

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EQUIVARIANT METANETWORKS FOR MIXTURE-OF-EXPERTS WEIGHTS

Anonymous authors

Paper under double-blind review

## ABSTRACT

In neural networks, the parameter space serves as a proxy for the function class realized during training; however, the degree to which this parameterization provides a faithful and injective encoding of the underlying functional landscape remains insufficiently understood. A central challenge in this regard is the phenomenon of *functional equivalence*, wherein distinct parameter configurations give rise to identical input–output mappings, thereby revealing the inherent non-injectivity of the parameter-to-function correspondence. While this issue has been extensively studied in classical architectures—such as fully connected and convolutional neural networks with varying widths and activation functions—recent research has increasingly extended to modern architectures, particularly those utilizing multihead attention mechanisms. Motivated by this line of inquiry, we undertake a formal investigation of functional equivalence in Mixture-of-Experts—a class of architectures widely recognized for their scalability and efficiency. We analyze both dense and sparse gating regimes and demonstrate that functional equivalence in the Mixture-of-Experts architecture is fully characterized by permutation symmetries acting on both the expert modules and the gating mechanism. These findings have direct implications for the design of equivariant metanetworks—neural architectures that operate on pretrained weights to perform downstream tasks—where reasoning about functional identity is essential. Our results highlight the importance of analyzing functional equivalence in uncovering model symmetries and informing the development of more principled and robust metanetwork architectures.

## 1 INTRODUCTION

Despite the practical success of deep learning, many underlying mechanisms remain elusive. A particularly intriguing phenomenon is the ability of highly overparameterized neural networks—those with more parameters than training samples—to generalize well to unseen data, rather than overfit (Cybenko, 1989; Hornik et al., 1989). This observation challenges conventional expectations. While classical results suggest that shallow networks can approximate any function, empirical evidence consistently shows that deeper, complex architectures perform better (Zhang et al., 2017; Allen-Zhu et al., 2019). These apparent contradictions have spurred growing interest in understanding overparameterization and its broader implications for optimization, generalization, and model expressivity (Du et al., 2019; Frankle & Carbin, 2019; Neyshabur et al., 2019; Novak et al., 2018).

An important feature of overparameterized neural networks is their *functional equivalence*—the fact that multiple distinct parameter configurations can realize the same input–output function. This redundancy raises fundamental questions about how neural networks encode, optimize, and generalize learned representations (Allen-Zhu et al., 2019; Belkin et al., 2019; Du et al., 2019; Frankle & Carbin, 2018; Novak et al., 2018). The notion of functional equivalence has found many applications in different areas such as weight generation using diffusions (Soro et al., 2024; Saragih et al., 2025; Wang et al., 2025; Xie et al., 2024; Meynent et al., 2025; Andreis et al., 2024), model ensembling (Wortsman et al., 2022; Ganaie et al., 2022; Lakshminarayanan et al., 2017; Mohammed & Kora, 2023), and exploring mode connectivity (Goodfellow et al., 2014; Keskar et al., 2016; Sagun et al., 2017; Venturi et al., 2019; Neyshabur et al., 2020; Tatro et al., 2020; Yunis et al., 2022; Zhou et al., 2023). Functional equivalence has also recently been applied to the design of equivariant metanetworks (Tran et al., 2024b;a; Vo et al., 2025; Zhou et al., 2024c;b;a; Navon et al., 2023).

054 These metanetworks operate on internal components such as weights or gradients—rather than raw  
 055 weights themselves—and have been used in a variety of tasks including learnable optimization (Bengio et al., 2013; Runarsson & Jonsson, 2000; Andrychowicz et al., 2016; Metz et al., 2022), feature  
 056 extraction from implicit representations (Müller et al., 2023; Stanley, 2007; Mildenhall et al., 2021),  
 057 model editing (Sinitis et al., 2020; Cao et al., 2021; Mitchell et al., 2022), policy evaluation (Harb  
 058 et al., 2020), and Bayesian inference (Sokota et al., 2021).

060 The problem of determining the functional equivalence of multilayer perceptrons (MLPs) was ini-  
 061 tially posed by Hecht-Nielsen (Hecht-Nielsen, 1990). It was observed that interchanging weights of  
 062 two units in a hidden layer of an MLP does not change the network’s input-output function, provided  
 063 corresponding weights in the subsequent layer are adjusted accordingly (Allen-Zhu et al., 2019; Du  
 064 et al., 2019; Frankle & Carbin, 2018; Belkin et al., 2019; Neyshabur et al., 2018). For the same class  
 065 of MLPs, Fefferman and Markel (Fefferman & Markel, 1993) proved a strong result, showing that  
 066 input-output mapping of an MLP with tanh activations determines both architecture and weights,  
 067 up to permutations and sign flips. Since then, a variety of results under different settings have been  
 068 established for MLPs (Albertini & Sontag, 1993b;a; Bui Thi Mai & Lampert, 2020; Chen et al.,  
 069 1993; Kurkova & Kainen, 1994), and similarly for convolutional neural networks (CNNs) (Brea  
 070 et al., 2019; Novak et al., 2018; Bui Thi Mai & Lampert, 2020; Tran et al., 2024a; Vo et al., 2024).

071 While functional equivalence has been well studied in traditional architectures such as MLPs and  
 072 CNNs, its characterization in modern architectures like Transformers (Vaswani et al., 2017; Devlin  
 073 et al., 2018; Brown et al., 2020) and Mixture-of-Experts (MoE) (Jacobs et al., 1991; Shazeer et al.,  
 074 2017; Lepikhin et al., 2020; Fedus et al., 2022) remains underexplored. For Transformers, recent  
 075 work (Tran et al., 2025; Knyazev et al., 2024) has identified the maximal symmetry group of the  
 076 multihead attention and established necessary and sufficient conditions for functional equivalence.  
 077 In contrast, the functional characterization of MoE architectures remains an open problem.

078 **Contributions.** Inspired by this line of inquiry, we propose a comprehensive framework for con-  
 079 structing equivariant metanetworks for MoE architecture, based on the functional behavior. The  
 080 paper is organized as follows:

- 081 1. In Section 2, we introduce the notion of the weight space associated with an MoE model and  
 082 construct a group action that preserves its functional behavior. This formulation applies to  
 083 both dense and sparse gating scenarios.
- 084 2. In Section 3, we establish two key theoretical results demonstrating that the proposed group  
 085 action characterizes *all* universal symmetries inherent to the gating mechanism of MoE mod-  
 086 els. These results are supported by rigorous formal proofs.
- 087 3. In Section 4, we apply these theoretical findings to the design of equivariant metanetworks  
 088 for MoE Transformer architectures. We introduce a metanetwork that is equivariant under  
 089 the group action induced by the structure of the multi-head attention and MoE modules. We  
 090 also release the *MoE Transformer Zoos dataset*, containing 179,000 MoE Transformer check-  
 091 points, to support future research on MoE weight spaces. Experimental results demonstrate  
 092 that our equivariant metanetwork consistently outperforms baseline models across datasets.

093 Additional materials—including a table of notation, theoretical derivations, detailed proofs, and  
 094 experimental configurations—are provided in the Appendix.

## 096 2 WEIGHT SPACE OF MIXTURE-OF-EXPERTS AND ITS GROUP ACTION

098 This section provides a concise overview of the MoE architecture. We define the associated weight  
 099 space and introduce a group action on this space that preserves the overall functionality. A com-  
 100 prehensive and formal treatment of these concepts is presented in Appendix A.

### 102 2.1 BACKGROUND ON MIXTURE-OF-EXPERTS

103 Throughout the paper, we denote by  $\sigma$  the ReLU activation function.

105 **Mixture-of-Experts.** Let  $D$  denote the token dimension and  $D_e$  the hidden width. We consider  
 106 *Expert maps* implemented as single-hidden-layer ReLU networks,  $E: \mathbb{R}^D \rightarrow \mathbb{R}^{D_e}$ , defined as:

$$107 E(x; W^{(A)}, b^{(A)}, W^{(B)}, b^{(B)}) = \sigma(xW^{(A)} + b^{(A)})W^{(B)} + b^{(B)}, \quad (1)$$

108 with parameters  $(W^{(A)}, b^{(A)}, W^{(B)}, b^{(B)}) \in \mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e} \times \mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D}$ . Given  $n_e$   
109 denoting the number of experts, an MoE is defined as a map  $\text{MoE}: \mathbb{R}^D \rightarrow \mathbb{R}^D$ :

$$\begin{aligned} 111 \quad & \text{MoE}\left(x; \left\{W^{(G,i)}, b^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right\}_{i=1}^{n_e}\right) \\ 112 \quad & = \sum_{i=1}^{n_e} \text{softmax}_i \left( \left\{W^{(G,i)}x + b^{(G,i)}\right\}_{i=1}^{n_e} \right) \cdot \mathbf{E}\left(x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right). \quad (2) \\ 113 \end{aligned}$$

114 Here,  $(W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}) \in \mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e} \times \mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D}$  are the parameters  
115 of the  $i^{\text{th}}$  expert, while  $(W^{(G,i)}, b^{(G,i)}) \in \mathbb{R}^D \times \mathbb{R}$  are the corresponding *gating* parameters. The  
116 vector  $\text{softmax}(W^{(G,i)}x + b^{(G,i)})_{i=1}^{n_e}$  sets the contribution of each expert to the final MoE output.

117 **Sparse Mixture-of-Experts.** Given a positive integer  $K \leq n_e$ , the Top- $K$  map is defined by  
118  $\text{Top-}K(x) = \{i_1, \dots, i_K\}$  for  $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ , where  $i_1, \dots, i_K$  are the indices corresponding to the  $K$  largest components of  $x$ . In the event of ties, we select smaller indices first.  
119 Using this, a *Sparse Mixture-of-Experts* (SMoE) is the map  $\text{SMoE}: \mathbb{R}^D \rightarrow \mathbb{R}^D$  defined by:  
120

$$\begin{aligned} 121 \quad & \text{SMoE}\left(x; \left\{W^{(G,i)}, b^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right\}_{i=1}^{n_e}\right) \\ 122 \quad & = \sum_{i \in T(x)} \text{softmax}_i \left( \left\{W^{(G,i)}x + b^{(G,i)}\right\}_{i \in T(x)} \right) \cdot \mathbf{E}\left(x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right), \quad (3) \\ 123 \end{aligned}$$

124 where  $T(x) = T(x; \{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e}) = \text{Top-}K((W^{(G,i)}x + b^{(G,i)})_{i=1}^{n_e})$ .  
125

## 126 2.2 WEIGHT SPACE OF MIXTURE-OF-EXPERTS

127 The map MoE is parameterized as  $\text{MoE}(x; \theta)$  where

$$\begin{aligned} 128 \quad & \theta = \left( (W^{(G,i)}, b^{(G,i)}), (W^{(A,i)}, b^{(A,i)}), (W^{(B,i)}, b^{(B,i)}) \right)_{i=1, \dots, n_e} \\ 129 \quad & \in \Theta(n_e) := \left( (\mathbb{R}^D \times \mathbb{R}) \times (\mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e}) \times (\mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D}) \right)^{n_e}. \quad (4) \\ 130 \end{aligned}$$

131 Here,  $\Theta(n_e)$  is called the *weight space* of a Mixture-of- $n_e$ -experts. Varying the number of experts  
132 leads to an MoE weight space that spans across expert sets of different sizes, denoted by  
133

$$\Theta = \bigsqcup_{n_e=1}^{\infty} \Theta(n_e) = \bigsqcup_{n_e=1}^{\infty} \left( (\mathbb{R}^D \times \mathbb{R}) \times (\mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e}) \times (\mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D}) \right)^{n_e}. \quad (5)$$

134 Note that, the weight space of SMoE coincides with that of the standard MoE, since the map Top- $K$   
135 does not introduce any new trainable parameters.  
136

## 137 2.3 GROUP ACTION ON WEIGHT SPACE OF MIXTURE-OF-EXPERTS

138 We define the group  $\mathcal{G}(n_e)$  as the direct product  $\mathcal{G}(n_e) = \mathbb{R}^D \times \mathbb{R} \times S_{n_e}$  of the groups  $\mathbb{R}^D, \mathbb{R}$  with  
139 addition, and the permutation group  $S_{n_e}$ . Each element  $g \in \mathcal{G}(n_e)$  is of the form  $g = (\gamma_W, \gamma_b, \tau)$ ,  
140 where  $\gamma_W \in \mathbb{R}^D, \gamma_b \in \mathbb{R}$  and  $\tau \in S_{n_e}$ . The group  $\mathcal{G}(n_e)$  acts on the weight space  $\Theta(n_e)$  as follows.  
141 For  $g \in \mathcal{G}(n_e)$  and  $\theta \in \Theta(n_e)$  presented as in Equation 4, define:  
142

$$\begin{aligned} 143 \quad & g\theta := \left( (W^{(G,\tau(i))} + \gamma_W, b^{(G,\tau(i))} + \gamma_b), \right. \\ 144 \quad & \quad \left. (W^{(A,\tau(i))}, b^{(A,\tau(i))}), (W^{(B,\tau(i))}, b^{(B,\tau(i))}) \right)_{i=1, \dots, n_e}. \quad (6) \\ 145 \end{aligned}$$

146 The result below establishes that this group action preserves the MoE map.

147 **Proposition 2.1** (Weight space invariance of MoE). *The MoE map is  $\mathcal{G}(n_e)$ -invariance under the  
148 action of  $\mathcal{G}(n_e)$  on its weight space  $\Theta(n_e)$ , i.e.  $\text{MoE}(\cdot; \theta) = \text{MoE}(\cdot; g\theta)$ .*  
149

150 A proof of Proposition 2.1 is presented in Proposition A.4. An analogous invariance result holds in  
151 the case of SMoE. However, since the Top- $K$  selection map is generally discontinuous—primarily  
152 due to tie cases in the gating scores—additional conditions are required to ensure the validity of  
153

162 the invariance result. To address this, we focus on a subset of  $\mathbb{R}^D$  where the Top- $K$  scores are  
 163 unambiguously defined. Specifically, for  $\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e} \in (\mathbb{R}^D \times \mathbb{R})^{n_e}$ , we define:  
 164

$$165 \Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e}) := \{x \in \mathbb{R}^D : (W^{(G,i)}x + b^{(G,i)})_{i=1}^{n_e} \text{ are pairwise distinct}\}. \quad (7)$$

166 The following result concerns the domain and the continuity properties of the SMoE map.  
 167

168 **Proposition 2.2.** *If  $\{W^{(G,i)}, b^{(G,i)}\}$  are pairwise distinct for  $i = 1, \dots, n_e$ , then  
 169  $\Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e})$  is an open and dense subset of  $\mathbb{R}^D$ . Moreover, the SMoE map, as defined in  
 170 Equation 3, is continuous on  $\Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e})$ .*

171 A proof of Proposition 2.2 is presented in Propositions A.1 and A.2. We now establish that the  
 172 invariance property of the SMoE map holds under restriction to this domain.  
 173

174 **Proposition 2.3** (Weight space invariance of SMoE). *Given the SMoE map, as defined in Equa-  
 175 tion 3. Assume that  $\{W^{(G,i)}, b^{(G,i)}\}$  are pairwise distinct for  $i = 1, \dots, n_e$ . Then, the set  
 176  $\Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e})$  is invariant under the group action of  $\mathcal{G}(n_e)$ , i.e. for  $g = (\gamma_W, \gamma_b, \tau) \in$   
 177  $\mathcal{G}(n_e)$ , we have  $\Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e}) = \Omega(\{W^{(G,\tau(i))} + \gamma_W, b^{(G,\tau(i))} + \gamma_b\}_{i=1}^{n_e})$ . Moreover, the  
 178 SMoE map, restricted to  $\Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e})$ , is  $\mathcal{G}(n_e)$ -invariance under the action of  $\mathcal{G}(n_e)$  on  
 179 their weight space, i.e.  $\text{SMoE}(\cdot; \theta) = \text{SMoE}(\cdot; g\theta)$  on  $\Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e})$ .*

180 A proof of Proposition 2.3 is presented in Proposition A.5.  
 181

182 *Remark 2.4.* The invariance properties of both MoE and SMoE models in Proposition 2.1 and 2.3  
 183 stem from two fundamental characteristics: permutation invariance of the summation operator and  
 184 translation invariance of the softmax function. Additionally, in the case of SMoE, these invariance  
 185 properties are further supported by the permutation and translation invariance of the Top- $K$  map.

