations.

Figure 15: Decision boundaries of different complexities for hierarchical gaussian. Alignment
plots and histograms of the Hessian spectra for models obtained from normal training and a large
norm initialization.

Figure 16: Alignment of all training data with the top 25 eigenvectors for hierarchical gaussian
for models obtained from the (Left) normal training and the(Right) large norm initialization. There
are four classes {0, 1, 2, 3}. The dark lines show the mean of each class alignment.

The second limitation of the proposed measure arises when the network exhibits a simiplicity
bias. Simplicity bias is the tendency of neural networks to learn “simple” models and has been
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Figure 17: The checkerboard datasets used for (Left) training and (Right) pretraining to achieve the
wide-margin solution.

hypothesized to explain the generalization properties of neural networks [4, 30]. Shah et al. [39]
claims that simplicity bias may instead hurt generalization (in SGD and its variants), when networks
prefer simpler features over complex ones that are more informative for prediction. In the context of
the decision boundary, the simplicity bias is related to a bias towards a more linear boundary. As our
generalization metric measures the simplicity of the decision boundary, it may fail to signal when the
generalization capability of a model is diminished by simplicity bias.

To validate it, we use the synthetic checkerboard dataset of Gaussian clusters, similar to the one
analyzed by Shah et al. [39]; it has two classes and two features – one feature is simple (single linear
boundary sufficient for 100% accuracy), and the other is complex (100% prediction needs at least
n − 1 linear pieces for n clusters). It is presented in the left column of Figure 17. We study the
minima reached by models trained to classify this dataset in two settings. The first setting is normal
initialization, affected by simplicity bias, resulting in a more linear boundary and a narrow margin
(see the first row of Figure 18). In the second setting, which we call wide-margin, we encourage a
boundary with a wider margin by pretraining on another dataset presented in the right column of
Figure 17, and then training on the same checkerboard dataset as in the first setting.

In Figure 18, we show the decision boundary and the alignment of gradients in input space with
the top three eigenvectors vi. The Hessian eigenspectrum, presented in the fifth column, exhibits
two outliers for both initializations. While the second setting has a wider margin and thus exhibits
better generalization, the difference between Gθ for normal and wide-margin initializations is small.
To properly distinguish those solutions, we can instead estimate the margin width of the decision
boundary as described in the next section.

I.3 The order of eigenvectors is related to the margin width of the decision boundary

We observe in every setup (Figure 1 and Appendix B) that the order of the top eigenvectors follows
the increasing margin of the encoded sections of the boundary. The topmost eigenvector captures the
boundary section that separates the closest training data from two classes in the input space.

Figure 18: Simplicity bias and margin estimation for checkerboard. We compare the alignments
of the top three eigenvectors vi and the eigenspectrum, trained using two different initializations,
normal (top row) and wide-margin initialization (bottom row). Both initializations have very similar
generalization measures. (Last column) Margin estimation from xb, x

max
i and xmin

i .
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This opens up a possibility to estimate the margin of the decision boundary in higher input dimensions.
To do so, we need two data points from the input space: a training sample xt that is closest to the
boundary (the one that determines the smallest margin of the decision boundary) and a sample on the
boundary xb, which should be as close to xt as possible, as this determines how good estimate of the
margin we have. xt is chosen to have the largest alignment with the top Hessian eigenvector v1. Note
that, a priori, we do not know the alignment sign of the training data xt closest to the artificial sample
on the boundary xb. Hence, xmin

t and xmax
t are the smallest and largest alignments with v1 (yellow

and purple dots in the last column of Figure 18). To find the sample on the boundary (red dots in
Figure 18), we can optimize the features of an input sample such that its gradient has a maximum
alignment with the top Hessian eigenvector. Then we compute the L2 distance between xb and xmin

t ,
and between xb and xmax

t in the input space and choose the smaller L2 distance as the margin. An
example of such a margin width estimation is presented in Figure 18, where we correctly see that
the less linear decision boundary corresponds to a wider margin compared to the linear decision
boundary. This simple yet effective margin estimation technique, together with our generalization
measure Gθ, enables a better understanding of the generalization ability of deep neural networks.

