Under review as a conference paper at ICLR 2025

EXTRACTING HEURISTICS FROM LARGE LANGUAGE
MODELS FOR REWARD SHAPING IN REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) suffers from sample inefficiency in sparse reward
domains, and the problem is further pronounced in case of stochastic transitions.
To improve the sample efficiency, reward shaping is a well-studied approach to
introduce intrinsic rewards that can help the RL agent converge to an optimal
policy faster. However, designing a useful reward shaping function for all desirable
states in the Markov Decision Process (MDP) is challenging, even for domain
experts. Given that Large Language Models (LLMs) have demonstrated impressive
performance across a magnitude of natural language tasks, we aim to answer the
following question: Can we obtain heuristics using LLMs for constructing a reward
shaping function that can boost an RL agent’s sample efficiency? To this end, we
aim to leverage off-the-shelf LLMs to generate a plan for an abstraction of the
underlying MDP. We further use this LLM-generated plan as a heuristic to construct
the reward shaping signal for the downstream RL agent. By characterizing the
type of abstraction based on the MDP horizon length, we analyze the quality
of heuristics when generated using an LLM, with and without a verifier in the
loop. Our experiments across multiple domains with varying horizon length and
number of sub-goals from the BabyAl environment suite, Household, Mario, and,
Minecraft domain, show 1) the advantages and limitations of querying LLMs with
and without a verifier to generate a reward shaping heuristic, and, 2) a significant
improvement in the sample efficiency of PPO, A2C, and Q-learning when guided
by the LLM-generated heuristics.

1 INTRODUCTION

Sample inefficiency of training Reinforcement Learning (RL) agents in sparse reward domain
has been a long-standing challenge (Ng et al.,|1999;|Laud & DeJong, |2003; |[Marthi, [2007; |Grzes &
Kudenko, 2008; Devlin & Kudenko, 2011). The number of environment interactions take a much
severe hit if the domain further consists of stochastic transitions (Grzes, 2017; Ben-Porat et al., [2024).
In an effort to improve this sample efficiency, reward shaping has been proven to be effective, which
provides intrinsic rewards as a better training signal over just the sparse extrinsic (environment)
rewards (Laud & DeJong| [2003; Marthi, [2007} |[Devlin & Kudenko, 2011).

Underlying reward shaping techniques (Ng et al.,|1999; Devlin et al., 2011; |Devlin & Kudenko, [2012;
Gao & Toni, [2015; |Eck et al.,2016), there is an inherent assumption made on how this reward shaping
function can be constructed. One of the straightforward ways is for a domain expert to hand-engineer
the reward shaping function, which can be cognitively demanding and additionally lead to a cognitive
bias in the engineered rewards (Wu et al.|[2024; |Lightman et al., 2023). Yet another popular approach
relies on learning the intrinsic rewards via Inverse RL (IRL) (Russell, |1998; |Abbeel & Ng, [2004;
Russell & Norvigl 2016), where the human records an expert demonstration for solving the task.

Lately, Large Language Models (LLMs) have shown remarkable performance spanning a wide variety
of natural language-based tasks (Kocon et al.,[2023}|Gilardi et al., 2023} [Zhu et al.,|2023) which can
be attributed to the enormous and diverse data that they have been trained on. While some tasks have

'We consider the case where the agent gets +1 reward at the goal state, and 0 otherwise.

Under review as a conference paper at ICLR 2025

benefited from prompting off-the-shelf LLMs (Bubeck et al., 2023} Bhattacharjee et al., 2024), others
that are either highly domain-specific or require higher degrees of generalizability, require fine-tuning
(L1 et al., |2024; |Yang et al., 2024). However, several recent studies have shown the performance
of prompting LLMs directly to be brittle and unreliable (Valmeekam et al., 2023; [Stechly et al.,
2024; Verma et al., 2024). Similarly, the latter approach is bottlenecked by the need for sufficient
task-specific data and expensive computation required for LLM fine-tuning. Yet, they continue to
show some promise when tasked with solving a sufficiently relaxed version of the original problem
(Nirmal et al., 2024), or assisting in obtaining the final solution (Kambhampati et al.;|2024). Keeping
this trade-off in mind for our use case, we aim to answer: Can we obtain heuristics using LLMs for
constructing a reward shaping function that can boost an RL agent’s sample efficiency?

From the limited exploratory works that currently lie at utilizing LLMs for guiding RL (Liang et al.,
2023; Du et al., 2023} |Carta et al., 2023 Jiang et al., 2019; | Kwon et al.,|2023; |Wang et al., 2023; Ma
et al.,|2023), LLMs have particularly been effective in providing either high-level (hierarchical) policy
guidance (Jiang et al.,[2019; |Liang et al.| 2023) or the reward function (Kwon et al.;2023; Ma et al.,
2023)), which may only be feasible for tasks where there has been sufficient background knowledge
or data that could have possibly been part of the language model’s training data. However, treating
LLMs as sources of approximate common-sensical knowledge, our intuition is that we can expect
them to generate a heuristic that can be useful for the downstream task (Cheng et al.| 2021). To this
end, we take inspiration from the problem abstraction methods, which have been extensively studied
in the planning and RL literature (Dietterich et al.,|1998; Sutton et al.| [1999; Lane & Kaelbling,|2002;
Kattenbelt et al.| 2010; [Kulkarni et al.|[2016;|Gopalan et al.,|2017; Jiang et al.,[2019; Nashed et al.,
2021), and query LLMs to obtain a solution for a sufficiently relaxed abstract problem.