### 186 3 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

187 This section is concerned with the correspondence between two sets of parameters that yield identi-  
 188 cal MoE maps. Our objective is to rigorously demonstrate that the group action induced by  $\mathcal{G}(n_e)$ ,  
 189 as defined in Equation 6, fully characterizes the symmetries inherent in the gating mechanism of  
 190 MoE architectures. The dense and sparse cases will be analyzed separately due to their fundamen-  
 191 tally distinct structural and analytical properties. Throughout the remainder of this section, we let  
 192  $\theta \in \Theta(n_e)$  and  $\widehat{\theta} \in \Theta(\widehat{n}_e)$  denote the parameters of two models under comparison.  
 193

$$194 \theta = \left( (W^{(G,i)}, b^{(G,i)}), (W^{(A,i)}, b^{(A,i)}), (W^{(B,i)}, b^{(B,i)}) \right)_{i=1, \dots, n_e}, \quad (8)$$

$$195 \widehat{\theta} = \left( (\widehat{W}^{(G,i)}, \widehat{b}^{(G,i)}), (\widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}), (\widehat{W}^{(B,i)}, \widehat{b}^{(B,i)}) \right)_{i=1, \dots, \widehat{n}_e}. \quad (9)$$

#### 196 3.1 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

197 The following result establishes a complete characterization of when  $\theta$  and  $\widehat{\theta}$ , under certain assump-  
 198 tions, define the same MoE map, with particular emphasis on the behavior of the gating mechanism.

199 **Theorem 3.1** (Functional equivalence in MoE). *Suppose  $\theta, \widehat{\theta}$  define the same MoE map, i.e.  
 200  $\text{MoE}(\cdot; \theta) = \text{MoE}(\cdot; \widehat{\theta})$ . If  $\theta, \widehat{\theta}$  satisfy the following four assumptions:*

- 201 1.  $n_e$  experts  $\{E(\cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)})\}_{i=1}^{n_e}$  are pairwise distinct functions;
- 202 2.  $\widehat{n}_e$  experts  $\{E(\cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)})\}_{i=1}^{\widehat{n}_e}$  are pairwise distinct functions;
- 203 3.  $W^{(G,i)} - W^{(G,j)}$  are pairwise distinct for all  $1 \leq i, j \leq n_e$  such that  $i \neq j$ ;
- 204 4.  $\widehat{W}^{(G,i)} - \widehat{W}^{(G,j)}$  are pairwise distinct for all  $1 \leq i, j \leq \widehat{n}_e$  such that  $i \neq j$ ;

205 then,  $n_e = \widehat{n}_e$ , and there exist  $\tau \in S_{n_e}$ ,  $\gamma_W \in \mathbb{R}^D$ ,  $\gamma_b \in \mathbb{R}$  such that for all  
 206  $i = 1, \dots, n_e$ , we have  $\widehat{W}^{(G,i)} = W^{(G,\tau(i))} + \gamma_W$ ,  $\widehat{b}^{(G,i)} = b^{(G,\tau(i))} + \gamma_b$ , and  
 207  $E(\cdot; W^{(A,\tau(i))}, b^{(A,\tau(i))}, W^{(B,\tau(i))}, b^{(B,\tau(i))}) = E(\cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)})$  on  $\mathbb{R}^D$ .

216 A proof of Theorem 3.1 is presented in Appendix B. The proof relies on two key components: a  
 217 result concerning the linear independence property of exponential functions, as stated in Lemma B.2,  
 218 and an observation regarding the local affineness of ReLU networks, as discussed in Appendix B.2.

219 *Remark 3.2.* The four assumptions stated in Theorem 3.1 are introduced for technical reasons. At a  
 220 high level, the goal in symmetry analysis is to *identify universal symmetries that are independent of*  
 221 *specific parameter choices, while excluding singular symmetries that arise only under special con-*  
 222 *figurations of the weights.* In particular, Assumptions 1 and 2 prevent degenerate cases in which two  
 223 experts implement the same function and receive identical gating scores, thereby rendering their  
 224 permutation inconsequential to the model’s output. Assumptions 3 and 4 address a more subtle  
 225 issue: they rule out configurations where linear dependencies among the gating weight vectors re-  
 226 sult in indistinguishable gating behavior across different experts. A complete justification of these  
 227 assumptions, accompanied by illustrative examples, is provided in Remark B.8.

### 228 3.2 FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

230 In the context of the sparse case, we first introduce the notion of the *strongly distinct* property.  
 231 Specifically, two functions  $f$  and  $g$  defined on a topological space  $X$  are said to be *strongly distinct*  
 232 if the set  $\{x \in X : f(x) \neq g(x)\}$  is dense in  $X$ .

233 *Remark 3.3.* For instance, distinct polynomials are strongly distinct, whereas distinct ReLU net-  
 234 works are not strongly distinct in general. A formal definition of this property, along with illustrative  
 235 examples, is provided in Definition C.1 and Example C.2.

236 We now present a result that serves as an analogue of Theorem 3.1 in the context of SMoE for  
 237  $K > 1$ , formulated under a set of assumptions that are stronger than those required in the former.

239 **Theorem 3.4** (Functional equivalence in SMoE). *Suppose  $\theta, \hat{\theta}$  define the same SMoE maps, i.e.*  
 240  $\text{SMoE}(\cdot; \theta) = \text{SMoE}(\cdot; \hat{\theta})$ . *If  $\theta, \hat{\theta}$  satisfy the following four assumptions:*

- 242 1.  $n_e$  experts  $\{\mathbf{E}(\cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)})\}_{i=1}^{n_e}$  are pairwise strongly distinct func-  
 243 tions;
- 244 2.  $\widehat{n_e}$  experts  $\{\mathbf{E}(\cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)})\}_{i=1}^{\widehat{n_e}}$  are pairwise strongly distinct func-  
 245 tions;
- 247 3.  $\{W^{(G,i-1)} - W^{(G,i)}\}_{i=2}^{n_e}$  is a linear independent subset of  $\mathbb{R}^D$ ;
- 249 4.  $\{\widehat{W}^{(G,i-1)} - \widehat{W}^{(G,i)}\}_{i=2}^{\widehat{n_e}}$  is a linear independent subset of  $\mathbb{R}^D$ ;

251 then,  $n_e = \widehat{n_e}$ , and there exist  $\tau \in \mathbf{S}_{n_e}$ ,  $\gamma_W \in \mathbb{R}^D$ ,  $\gamma_b \in \mathbb{R}$  such that for all  
 252  $i = 1, \dots, n_e$ , we have  $\widehat{W}^{(G,i)} = W^{(G,\tau(i))} + \gamma_W$ ,  $\widehat{b}^{(G,i)} = b^{(G,\tau(i))} + \gamma_b$ , and  
 253  $\mathbf{E}(x; W^{(A,\tau(i))}, b^{(A,\tau(i))}, W^{(B,\tau(i))}, b^{(B,\tau(i))}) = \mathbf{E}(x; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)})$ , for all  $x \in$   
 254  $\Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e})$  such that  $\tau(i) \in \text{Top-}K((W^{(G,i)}x + b^{(G,i)})_{i=1}^{n_e})$ .

256 A proof of Theorem 3.4 is presented in Appendix C. Although Theorem 3.4 is conceptually aligned  
 257 with Theorem 3.1, it is important to emphasize that *the SMoE case is significantly more challenging*  
 258 *to establish.* The primary source of this difficulty lies in the presence of Top- $K$  operator, which in-  
 259 troduces discontinuities by altering the set of contributing experts in a nontrivial and input-dependent  
 260 manner. This behavior is notably difficult to analyze and control within the theoretical framework.

261 *Remark 3.5.* As previously stated, Theorem 3.4 is formulated under a stronger set of assumptions  
 262 than those required in Theorem 3.1. Indeed, the assumptions of the latter directly imply those of  
 263 the former. The rationale for imposing these stronger conditions stems from the observation that  
 264 an expert’s behavior is unconstrained on regions where it is not selected by the gating mechanism,  
 265 thereby allowing arbitrary behavior in such domains. As a result, distinct collections of expert  
 266 functions may yield identical overall outputs when restricted to their respective regions of activation.  
 267 This ambiguity gives rise to singular symmetries, as discussed in Remark 3.2. A comprehensive  
 268 justification of these assumptions, along with illustrative examples, is provided in Remark C.9.

269 **The case of  $K = 1$ .** In the special case where  $K = 1$ , the Top-1 gating mechanism in SMoE selects  
 only the expert with the highest gating score, resulting in a softmax distribution that collapses to a

single entry equal to 1. Thus, the SMoE map with  $K = 1$  also admits nontrivial symmetries under the action of the multiplicative group  $\mathbb{R}_{>0}$ . Specifically, for any  $a > 0$ , we have

$$\begin{aligned} \text{SMoE}\left(x; \{W^{(G,i)}, b^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\}_{i=1}^{n_e}\right) \\ = \text{SMoE}\left(x; \{aW^{(G,i)}, ab^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\}_{i=1}^{n_e}\right). \end{aligned} \quad (10)$$

This invariance holds because the argmax used for expert selection is unaffected by uniform positive scaling, i.e.  $\text{argmax}_{i=1, \dots, n_e} (W^{(G,i)}x + b^{(G,i)}) = \text{argmax}_{i=1, \dots, n_e} (aW^{(G,i)}x + ab^{(G,i)})$ , for all  $x \in \Omega(\{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e})$ . Moreover, since only one expert is activated per input, no explicit interactions are formed among the expert components. This leads to a rich set of hidden symmetries within the architecture. Due to the complexity introduced by these symmetries, we choose to exclude the case  $K = 1$  from our main analysis and leave its exploration to future work.

### 3.3 REMARKS ON FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS MODELS

Theorems 3.1 and 3.4 provide a formal characterization of functional equivalence in both dense and sparse MoE architectures, with a primary focus on the role and structure of the gating mechanism. Nonetheless, these results do not exhaustively account for all symmetries inherent in the MoE and SMoE architectures as defined in Equations 2 and 3. In particular, further symmetries may exist within the internal structure of individual experts, especially when those experts are implemented as ReLU networks, as mentioned in Section 1. Since this work centers on the architectural properties of MoE, our analysis prioritizes the gating component, while abstracting expert networks by their input-output behavior rather than their internal parameterizations.

## 4 EQUIVARIANT METANETWORKS FOR MOE TRANSFORMERS

Metanetworks are neural architectures that take internal components of other models (weights, gradients, sparsity patterns, ...) as input to enable meta-level learning (Zhou et al., 2024b). A central design principle is that they operate on functions defined by parameters, not raw weights—motivating equivariance: functionally equivalent parameters should yield consistent outputs. This has led to permutation-equivariant metanetworks (Navon et al., 2023; Zhou et al., 2024b; Kofinas et al., 2024; Zhou et al., 2024c), with extensions to symmetries like scaling, sign flipping via graph message passing (Kalogeropoulos et al., 2024) and parameter sharing (Tran et al., 2024a; Vo et al., 2025).

While metanetworks have been studied in MLPs, CNNs, and Transformers, no prior work, to our knowledge, has investigated equivariant metanetworks for MoE Transformers. Using the established functional equivalence for MoE architecture, we provide a design for an equivariant metanetwork for MoE Transformers. We also release a dataset containing 179k MoE Transformer checkpoints spanning both language and vision tasks, enabling systematic analysis of their weight space.

### 4.1 EQUIVARIANT METANETWORKS FOR MOE TRANSFORMERS

Since the weight space, symmetry, and group action are the same for both MoE and SMoE, we describe the equivariant metanetwork for the MoE Transformer in this section. The construction for the SMoE Transformer is identical.

An *MoE Transformer layer* comprises a multihead attention module followed by an MoE module, where each expert in the MoE module is realized as a single hidden-layer network. Formally, an MoE Tranformer layer, denoted as MoETransformer, transforms an input sequence  $X \in \mathbb{R}^{L \times D}$  to an output sequence  $\text{MoETransformer}(X) \in \mathbb{R}^{L \times D}$ , is defined as follows:

$$\text{MoETransformer}(X) =$$

$$\text{LayerNorm}\left(\hat{X} + \text{MoE}\left(\hat{X}; \{[W]^{(G,i)}, [b]^{(G,i)}, [W]^{(A,i)}, [b]^{(A,i)}, [W]^{(B,i)}, [b]^{(B,i)}\}_{i=1}^{n_e}\right)\right),$$

$$\text{where } \hat{X} = \text{LayerNorm}\left(X + \text{MultiHead}\left(X; \{[W]^{(Q,i)}, [W]^{(K,i)}, [W]^{(V,i)}, [W]^{(O,i)}\}_{i=1}^{n_h}\right)\right).$$

Here, the MoE operator is a token-wise operator and is defined in Equation 2, and the MultiHead is defined in (Tran et al., 2025). The positive integers  $n_h$  and  $n_e$  represent the number of heads in the multihead attention module and the number of experts in the MoE module, respectively.