J Generalization measure is invariant to model reparameterization

A natural assumption is that if a model after a reparameterization yields the same output as the
original one, their generalization abilities (and measures) should also be equal. This is not the case
for metrics based on Hessian trace and ReLU networks; One can “artificially” sharpen a minimum
while retaining the predictions of the original model using the α-scale transformation proposed by
Dinh et al. [10]. In Figure 19, we see that while such a reparameterization indeed affects the Hessian
spectrum, it does not impact the connection between the top Hessian eigenvectors and decision
boundary. As a result, our generalization metric is also invariant to the reparameterization as it is
based on the simplicity of the decision boundary that stays the same. At the same time, we see that
the reparameterization may change the sign and values of the alignment. It is yet unclear why this
happens, but this may further suggest that the exact values of the alignment are not informative.

Figure 19: Reparameterization. A sharp α-scale transformation for a 2-layer ReLU-network that
rescales the weights and biases of the original model according to [10, App. B] while keeping the
predictions identical. (Left) The alignments for the top eigenvectors. (Right) The spectra for both
parameterizations.
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K Validation of the observations on real datasets: Iris, MNIST, and CIFAR-10

We have conducted our Hessian analysis for 2D datasets enabling straightforward visualization of the
learned decision boundary. This approach has enabled a clear visual distinction between simple or
complex decision boundaries. Such a visual distinction is much needed in view of a limited (to our
knowledge) theoretical description of the complexity of the decision boundary. At the same time,
visualization of the decision boundary is hardly possible for high-dimensional datasets.

Here, we extend our analysis to real datasets, that is to Iris dataset in section K.1, MNIST-based
datasets in section K.2, and CIFAR-10-based datasets in section K.3. Above all, we show that with
our Hessian analysis, we distinguish between well- and badly generalizing minima in realistic deep
learning setups. To do so, we compare the models trained with a regular initialization and the
adversarial initialization [27], which are believed to reach a well- and badly generalizing minimum,
respectively. In section K.4, we showcase that the proposed generalization measure Gθ correctly
distinguishes well- and badly-generalizing minima in the case of Iris dataset and MNIST-based
datasets.

K.1 Hessian analysis for Iris

Figure 20: Alignment of all training data with the top 25 Hessian eigenvectors for Iris. (Left)
Normal training. (Right) Adversarial initialization. There are three classes {0, 1, 2}. The dark lines
show the mean of each class alignment.

Figure 21: Experimental results on Iris. (First column) Two features (petal and sepal length) out of
four of the Iris dataset with color-coded classes. (Other columns) The alignment of gradients of the
loss of individual training samples with the top five Hessian eigenvectors. (Last column) Histograms
of the Hessian spectra. (Top) Well-generalizing minimum obtained with normal training. (Bottom)
Badly generalizing minimum obtained with an adversarial initialization [27].

For Iris, we show the corresponding Hessian spectra in the last column of Figure 21 and alignments
of gradients of loss of individual training samples with the Hessian eigenvectors in Figure 20,
respectively. We again see the larger number of outliers in the spectra in the case of more complex
decision boundary. Most importantly, we see that the gradients have non-zero alignment with a much
smaller number of Hessian eigenvectors in the case of normal training than in the adversarial case
(Figure 20). We again see that the gradients are more aligned with each other in the well generalizing
than badly generalizing minimum, as observed during the training dynamics in Chatterjee & Zielinski
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[6]. The generalization metric Gθ captures this difference as expected (is lower for well generalizing
minimum) and is listed along with the MNIST results in Table 2 in Appendix K.4.