For a given RL problem, the desired heuristic can be obtained at both, the low-level, and a high-level
(symbolic) action space. For example, for the Household environment shown in Figure [5, low-
level actions comprise (up, down, left, right), whereas high-level (symbolic) actions
comprise (pickup key, open door),etc. Furthermore, the choice of abstraction depends
on the nature of the underlying problem, since LLMs operate in the text space. One straightforward
possibility is to consider a deterministic abstraction of the underlying stochastic Markov Decision
Process (MDP) (Yoon et al.,[2008)). While the abstract MDP in this case will still require a solution
using the low-level action space, it may only be useful for the RL agent if LLMs can easily find
a goal-reaching plan for that deterministic problem. Hence, we first investigate the usefulness of
directly prompting off-the-shelf LLMs for the deterministic abstraction of short horizon stochastic
MDP problems, which tend to yield incomplete plans that are consistently unable to reach the goal.
Furthermore, our experiments show the ineffectiveness of using these incomplete plans as heuristics
for reward shaping the RL agents. While a deterministic abstraction on the low-level action space
still remains a challenging planning problem for LLMs, a yet another possibility particularly for
long-horizon problems, is to construct a hierarchical abstraction of the underlying MDP which
consists of a high-level (symbolic) action space (Jiang et al.||2019; [Liang et al.,|2023). A plan in this
hierarchical abstraction will include some or all the sub-goals the agent has to achieve in the correct
order to reach the goal, that can further be used to design our reward shaping function accordingly.
Note, that our work does not intend to pose a dichotomy between a deterministic and a hierarchical
MDP setup, but aims to study these two possible MDP abstractions for a downstream RL task which
has sparse-reward and stochastic transitions.

While LLMs may still not be able to yield valid (executable) plans each time for the abstract problem,
we further investigate the performance when LLMs are used with a verifier in the loop. The presence
of such a verifier can help generate a valid goal-reaching plan. The idea of such verifier-augmented
LLM setups has also been recently seen for planning and reasoning problems(Kambhampati et al.|
2024; |Gundawar et al., [2024; [Liang et al.,[2023; Ma et al., |2023; |Wang et al., 2023). Finally, we
leverage the LLM and LLM+verifier generated plans as a basis for constructing the reward shaping
function for the downstream RL sparse reward task. Through this work, we aim to understand the
possible role of LLMs as heuristic generators for downstream RL problems, and discuss important
trade-offs that need to be considered for choosing the right abstraction and constructing a verifier.

The contributions of this work can be summarized as follows:
1. In the context of investigating LLMs’ utility in generating heuristics, we study two different

types of MDP abstractions - deterministic and hierarchical, for short and long-horizon
problems respectively.

Under review as a conference paper at ICLR 2025

2. For both types of abstractions, we investigate the performance of LLMs in generating
heuristics with and without the presence of a verifier. Utilizing the LLM and LLM+verifier
generated heuristics, we construct a reward shaping function for the underlying sparse-
reward MDP.

3. With experiments on the BabyAl environment suite, Household, Mario, and, Minecraft
domains, we show a significant boost in the sample efficiency of RL algorithms by demon-
strating results with PPO, A2C, and, Q-learning algorithms.

For the rest of the paper, we begin with situating our work in the domain of LLM-guided RL
works and give a brief background of the respective literature in Section[2, Next, we provide the
preliminaries and formally define our problem statement in Sections [3] and discuss our investigations
of using LL.Ms as heuristics for reward shaping in detail in Section |4] followed by experiments and
results in Section[5] We also include a discussion on the key takeaways from this work on the choice
of abstraction and the utility of having verifier-augmented LL.Ms for obtaining heuristics. Finally,
we conclude the work in Section[6. An appendix with additional experiment details has also been
attached, and code will be released on acceptance.

2 RELATED WORK

Sparse Reward RL and LLM-based Guidance: The seminal foundational work by (Ng et al.|
1999) provided policy invariance guarantees using Potential-based Reward Shaping (PBRS) for
boosting the sample efficiency of RL agents, followed by further theoretical investigations by (Laud
& DelJong||2003; Wiewiora, 2003). (Pathak et al.|[2017) also showed the advantages of using intrinsic
rewards for training RL agents. Reward shaping methods have been studied under several dimensions,
including but not limited to automatic reward learning (Grzes & Kudenko, |2008; [Marthi, [2007),
(Zhang et al., |2024; [Srivastava et al.,|2024), multi-agent domains (Devlin & Kudenkol 2011} Sun
et al.,|2018)), meta-learning (Zou et al., 2019), etc. Primarily, the sources of obtaining and/or learning
intrinsic rewards includes domain experts hand-engineering the rewards (Wu et al., [2024} |Lightman
et al.||2023), via providing feedback (Lee et al., 2023), or via providing expert demonstrations (Argall
et al., |2009). More recently, Large Language Models have been utilized to give feedback on RL
agent’s environment interaction (Du et al., [2023; Ma et al., 2023} [Kwon et al., 2023;|Cao et al.,[2024)
or directly provide the reward function for the RL agent’s task.

LLMs for Planning and Search: There is a research divide in the current literature regarding
the planning, reasoning and verification abilities of Large Language Models. While popular works
claiming LLM reasoning abilities have proposed several prompting methods (Wei et al., [2022;
Yao et al.| [2023; [Long, 2023; [Yao et al., 2024} Besta et al., 2024), there have been independent
investigations refuting such claims using LLMs for solving deterministic planning and classical
reasoning problems (Valmeekam et al., 2023} [Stechly et al.| 2024; Verma et al., 2024). While LLMs
are themselves not reliable for providing accurate feedback (Stechly et al.,[2024), other than in natural
language tasks (Yao et al.|[2023), recent works have augmented LLMs with task-specific verifiers (for
example, a Python compiler that can check LLM-generated code for syntactic correctness) that can
evaluate the validity (not necessarily correctness) of the LLM-generated output and provide feedback
to the LLM accordingly (Kambhampati et al., 2024; Ma et al.,|[2023; |Wang et al., 2023} Liang et al.,
2023). These augmented LLM frameworks have been shown to be useful for improving the overall
task performance when prompting LLMs. We further utilize these plans to construct the reward
shaping function for the downstream RL agent.