The *weight space of the MoE Transformer layer* is a direct product of the weight space of the multihead attention module (detailed description in Tran et al. (2025)) and the MoE module (refer to Section 2). In particular, the weight space  $\mathcal{U}$  of the MoE Transformer layer above is defined as:

$$\mathcal{U} = \left( \mathbb{R}^{D \times D_k} \times \mathbb{R}^{D \times D_k} \times \mathbb{R}^{D \times D_v} \times \mathbb{R}^{D_v \times D} \right)^{n_h} \times \left( (\mathbb{R}^D \times \mathbb{R}) \times (\mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e}) \times (\mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D}) \right)^{n_e}. \quad (11)$$

An element  $U \in \mathcal{U}$  takes the form:

$$U = \left( ([W]^{(Q,i)}, [W]^{(K,i)}, [W]^{(V,i)}, [W]^{(O,i)})_{i=1,\dots,n_h}, \right. \\ \left. \left( ([W]^{(G,i)}, [b]^{(G,i)}), ([W]^{(A,i)}, [b]^{(A,i)}), ([W]^{(B,i)}, [b]^{(B,i)}) \right)_{i=1,\dots,n_e} \right). \quad (12)$$

Here, for  $i = 1, \dots, n_h$ , the matrices  $[W]^{(Q,i)} \in \mathbb{R}^{D \times D_k}$ ,  $[W]^{(K,i)} \in \mathbb{R}^{D \times D_k}$ ,  $[W]^{(V,i)} \in \mathbb{R}^{D \times D_v}$ , and  $[W]^{(O,i)} \in \mathbb{R}^{D_v \times D}$  are the query, key, value, and linear projection matrices, respectively, of the  $i^{\text{th}}$  head of the multihead attention. The rest of  $U$  includes the parameters of the MoE component.

The *symmetry group of the weight space  $\mathcal{U}$* , denoted  $\mathcal{G}_{\mathcal{U}}$ , is defined as the direct product of the symmetry group of the multi-head attention module and that of the MoE module, i.e.,

$$\mathcal{G}_{\mathcal{U}} = \left( \mathbb{S}_{n_h} \times (\text{GL}_{D_k}(\mathbb{R}) \times \text{GL}_{D_v}(\mathbb{R}))^{n_h} \right) \times (\mathbb{R}^D \times \mathbb{R}) \times \left( \mathbb{S}_{n_e} \times (\mathcal{P}_{D_e})^{n_e} \right). \quad (13)$$

Each element  $g \in \mathcal{G}_{\mathcal{U}}$  takes the form:

$$g = \left( (\tau_h, \{M_k^{(i)}, M_v^{(i)}\}_{i=1,\dots,n_h}), \{\gamma_W, \gamma_b\}, (\tau_e \times \{\pi_e^{(i)}\}_{i=1,\dots,n_e}) \right). \quad (14)$$

Here, the first component  $(\tau_h, \{M_k^{(i)}, M_v^{(i)}\}_{i=1,\dots,n_h})$  of  $g$  arises from the symmetry of the multi-head attention module. The second component  $\{\gamma_W, \gamma_b\}$  corresponds to the symmetry of the gating score functions. The third component  $(\tau_e, \{\pi_e^{(i)}\}_{i=1,\dots,n_e})$  captures the permutation symmetry among the  $n_e$  experts as well as the permutation symmetries within the hidden layers of each expert.

The *action of  $\mathcal{G}_{\mathcal{U}}$  on  $\mathcal{U}$*  is defined to be the map  $\mathcal{G}_{\mathcal{U}} \times \mathcal{U} \rightarrow \mathcal{U}$ , which maps  $(g, U) \in \mathcal{G}_{\mathcal{U}} \times \mathcal{U}$  to  $gU \in \mathcal{U}$ . Intuitively,  $gU$  is obtained by independently applying the first component of  $g$  to the weights of the multi-head attention module, and then applying the remaining components of  $g$  to the MoE module. As a consequence of Theorems 3.1 and 3.4, the MoE Transformer is invariant under this group action. Equivalently,  $U$  and  $gU$  yield the same MoE Transformer maps for every  $U \in \mathcal{U}$  and  $g \in \mathcal{G}_{\mathcal{U}}$ . Detailed formulation for  $gU$  and its properties are given explicitly in Appendix D.

*Equivariant and invariant metanetwork layers* are the essential components in the construction of our equivariant metanetworks for MoE Transformer models. In particular, an equivariant metanetwork layer is a map  $E: \mathcal{U} \rightarrow \mathcal{U}$  such that  $E(gU) = gE(U)$  for all  $U \in \mathcal{U}$  and  $g \in \mathcal{G}_{\mathcal{U}}$ . To construct  $E(U)$ , we follow the design of equivariant polynomial layers in Tran et al. (2025), we adopt a quadratic polynomial in the input weights  $U$  with unknown coefficients. In particular, each entry of  $E(U)$  is designed to be a linear combination with unknown coefficients of the entries of

- the products  $[W]^{(QK,s)} = [W]^{(Q,s)}([W]^{(K,s)})^{\top}$ , and  $[W]^{(VO,s)} = [W]^{(V,s)}([W]^{(O,s)})^{-1}$ ;
- the matrices  $[W]^{(Q,s)}, [W]^{(K,s)}, [W]^{(V,s)}$ , and  $[W]^{(O,s)}$  inside the multihead attention module;
- the matrices  $[W]^{(G,s)}$  and the vector  $[g]^{(Q,s)}$  in the gating functions, as well as the matrices  $[W]^{(A,s)}, [W]^{(B,s)}$  and the vectors  $[b]^{(A,s)}, [b]^{(B,s)}$  of the experts;

for every index  $s$  and a bias term. Following the parameter-sharing technique, we solve the system of equations arising from the condition  $E(gU) = gE(U)$  with all  $U \in \mathcal{U}$  and  $g \in \mathcal{G}_{\mathcal{U}}$  to obtain the necessary and sufficient constraints on the unknown coefficients that ensure  $E$  is equivariant. The invariant layer is constructed using the same approach. The construction of both equivariant and invariant layers are quite lengthy and it is discussed in detail in Appendices F and G. A description of how to implement the equivariant and invariant layers are presented in Appendix H.

378 Table 1: Evaluation of model performance on the AgNews-MoEs dataset using Kendall’s  $\tau$  rank  
 379 correlation. Error bars denote the standard error over 5 independent runs.  
 380

|                                                 | No threshold                        | 20%                                 | 40%                                 | 60%                                 | 80%                                 |
|-------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| MLP                                             | 0.610 $\pm$ 0.007                   | 0.610 $\pm$ 0.001                   | 0.595 $\pm$ 0.021                   | 0.538 $\pm$ 0.006                   | 0.479 $\pm$ 0.013                   |
| XGBoost (Chen & Guestrin, 2016)                 | 0.666 $\pm$ 0.002                   | 0.665 $\pm$ 0.001                   | 0.626 $\pm$ 0.001                   | 0.619 $\pm$ 0.003                   | 0.611 $\pm$ 0.001                   |
| LightGBM (Ke et al., 2017)                      | 0.672 $\pm$ 0.003                   | 0.673 $\pm$ 0.001                   | 0.623 $\pm$ 0.017                   | 0.621 $\pm$ 0.004                   | 0.590 $\pm$ 0.002                   |
| Random Forest (Breiman, 2001)                   | 0.619 $\pm$ 0.003                   | 0.620 $\pm$ 0.002                   | 0.583 $\pm$ 0.002                   | 0.571 $\pm$ 0.002                   | 0.558 $\pm$ 0.001                   |
| Support Vector Regression (Vapnik et al., 1996) | 0.442 $\pm$ 0.012                   | 0.407 $\pm$ 0.019                   | 0.414 $\pm$ 0.003                   | 0.374 $\pm$ 0.009                   | 0.268 $\pm$ 0.012                   |
| Transformer-NFN (Tran et al., 2025)             | 0.777 $\pm$ 0.001                   | 0.781 $\pm$ 0.002                   | 0.732 $\pm$ 0.002                   | 0.726 $\pm$ 0.001                   | 0.712 $\pm$ 0.002                   |
| MoE-NFN (ours)                                  | <b>0.788 <math>\pm</math> 0.001</b> | <b>0.790 <math>\pm</math> 0.002</b> | <b>0.758 <math>\pm</math> 0.001</b> | <b>0.745 <math>\pm</math> 0.002</b> | <b>0.734 <math>\pm</math> 0.001</b> |

## 388 4.2 DATASET: MOE TRANSFORMER MODEL ZOOS

390 Mixture of Experts (MoE) Transformers have been incorporated into several recent deep learning  
 391 architectures (DeepSeek-AI et al., 2025; Riquelme et al., 2021; Du et al., 2022). However, their  
 392 internal weight structures remain largely unexplored from the perspective of metanetworks—partly  
 393 due to the absence of suitable pretrained weight datasets. Existing datasets (Tran et al., 2024b) only  
 394 provide pretrained weights for standard Transformer architectures and do not include pretrained  
 395 MoE Transformer models. To address this gap, we introduce the MoE Transformer Model Zoos,  
 396 which comprise two datasets: **AGNews-MoEs** and **MNIST-MoEs**. These contain small-scale MoE  
 397 Transformer weights trained on text classification task using the AG News dataset (Zhang et al.,  
 398 2015) and image classification task using the MNIST dataset (LeCun & Cortes, 2005), respectively.

399 The AGNews-MoEs dataset includes 79,220 model checkpoints, while MNIST-MoEs comprises of  
 400 100,024 checkpoints, each generated under diverse training conditions. For each checkpoint, both  
 401 training and test accuracy are recorded. These datasets provide a foundation for training metanet-  
 402 works aimed at predicting model generalization performance directly from its weight, without re-  
 403quiring access to the original test data. Comprehensive details on the structure of the pretrained  
 404 weights are provided in Appendix K. We release these datasets publicly to support further research  
 405 on modeling and understanding the weight space of MoE Transformer architectures.

## 406 4.3 EXPERIMENTAL RESULTS

408 To assess the effectiveness of our proposed MoE-NFN in modeling the weight space of MoE Trans-  
 409 formers, we conduct two generalization prediction experiments on AGNews-MoEs and MNIST-  
 410 MoEs. The goal is to test whether MoE-NFN can predict test accuracy directly from learned weights.  
 411 For Transformer-NFN (Tran et al., 2025), which is not fully compatible with gated MoEs, we adapt  
 412 inputs by averaging expert weights and removing gating. Other baselines—including MLPs, tree-  
 413 based models (Chen & Guestrin, 2016; Ke et al., 2017; Breiman, 2001), and SVR (Vapnik et al.,  
 414 1996)—use flattened weight vectors as input. Performance is measured with Kendall’s  $\tau$  rank cor-  
 415 relation (Kendall, 1938). Full experiment details appear in Appendix L, with an additional ablation  
 416 study of layer size and depth in Appendix I.

### 417 4.3.1 GENERALIZATION PREDICTION FOR AGNEWS-MOES TRANSFORMER WEIGHTS

418 **Experiment Setup.** We evaluate the performance of MoE-NFN on the AGNews-MoEs dataset,  
 419 which consists of pretrained language model weights. As illustrated by the accuracy distribution  
 420 in Figure 1, the dataset is slightly skewed toward high-performing models. To enable a more bal-  
 421 anced and comprehensive evaluation, we partition the dataset into five subsets based on test accuracy  
 422 thresholds. The first subset includes all models without thresholding, while the remaining four con-  
 423 tain only models with test accuracy above 20%, 40%, 60%, and 80%, respectively. This setup allows  
 424 us to assess the generalization prediction performance of different models across a range of quality.

425 **Results.** Table 1 shows that our proposed MoE-NFN consistently achieves the highest performance  
 426 across all accuracy thresholds on the AGNews-MoEs dataset. Without any threshold, MoE-NFN  
 427 achieves a Kendall’s  $\tau$  of 0.788, compared to 0.777 for Transformer-NFN (Tran et al., 2025). This  
 428 trend persists across all thresholds, where MoE-NFN consistently outperforms other baselines, and  
 429 Transformer-NFN ranks second in every case. These results highlight the importance of align-  
 430 ing the functional network’s design with the structure of the underlying pretrained models. While  
 431 Transformer-NFN is tailored to standard Transformers, MoE-NFN generalizes this formulation by  
 explicitly modeling gating and expert modularity.

432 Table 2: Evaluation of model performance on the MNIST-MoEs dataset using Kendall’s  $\tau$  rank  
 433 correlation. Error bars denote the standard error over 5 independent runs.

|                                     | Accuracy threshold |                   |                   |                   |                   |
|-------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | No threshold       | 20%               | 40%               | 60%               | 80%               |
| MLP                                 | $0.798 \pm 0.002$  | $0.767 \pm 0.006$ | $0.708 \pm 0.001$ | $0.662 \pm 0.001$ | $0.593 \pm 0.013$ |
| XGBoost (Chen & Guestrin, 2016)     | $0.781 \pm 0.002$  | $0.778 \pm 0.004$ | $0.746 \pm 0.001$ | $0.728 \pm 0.001$ | $0.659 \pm 0.002$ |
| LightGBM (Ke et al., 2017)          | $0.810 \pm 0.001$  | $0.784 \pm 0.002$ | $0.765 \pm 0.001$ | $0.737 \pm 0.002$ | $0.681 \pm 0.004$ |
| Random Forest (Breiman, 2001)       | $0.747 \pm 0.001$  | $0.732 \pm 0.003$ | $0.697 \pm 0.002$ | $0.686 \pm 0.004$ | $0.624 \pm 0.003$ |
| SVR (Vapnik et al., 1996)           | $0.442 \pm 0.012$  | $0.407 \pm 0.019$ | $0.415 \pm 0.004$ | $0.373 \pm 0.009$ | $0.268 \pm 0.012$ |
| Transformer-NFN (Tran et al., 2025) | $0.828 \pm 0.002$  | $0.786 \pm 0.001$ | $0.756 \pm 0.001$ | $0.686 \pm 0.001$ | $0.623 \pm 0.003$ |
| MoE-NFN (ours)                      | $0.833 \pm 0.001$  | $0.790 \pm 0.001$ | $0.770 \pm 0.001$ | $0.731 \pm 0.001$ | $0.672 \pm 0.002$ |

442 Table 3: Performance measured by Kendall’s  $\tau$  of all models on the original and augmented test sets  
 443 for MNIST-MoEs and AGNews-MoEs using the group action  $\mathcal{G}_{\mathcal{U}}$ .

| Dataset     | Split     | MoE-NFN  | Transformer-NFN | MLP   | SVR   | LightGBM | Random Forest | XGBoost |
|-------------|-----------|----------|-----------------|-------|-------|----------|---------------|---------|
| AGNews-MoEs | Original  | 0.788    | 0.769           | 0.608 | 0.445 | 0.671    | 0.621         | 0.665   |
|             | Augmented | 0.788    | 0.768           | 0.048 | 0.005 | 0.559    | 0.619         | 0.653   |
|             | Gap       | <b>0</b> | <u>0.001</u>    | 0.560 | 0.440 | 0.112    | 0.002         | 0.012   |
| MNIST-MoEs  | Original  | 0.833    | 0.828           | 0.798 | 0.451 | 0.811    | 0.747         | 0.781   |
|             | Augmented | 0.833    | 0.826           | 0.223 | 0.019 | 0.797    | 0.744         | 0.776   |
|             | Gap       | <b>0</b> | <u>0.002</u>    | 0.575 | 0.432 | 0.014    | 0.003         | 0.005   |

#### 451 4.3.2 GENERALIZATION PREDICTION FOR MNIST-MOES TRANSFORMER WEIGHTS

452 **Experiment Setup.** We split the MNIST-MoEs dataset into five subsets based on accuracy thresholds,  
 453 following the same procedure used in the AGNews-MoEs analysis. For each subset, we evaluate  
 454 the ability of each metanetwork to predict generalization performance from pretrained weights.  
 455 The alignment between predicted and true test accuracy is measured by Kendall’s  $\tau$  correlation.