Moreover, our low-dimensional analysis in the main body shows that the drastically different behavior
of training gradients alignment with the Hessian eigenvectors results from a different complexity
of the decision boundary. In other words, training gradients align with a larger number of the top
Hessian eigenvectors because around training samples in input space, there are numerous sections of
the decision boundary encoded in multiple directions in parameter space. While we could make this
connection clear in the case of 2D datasets, it is more challenging for four dimensions and impractical
for significantly larger dimensions. For Irises, we instead visualize samples by selecting only two
features out of four and without the decision boundaries. Then we color code the alignment of the
gradient of their individual losses at the minimum with the top Hessian eigenvectors. We present the
normal and adversarial training results in Figure 21. We can see a clearly different behavior of the
alignment between the well- and badly-generalizing minimum. This suggests a different complexity
of the decision boundary following results from the low-dimensional data.

K.2 Hessian analysis for MNIST

Finally, we make an analogous Hessian analysis for the MNIST-based datasets. To decrease the
complexity of the dataset and better understand the dependence of the results on the number of
classes, we create four subsets of MNIST: MNIST-017, MNIST-179, MNIST-0179, and MNIST-1379,
where numbers indicate selected classes of digits. Each class has a few hundred samples sampled
randomly from the MNIST dataset.

The analysis of the alignment of the gradients of loss of individual training samples and the top
Hessian eigenvectors is presented in Figure 22. We continue to see that the alignment for the
regular training is more localized in the space spanned by the top Hessian eigenvectors. We also see
self-alignment of the gradients [6] that maybe stops being so apparent in the top few eigenvectors.

Figure 22: Normal and adversarial initialization training for MNIST-017, MNIST-179, MNIST-
0179, and MNIST-1379. We plot the alignments of gradients of all training samples with all
eigenvectors ordered by their eigenvalues. Only the largest eigenvectors have non-zero alignment
with the gradients of training samples, and their number increases for the training from the adversarial
initialization.

Moreover, as we mentioned in Appendix K.1, while we could make a clear connection between
Hessian-gradient alignment and complexity of decision boundary in the case of 2D datasets, such a
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Figure 23: Normal and adversarial initializations training for MNIST-179, MNIST-0179, and
MNIST-1379 with t-SNE visualization and Hessian eigenspectra. We visualize the MNIST-based
datasets with t-SNE and color code the alignments of gradients of all training samples onto all
eigenvectors ordered by their eigenvalues. Multiple eigenvectors have non-zero alignment with the
gradients of training samples, and there is little ordering of the samples’ colors suggesting complex
decision boundaries. (Last column) Hessian eigenspectra.

visualization is impractical for high input dimensions. Instead, we make the following non-rigorous
analysis. We visualize the high-dimensional MNIST samples in a 2D plot using t-distributed stochastic
neighbor embedding (t-SNE) and then color code the alignment of the gradient of their individual
losses at the minimum. We present the normal and adversarial training results in Figure 23. Even if
there is no guarantee that the neural network representation of the data is related to the one obtained by
t-SNE nor that the learned decision boundary in the input space corresponds simply to the boundaries
between t-SNE generated clusters, we still can see a clearly different behavior of the alignment
between the well- and badly-generalizing minimum.

Finally, the Hessian spectra for all MNIST-based datasets are in the last column of Figure 23. We
consistently see that the number of outliers increases for the badly generalizing minima. We also
see that metrics like the Hessian trace or its largest eigenvalue fail to capture the difference between
the minima’s generalizing abilities. On the other hand, our generalization measure, Gθ, consistently
provides correct indications. We make this comparison apparent in Table 2 in Appendix K.4.