3 PRELIMINARIES AND PROBLEM STATEMENT

We consider a finite horizon Markov Decision Process (MDP) M defined by the tuple (S, A, P,
R, 7). Here, S represents the set of all possible states, A represents the set of all possible actions,
P : S x A — §Sis the stochastic state transition function where P(s’|s, a) is the transition probability
for s,s’ € Sanda € A, R : S x A xS — R is the reward function, and - is the discount
factor. In our case, we consider an MDP M with sparse rewards, i.e., R = 1 for g € S and
R = 0 otherwise, where g is the goal or termination state. The objective of the agent is to learn a

Under review as a conference paper at ICLR 2025

parameterized policy 7y (a|s) which maximizes the discounted cumulative reward for the trajectory
7, J0) =E;n, [Ztho fytrt} . In the paper, we consider two types of MDP abstractions:

Deterministic Abstraction: For short-horizon problem setting, we consider the MDP M’ modified
from the underlying stochastic sparse-reward MDP M such that, M’ can be defined using the tuple
(S, A, T, R,~), where T’ : § x A — S is the deterministic transition function. We aim to obtain a
guide plan 74 in M’ using the LLM-environment interaction, that can further be used as a heuristic
to construct a reward shaping function for the underlying RL problem for learning 7y.

Hierarchical Abstraction: For long-horizon problem setting, we consider the abstract MDP M’
modified from the underlying stochastic sparse-reward MDP M such that, M" can be defined in
the form of declarative action-centered representation of a planning task. Specifically, we consider a
STRIPS-style planning problem (Fikes & Nilssonl|1971), where the planning model can be defined
in the form P = (F, A,I,G). F is a set of propositional state variables or fluents defining the
hierarchical state space. Similar to (Guan et al.,[2022), we assume access to a function H : S X F —
{0, 1} that maps MDP states to hierarchical fluents, such that (s, f) is set to true for fluent f if f
exists in the MDP state s € S. A is the set of action definitions, where action a € A is defined as
a = (prec®,add®, del®); where prec® are set of preconditions in the form of binary features that
need to be true in a state to execute action a, and, add® and del® are the add and delete effects that
capture the set of binary features set to true and false, respectively, when action a is executed. For
this work, since A represents the high-level (symbolic) actions for us, we will refer to these actions as
A" to distinguish them from the underlying MDP’s low-level action space represented by .A. Finally,
I is the initial state of the agent and G C F is the goal specification. A solution to the planning
problem P is the set of correctly-ordered actions which will act as the guide plan 7. Similar to the
deterministic abstraction case, 74 can further be used to construct as a heuristic to construct a reward
shaping function for the underlying RL problem for learning 7.

Problem Statement: In this work, we first aim to obtain the guide plan 7, by querying a LLM
which can act as the heuristic to construct a reward shaping function for the underlying stochastic
sparse-reward MDP M. Once we have obtained 74, we adopt the Potential-based Reward Shaping
approach, as proposed in (Ng et al.,[1999). In the case of deterministic abstraction, the goal is to obtain
g using a LLM where 7, is a sequence of (state, action) pairs where the state and actions are same as
the underlying MDP M. Since 7, consists of (state, action) pairs which are same as the underlying
MDP M, we construct a (state, action)-based reward shaping function F = ®(s’,a’) — ®(s, a) for
s, € Sanda,a’ € A (Wiewiora et al.; 2003) and P is the potential function which gives a potential
to any (s, a) if a (state, action) pair exists in 74. In the latter case of hierarchical abstraction, the goal
is to obtain 7, using a LLM where 7 is a sequence of PDDL actions, which represent the different
sub-goals that exist in the underlying MDP M. Hence, similar to (Grzes & Kudenko, |[2008), we
adopt the state-based potential function F = ®(s’) — ®(s) for s, s’ € S where the state potential is
given by the number of sub-goal (or landmark) fluents that have been satisfied in 7.

4 INVESTIGATING LLM-GENERATED HEURISTICS FOR REWARD SHAPING

In this section, we first discuss the prompt setup for directly querying off-the-shelf LMs to obtain
the guide plan 74 (Section , and then discuss the verifier construction and prompt setup for the
verifier-augmented LLM framework (Section . Lastly, we discuss how we construct the reward
shaping function using 7, for both types of abstractions in Section

4.1 DIRECTLY PROMPTING LLMS WITHOUT VERIFICATION
4.1.1 PROMPT CONSTRUCTION

We consider the zero-shot setting for prompting the LLM to obtain 7. For the deterministic MDP
M, consider the example of the BabyAl DoorKey environment in Figure E, where the task of the
agent is to "use the key to open the door and then get to the goal". We construct the LLM prompt
with three components. The first is the Task Description that defines the task that the LLM (as the
agent in this case) has to achieve. In this example, we specify that the environment is a 3x3 maze

Under review as a conference paper at ICLR 2025

1. Verifier-Augmented LLM Framework Il. Constructing the Reward Ill. Training RL on Stochastic

Shaping Function Sparse-Reward Problem

1

g e [-
. Store

Update Buffer with Interactions Interact

Prompt Generator Task Critic | Shaped Rewards

4 {environment

>Task D

>Observation in text: backprompt | if

tumn right
action;
(in text)

1
|l
1
1
1
|l
|l
obsy, : >Query Description:
1
1
1
1
1
1

g Guide plan for)
the relaxed

0} |
2 I problem Train o Update Policy
. L’ J
LLM guesses the next action N

Figure 1: (I) We use the verifier-augmented LLLM to generate a valid (guide) plan for the relaxed
search problem. (I) We construct the reward shaping function using the guide plan to add intrinsic
rewards by updating the RL agent’s replay buffer. (III) Using these intrinsic rewards, the RL agent
learns an optimal policy for the underlying stochastic sparse-reward MDP.

g T 0
- | | o
action %eplay Buffer
obs,y g

]

that consists of objects such as a key, a door, walls, and a goal location. We further include the goal
of the agent that is obtained from the environment, followed by the environment’s action space (A).
Next, we include Observation Description which describes the current view of the environment. We
admit that representing spatial relationships in text as an input to an LLM can be a challenging task, a
problem that is exacerbated for larger and more complex environments. Similar to recent works that
have attempted to prompt LLMs with spatial descriptions (Patel & Pavlick, 2021)), we represent the
3x3 grid as three rows of objects that are currently observed in the environment state (s;). Finally, the
third and the last component of this prompt is the Query Description which poses the question to the
LLM to guess the set of actions that the agent should take in the environment (Appendix [D.T).