456 **Results.** As shown in Table 2, our MoE-NFN achieves the highest Kendall’s  $\tau$  on most thresholds:  
 457 the full test set (0.833), the 20% threshold (0.790), and the 40% threshold (0.770), while ranking  
 458 second at the 60% and 80% thresholds. Interestingly, LightGBM performs well at higher thresholds,  
 459 likely due to capturing strong nonlinear correlations in these high-accuracy subsets. Despite this,  
 460 MoE-NFN remains competitive and consistently strong, demonstrating robustness and adaptability.  
 461 It also outperforms Transformer-NFN (Tran et al., 2025) in all cases, highlighting the benefit of  
 462 modeling MoE-specific structures such as expert modularity and gating.

#### 464 4.3.3 EFFECT OF $\mathcal{G}_{\mathcal{U}}$ TRANSFORMATIONS ON GENERALIZATION PREDICTION

466 **Experiment Setup.** Under the group action  $g \in \mathcal{G}_{\mathcal{U}}$ , different parameter values can represent the  
 467 same underlying function. To evaluate whether models trained on the training set are invariant to  
 468 such transformations, we construct an augmented test set by applying randomly sampled elements  
 469 from  $\mathcal{G}_{\mathcal{U}}$  to the test set weights, producing functionally equivalent but parametrically distinct models.

470 **Results.** Table 3 empirically confirms that MoE-NFN is invariant under the group transformation  
 471  $\mathcal{G}_{\mathcal{U}}$ , showing zero performance drop across both datasets. Notably, Transformer-NFN also demon-  
 472 strates strong stability, with only minor gaps of 0.002 on MNIST-MoEs and 0.001 on AGNews-  
 473 MoEs. This robustness can be attributed to its design: Transformer-NFN is explicitly invariant to  
 474 the subgroup  $Sn_h \times (GLD_k(\mathbb{R}) \times GLD_v(\mathbb{R}))^{n_h}$ , and also  $(\mathbb{R}^D \times \mathbb{R})$  due to removal of gating. In  
 475 contrast, other models except Random Forest show notable performance drop on augmented sets.

## 476 5 CONCLUSION

477 This paper defines a weight space for Mixture-of-Experts (MoE) models and introduces a group  
 478 action that preserves functionality across dense and sparse gating. We prove that it captures all  
 479 universal MoE symmetries, though the Top-1 sparse case remains open for future analysis. Build-  
 480 ing on this, we develop an equivariant metanetwork framework for pretrained MoE weights and  
 481 release two benchmarks—MNIST-MoE and AGNews-MoE. Experiments and ablations show that  
 482 symmetry-aware functional reasoning significantly improves metanetwork performance. These re-  
 483 sults highlight the importance of symmetry and functional equivalence for both theoretical under-  
 484 standing and practical model design. One limitation is the assumption of a fixed weight, leaving  
 485 dynamic-weight settings as a direction for future work.

486     **Ethics Statement.** Given the nature of the work, we do not foresee any negative societal and ethical  
 487     impacts of our work.  
 488

489     **Reproducibility Statement.** Source codes for our experiments are provided in the supplementary  
 490     materials of the paper. The details of our experimental settings are given in Section 4 and the Ap-  
 491     pendix L. All datasets used in this paper are publicly available through an anonymous link provided  
 492     in the README file of the supplementary material.  
 493

493     **LLM Usage.** In this paper, large language models (LLMs) were used solely as a tool to assist  
 494     and refine the writing process. They helped with phrasing, clarity, and stylistic polishing, but all  
 495     conceptual work, analyses, and conclusions were developed independently by the authors. The LLM  
 496     served only to improve readability and presentation, without contributing to the research content  
 497     itself.  
 498

## 499     REFERENCES

500     Lars V. Ahlfors. *Complex Analysis*. McGraw-Hill, New York, 3rd edition, 1979.  
 501

502     Francesca Albertini and Eduardo D Sontag. Identifiability of discrete-time neural networks. In *Proc.*  
 503     *European Control Conference*, pp. 460–465. Springer Berlin, 1993a.

504     Francesca Albertini and Eduardo D Sontag. For neural networks, function determines form. *Neural*  
 505     *networks*, 6(7):975–990, 1993b.

506     Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over  
 507     parameterization. In *International Conference on Machine Learning (ICML)*, 2019.

509     Bruno Andreis, Bedionita Soro, Philip Torr, and Sung Ju Hwang. Set-based neural network encoding  
 510     without weight tying. *Advances in Neural Information Processing Systems*, 37:76500–76528,  
 511     2024.

512     Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,  
 513     Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient  
 514     descent. *Advances in neural information processing systems*, 29, 2016.

516     Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-  
 517     learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy*  
 518     *of Sciences*, 116(32):15849–15854, 2019.

519     Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic  
 520     learning rule. In *Optimality in Biological and Artificial Networks?*, pp. 265–287. Routledge, 2013.

522     Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep  
 523     networks gives rise to permutation saddles, connected by equal-loss valleys across the loss land-  
 524     scape. *arXiv preprint arXiv:1907.02911*, 2019.

525     Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.

526     Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,  
 527     Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are  
 528     few-shot learners. *Advances in Neural Information Processing Systems*, 33:1877–1901, 2020.

530     Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of relu net-  
 531     works. In *8th International Conference on Learning Representations*, 2020.

532     Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In  
 533     *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,*  
 534     EMNLP 2021, pp. 6491–6506. Association for Computational Linguistics, 2021.

535     An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural  
 536     network error surfaces. *Neural computation*, 5(6):910–927, 1993.

538     Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of*  
 539     *the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,  
 volume 11 of *KDD '16*, pp. 785–794. ACM, August 2016. doi: 10.1145/2939672.2939785.

540 John B. Conway. *Functions of One Complex Variable*. Springer, New York, 2nd edition, 1978.  
 541

542 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control,*  
 543 *signals and systems*, 2(4):303–314, 1989.

544

545 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-  
 546 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,  
 547 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting  
 548 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui  
 549 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi  
 550 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,  
 551 Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,  
 552 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun  
 553 Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan  
 554 Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.  
 555 Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,  
 556 Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng  
 557 Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-  
 558 ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanja Zhao,  
 559 Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue  
 560 Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-  
 561 aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin  
 562 Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,  
 563 Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang  
 564 Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui  
 565 Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying  
 566 Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,  
 567 Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan  
 568 Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.  
 569 Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda  
 570 Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,  
 571 Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,  
 572 Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL  
 573 <https://arxiv.org/abs/2412.19437>.

574

575 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
 576 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

577

578 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim  
 579 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language  
 580 models with mixture-of-experts. In *International conference on machine learning*, pp. 5547–  
 581 5569. PMLR, 2022.

582

583 Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global  
 584 minima of deep neural networks. In *International Conference on Machine Learning (ICML)*,  
 585 2019.

586

587 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter  
 588 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,  
 589 2022.

590

591 Charles Fefferman and Scott Markel. Recovering a feed-forward net from its output. In *Advances  
 592 in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA,  
 593 1993]*, pp. 335–342. Morgan Kaufmann, 1993. URL <http://papers.nips.cc/paper/748-recovering-a-feed-forward-net-from-its-output.pdf>.

594

595 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neu-  
 596 ral networks. In *7th International Conference on Learning Representations, ICLR 2019, New  
 597 Orleans, LA, USA, May 6-9, 2019*, 2018. URL <https://openreview.net/forum?id=rJ1-b3RcF7>.

594 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural  
 595 networks. In *International Conference on Learning Representations (ICLR)*, 2019.  
 596

597 Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N  
 598 Suganthan. Ensemble deep learning: A review. *Engineering Applications of Artificial Intelli-  
 599 gence*, 115:105151, 2022.

600 Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network  
 601 optimization problems. *arXiv preprint arXiv:1412.6544*, 2014.  
 602

603 Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc Bacon. Policy evaluation networks. *arXiv  
 604 preprint arXiv:2002.11833*, 2020.

605 Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In *Ad-  
 606 vanced Neural Computers*, pp. 129–135. Elsevier, 1990.  
 607

608 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-  
 609 versal approximators. *Neural networks*, 2(5):359–366, 1989.

610 Harold Hotelling. Analysis of a complex of statistical variables into principal components. *Journal  
 611 of Educational Psychology*, 24(6):417–441, 1933. doi: 10.1037/h0071325.  
 612

613 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of  
 614 local experts. *Neural computation*, 3(1):79–87, 1991.  
 615

616 Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Panagakis. Scale equivari-  
 617 ant graph metanetworks. In *Advances in Neural Information Processing Systems  
 618 38*, 2024. URL [http://papers.nips.cc/paper\\_files/paper/2024/hash/c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2024/hash/c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html).  
 619

620 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-  
 621 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural  
 622 information processing systems*, 30, 2017.  
 623

624 M. G. Kendall. A NEW MEASURE OF RANK CORRELATION. *Biometrika*, 30(1-2):81–93,  
 625 06 1938. ISSN 0006-3444. doi: 10.1093/biomet/30.1-2.81. URL <https://doi.org/10.1093/biomet/30.1-2.81>.  
 626

627 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-  
 628 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv  
 629 preprint arXiv:1609.04836*, 2016.  
 630

631 Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, and Simon Lacoste-  
 632 Julien. Accelerating training with neuron interaction and nowcasting networks. *arXiv preprint  
 633 arXiv:2409.04434*, 2024.  
 634

635 Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,  
 636 Cees G. M. Snoek, and David W. Zhang. Graph neural networks for learning equivariant repres-  
 637 entations of neural networks. In *The Twelfth International Conference on Learning Representations*,  
 638 2024. URL <https://openreview.net/forum?id=oO6FsMyDBt>.  
 639

640 Vera Kurkova and Paul C Kainen. Functionally equivalent feedforward neural networks. *Neural  
 641 Computation*, 6(3):543–558, 1994.  
 642

643 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive  
 644 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,  
 645 30, 2017.  
 646

647 Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. In *Proceedings of the  
 648 IEEE*, 2005. URL <https://api.semanticscholar.org/CorpusID:60282629>.  
 648

649 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,  
 650 Maxim Krikun, Noam Shazeer, Zhifeng Wang, Yonghui Chen, et al. Gshard: Scaling giant models  
 651 with conditional computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.  
 652

648 Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,  
 649 Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned  
 650 optimizers by scaling up. *arXiv preprint arXiv:2211.09760*, 2022.

651

652 Léo Meynent, Ivan Melev, Konstantin Schürholt, Göran Kauermann, and Damian Borth. Structure  
 653 is not enough: Leveraging behavior for neural network weight reconstruction. *arXiv preprint*  
 654 *arXiv:2503.17138*, 2025.

655 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and  
 656 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*  
 657 *of the ACM*, 65(1):99–106, 2021.

658

659 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast  
 660 model editing at scale. In *The Tenth International Conference on Learning Representations*,  
 661 2022. URL <https://openreview.net/forum?id=0DcZxeWfOPT>.

662

663 Ammar Mohammed and Rania Kora. A comprehensive review on ensemble deep learning: Oppor-  
 664 tunities and challenges. *Journal of King Saud University-Computer and Information Sciences*, 35  
 665 (2):757–774, 2023.

666

667 Andreas Müller, Carlo Curino, and Raghu Ramakrishnan. Mothernet: A foundational hypernetwork  
 668 for tabular classification. *arXiv preprint arXiv:2312.08598*, 2023.

669

670 Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-  
 671 ariant architectures for learning in deep weight spaces. In *International Conference on Machine*  
 672 *Learning*, pp. 25790–25816. PMLR, 2023.

673

674 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. To-  
 675 wards understanding the role of over-parametrization in generalization of neural networks. *arXiv*  
 676 *preprint arXiv:1805.12076*, 2018.

677

678 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards  
 679 understanding the role of over-parametrization in generalization of neural networks. In *Inter-  
 680 national Conference on Learning Representations (ICLR)*, 2019.

681

682 Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-  
 683 ing? *Advances in neural information processing systems*, 33:512–523, 2020.

684

685 Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.  
 686 Sensitivity and generalization in neural networks: an empirical study. In *International Conference*  
 687 *on Learning Representations (ICLR)*, 2018.

688

689 Karl Pearson. On lines and planes of closest fit to systems of points in space. *The London, Edin-  
 690 burgh, and Dublin Philosophical Magazine and Journal of Science*, 2(11):559–572, 1901. doi:  
 691 10.1080/14786440109462720.

692

693 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André  
 694 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.  
 695 *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.

696

697 Walter Rudin. *Real and Complex Analysis*. McGraw-Hill, New York, 3rd edition, 1987.

698

699 Thomas Philip Runarsson and Magnus Thor Jonsson. Evolution and design of distributed learning  
 700 rules. In *2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Net-  
 701 works. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation*  
 702 *and Neural Networks (Cat. No. 00), pp. 59–63. IEEE*, 2000.

703

704 Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of  
 705 the hessian of over-parametrized neural networks. *arXiv preprint arXiv:1706.04454*, 2017.

706

707 Daniel Saragih, Deyu Cao, Tejas Balaji, and Ashwin Santhosh. Flow to learn: Flow matching on  
 708 neural network parameters. *arXiv preprint arXiv:2503.19371*, 2025.

702 Noam Shazeer, Azalia Mirhoseini, Kelsey Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff  
 703 Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv*  
 704 *preprint arXiv:1701.06538*, 2017.

705 Anton Sinitzin, Vsevolod Plokhotnyuk, Dmitry V. Pyrkin, Sergei Popov, and Artem Babenko. Ed-  
 706 itable neural networks. In *8th International Conference on Learning Representations*, 2020. URL  
 707 <https://openreview.net/forum?id=HJedXaEtvs>.

708 Samuel Sokota, Hengyuan Hu, David J Wu, J Zico Kolter, Jakob Nicolaus Foerster, and Noam  
 709 Brown. A fine-tuning approach to belief state modeling. In *International Conference on Learning*  
 710 *Representations*, 2021.

711 Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter,  
 712 and Sung Ju Hwang. Diffusion-based neural network weights generation. *arXiv preprint*  
 713 *arXiv:2402.18153*, 2024.

714 Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of development.  
 715 *Genetic programming and evolvable machines*, 8:131–162, 2007.

716 Elias M. Stein and Rami Shakarchi. *Complex Analysis*, volume 2 of *Princeton Lectures in Analysis*.  
 717 Princeton University Press, Princeton, NJ, 2003.

718 Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Opti-  
 719 mizing mode connectivity via neuron alignment. *Advances in Neural Information Processing*  
 720 *Systems*, 33:15300–15311, 2020.

721 Hoang Tran, Thieu Vo, Tho Huu, An Nguyen The, and Tan Nguyen. Monomial  
 722 matrix group equivariant neural functional networks. In *Advances in Neural In-*  
 723 *formation Processing Systems*, volume 37, pp. 48628–48665. Curran Associates, Inc.,  
 724 2024a. URL [https://proceedings.neurips.cc/paper\\_files/paper/2024/file/577cd5863ec73be4e6871340be0936ae-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2024/file/577cd5863ec73be4e6871340be0936ae-Paper-Conference.pdf).