K.3 Hessian analysis for CIFAR-127

We make identical observations for a CIFAR-10-based dataset, namely on CIFAR-127, where digits
indicate classes taken for analysis. This time, we used LeNet-5 for the classification task. Ther results
are presented in Figures 24 and 25.
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Figure 24: Normal and adversarial initializations training for three selected classes of CIFAR-10
and LeNet-5. We visualize the CIFAR-10-based dataset with t-SNE and color code the alignments of
gradients of loss of all training samples onto the top five eigenvectors ordered by their eigenvalues. In
the first row, the normal training leads to simpler boundaries indicated by the alignment localized in
the top two Hessian eigenvectors. In the second row (adversarial initialization), multiple eigenvectors
have non-zero alignment with the gradients of training samples, and there is little ordering of the
samples’ colors suggesting complex decision boundaries. We computed the top eigenvalues and
eigenvectors of the Hessian using the iterative power method [16].

Figure 25: Normal and adversarial initialization training for three classes of CIFAR-10 and
LeNet-5. We plot the alignments of gradients of all training samples onto the top 50 eigenvectors
ordered by their eigenvalues. In the case of adversarial initialization (implying the complex decision
boundary), training samples keep having a significant non-zero alignment with the top Hessian
eigenvectors far into the spectrum. We computed the top eigenvalues and eigenvectors of the Hessian
using the iterative power method [16].
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Table 2: Generalization measure comparison for real datasets Iris and different subsets of
MNIST under different initializations. We provide the mean of those measures and their standard
deviation over 5 runs. A bold font marks the best generalizing minimum according to the studied
metric, green (red) color indicates whether the indication is correct (wrong).

Dataset Training Gθ ↓ trace(H) ↓ λmax(H) ↓ ||θ∗||2 ↓

Iris normal 0.031±0.006 67.857±5.943 65.005±6.072 13.998±0.221
adversarial 0.094±0.002 8.324±0.235 5.934±0.067 68.361±2.040

MNIST-017 normal 0.037±0.028 6.288±4.697 3.758±3.215 2237.6±3526.8
adversarial 0.109±0.002 0.945±0.117 0.479±0.097 938.38±0.03

MNIST-179 normal 0.045±0.063 14.714±14.783 8.270±8.262 731.65±716.37
adversarial 0.209±0.006 5.222±0.740 1.611±0.271 268.65±0.06

MNIST-0179 normal 0.043±0.010 28.472±9.840 13.254±6.312 387.54±129.66
adversarial 0.110±0.003 3.180±0.399 0.946±0.203 209.41±0.01

MNIST-1379 normal 0.077±0.031 18.380±16.588 6.868±6.368 249.63±135.32
adversarial 0.135±0.015 2.938±0.164 0.844±0.029 398.19±0.17

K.4 Generalization measure for Iris and MNIST

Finally, in Table 2, we present values of the generalization metric Gθ introduced in Equation 6 for
models trained on various real datasets and from different initializations. “Normal training” indicates
the regular initialization of the neural networks. Adversarial initialization follows the initialization by
Liu et al. [27] that consists in pretraining on the same data but with random labels, as discussed in
Section 3. In the low-dimensional datasets, we consistently see that models initialized adversarially
learn more complex decision boundaries that generalize worse than the simple boundary learned by
regularly trained models. As we cannot visualize the decision boundary for the high-dimensional
data, we skip the analysis of the large-norm initialization here. Instead, we use only the established
adversarial initialization by Liu et al. [27], which has been shown to produce complex boundaries
and badly generalizing minima. The generalization metric successfully distinguishes between those
models. The analogous results for simulated 2D datasets are in Table 1.

L Discussion and related works

Properties of the Hessian. Our work sheds light on various universal aspects of the training loss
Hessian. While the localization of the gradient information in the top subspace of the Hessian is
known [18], the observation that the top Hessian eigenvectors align with the gradients of samples
at the decision boundary, therefore, they encode the decision boundary, provides a new perspective
and a simpler way to study the complexity of high-dimensional decision boundary. In fact, our work
aligns with the mathematical analysis of Papyan [32] who connected the emergence of outliers (and
therefore the top Hessian eigenvectors) to the “between-class gradient second moment”. Moreover,
our work illustrates that the number of outliers in the Hessian spectrum is related to the complexity
of the learned decision boundary, which was so far rather connected to the number of classes. Our
findings shed light on the observation of Jastrzebski et al. [22] that the loss in the subspace of the
top Hessian eigenvectors is “bowl-like” and that decreasing learning rate within this subspace leads
to better generalizing solutions: this procedure may lead to maximizing the margin of the decision
boundary.