For the hierarchical MDP M"’, we are able to directly tease out the PDDL model of the underlying
task using LLMs as shown by (Guan et al.,[2023)). Now, since we have access to the PDDL domain
model and the problem specification of the abstract MDP, we can relax the requirement to convert
the environment observation in to spatial text representations. The Observation Description only
consists of the PDDL domain and problem specification, and thus, we do not need to provide the
Task Description separately. Finally, the Query Description is included which poses the question to
the LLM to guess the set of high-level (symbolic) actions for the given problem. Note, that while the
PDDL model teased from the LLMs can be noisy, we are able to ease out on the prompt engineering
efforts with the presence of such a representation, which were otherwise required for the deterministic
abstraction case as mentioned above (Appendix [D.T).

4.2 AUGMENTING LLMS WITH A VERIFIER

In this subsection, we discuss the verifier-augmented LLM framework which is used to generate a
valid solution, i.e., 74, for the abstract MDP. This plan is further used to construct a reward shaping
function, resulting in a sample efficiency boost for the RL agent that learns a policy on the original
stochastic, sparse reward problem.

4.2.1 VERIFIER CONSTRUCTION

For the deterministic MDP M’, we will again use the BabyAl DoorKey environment, as shown
in Figure [T, as the example to discuss the details of how we construct the verifier. It is important
to note that we eventually require a set of actions from this verifier, that are feasible at any given
state of the environment that the agent can be in. We will refer to this set of valid actions as {A4,|s}
and set of invalid actions as {.A,- |s} for s € S. Hence, for the BabyAlI DoorKey environment, we
begin with computing the agent’s position (x, y) at the given state (s;). At any given step of the
LLM-environment interaction, we can verify each action that the agent can and can not take for a
given state, i.e., either a € {A4,|s;} or a € {A,-|s;}. For example, in the state (s;) shown in Figure
the agent has already picked up the key but can only move forward if the door is open. Hence, the
model-based verifier, given the agent’s current position (x, y) and the set of valid actions {4, } taken
until step ¢, computes the set of actions that are feasible in the current state, i.e., turn left, turn
right, and toggle (open door). Next, given the LLM’s guessed action, i.e., move forward,

Under review as a conference paper at ICLR 2025

the verifier finds the action to be infeasible and generates a back-prompt that is appended to the
LLM’s original prompt. We further discuss prompt construction details in Section[4.2.2]

For the hierarchical abstraction case, consider the abstract MDP M"’ for the same BabyAl DoorKey en-
vironment shown in Figure In this case, our PDDL actions can be (pickup_key, open_door,
reach_goal), representing the sub-goals that the underlying MDP agent needs to achieve. If the
agent is in the initial state, the actions (open_door, reach_goal) will be part of the invalid
action set {A,- |s}, and the model-based verifier will generate a back-prompt. Hence, the verifier in
this case is much more simplified as it is only required to check if the LLM generates syntactically
correct actions, and if the actions (sub-goals in this case) are output in the correct order as per the
environment constraints.

4.2.2 PROMPT CONSTRUCTION

Atany given step ¢ in the LLM’s interaction with the environment for the deterministic abstraction case,
we once again construct the LLM prompt with three components. The first is the Task Description
followed by the Observation Description that is now generated independently at every step after
the previous LLM-generated valid action is executed, and finally include the Query Description
asking the LLLM to guess the next low-level action. We refer to this as the step-prompt for our
discussion. Once the LLM returns a valid action as a guess to the step-prompt, i.e. mrn(8;) = a
for a € {A,|s;}, we execute the action in the environment and continue the interaction. Consider the
case where the LLM has guessed an invalid action, i.e. 7 (s;) = afora € {A,-|s;}. In this case,
we do not execute the action in the environment, but rather, construct the back-prompt by appending
the feedback given by the model-based verifier to the current prompt. To the existing step-prompt,
we add this verifier feedback that lists all the invalid actions ({A,-|s;}) guessed by the LLM for
the current state s; and prompt the LLM again to choose a different action that is not in {4, |s; }.
Once the LLM guesses a valid action, we break out of this back-prompting loop and continue our
environment interaction as mentioned above (see Appendix [D.2]for the complete prompt).

For the hierarchical abstraction case, we prompt the LLM with the PDDL domain and problem
specification in the Observation Description, and query it to generate only the next high-level action
(¢ A") in the Query Description. Additionally, we provide the LLM-generated plan so far, i.e.,
wéfl consisting of the valid actions till step ¢ — 1. Similar to the deterministic abstraction case, we
back-prompt the LLM if it outputs an invalid action, and continue the interaction till it finds a valid

plan (see Appendix for the complete prompt).