725 Viet-Hoang Tran, Thieu N Vo, An Nguyen The, Tho Tran Huu, Minh-Khoi Nguyen-Nhat, Thanh  
 726 Tran, Duy-Tung Pham, and Tan Minh Nguyen. Equivariant neural functional networks for trans-  
 727 formers. *arXiv preprint arXiv:2410.04209*, 2024b.

728 Viet-Hoang Tran Tran, Thieu N. Vo, An Nguyen The, Tho Tran Huu, Minh-Khoi Nguyen-Nhat,  
 729 Thanh Tran, Duy-Tung Pham, and Tan M. Nguyen. Equivariant neural functional networks for  
 730 transformers. In *International Conference on Learning Representations (ICLR)*, 2025.

731 Vladimir Vapnik, Steven Golowich, and Alex Smola. Support vector method for function approxi-  
 732 mation, regression estimation and signal processing. *Advances in neural information processing*  
 733 *systems*, 9, 1996.

734 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,  
 735 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*  
 736 *Processing Systems 30*, pp. 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.html>.

737 Luca Venturi, Afonso S Bandeira, and Joan Bruna. Spurious valleys in one-hidden-layer neural  
 738 network optimization landscapes. *Journal of Machine Learning Research*, 20:133, 2019.

739 Thieu N Vo, Viet-Hoang Tran, Tho Tran Huu, An Nguyen The, Thanh Tran, Minh-Khoi Nguyen-  
 740 Nhat, Duy-Tung Pham, and Tan Minh Nguyen. Equivariant polynomial functional networks.  
 741 *arXiv preprint arXiv:2410.04213*, 2024.

742 Thieu N. Vo, Viet-Hoang Tran, Tho Tran Huu, An Nguyen The, Thanh Tran, Minh-Khoi Nguyen-  
 743 Nhat, Duy-Tung Pham, and Tan Minh Nguyen. Equivariant polynomial functional networks. In  
 744 *International Conference on Machine Learning (ICML)*, 2025.

745 Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schürholt, Zhangyang Wang, and Yang You.  
 746 Recurrent diffusion for large-scale parameter generation. *arXiv preprint arXiv:2501.11587*, 2025.

756 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,  
 757 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model  
 758 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing  
 759 inference time. In *International Conference on Machine Learning*, pp. 23965–23998. PMLR,  
 760 2022.

761 Mixue Xie, Shuang Li, Binhui Xie, Chi Liu, Jian Liang, Zixun Sun, Ke Feng, and Chengwei Zhu.  
 762 Weight diffusion for future: Learn to generalize in non-stationary environments. *Advances in*  
 763 *Neural Information Processing Systems*, 37:6367–6392, 2024.

765 David Yunis, Kumar Kshitij Patel, Pedro Henrique Pamplona Savarese, Gal Vardi, Jonathan Frankle,  
 766 Matthew Walter, Karen Livescu, and Michael Maire. On convexity and linear mode connectivity  
 767 in neural networks. In *OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop)*,  
 768 2022.

769 Chiayuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding  
 770 deep learning requires rethinking generalization. In *International Conference on Learning Rep-*  
 771 *resentations (ICLR)*, 2017.

772 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-  
 773 sification. *Advances in neural information processing systems*, 28, 2015.

775 Allan Zhou, Chelsea Finn, and James Harrison. Universal neural functionals. *Advances in neural*  
 776 *information processing systems*, 2024a.

778 Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J Zico  
 779 Kolter, and Chelsea Finn. Permutation equivariant neural functionals. *Advances in Neural Infor-*  
 780 *mation Processing Systems*, 36, 2024b.

781 Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter,  
 782 and Chelsea Finn. Neural functional transformers. *Advances in Neural Information Processing*  
 783 *Systems*, 36, 2024c.

784 Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going beyond linear mode  
 785 connectivity: The layerwise linear feature connectivity. *arXiv preprint arXiv:2307.08286*, 2023.

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 TABLE OF NOTATION  
811

---

|                                    |                                                                            |
|------------------------------------|----------------------------------------------------------------------------|
| 813 $n_h$                          | Number of head of Attention module                                         |
| 814 $n_e$                          | Number of expert of MoE module                                             |
| 815 $D$                            | Hidden dimension of the model                                              |
| 816 $D_k$                          | Dimension of key/query vector in Attention module                          |
| 817 $D_v$                          | Dimension of value vector in Attention module                              |
| 818 $D_A$                          | Hidden dimension of the expert                                             |
| 819 $[W]^{Q,i}$                    | Weight of query matrix of head $i$                                         |
| 820 $[W]^{K,i}$                    | Weight of key matrix of head $i$                                           |
| 821 $[W]^{V,i}$                    | Weight of value matrix of head $i$                                         |
| 822 $[W]^{O,i}$                    | Weight of out projection matrix of head $i$                                |
| 823 $[W]^{G,i}$                    | Weight of the gating MLP corresponding to expert $i$                       |
| 824 $[W]^{A,i}$                    | Weight of the first MLP of expert $i$                                      |
| 825 $[W]^{B,i}$                    | Weight of the second MLP of expert $i$                                     |
| 826 $[b]^{G,i}$                    | Bias of the gating MLP corresponding to expert $i$                         |
| 827 $[b]^{A,i}$                    | Bias of the first MLP of expert $i$                                        |
| 828 $[b]^{B,i}$                    | Bias of the second MLP of expert $i$                                       |
| 829 $\mathcal{U}$                  | Weight space of Transformer MoE                                            |
| 830 $\mathcal{G}_{\mathcal{U}}$    | Symmetric group of the weight space                                        |
| 831 $\sigma()$                     | Relu activation                                                            |
| 832 $\tau_h$                       | Head permutation group action in Attention module                          |
| 833 $\gamma_W$                     | Symmetry parameterization of the gating weight                             |
| 834 $\gamma_b$                     | Symmetry parameterization of the gating bias                               |
| 835 $\tau_h$                       | Expert permutation group action in MoE module                              |
| 836 $\pi_e^{(i)}$                  | Permutation group action of hidden vector of expert $i$                    |
| 837 $E()$                          | Equivariant layer                                                          |
| 838 $I()$                          | Invariant layer                                                            |
| 839 $\mathbb{R}^d$                 | $d$ -dimensional Euclidean space                                           |
| 840 $\langle \cdot, \cdot \rangle$ | standard dot product                                                       |
| 841 $\sqcup$                       | disjoint union                                                             |
| 842 $g$                            | element of group                                                           |
| 843 $\text{GL}_D(\mathbb{R})$      | General linear group of invertible $D \times D$ matrices over $\mathbb{R}$ |

---

851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863

# 864 Appendix of “Equivariant Metanetworks 865 for Mixture-of-Experts weights” 866

## 867 Table of Contents

|     |                                                                                      |           |
|-----|--------------------------------------------------------------------------------------|-----------|
| 869 | <b>A Weight Spaces of Mixture-of-Experts and their Group Actions</b>                 | <b>18</b> |
| 870 | A.1 Weight Space of Mixture-of-Experts . . . . .                                     | 18        |
| 871 | A.2 Weight Space of Sparse Mixture-of-Experts . . . . .                              | 19        |
| 872 | A.3 Group Action on Weight Spaces . . . . .                                          | 20        |
| 873 |                                                                                      |           |
| 874 |                                                                                      |           |
| 875 | <b>B Functional Equivalence in Mixture-of-Experts</b>                                | <b>22</b> |
| 876 | B.1 An Auxiliary Result related to Holomorphic Functions on $\mathbb{C}^n$ . . . . . | 22        |
| 877 | B.2 Local Affineness of ReLU Neural Networks . . . . .                               | 23        |
| 878 | B.3 Functional Equivalence in Mixture-of-Experts . . . . .                           | 24        |
| 879 |                                                                                      |           |
| 880 |                                                                                      |           |
| 881 |                                                                                      |           |
| 882 | <b>C Functional Equivalence in Sparse Mixture-of-Experts</b>                         | <b>30</b> |
| 883 | C.1 Auxiliary Results . . . . .                                                      | 30        |
| 884 | C.2 Functional Equivalence in Sparse Mixture-of-Experts . . . . .                    | 32        |
| 885 |                                                                                      |           |
| 886 |                                                                                      |           |
| 887 | <b>D Weight Spaces of MoE Transformer and Its Group Action</b>                       | <b>36</b> |
| 888 |                                                                                      |           |
| 889 | <b>E Metanetwork for MoE Transformers: a Polynomial Layer and Notations</b>          | <b>38</b> |
| 890 |                                                                                      |           |
| 891 |                                                                                      |           |
| 892 | <b>F Equivariant layer</b>                                                           | <b>42</b> |
| 893 | F.1 Computing $E(gU)$ . . . . .                                                      | 42        |
| 894 | F.2 Computing $gE(U)$ . . . . .                                                      | 55        |
| 895 | F.3 Compare coefficients from equation $E(gU) = gE(U)$ . . . . .                     | 57        |
| 896 | F.4 Final form of the equivariant polynomial layer . . . . .                         | 67        |
| 897 |                                                                                      |           |
| 898 |                                                                                      |           |
| 899 |                                                                                      |           |
| 900 | <b>G Invariant layer</b>                                                             | <b>73</b> |
| 901 | G.1 Computing $I(gU)$ . . . . .                                                      | 73        |
| 902 | G.2 Compare coefficients from equation $I(gU) = I(U)$ . . . . .                      | 74        |
| 903 |                                                                                      |           |
| 904 |                                                                                      |           |
| 905 | <b>H Implementation Details of the Equivariant and Invariant Layer</b>               | <b>76</b> |
| 906 | H.1 Equivariant Constraint Reduction to Bullet Form . . . . .                        | 76        |
| 907 | H.2 Equivariant layers with bullet notation . . . . .                                | 79        |
| 908 | H.3 Invariant layers with bullet notation . . . . .                                  | 86        |
| 909 | H.4 Equivariant Layers Pseudocode . . . . .                                          | 88        |
| 910 | H.4.1 $[E(W)]_{j,k}^{(Q,i)}$ pseudocode . . . . .                                    | 88        |
| 911 | H.4.2 $[E(W)]_{j,k}^{(K,i)}$ pseudocode . . . . .                                    | 88        |
| 912 | H.4.3 $[E(W)]_{j,k}^{(V,i)}$ pseudocode . . . . .                                    | 88        |
| 913 | H.4.4 $[E(W)]_{j,k}^{(O:i)}$ pseudocode . . . . .                                    | 88        |
| 914 |                                                                                      |           |
| 915 |                                                                                      |           |
| 916 |                                                                                      |           |
| 917 |                                                                                      |           |

|     |                                                                                                 |            |
|-----|-------------------------------------------------------------------------------------------------|------------|
| 918 | H.4.5 $[E(W)]_j^{(G,i)}$ pseudocode . . . . .                                                   | 89         |
| 919 |                                                                                                 |            |
| 920 | H.4.6 $[E(W)]_{j,k}^{(A,i)}$ pseudocode . . . . .                                               | 89         |
| 921 |                                                                                                 |            |
| 922 | H.4.7 $[E(W)]_{j,k}^{(B,i)}$ pseudocode . . . . .                                               | 92         |
| 923 |                                                                                                 |            |
| 924 | H.4.8 $[E(b)]^{(G,i)}$ pseudocode . . . . .                                                     | 94         |
| 925 |                                                                                                 |            |
| 926 | H.4.9 $[E(b)]_j^{(A,i)}$ pseudocode . . . . .                                                   | 95         |
| 927 |                                                                                                 |            |
| 928 | H.4.10 $[E(b)]_j^{(B,i)}$ pseudocode . . . . .                                                  | 95         |
| 929 | H.5 Invariant Layers Pseudocode . . . . .                                                       | 98         |
| 930 |                                                                                                 |            |
| 931 | <b>I Ablation study on importance of MoE Transformer blocks in Predicting Model Performance</b> | <b>99</b>  |
| 932 |                                                                                                 |            |
| 933 |                                                                                                 |            |
| 934 | <b>J Ablation Study on the Effect of Layer Size and Depth</b>                                   | <b>99</b>  |
| 935 |                                                                                                 |            |
| 936 | <b>K Additional Dataset Details</b>                                                             | <b>100</b> |
| 937 |                                                                                                 |            |
| 938 | <b>L Additional Experiment Details</b>                                                          | <b>101</b> |
| 939 |                                                                                                 |            |
| 940 | L.1 General details . . . . .                                                                   | 101        |
| 941 |                                                                                                 |            |
| 942 | L.2 Architecture and hyperparameters of MoE-NFN . . . . .                                       | 101        |
| 943 |                                                                                                 |            |
| 944 | L.3 Architecture and hyperparameters for other baselines . . . . .                              | 102        |
| 945 |                                                                                                 |            |
| 946 | L.4 $\mathcal{G}_U$ Transformation Experiment . . . . .                                         | 102        |
| 947 | <b>M Broader Impacts</b>                                                                        | <b>103</b> |
| 948 |                                                                                                 |            |

## A WEIGHT SPACES OF MIXTURE-OF-EXPERTS AND THEIR GROUP ACTIONS

Denote the ReLU activation as  $\sigma$ .