Generalization. We confirm that the Hessian-based metrics like the trace or the largest eigenvalue
are unreliable proxies for measuring the generalization ability of deep learning models. Instead,
these metrics are more dependent on the training parameters like the number of epochs, as observed
in Sagun et al. [37]. For example, Table 1 shows that the Hessian trace is the smallest for badly
generalizing minima, which required the largest number of epochs to train. Interestingly, we see that
within-class gradients at the minimum are more aligned with each other in the better generalizing
case, as noted in Chatterjee & Zielinski [6]. Our findings suggest that this gradient “coherence”
emerges from the simplicity of the decision boundary and disappears as the complexity increases.
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Robustness and interpretability. The robustness of neural networks is an active area of research
aiming to produce stable outputs towards small, semantically irrelevant input perturbations. Feng &
Tu [13] mapped the variations in inputs to variations of specific weight parameters, through which the
Hessian connection between the input and parameter space is established. Combining this with our
work may lead to a better understanding of why Hessian-based techniques could lead to more robust
models [29, 36, 45, 40] or more robust gradient-based explanations Dombrowski et al. [11, 12]. In
fact, they may simplify the decision boundary, causing gradients of similar inputs to align in one
direction. This also explain the success of Hessian-based interpretation of neural networks [25, 28, 9]
and in pruning [26, 43].

Practical implications. Establishing the connection between Hessian and the decision boundary
learned by the network provides a new tool to study the boundary in high input dimensions. However,
exact computation of the Hessian and its spectrum is hard for both large data and models. Instead,
we can follow the observation from Appendix M and Ghorbani et al. [15] that the top eigenvectors
of the Hessian at the minimum have a large overlap with the top eigenvectors of the gradient
covariance matrix, which enables efficient alignment computation but still requires an expensive
eigendecomposition. We can also use efficient approximation techniques based on the Hessian-vector
product [34, 1, 16] and the generalized Gauss-Newton decomposition of the Hessian [37, 31, 32].

M The gradient covariance matrix vs the Hessian at the minimum

Here, we study the covariance matrix of gradients of loss of individual training samples at the
minimum defined as

Σ(θ;D) =
1

n

n∑
i=1

gθ(xi)g
T
θ (xi)

=
1

n

n∑
i=1

∂

∂θ
L (θ; {xi, yi})

∂

∂θ
LT (θ; {xi, yi}) , (7)

where training data D = {xi, yi}ni=1, xi ∈ Rd, and yi ∈ {1, . . . , C} is the class label. In Figure 26,
we show that the top few eigenvectors of the covariance matrix Σ(θ;D) actually encode the same
information as the top few Hessian eigenvectors at the minimum as observed by Ghorbani et al. [15]
and Fort & Ganguli [14]. This observation can also be justified by the Hessian approximation with
the gradient outer product holds well at the minimum. Therefore, the top subspace of Σ(θ;D) can be
used instead of the more computationally expensive Hessian to study the decision boundary.

Figure 26: Gradient covariance matrix vs. Hessian. We compare the alignment of gradients of
loss of input samples with the top eigenvectors of (Top) the Hessian H and (Bottom) the gradient
covariance matrix Σ(θ;D) defined in Equation 7. For the first two eigenvectors of both matrices,
their alignment with gradients of input samples is very similar across the input space. The cosine
similarity βi = ⟨vHi , vΣi ⟩ of between the Hessian eigenvectors vHi and the gradient covariance matrix’
eigenvectors vCi decreases with the values of their eigenvalues.
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