4.3 REWARD SHAPING USING 7,

Potential-based Reward Shaping (PBRS) (Ng et al.,|1999) allows for injecting intrinsic rewards for
training an RL agent on a sparse reward problem while guaranteeing the policy invariance property.
Once we have obtained 7, by querying the LLM with and without a verifier, we utilize it to construct
our reward shaping function F. Using the reward shaping function F, we assign potentials to the (s, a)
pairs in the LLM-generated plan for the deterministic case, and to the states (s) in the LLM-generated
plan for the hierarchical case. Formally, we adopt the definition which utilizes a shaping reward
function F such that our updated reward function can be defined as: R'(s,a) = R(s,a) + F(s,a)
for s € S, a € Ain the former case, and as R'(s) = R(s) + F(s) in the latter. We refer the readers
to Section [5|for details on F for both types of abstractions.

In the exploration phase, the RL agent stores the environment interactions, i.e., (s, a, s’,) tuples, in a
dataset buffer D. Given F, we update the buffer D with the shaped rewards such that (s, a, s’,r) —
(s,a,s’,r") where 7’ is the shaped reward. Our RL agent then continues the learning over this updated
dataset buffer D’. We present the complete pipeline in Figure[l]and Algorithm|]in Appendix

5 EXPERIMENTS & RESULTS

We first aim to investigate the quality of the heuristics generated by the LLMs in the form of g,
with and without a verifier in the loop. Next, we construct the reward shaping function using 7, for
both, the deterministic and the hierarchical abstraction cases. Finally, we utilize the reward shaping
function to inject intrinsic rewards into the RL agent’s training loop and measure the boost in sample

Under review as a conference paper at ICLR 2025

(a) BabyAl suite and Household (b) Mario (c) MineCraft

e
i

§ o

Figure 2: Visualizations for the BabyAl suite and Household, Mario, and, the MineCraft environment.

efficiency. Hence, we aim to answer the following: RQ1: How do LLM and LLM+verifier-generated
plans compare in terms of the quality of obtained heuristics? In RQ1 results, we observe LLMs
generating, both partial and complete (goal-reaching) plans. Hence, for comparing the effectiveness
of these obtained heuristics for the underlying RL problem, we aim to answer the following: RQ2:
How effective is the reward shaping with the use of partial and complete plans for boosting the RL
sample efficiency?

5.1 EVALUATION DOMAINS

For our empirical evaluations on the short-horizon setting with stochastic transitions, we utilize the
BabyAI suite of environments as shown in Figure 2a] namely - DoorKey that requires the agent to
pick up the key to open a door and reach the goal; Empty-Random where there are no obstacles but
the initial position of the agent is randomized for each episode; and finally, LavaGap in which the
agent has to reach the goal location while avoiding the adversarial objects (the lava tile) present in the
environment. For each of these environments, we construct the deterministic abstraction to query the
LLM for obtaining the guide plan 7, consisting of the low-level actions from the underlying MDP.

For the long-horizon setting with stochastic transitions where we consider the hierarchical abstraction,
we utilize - the Household environment which is a more complex version of the DoorKey environment
(Figure 2a) and requires the agent to pick the right key for unlocking the door and reaching the goal;
the Mario environment (Figure [2b) where the agent needs to go down the green tube, pick both the
keys, climb up the ladder and reach the door; and finally, the MineCraft environment ((Figure 2c)
where the agent needs to first collect both the pieces of raw wood, go to the workshop to process
wood, make stick and plank at the respective workshops using the two processed woods, and go to
the workshop to make ladder using the stick and the plank.

5.2 COMPARING THE LLM-GENERATED HEURISTICS (RQ1)

In order to study RQI1 for both abstractions, we run all our experiments using four different LLM
models. We highlight the experimental setup, baselines and evaluation metrics in this sub-section.

Experimental Setup: For the deterministic abstraction (RQ1.1), we run all our LLM-based ex-
periments on the DoorKey, Empty-Random, and, the LavaGap environments. In the case of directly
prompting LLMs, we set the temperature to 0.5, and instruct the LLM to generate the entire plan
at once. For the hierarchical abstraction case (RQ1.2), we use the same settings for running our
experiments on the Household, Mario, and, the MineCraft domain.

Evaluation Metrics: We compare the (mean =+ standard deviation) for the generated plans in terms
of the length of a successful plan and total rewards for RQ1.1; and the number of sub-goals achieved
for RQ1.2.

Results: From the results in Table [1, we note that direct LLM prompting can not generate a
valid plan in all but two cases across the three environment settings in the deterministic abstraction
(low-level action space). For our LLM+verifier framework, we obtain a goal-reaching plan for both
Empty-Random and LavaGap environments across all LLMs, but only gpt-3.5-turbo is able
to successfully solve the task for the DoorKey environment. For the verifier-augmented setup, we

Under review as a conference paper at ICLR 2025

Table 1: RQ1.1 results: plan length and rewards are averaged across 3 runs. Numbers in parenthesis
refer to scores from successful runs via directly prompting LLMs for the specific LLM-Environment
pair. For all other cases, the direct prompting LLM runs failed to produce valid plans, as also seen for
certain LLM+verifier cases.

Environment Metric GPT-3.5 GPT-40 Claude Haiku Llama 3 8B
Avg. plan length 152 +£6.57 - - -
DoorKey Avg. reward 0.9452 + 0.02 - - -
20 + 6.08 4.33 £ 0.577
Avg. plan length (5 + 0) (5 +0) 13£0 15.67 £ 6.429

Empty-Random 0.82 £ 0.054 0961 + 0.005

(0.955 £ 0) (0.955 £ 0)

Avg. plan length 16 £8 13.33 + 7.57 - 20 4+ 8.48
Avg. reward 0.8559 £ 0.07 0.879 £ 0.068 - 0.82 £ 0.076

Avg. reward 0.883 £ 0 0.859 £ 0.057

LavaGap

Table 2: RQ 1.2 results: fraction of sub-goals reached is averaged across 3 runs.