### A.1 WEIGHT SPACE OF MIXTURE-OF-EXPERTS

We recall the definition of the weight space for Mixture-of-Experts (MoE) where experts are implemented as single-hidden-layer neural networks. Let  $D$  denote the input token dimension and  $D_e$  the hidden layer size. We focus on expert maps  $E : \mathbb{R}^D \rightarrow \mathbb{R}^D$  of the form:

$$E\left(x; W^{(A)}, b^{(A)}, W^{(B)}, b^{(B)}\right) = \sigma(xW^{(A)} + b^{(A)})W^{(B)} + b^{(B)}, \quad (15)$$

with learnable parameters

$$\left( \left( W^{(A)}, b^{(A)} \right), \left( W^{(B)}, b^{(B)} \right) \right) \in \left( \mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e} \right) \times \left( \mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D} \right). \quad (16)$$

Given a positive integer  $n_e$  denoting the number of experts, an *MoE* is the map  $MoE : \mathbb{R}^D \rightarrow \mathbb{R}^D$  defined by

$$\begin{aligned} MoE\left(x; \left\{ W^{(G,i)}, b^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right\}_{i=1}^{n_e}\right) \\ = \sum_{i=1}^{n_e} \text{softmax}_i \left( \left\{ W^{(G,i)}x + b^{(G,i)} \right\}_{i=1}^{n_e} \right) \cdot E\left(x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right). \end{aligned} \quad (17)$$

972 The map MoE is parameterized as  $\text{MoE}(x; \theta)$  where  
 973

$$\begin{aligned} 974 \quad \theta &= \left( \left( W^{(G,i)}, b^{(G,i)} \right), \left( W^{(A,i)}, b^{(A,i)} \right), \left( W^{(B,i)}, b^{(B,i)} \right) \right)_{i=1, \dots, n_e} \\ 975 \quad &\in \left( \left( \mathbb{R}^D \times \mathbb{R} \right) \times \left( \mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e} \right) \times \left( \mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D} \right) \right)^{n_e}. \quad (18) \\ 976 \quad 977 \quad 978 \end{aligned}$$

979 Denote the weight space of an MoE with  $n_e$ -experts as  
 980

$$981 \quad \Theta(n_e) = \left( \left( \mathbb{R}^D \times \mathbb{R} \right) \times \left( \mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e} \right) \times \left( \mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D} \right) \right)^{n_e}. \quad (19) \\ 982 \quad 983 \quad 984$$

985 Varying the number of experts leads to an MoE weight space that spans across expert sets of different  
 986 sizes, denoted by  
 987

$$988 \quad \Theta = \bigsqcup_{n_e=1}^{\infty} \Theta(n_e) = \bigsqcup_{n_e=1}^{\infty} \left( \left( \mathbb{R}^D \times \mathbb{R} \right) \times \left( \mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e} \right) \times \left( \mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D} \right) \right)^{n_e}. \quad (20) \\ 989 \quad 990$$

## A.2 WEIGHT SPACE OF SPARSE MIXTURE-OF-EXPERTS

991 Given a positive integer  $K \leq n_e$ , the Top- $K$  map is defined by: for any vector  $x = (x_1, \dots, x_n) \in$   
 992  $\mathbb{R}^n$ ,  
 993

$$994 \quad \text{Top-}K(x) = \{i_1, \dots, i_K\}, \quad (21)$$

995 where  $i_1, \dots, i_K$  are the indices corresponding to the  $K$  largest components of  $x$ . In the event of  
 996 ties, we select smaller indices first. Using this, a *Sparse Mixture-of-Experts* (SMoE) is the map  
 997 SMoE:  $\mathbb{R}^D \rightarrow \mathbb{R}^D$  defined by  
 998

$$\begin{aligned} 999 \quad \text{SMoE} &\left( x; \left\{ W^{(G,i)}, b^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right\}_{i=1}^{n_e} \right) \\ 1000 \quad &= \sum_{i \in T(x)} \text{softmax}_i \left( \left\{ W^{(G,i)}x + b^{(G,i)} \right\}_{i \in T(x)} \right) \cdot \mathbf{E} \left( x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right), \quad (22) \\ 1001 \quad 1002 \quad 1003 \end{aligned}$$

1004 where

$$1005 \quad T(x) = T \left( x; \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right) = \text{Top-}K \left( \left( W^{(G,i)}x + b^{(G,i)} \right)_{i=1}^{n_e} \right). \quad (23) \\ 1006 \quad 1007$$

1008 The weight space of SMoE coincides with that of the standard MoE, since the map Top- $K$  does not  
 1009 introduce any new trainable parameters.  
 1010

1011 **Note on the sparse gating.** The SMoE map is generally not continuous due to the presence of the  
 1012 Top- $K$  operator, particularly in cases where ties occur among the gating scores. To address this, we  
 1013 focus on a subset of  $\mathbb{R}^D$  where the top  $K$  scores are unambiguously defined. Specifically, for

$$1014 \quad \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \in \left( \mathbb{R}^D \times \mathbb{R} \right)^{n_e}, \quad (24) \\ 1015 \quad 1016$$

1017 we define

$$\begin{aligned} 1018 \quad \Omega &\left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right) \\ 1019 \quad &:= \left\{ x \in \mathbb{R}^D : \left( W^{(G,i)}x + b^{(G,i)} \right)_{i=1}^{n_e} \text{ are pairwise distinct} \right\}. \quad (25) \\ 1020 \quad 1021 \end{aligned}$$

1022 We present two results concerning this domain and the behavior of the SMoE map when restricted  
 1023 to it.

1024 **Proposition A.1.** *If  $\{W^{(G,i)}, b^{(G,i)}\}$  are pairwise distinct for  $i = 1, \dots, n_e$ , then  
 1025  $\Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$  is an open and dense subset of  $\mathbb{R}^D$ .*

1026 *Proof.* We have  
1027  
1028 
$$\Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$$
  
1029 
$$= \left\{ x \in \mathbb{R}^D : W^{(G,i)}x + b^{(G,i)} \text{ is pairwise distinct for all } i = 1, \dots, n_e \right\}$$
  
1030  
1031 
$$= \bigcap_{1 \leq i, j \leq n_e} \left\{ x \in \mathbb{R}^D : W^{(G,i)}x + b^{(G,i)} \neq W^{(G,j)}x + b^{(G,j)} \right\}$$
  
1032  
1033  
1034 
$$= \bigcap_{1 \leq i, j \leq n_e} \left( \mathbb{R}^D \setminus \left\{ x \in \mathbb{R}^D : W^{(G,i)}x + b^{(G,i)} = W^{(G,j)}x + b^{(G,j)} \right\} \right). \quad (26)$$
  
1035

1036 Note that, the set  
1037

$$\begin{aligned} & \left\{ x \in \mathbb{R}^D : W^{(G,i)}x + b^{(G,i)} = W^{(G,j)}x + b^{(G,j)} \right\} \\ &= \left\{ x \in \mathbb{R}^D : (W^{(G,i)} - W^{(G,j)})x = b^{(G,j)} - b^{(G,i)} \right\}, \end{aligned} \quad (27)$$

1038 is either a hyperplane (when  $W^{(G,i)} \neq W^{(G,j)}$ ) or the empty set (when  $W^{(G,i)} = W^{(G,j)}$  and  
1039  $b^{(G,j)} \neq b^{(G,i)}$ ). In both cases, its complement in  $\mathbb{R}^D$  is an open and dense subset of  $\mathbb{R}^D$ . By  
1040 Equation 26, since the finite intersection of open and dense subsets of  $\mathbb{R}^D$  is also open and dense,  
1041 the set  $\Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$  is open and dense.  $\square$   
1042

1043 **Proposition A.2.** *If  $\{W^{(G,i)}, b^{(G,i)}\}$  are pairwise distinct for  $i = 1, \dots, n_e$ , Then the map SMoE,  
1044 as defined in Equation 22, is continuous on  $\Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$ .*  
1045

1046 *Proof.* Let  $x \in \Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$ . By the definition of this domain, there exists an open  
1047 neighborhood  $U$  of  $x$  contained in  $\Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$  such that  
1048

$$\text{Top-}K \left( \left( W^{(G,i)}x + b^{(G,i)} \right)_{i=1}^{n_e} \right) = \text{Top-}K \left( \left( W^{(G,i)}y + b^{(G,i)} \right)_{i=1}^{n_e} \right) \quad (28)$$

1049 holds for all  $y \in U$ . This ensures the sparse gating mechanism in Equation 22 remains fixed within  
1050  $U$ , and thus the SMoE map is continuous on this domain.  $\square$   
1051

1052 *Remark A.3.* Propositions A.1 and A.2 will be key components in establishing the proof of Theorem  
1053 C.5.

### 1054 A.3 GROUP ACTION ON WEIGHT SPACES

1055 We define the group  $\mathcal{G} = \mathcal{G}(n_e)$  by  
1056

$$\mathcal{G}(n_e) = (\mathbb{R}^D \times \mathbb{R}) \times \mathcal{S}_{n_e}, \quad (29)$$

1057 which is the direct product between the group  $\mathbb{R}^D$  with addition, the group  $\mathbb{R}$  with addition, and the  
1058 permutation group  $\mathcal{S}_{n_e}$ . Each element of  $\mathcal{G}(n_e)$  is of the form  
1059

$$g = (\gamma_W, \gamma_b, \tau), \text{ where } \gamma_W \in \mathbb{R}^D, \gamma_b \in \mathbb{R}, \text{ and } \tau \in \mathcal{S}_{n_e}. \quad (30)$$

1060 The group  $\mathcal{G}(n_e)$  acts on the weight space  $\Theta(n_e)$  as follows: For  $g \in \mathcal{G}(n_e)$  and  $\theta \in \Theta(n_e)$   
1061 presented as in Equation 18, define  
1062

$$\begin{aligned} g\theta := & \left( \left( W^{(G,\tau(i))} + \gamma_W, b^{(G,\tau(i))} + \gamma_b \right), \right. \\ & \left. \left( W^{(A,\tau(i))}, b^{(A,\tau(i))} \right), \left( W^{(B,\tau(i))}, b^{(B,\tau(i))} \right) \right)_{i=1, \dots, n_e}. \end{aligned} \quad (31)$$

1063 The action of  $\mathcal{G}(n_e)$  on the weight space of MoE and SMoE preserves these two maps. This invariance  
1064 is a consequence of two fundamental properties: the permutation invariance of the summation  
1065 operator and the translation invariance of the softmax function. We start with a result concerning the  
1066 invariance of MoE maps under this group action.  
1067

1080  
1081 **Proposition A.4** (Weight space invariance of MoE). *The MoE map is  $\mathcal{G}(n_e)$ -invariance under the  
1082 action of  $\mathcal{G}(n_e)$  on their weight space, i.e.,*

$$1083 \quad \text{MoE}(\cdot; \theta) = \text{MoE}(\cdot; g\theta). \quad (32)$$

1084 *Proof.* Given  $g = (\gamma_W, \gamma_b, \tau) \in \mathcal{G}(n_e)$ . For all  $x \in \mathbb{R}^D$ , we have

$$\begin{aligned} 1085 \quad \text{MoE}(x; g\theta) &= \sum_{i=1}^{n_e} \text{softmax}_i \left( \left\{ \left( W^{(G, \tau(i))} + \gamma_W \right) x + \left( b^{(G, \tau(i))} + \gamma_b \right) \right\}_{i=1}^{n_e} \right) \\ 1086 &\quad \cdot \mathbb{E} \left( x; W^{(A, \tau(i))}, b^{(A, \tau(i))}, W^{(B, \tau(i))}, b^{(B, \tau(i))} \right) \\ 1087 \\ 1088 &= \sum_{i=1}^{n_e} \text{softmax}_i \left( \left\{ W^{(G, \tau(i))} x + b^{(G, \tau(i))} \right\}_{i=1}^{n_e} \right) \\ 1089 &\quad \cdot \mathbb{E} \left( x; W^{(A, \tau(i))}, b^{(A, \tau(i))}, W^{(B, \tau(i))}, b^{(B, \tau(i))} \right) \\ 1090 \\ 1091 &= \sum_{i=1}^{n_e} \text{softmax}_i \left( \left\{ W^{(G, i)} x + b^{(G, i)} \right\}_{i=1}^{n_e} \right) \\ 1092 &\quad \cdot \mathbb{E} \left( x; W^{(A, i)}, b^{(A, i)}, W^{(B, i)}, b^{(B, i)} \right) \\ 1093 \\ 1094 &= \text{MoE}(x; \theta). \end{aligned} \quad (33)$$

1100 Thus, the proposition is proven.  $\square$

1103 The analysis of the SMoE architecture necessitates additional assumptions, owing to the inherent  
1104 discontinuity of the Top- $K$  selection operator. We now demonstrate that the SMoE map, when  
1105 restricted to this region, remains invariant under the group action of  $\mathcal{G}(n_e)$ .

1106 **Proposition A.5** (Weight space invariance of SMoE). *Given the map SMoE, as defined in Equation 22 Assume that  $\{W^{(G, i)}, b^{(G, i)}\}$  are pairwise distinct for  $i = 1, \dots, n_e$ . Then, the set  
1107  $\Omega \left( \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right)$  is invariant under the group action of  $\mathcal{G}(n_e)$ , i.e.,*

$$1110 \quad \Omega \left( \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right) = \Omega \left( g \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right). \quad (34)$$

1112 Moreover, the SMoE map, restricted to

$$1113 \quad \Omega \left( \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right), \quad (35)$$

1115 is  $\mathcal{G}(n_e)$ -invariance under the action of  $\mathcal{G}(n_e)$  on their weight space, i.e.,

$$1116 \quad \text{SMoE}(\cdot; \theta) = \text{SMoE}(\cdot; g\theta) \quad \text{on} \quad \Omega \left( \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right). \quad (36)$$

1119 *Proof.* Given  $g = (\gamma_W, \gamma_b, \tau) \in \mathcal{G}(n_e)$ . We first verify that the group action of  $\mathcal{G}(n_e)$  preserves this  
1120 set. Indeed:

$$\begin{aligned} 1121 \quad &\Omega \left( \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right) \\ 1122 &= \left\{ x \in \mathbb{R}^D : W^{(G, i)} x + b^{(G, i)} \text{ is pairwise distinct for all } i = 1, \dots, n_e \right\} \\ 1123 &= \left\{ x \in \mathbb{R}^D : \left( W^{(G, \tau(i))} + \gamma_W \right) x + \left( b^{(G, \tau(i))} + \gamma_b \right) \text{ is pairwise distinct for all } i = 1, \dots, n_e \right\} \\ 1124 &= \Omega \left( g \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right). \end{aligned} \quad (37)$$

1128 Now, denote

$$1130 \quad gT(x) = \text{Top-}K \left( \left( \left( W^{(G, \tau(i))} + \gamma_W \right) x + \left( b^{(G, \tau(i))} + \gamma_b \right) \right)_{i=1}^{n_e} \right). \quad (38)$$

1132 For all  $x \in \Omega \left( \left\{ W^{(G, i)}, b^{(G, i)} \right\}_{i=1}^{n_e} \right)$ , we have  $gT(x) = \tau(T(x))$ . The proposition now can be  
1133 proven in the same manner as in Proposition A.4.  $\square$

1134  
 1135 *Remark A.6.* While the group action on the MoE architecture is defined as in Equation 23, it is  
 1136 worth noting that additional symmetries exist within the MoE architecture. For instance, each ex-  
 1137 pert admits internal neuron permutations that preserve the overall network function. However, our  
 1138 primary focus is on the gating mechanism of MoE, and the symmetries internal to each expert are  
 1139 regarded as standard neural network symmetries, which have been extensively studied in prior work.  
 1140

## B FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

1142 In this section, we characterize when two elements of the weight space of MoE define the same MoE  
 1143 map.  
 1144

### B.1 AN AUXILIARY RESULT RELATED TO HOLOMORPHIC FUNCTIONS ON $\mathbb{C}^n$

1147 A function  $f: \mathbb{C}^n \rightarrow \mathbb{C}$  is called *holomorphic on  $\mathbb{C}^n$*  if it is complex differentiable at every point  
 1148 of  $\mathbb{C}^n$ . A function is called *meromorphic on  $\mathbb{C}^n$*  if it can be locally expressed as the quotient of two  
 1149 holomorphic functions, where the denominator is not identically zero. The set of all holomorphic  
 1150 functions on  $\mathbb{C}^n$  forms an integral domain, denoted by  $\mathcal{D}$ , and the set of all meromorphic functions  
 1151 on  $\mathbb{C}^n$  forms a field, denoted by  $\mathcal{F}$ . Note that  $\mathcal{F}$  is the field of fractions of the integral domain  $\mathcal{D}$ .  
 1152 Let  $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$  denote the ring of polynomials in  $n$  variables with complex coefficients,  
 1153 and let  $\mathbb{C}(x) = \mathbb{C}(x_1, \dots, x_n)$  denote the field of rational functions in  $n$  variables with complex  
 1154 coefficients. Then  $\mathbb{C}[x] \subset \mathcal{D}$  is an integral domain, and  $\mathbb{C}(x) \subset \mathcal{F}$  is a field that is the field of  
 1155 fractions of  $\mathbb{C}[x]$ .  
 1156