Environment Variant GPT-3.5 GPT-40 Claude Haiku Llama 3 8B

Household vanilla 0.2 - 1 0.732
with verifier 0.132 0.266 0.466 0.2
Mario vanilla 0.25 - 1 1
with verifier - 0.25 1 0.665
. vanilla 0.25 - 1 0.665
Minecraft o orifier - 1 0.75 0.5

also note that the LLM repeats a set of valid but incorrect actions for multiple steps and exhausts the
query budget for the number of step-prompts before reaching the goal. From the results in Table[2,
we note that direct LLM prompting is also able to generate complete plans, and that a step-by-step
verifier in the loop may not always guarantee improvements.

5.3 EVALUATING THE SAMPLE EFFICIENCY BOOST IN RL TRAINING (RQ2)

To study RQ2, we select the RL algorithms that have been used in the literature for the respective
environments. In the deterministic abstraction case (RQ2.1), we train PPO and A2C algorithms on
each environment layout of the BabyAl suite (Chevalier-Boisvert et al.| 2018)); and train Q-learning
for the Household, Mario, and the MineCraft environment (Guan et al., |2022) in the hierarchical
abstraction case (RQ2.2). We provide all training and hyperparameters details in Appendix

Experimental Setup: Recall, from Section that we generate the guide plan 7, for each
environment layout. In RQ2.1, we train the PPO and A2C agents on our underlying stochastic
sparse-reward problem, with the reward shaping function F constructed using each of these guide
plans. Following the look-back advice principle for reward shaping in PPO and A2C algorithms
(Wiewiora et al., [2003), the reward shaping function can is defined as F(s¢, at, S¢—1,at — 1) =
D(s,ap) — v 1 ®(s4—1,a4-1). In RQ2.2, we train Q-learning with the state-based reward shaping
function F which is defined using the number of fluents that are true in any given state as shown by
(Grzes & Kudenko, 2008)).

Baselines & Evaluation Metrics: For RQ2.1, we adopt the RL baselines for both PPO and A2C
algorithms from (Chevalier-Boisvert et al.,2018). For RQ2.2, we adopt the Q-learning baseline for
each of the three environments from (Guan et al.,|2022). We further include a reward shaping baseline
achieving only a single sub-goal in each environment, that we obtain using the LLM-generated
(partial) plan without a verifier in the loop. While we observe that directly prompting LLMs in the

We suspect that one possible reason for this behavior could be that for some LLMs, it may be easier to get
better performance if queried for the entire solution plan at once than step-by-step.

Under review as a conference paper at ICLR 2025

DoorKey-5x5 EmptyRandom LavaGap DoorKey-6x6

0.8

0.6

#Episodic Returns
Episodic Returns

#Episodic Returns

8
4 Episodic Returns

0.4

Training Episodes 0.3 # Training Episodes # Training Episodes 0 # Training Episodes

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 20 40 60 80 100 120 140

DoorKey-5x5 EmptyRandom LavaGap DoorKey-6x6

0.8

jsodic Returns

Episodic Returns

#Episodic Returns

#Training Episodes 0 #Training Episodes 0 # Training Episodes

0 50 100 150 200 0 200 400 600 2k 4k 6k

Figure 3: RQ2.1 Results: Smoothed learning curves comparing vanilla PPO (top) and vanilla A2C
(bottom) with reward shaping on respective algorithms using LLM-generated partial plan and with
reward shaping using three variations of LLM-generated complete plans, as measured on the episodic
returns. The solid lines and shaded regions represent the mean and standard deviation across five
runs, respectively.

MineCraft Household Mario

0.8 0.8

#Episodic Returns
#Episodic Returns
#Episodic Returns

0.6 0.6 0.6

04
0.4

0.2
0.2

0.0
#Training Episodes #Training Episodes 0.0 #Training Episodes

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000

Figure 4: RQ2.2 Results: Smoothed learning curves comparing baseline Q-learning training against
baseline Q-learning with reward shaping using LLM-generated partial plan, and with LLM-generated
complete plan as measured on the episodic returns. The solid lines and shaded regions represent the
mean and standard deviation across five runs, respectively.

hierarchical abstraction case (Table[2) is also able to generate complete plans, we want to specifically
test if a LLM-generated partial plan in hierarchical abstraction can be useful for reward shaping
compared to the case of a LLM-generated partial plan in the deterministic abstraction. For each
experiment, we plot episodic returns against number of training episodes in Figure [3|and Figure]

Results: From results shown in Figure[3 for RQ2.1, we note the most significant boost in sample
efficiency due to the reward shaping using our augmented LL.M-generated plan in the BabyAl
DoorKey-5x5 environment, followed by LavaGap, and results in Empty-Random-5x5 environment
are similar to the vanilla RL baseline. For the LavaGap environment, the difference between reward-
shaped policy training and the baselines is relatively smaller than that in DoorKey-5x5. One possible
reason here could be that while the action space for this environment is smaller (three actions only),
using the LLM-generated plan for reward shaping allows the RL agent to learn to avoid the lava tiles
faster and reach the goal location. For the results shown in Figured]for RQ2.2, we use reward shaping
using a LLM-generated (partial) plan which satisfies only one sub-goal for each environment The
training curves for reward-shaped Q-learning using LLM-generated complete plans significantly
outperform the other settings. However, unlike RQ2.1 results, reward shaping using partial plans also
outperforms the Q-learning baseline in terms of episodic returns and earliest policy convergence. We
conclude that, partial plans in the high-level (symbolic) action space can be more useful heuristics as
compared to partial plans in the low-level action space. We further analyze these results in the next
sub-section.

3There are 5 sub-goals in Household, and 4 in the Mario and MineCraft domains.

Under review as a conference paper at ICLR 2025

5.4 DISCUSSION

In this sub-section, we aim to draw insights from our experiments for both RQ1 and RQ2. Specifically,
we discuss the trade-offs a) between the utility and the ease of constructing a deterministic or a
hierarchical abstraction, and b) between the quality of heuristic obtained and effort to construct a
verifier for querying LLMs.

Deterministic or Hierarchical Abstraction? Recall, that the primary difference between the two
types of abstractions lies in the state and action space representations. The deterministic abstract MDP
M’ preserves the same state and low-level action space representation as the underlying stochastic
sparse-reward MDP, while the hierarchical abstraction only considers the high-level sub-goals over
the underlying MDP task. The utility of each of the two types stems from how well LLMs perform
to generate the abstract plan. Our analysis from RQ1.1 shows that LLMs are unable to consistently
generate a solution when we represent the underlying MDP problem as part of a text prompt. Also,
there is an added burden due to the prompt engineering effort required in the deterministic abstraction
case due to the preserved state and action spaces. However, as we can provide shaped rewards to each
(state, action) pair in the goal-reaching plan generated for the deterministic MDP, the reward shaping
signal for the downstream RL agent is much more fine-grained. In the hierarchical abstraction case,
even when LLMs are able to find a partial solution in terms of correctly ordered sub-goals, we are able
to provide intrinsic rewards to states where those sub-goal fluents are true making LLM-generated
heuristics useful even in the absence of a verifier. As pointed out by (Kambhampati et al., [2024),
while we could use PDDL planners to get this abstract plan, these planners are useful in a narrow set
of domains whereas LLMs can be useful in many more generalizable scenarios. Moreover, we believe
that extending our reward shaping work to partially-observable state space and continuous action
space environments can be a valuable future extension. For example, our hierarchical abstraction can
be easily utilized for continuous action spaces. Similar to the discrete action space experiments shown
for Mario, Minecraft, and the Household environment in our work, the RL agent can learn a policy
that follows the correct sequence of subgoals using shaped rewards in a continuous environment too.
To conclude, we note that while the reward shaping signal may not be as fine-grained, hierarchical
abstraction allows for obtaining better reward shaping heuristics using LLMs.

How useful is having a verifier in the loop? For either type of the abstraction, the presence of a
verifier allows LLMs to use a generate-test-verify loop for generating an improved plan. However,
note that the verifier assumes the knowledge of the environment’s domain model such that it can
check for any valid or invalid actions at any given step of the LLM-environment interaction. This
requirement is slightly relaxed as the LLMs can be useful translators in obtaining a noisy approximate
domain model when provided with natural language instructions (Guan et al.,[2023). Hence, in the
case of hierarchical abstraction, the verifier is much simpler than that in deterministic abstraction as
it only needs to check if the preconditions of the LLM-generated sub-goal are satisfied. To conclude,
we note that if obtaining the domain model is not expensive, having a verifier in the loop can improve
the quality of heuristic obtained. Future works can delve into alternative methods of constructing
these verifiers.

6 CONCLUSION & FUTURE WORK

Designing reward shaping methods to inject intrinsic rewards useful for training Reinforcement
Learning agents can be challenging, even for domain experts. Lately, Large Language Models have
shown remarkable success in a variety of natural language tasks, while also encountering limitations
when it comes to prompting them for planning and reasoning problems. Keeping these limitations
in mind, we aim to investigate the utility of LLMs to generate heuristics for guiding RL training in
sparse reward tasks. We study a deterministic and a hierarchical abstraction of the underlying MDP
for short and long-horizon environments, respectively. Using LLM and LLM+verifier-generated
plans, we construct a reward shaping function for the underlying MDP. Our results indicate a boost
in the sample efficiency of downstream RL training across BabyAl suite, Household, Mario and
Minecraft domains. Finally, we discuss the trade-offs associated with the choice of abstraction and
the presence of a verifier for obtaining heuristics that can guide RL agents.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009.

Omer Ben-Porat, Yishay Mansour, Michal Moshkovitz, and Boaz Taitler. Principal-agent reward
shaping in mdps. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
9502-9510, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17682-17690, 2024.

Amrita Bhattacharjee, Raha Moraffah, Joshua Garland, and Huan Liu. Towards llm-guided causal
explainability for black-box text classifiers. In AAAI 2024 Workshop on Responsible Language
Models, Vancouver, BC, Canada, 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Beyond sparse
rewards: Enhancing reinforcement learning with language model critique in text generation, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676-3713. PMLR, 2023.

Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided reinforcement learning.
Advances in Neural Information Processing Systems, 34:13550-13563, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Sam Devlin and Daniel Kudenko. Theoretical considerations of potential-based reward shaping for
multi-agent systems. In Tenth International Conference on Autonomous Agents and Multi-Agent
Systems, pp. 225-232. ACM, 2011.

Sam Devlin, Daniel Kudenko, and Marek Grze$. An empirical study of potential-based reward
shaping and advice in complex, multi-agent systems. Advances in Complex Systems, 14(02):
251-278, 2011.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In /7th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp.
433-440. IFAAMAS, 2012.

Thomas G Dietterich et al. The maxq method for hierarchical reinforcement learning. In /CML,
volume 98, pp. 118-126, 1998.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657-8677. PMLR, 2023.

Adam Eck, Leen-Kiat Soh, Sam Devlin, and Daniel Kudenko. Potential-based reward shaping for
finite horizon online pomdp planning. Autonomous Agents and Multi-Agent Systems, 30:403-445,
2016.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189-208, 1971.

11

Under review as a conference paper at ICLR 2025

Yang Gao and Francesca Toni. Potential based reward shaping for hierarchical reinforcement learning.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Fabrizio Gilardi, Meysam Alizadeh, and Ma¢l Kubli. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30):¢2305016120,
2023.

Nakul Gopalan, Michael Littman, James MacGlashan, Shawn Squire, Stefanie Tellex, John Winder,
Lawson Wong, et al. Planning with abstract markov decision processes. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 27, pp. 480-488, 2017.