1157 *Remark B.1.* For  $p \in \mathbb{C}[x]$ , one has  $e^p \in \mathcal{D}$ . In other words, the exponential of a polynomial is  
 1158 holomorphic on  $\mathbb{C}^n$ .  
 1159

1160 Since  $\mathbb{C}(x)$  is a subfield of  $\mathcal{F}$ , we can regard  $\mathcal{F}$  as a vector space over  $\mathbb{C}(x)$ . The following result  
 1161 concerns the linear independence of exponentials of polynomials within  $\mathcal{F}$ .  
 1162

1163 **Lemma B.2.** *Let  $p_1, \dots, p_N$  be polynomials in  $\mathbb{C}[x]$  such that  $p_i - p_j$  is nonconstant for every  
 1164  $i \neq j$ . Then the functions  $e^{p_1}, \dots, e^{p_N}$  (considered as elements of  $\mathcal{F}$ ) are linearly independent over  
 1165 the field  $\mathbb{C}(x)$ .*  
 1166

1167 *Proof.* We prove the lemma by induction on  $N$ . The case  $N = 1$  is clear, since  $e^p$  is nonzero for any  
 1168  $p \in \mathbb{C}[x]$ . Assume that  $N \geq 2$  and that the lemma holds for all smaller values of  $N$ . Let  $r_1, \dots, r_N$   
 1169 be polynomials in  $\mathbb{C}[x]$  such that  
 1170

$$r_1 \cdot e^{p_1} + \dots + r_N \cdot e^{p_N} = 0, \quad (39)$$

1171 We aim to show that  $r_1 = \dots = r_N = 0$ . Suppose, for contradiction, that this is not the case. Then  
 1172 at least one of the  $r_i$  is nonzero. Without loss of generality, assume that  $r_N \neq 0$ . From Equation 39,  
 1173 it follows that  
 1174

$$\frac{r_1}{r_N} \cdot e^{r_1 - r_N} + \dots + \frac{r_{N-1}}{r_N} \cdot e^{r_{N-1} - r_N} + 1 = 0. \quad (40)$$

1175 Differentiating both sides with respect to  $x_i$  for each  $i = 1, \dots, n$ , we obtain  
 1176

$$\sum_{j=1}^{N-1} \left( \frac{\partial}{\partial x_i} \left( \frac{r_j}{r_N} \right) + \frac{r_j}{r_N} \cdot \frac{\partial}{\partial x_i} (p_j - p_N) \right) \cdot e^{p_j - p_N} = 0. \quad (41)$$

1177 Observe that  
 1178

$$\frac{\partial}{\partial x_i} \left( \frac{r_j}{r_N} \right) + \frac{r_j}{r_N} \cdot \frac{\partial}{\partial x_i} (p_j - p_N) \in \mathbb{C}(x). \quad (42)$$

1179 For the  $N - 1$  polynomials  $p_i - p_N$  in  $\mathbb{C}[x]$ , where  $i = 1, \dots, N - 1$ , and the difference  $(p_i - p_N) - (p_j - p_N) = p_i - p_j$  is nonconstant for every  $i \neq j$ . By the induction hypothesis, the  
 1180 functions  $e^{p_1 - p_N}, \dots, e^{p_{N-1} - p_N}$  are linearly independent over  $\mathbb{C}(x)$ . Therefore, from Equation 41,  
 1181 we conclude that for all  $j = 1, \dots, N - 1$  and  $i = 1, \dots, n$ ,  
 1182

$$\frac{\partial}{\partial x_i} \left( \frac{r_j}{r_N} \right) + \frac{r_j}{r_N} \cdot \frac{\partial}{\partial x_i} (p_j - p_N) = 0, \quad (43)$$

1188 which implies that

$$1189 \quad \frac{\partial}{\partial x_i} \left( \frac{r_j}{r_N} \cdot e^{p_j - p_N} \right) = 0. \quad (44)$$

1192 Hence, for all  $j = 1, \dots, N - 1$ ,

$$1193 \quad \frac{r_j}{r_N} \cdot e^{p_j - p_N} = c_j \in \mathbb{C}, \quad (45)$$

1196 is a constant function. If  $c_j \neq 0$ , then  $r_j \neq 0$  and  $e^{p_j - p_N} = \frac{c_j r_N}{r_j}$ . This holds only if both  
1197  $e^{p_j - p_N}$  and  $\frac{c_j r_N}{r_j}$  are constant functions. In particular, this would imply that  $p_j - p_N$  is constant,  
1198 contradicting the assumption. Therefore, we must have  $c_j = 0$ . Thus,  $r_j = 0$  for all  $j = 1, \dots, N - 1$ . However, this contradicts Equation 40. The lemma is therefore proved.  $\square$

1200 *Remark B.3.* This result is fundamental and will be invoked multiple times in the proofs of Theorem B.7 and Theorem C.5.

## 1204 B.2 LOCAL AFFINENESS OF RELU NEURAL NETWORKS

1205 A polytope is a geometric object defined by flat boundaries, which may be either bounded or un-  
1206 bounded. We define the notion of local affineness as follows.

1208 **Definition B.4** (Local affineness). A function  $f : \mathbb{R}^D \rightarrow \mathbb{R}^{D'}$  is said to be *locally affine* if there  
1209 exists a partition of  $\mathbb{R}^D$  into a collection of polytopes such that, on each polytope,  $f$  coincides with  
1210 an affine map from  $\mathbb{R}^D$  to  $\mathbb{R}^{D'}$ .

1211 *Remark B.5.* It is worth noting that the term *local affineness* may carry different meanings in other  
1212 contexts. However, the usage adopted in Definition B.4 is unambiguous within the scope of this  
1213 work.

1214 We investigate the local affineness property of ReLU neural networks. Consider a neural network  
1215  $f : \mathbb{R}^{n_0} \rightarrow \mathbb{R}^{n_L}$  composed of affine transformations and ReLU activations, defined as

$$1217 \quad f = f_L \circ \sigma \circ f_{L-1} \circ \dots \circ \sigma \circ f_1, \quad (46)$$

1219 where each  $f_i : \mathbb{R}^{n_{i-1}} \rightarrow \mathbb{R}^{n_i}$  is an affine map given by  $f_i(x) = W_i x + b_i$ , and  $\sigma$  is the ReLU  
1220 activation function applied elementwise. The composition of these affine transformations and ReLU  
1221 activations partitions the input space  $\mathbb{R}^{n_0}$  into a finite number of convex polytopes. Within each  
1222 polytope, the activation pattern of the ReLU units—i.e., which units are active (passing their in-  
1223 put unchanged) and which are inactive (outputting zero)—remains constant. This fixed activation  
1224 pattern determines a subnetwork where each ReLU acts either as the identity map or as the zero  
1225 map. Because ReLU is piecewise linear and affine transformations are closed under composition,  
1226 the entire network behaves as an affine function within each region of fixed activation.

1227 Thus, the network is locally affine:

$$1228 \quad f(x) = A_i x + b_i, \quad \text{for } x \in P_i, \quad (47)$$

1230 where  $P_i$  is a polytope in the partition  $\{P_i\}_{i=1}^m$  of the input space, and  $A_i, b_i$  define the affine  
1231 transformation in that region.

1232 *Remark B.6.* Let  $\partial P_i$  denote the boundary of the region  $P_i$  in the partition  $\{P_i\}_{i=1}^m$ . Then the set

$$1234 \quad \mathbb{R}^{n_0} \setminus \bigcup_{i=1}^m \partial P_i \quad (48)$$

1236 is clearly open and dense in  $\mathbb{R}^{n_0}$ . In other words, the union of the interiors of the polytopes  $\{P_i\}$   
1237 forms a set that is both open and dense.

1239 Now consider a finite collection of ReLU networks  $f^{(k)}$ , for  $k = 1, \dots, n$ . Since the intersection of  
1240 finitely many open dense sets is again open and dense, there exists a set  $\Omega \subset \mathbb{R}^{n_0}$  that is open and  
1241 dense, such that for every  $x \in \Omega$ , there exists a neighborhood of  $x$  on which all functions  $f^{(k)}$  are  
affine.

1242 B.3 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS  
12431244 The following result establishes the equivalence between two sets of weights that define the same  
1245 MoE map. Certain assumptions are introduced for technical reasons, and their justification is pro-  
1246 vided in Remark B.8.1247 **Theorem B.7** (Functional equivalence in MoE). *Let  $\theta \in \Theta(n_e)$  and  $\hat{\theta} \in \Theta(\hat{n}_e)$  be given by*

1248 
$$\theta = \left( \left( W^{(G,i)}, b^{(G,i)} \right), \left( W^{(A,i)}, b^{(A,i)} \right), \left( W^{(B,i)}, b^{(B,i)} \right) \right)_{i=1, \dots, n_e}, \quad (49)$$

1249 
$$\hat{\theta} = \left( \left( \hat{W}^{(G,i)}, \hat{b}^{(G,i)} \right), \left( \hat{W}^{(A,i)}, \hat{b}^{(A,i)} \right), \left( \hat{W}^{(B,i)}, \hat{b}^{(B,i)} \right) \right)_{i=1, \dots, \hat{n}_e}, \quad (50)$$

1250 and suppose they define the same MoE map, i.e.,

1251 
$$\text{MoE}(x; \theta) = \text{MoE}(x; \hat{\theta}) \text{ for all } x \in \mathbb{R}^D. \quad (51)$$

1252 If  $\theta$  and  $\hat{\theta}$  satisfy the four assumptions:1253 1.  $n_e$  experts  $\{E(\cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)})\}_{i=1}^{n_e}$  are  $n_e$  pairwise distinct functions;1254 2.  $\hat{n}_e$  experts  $\{E(\cdot; \hat{W}^{(A,i)}, \hat{b}^{(A,i)}, \hat{W}^{(B,i)}, \hat{b}^{(B,i)})\}_{i=1}^{\hat{n}_e}$  are  $\hat{n}_e$  pairwise distinct functions;1255 3.  $W^{(G,i)} - W^{(G,j)}$  are pairwise distinct for all  $1 \leq i, j \leq n_e$  such that  $i \neq j$ ;1256 4.  $\hat{W}^{(G,i)} - \hat{W}^{(G,j)}$  are pairwise distinct for all  $1 \leq i, j \leq \hat{n}_e$  such that  $i \neq j$ ;1257 then,  $n_e = \hat{n}_e$ , and there exists  $\tau \in S_{n_e}$ ,  $\gamma_W \in \mathbb{R}^D$ ,  $\gamma_b \in \mathbb{R}$  such that for all  $i = 1, \dots, n_e$ ,

1258 
$$\hat{W}^{(G,i)} = W^{(G,\tau(i))} + \gamma_W, \quad \hat{b}^{(G,i)} = b^{(G,\tau(i))} + \gamma_b, \quad (52)$$

1259 and

1260 
$$E(\cdot; W^{(A,\tau(i))}, b^{(A,\tau(i))}, W^{(B,\tau(i))}, b^{(B,\tau(i))}) = E(\cdot; \hat{W}^{(A,i)}, \hat{b}^{(A,i)}, \hat{W}^{(B,i)}, \hat{b}^{(B,i)}), \quad (53)$$

1261 *Proof.* For better readability, we begin by providing a high-level outline of the upcoming proof:1262 1. Explicitly express the equation  $\text{MoE}(\cdot; \theta) = \text{MoE}(\cdot; \hat{\theta})$  and introduce simplified notation  
1263 for clarity.  
1264 2. Observe that each expert can be locally identified as an affine function.  
1265 3. Show that  $n_e = \hat{n}_e$ , and establish the existence of the desired permutation  $\tau$  and transfor-  
1266 mation  $\gamma_W$ .  
1267 4. Demonstrate the equality between the two sets of experts.  
1268 5. Show that the desired transformation  $\gamma_b$  exists.

1269 We now present the derivations and proofs corresponding to each of the five steps.

1270 **Step 1.** Since  $\text{MoE}(\cdot; \theta) = \text{MoE}(\cdot; \hat{\theta})$ , we have

1271 
$$\begin{aligned} 1272 & \sum_{i=1}^{n_e} \text{softmax}_i \left( \left\{ W^{(G,i)} x + b^{(G,i)} \right\}_{i=1}^{n_e} \right) \cdot E \left( x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right) \\ 1273 &= \sum_{i=1}^{\hat{n}_e} \text{softmax}_i \left( \left\{ \hat{W}^{(G,i)} x + \hat{b}^{(G,i)} \right\}_{i=1}^{\hat{n}_e} \right) \cdot E \left( x; \hat{W}^{(A,i)}, \hat{b}^{(A,i)}, \hat{W}^{(B,i)}, \hat{b}^{(B,i)} \right), \end{aligned} \quad (54)$$

1296 for all  $x \in \mathbb{R}^D$ . Denote  
1297

$$\begin{aligned} \mathbf{E}_i(\cdot) &= \mathbf{E}\left(\cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right), \\ \widehat{\mathbf{E}}_i(\cdot) &= \mathbf{E}\left(\cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)}\right), \end{aligned} \quad (55)$$

1301 and simplify the notation by setting  $W^{(G,i)} = W^{(i)}, b^{(G,i)} = b^{(i)}, \widehat{W}^{(G,i)} = \widehat{W}^{(i)}, \widehat{b}^{(G,i)} = \widehat{b}^{(i)}$ .  
1302 Then, by writing out the explicit form of the softmax operator in Equation 54, we have  
1303

$$\sum_{i=1}^{n_e} \frac{e^{W^{(i)}x+b^{(i)}}}{\sum_{j=1}^{n_e} e^{W^{(j)}x+b^{(j)}}} \cdot \mathbf{E}_i(x) = \sum_{i=1}^{\widehat{n}_e} \frac{e^{\widehat{W}^{(i)}x+\widehat{b}^{(i)}}}{\sum_{j=1}^{\widehat{n}_e} e^{\widehat{W}^{(j)}x+\widehat{b}^{(j)}}} \cdot \widehat{\mathbf{E}}_i(x). \quad (56)$$

1307 This leads to  
1308

$$\begin{aligned} \left( \sum_{j=1}^{\widehat{n}_e} e^{\widehat{W}^{(j)}x+\widehat{b}^{(j)}} \right) \cdot \left( \sum_{i=1}^{n_e} e^{W^{(i)}x+b^{(i)}} \cdot \mathbf{E}_i(x) \right) \\ = \left( \sum_{j=1}^{n_e} e^{W^{(j)}x+b^{(j)}} \right) \cdot \left( \sum_{i=1}^{\widehat{n}_e} e^{\widehat{W}^{(i)}x+\widehat{b}^{(i)}} \cdot \widehat{\mathbf{E}}_i(x) \right), \end{aligned} \quad (57)$$