Marek Grzes. Reward shaping in episodic reinforcement learning. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pp. 565-573, 2017.

Marek Grzes and Daniel Kudenko. Learning potential for reward shaping in reinforcement learning
with tile coding. In Proceedings AAMAS 2008 Workshop on Adaptive and Learning Agents and
Multi-Agent Systems (ALAMAS-ALAg 2008), pp. 17-23, 2008.

Lin Guan, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging approximate symbolic models
for reinforcement learning via skill diversity. In International Conference on Machine Learning,
pp. 7949-7967. PMLR, 2022.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
Advances in Neural Information Processing Systems, 36:79081-79094, 2023.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik Valmeekam, Siddhant Bhambri, and Subbarao
Kambhampati. Robust planning with 1lm-modulo framework: Case study in travel planning. arXiv
preprint arXiv:2405.20625, 2024.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstraction
for hierarchical deep reinforcement learning. Advances in Neural Information Processing Systems,
32,2019.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker. A game-based abstraction-
refinement framework for markov decision processes. Formal Methods in System Design, 36:
246-280, 2010.

Jan Kocon, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydto, Joanna Baran,
Julita Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, et al. Chatgpt: Jack of all
trades, master of none. Information Fusion, 99:101861, 2023.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Terran Lane and Leslie Pack Kaelbling. Nearly deterministic abstractions of markov decision
processes. In AAAI/IAAIL pp. 260-266, 2002.

Adam Laud and Gerald DeJong. The influence of reward on the speed of reinforcement learning: An
analysis of shaping. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pp. 440-447, 2003.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

12

Under review as a conference paper at ICLR 2025

Rumeng Li, Xun Wang, and Hong Yu. Llamacare: An instruction fine-tuned large language model
for clinical nlp. In Proceedings of the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp. 10632-10641, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493-9500. IEEE, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Bhaskara Marthi. Automatic shaping and decomposition of reward functions. In Proceedings of the
24th International Conference on Machine learning, pp. 601-608, 2007.

Samer B Nashed, Justin Svegliato, Matteo Brucato, Connor Basich, Rod Grupen, and Shlomo
Zilberstein. Solving markov decision processes with partial state abstractions. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 813-819. IEEE, 2021.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278-287, 1999.

Ayushi Nirmal, Amrita Bhattacharjee, Paras Sheth, and Huan Liu. Towards interpretable hate speech
detection using large language model-extracted rationales. arXiv preprint arXiv:2403.12403, 2024.

Roma Patel and Ellie Pavlick. Mapping language models to grounded conceptual spaces. In
International conference on learning representations, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778-2787.
PMLR, 2017.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pp. 101-103, 1998.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Megha Srivastava, Cedric Colas, Dorsa Sadigh, and Jacob Andreas. Policy learning with a language
bottleneck. arXiv preprint arXiv:2405.04118, 2024.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks. arXiv preprint arXiv:2402.08115, 2024.

Fan-Yun Sun, Yen-Yu Chang, Yueh-Hua Wu, and Shou-De Lin. Designing non-greedy reinforce-
ment learning agents with diminishing reward shaping. In Proceedings of the 2018 AAAI/ACM
Conference on Al, Ethics, and Society, pp. 297-302, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Information
Processing Systems, 36:75993-76005, 2023.

Mudit Verma, Siddhant Bhambri, and Subbarao Kambhampati. Theory of mind abilities of large

language models in human-robot interaction: An illusion? In Companion of the 2024 ACM/IEEE
International Conference on Human-Robot Interaction, pp. 3645, 2024.

13

Under review as a conference paper at ICLR 2025

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Eric Wiewiora. Potential-based shaping and g-value initialization are equivalent. Journal of Artificial
Intelligence Research, 19:205-208, 2003.

Eric Wiewiora, Garrison W Cottrell, and Charles Elkan. Principled methods for advising reinforce-
ment learning agents. In Proceedings of the 20th international conference on machine learning
(ICML-03), pp. 792-799, 2003.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. Advances in Neural Information Processing Systems, 36, 2024.

Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng Ann Heng, and Wai Lam. Unveiling
the generalization power of fine-tuned large language models. arXiv preprint arXiv:2403.09162,
2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning
in large language models. arXiv preprint arXiv:2305.16582, 2023.

Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. Probabilistic planning via
determinization in hindsight. In AAAI, pp. 1010-1016, 2008.

Fuxiang Zhang, Junyou Li, Yi-Chen Li, Zongzhang Zhang, Yang Yu, and Deheng Ye. Improving
sample efficiency of reinforcement learning with background knowledge from large language
models. arXiv preprint arXiv:2407.03964, 2024.

Yiming Zhu, Peixian Zhang, Ehsan-Ul Haq, Pan Hui, and Gareth Tyson. Can chatgpt reproduce
human-generated labels? a study of social computing tasks. arXiv preprint arXiv:2304.10145,
2023.

Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Reward shaping via meta-learning.
arXiv preprint arXiv:1901.09330, 2019.

14

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Investigating LLM-generated Heuristics for Reward Shaping
	Directly prompting LLMs Without Verification
	Prompt Construction

	Augmenting LLMs with a Verifier
	Verifier Construction
	Prompt Construction

	Reward Shaping using g

	Experiments & Results
	Evaluation Domains
	Comparing the LLM-generated Heuristics (RQ1)
	Evaluating the Sample Efficiency boost in RL training (RQ2)
	Discussion

	Conclusion & Future Work
	Broader Impact
	Environments
	BabyAI
	DoorKey
	Empty-Random
	LavaGap

	Household
	Mario
	MineCraft

	Algorithm and Experiment Details
	Algorithm
	Hyperparameters
	RQ1 experiments
	RQ2 experiments

	Prompts
	RQ1: Direct LLM prompts
	RQ1: Verifier-augmented LLM prompts