1315 or

$$\sum_{i=1}^{n_e} \sum_{j=1}^{\widehat{n}_e} e^{(W^{(i)}+\widehat{W}^{(j)})x+(b^{(i)}+\widehat{b}^{(j)})} \cdot (\mathbf{E}_i(x) - \widehat{\mathbf{E}}_j(x)) = 0. \quad (58)$$

1320 **Step 2.** Since the functions  $\mathbf{E}_i$  and  $\widehat{\mathbf{E}}_j$  are locally affine, it follows from the observation in Ap-  
1321 pendix B.2 that there exists an open set  $\Omega \subset \mathbb{R}^D$ , which is dense in  $\mathbb{R}^D$ , such that: for every point  
1322  $a \in \Omega$ , there exists an open neighborhood  $U \subset \Omega$  of  $a$  on which all  $\mathbf{E}_i$  and  $\widehat{\mathbf{E}}_j$  are affine. In par-  
1323 ticular, each of these functions coincides with a polynomial on  $U$ . In other words, there exists a  
1324 collection of open sets  $\{U_k\}_{k \in I}$  covering  $\Omega$ , i.e.,

$$\Omega = \bigcup_{k \in I} U_k, \quad (59)$$

1328 such that for each  $U = U_k$  in the collection, there exist polynomials  $p_{U,i}, \hat{p}_{U,j} \in \mathbb{R}[x]$  satisfying  
1329

$$\mathbf{E}_i(x) = p_{U,i}(x), \quad \text{and} \quad \widehat{\mathbf{E}}_j(x) = \hat{p}_{U,j}(x) \quad \text{for all } x \in U. \quad (60)$$

1331 From Equation 58, we have:

$$\sum_{i=1}^{n_e} \sum_{j=1}^{\widehat{n}_e} e^{(W^{(i)}+\widehat{W}^{(j)})x+(b^{(i)}+\widehat{b}^{(j)})} \cdot (p_{U,i}(x) - \hat{p}_{U,j}(x)) = 0 \quad \text{for all } x \in U. \quad (61)$$

1336 Note that the function on the left-hand side of the equation above is holomorphic. By the Identity  
1337 Theorem for Holomorphic Functions (see Ahlfors (1979); Rudin (1987); Conway (1978); Stein &  
1338 Shakarchi (2003)), it follows that:

$$\sum_{i=1}^{n_e} \sum_{j=1}^{\widehat{n}_e} e^{(W^{(i)}+\widehat{W}^{(j)})x+(b^{(i)}+\widehat{b}^{(j)})} \cdot (p_{U,i}(x) - \hat{p}_{U,j}(x)) = 0 \quad \text{for all } x \in \mathbb{C}^D. \quad (62)$$

1343 **Step 3.** From Assumptions 3 and 4, the sets  $\{W^{(i)}\}_{i=1}^{n_e}$  and  $\{\widehat{W}^{(j)}\}_{j=1}^{\widehat{n}_e}$  consist of pairwise  
1344 distinct elements. Thus, there exists a direction

$$\alpha \in \mathbb{S}^{D-1} = \{x \in \mathbb{R}^D : \|x\|_2 = 1\}, \quad (63)$$

1347 such that the projections  $\{W^{(i)}\alpha\}_{i=1}^{n_e}$  and  $\{\widehat{W}^{(j)}\alpha\}_{j=1}^{\widehat{n}_e}$  yield  $n_e$  and  $\widehat{n}_e$  distinct real numbers, re-  
1348 spectively. Without loss of generality, we may reorder the indices so that:

$$W^{(1)}\alpha < W^{(2)}\alpha < \dots < W^{(n_e)}\alpha \quad \text{and} \quad \widehat{W}^{(1)}\alpha < \widehat{W}^{(2)}\alpha < \dots < \widehat{W}^{(\widehat{n}_e)}\alpha. \quad (64)$$

1350 Moreover, note that the problem, along with all the equations above, remains invariant under the  
 1351 addition of a constant vector to the set  $\{\widehat{W}^{(j)}\}_{j=1}^{\widehat{n}_e}$ . Therefore, without loss of generality, we may  
 1352 assume that  $W^{(1)} = \widehat{W}^{(1)}$ . Under this setting, we will show that  $n_e = \widehat{n}_e$  and that  $W^{(i)} = \widehat{W}^{(i)}$  for  
 1353 all  $i = 1, \dots, n_e$ . To this end, we first prove that  $W^{(i)} = \widehat{W}^{(i)}$  for all  $i = 1, \dots, \min\{n_e, \widehat{n}_e\}$  by  
 1354 mathematical induction.

1355 *Base case.* By assumption, we have  $W^{(1)} = \widehat{W}^{(1)}$ , so the base case holds trivially.

1356 *Auxiliary result for the inductive step.* For all pairs  $(i, j) \neq (1, 1)$ , the following inequality holds:

$$1359 \quad W^{(1)}\alpha + \widehat{W}^{(1)}\alpha < W^{(i)}\alpha + \widehat{W}^{(j)}\alpha. \quad (65)$$

1360 Thus,  $W^{(1)} + \widehat{W}^{(1)}$  is distinct from  $W^{(i)} + \widehat{W}^{(j)}$  for all  $(i, j)$  such that  $(i, j) \neq (1, 1)$ . From  
 1361 Equation 62 and Lemma B.2, it follows that

$$1363 \quad p_{U,1} = \hat{p}_{U,1}. \quad (66)$$

1364 *Inductive step.* Suppose that  $W^{(i)} = \widehat{W}^{(i)}$  holds for all  $1 \leq i < n$ , where  $n$  is an integer satisfying  
 1365  $1 < n \leq \min\{n_e, \widehat{n}_e\}$ . Assume, toward a contradiction, that  $W^{(n)} \neq \widehat{W}^{(n)}$ . We examine the two  
 1366 quantities  $W^{(1)} + \widehat{W}^{(n)}$  and  $W^{(n)} + \widehat{W}^{(1)}$ . Given our assumption, these two expressions must be  
 1367 distinct. Without loss of generality, we may assume that

$$1370 \quad W^{(1)}\alpha + \widehat{W}^{(n)}\alpha \leq W^{(n)}\alpha + \widehat{W}^{(1)}\alpha. \quad (67)$$

1371 • For all  $(i, j)$  with  $i \geq n$ , we have

$$1374 \quad W^{(1)}\alpha + \widehat{W}^{(n)}\alpha \leq W^{(n)}\alpha + \widehat{W}^{(1)}\alpha \leq W^{(i)}\alpha + \widehat{W}^{(j)}\alpha. \quad (68)$$

1375 Equality holds if and only if  $(i, j) = (n, 1)$ . Moreover, since  $W^{(1)} + \widehat{W}^{(n)}$  and  $W^{(n)} + \widehat{W}^{(1)}$   
 1376 are distinct, it follows that  $W^{(1)} + \widehat{W}^{(n)}$  is distinct from  $W^{(i)} + \widehat{W}^{(j)}$  for all  $(i, j)$  with  
 1377  $i \geq n$ .

1378 • For all  $(i, j)$  with  $j \geq n$ , we have

$$1380 \quad W^{(1)}\alpha + \widehat{W}^{(n)}\alpha \leq W^{(i)}\alpha + \widehat{W}^{(j)}\alpha. \quad (69)$$

1381 Equality holds if and only if  $(i, j) = (1, n)$ . Therefore,  $W^{(1)} + \widehat{W}^{(n)}$  is distinct from  
 1382  $W^{(i)} + \widehat{W}^{(j)}$  for all  $(i, j) \neq (1, n)$  with  $j \geq n$ .

1383 • For all  $(i, j)$  such that  $i, j < n$ , we claim that  $W^{(1)} + \widehat{W}^{(n)}$  is distinct from  $W^{(i)} + \widehat{W}^{(j)}$ .  
 1384 Indeed, suppose for contradiction that

$$1385 \quad W^{(1)} + \widehat{W}^{(n)} = W^{(i)} + \widehat{W}^{(j)} \quad (70)$$

1386 for some  $(i, j)$  with  $i, j < n$ . Then, by the induction hypothesis, it follows that

$$1387 \quad \widehat{W}^{(1)} + \widehat{W}^{(n)} = \widehat{W}^{(i)} + \widehat{W}^{(j)}. \quad (71)$$

1388 Rearranging gives

$$1389 \quad \widehat{W}^{(1)} - \widehat{W}^{(j)} = \widehat{W}^{(i)} - \widehat{W}^{(n)}, \quad (72)$$

1390 which leads to a contradiction, since  $(1, j) \neq (i, n)$  and the differences are assumed to be  
 1391 pairwise distinct.

1392 From the observations above, we conclude that  $W^{(1)} + \widehat{W}^{(n)}$  is distinct from  $W^{(i)} + \widehat{W}^{(j)}$  for all  
 1393  $(i, j) \neq (1, n)$ . Combining this with Equation 62 and Lemma B.2, it follows that

$$1394 \quad p_{U,1} = \hat{p}_{U,n}. \quad (73)$$

1395 Moreover, from Equation 66, we also have

$$1396 \quad \hat{p}_{U,1} = \hat{p}_{U,n}. \quad (74)$$

Hence,  $\widehat{E}_1 = \widehat{E}_n$  on  $U$ . Since this holds for every open set  $U \in \{U_k\}_{k \in I}$ , we conclude that  $\widehat{E}_1 = \widehat{E}_n$  on  $\Omega$ . Because  $\Omega$  is dense in  $\mathbb{R}^D$ , by continuity, it follows that  $\widehat{E}_1 = \widehat{E}_n$  on  $\mathbb{R}^D$ . This contradicts the assumption that the  $\widehat{E}_j$  are pairwise distinct. Therefore, our assumption must be false, and we conclude that  $W^{(1)} + \widehat{W}^{(n)} = W^{(n)} + \widehat{W}^{(1)}$ , which implies  $W^{(n)} = \widehat{W}^{(n)}$ .

*Conclusion.* By mathematical induction, we have shown that  $W^{(i)} = \widehat{W}^{(i)}$  for all  $i = 1, \dots, \min\{n_e, \widehat{n}_e\}$ . It remains to show that  $n_e = \widehat{n}_e$ . Assume, for contradiction, that  $n_e < \widehat{n}_e$ . Consider the sum  $W^{(1)} + \widehat{W}^{(\widehat{n}_e)}$ . We claim that this sum is distinct from all  $W^{(i)} + \widehat{W}^{(j)}$  for  $(i, j) \neq (1, \widehat{n}_e)$ . Indeed, suppose

$$W^{(1)} + \widehat{W}^{(\widehat{n}_e)} = W^{(i)} + \widehat{W}^{(j)} \quad (75)$$

for some  $(i, j) \neq (1, \widehat{n}_e)$ . Then, using the inductive result  $W^{(i)} = \widehat{W}^{(i)}$  for  $i \leq n_e$ , we obtain

$$\widehat{W}^{(1)} + \widehat{W}^{(\widehat{n}_e)} = \widehat{W}^{(i)} + \widehat{W}^{(j)}, \quad (76)$$

which implies

$$\widehat{W}^{(1)} - \widehat{W}^{(j)} = \widehat{W}^{(i)} - \widehat{W}^{(\widehat{n}_e)}. \quad (77)$$

This contradicts the assumption that all differences  $\widehat{W}^{(i)} - \widehat{W}^{(j)}$  are pairwise distinct. Hence,  $W^{(1)} + \widehat{W}^{(\widehat{n}_e)}$  is distinct from all  $W^{(i)} + \widehat{W}^{(j)}$  with  $(i, j) \neq (1, \widehat{n}_e)$ . By Equation 62 and Lemma B.2, this implies

$$p_{U,1} = \hat{p}_{U, \widehat{n}_e}. \quad (78)$$

From Equation 66, we also have

$$\hat{p}_{U,1} = \hat{p}_{U, \widehat{n}_e}. \quad (79)$$

Therefore,  $\widehat{E}_1 = \widehat{E}_{\widehat{n}_e}$  on  $U$ . Since this holds for every open set  $U \in \{U_k\}_{k \in I}$ , we conclude that  $\widehat{E}_1 = \widehat{E}_{\widehat{n}_e}$  on  $\Omega$ . As  $\Omega$  is dense in  $\mathbb{R}^D$ , by continuity, it follows that  $\widehat{E}_1 = \widehat{E}_{\widehat{n}_e}$  on  $\mathbb{R}^D$ , contradicting the assumption that the experts  $\widehat{E}_j$  are pairwise distinct. Thus, our assumption must be false, and we conclude that  $n_e = \widehat{n}_e$ . Finally, the reindexing and the translation applied to the set  $\{\widehat{W}^{(j)}\}_{j=1}^{\widehat{n}_e}$  throughout the proof establish the existence of a permutation  $\tau \in S_{n_e}$  and a shift vector  $\gamma_W \in \mathbb{R}^D$ .

**Step 4.** We now prove that  $E_i = \widehat{E}_i$  on  $\mathbb{R}^D$  for all  $i = 1, \dots, n_e$ . From **Step 3**, we know that  $n_e = \widehat{n}_e$  and  $W^{(i)} = \widehat{W}^{(i)}$  for every  $i = 1, \dots, n_e$ . Consider any pair  $(i, j)$ . If  $W^{(i)} + \widehat{W}^{(j)} = W^{(i')} + \widehat{W}^{(j')}$ , then  $(i', j')$  must equal either  $(i, j)$  or  $(j, i)$ . In particular,  $W^{(i)} + \widehat{W}^{(i)}$  is distinct from  $W^{(j)} + \widehat{W}^{(k)}$  for all  $(j, k) \neq (i, i)$ . Applying Equation 62 and Lemma B.2, we obtain

$$p_{U,i} = \hat{p}_{U,i}. \quad (80)$$

This mirrors the situation encountered in **Step 3**, and by a similar argument, it follows that  $E_i = \widehat{E}_i$  on  $\mathbb{R}^D$ . Since this holds for all  $i = 1, \dots, n_e$ , the claim is proven.

**Step 5.** We now show that there exists a constant  $\gamma_b \in \mathbb{R}$  such that

$$\widehat{b}_i = b_i + \gamma_b \quad \text{for all } i = 1, \dots, n_e. \quad (81)$$

Recall from **Step 4** that if  $W^{(i)} + \widehat{W}^{(j)} = W^{(i')} + \widehat{W}^{(j')}$ , then  $(i', j')$  must equal either  $(i, j)$  or  $(j, i)$ . Using this fact, along with Equation 58, Lemma B.2, and the result  $E_i = \widehat{E}_i$  established in **Step 4**, we obtain the following identity:

$$\begin{aligned} & e^{(W^{(i)} + \widehat{W}^{(j)})x + (b^{(i)} + \widehat{b}^{(j)})} \cdot (E_i(x) - E_j(x)) \\ & + e^{(W^{(j)} + \widehat{W}^{(i)})x + (b^{(j)} + \widehat{b}^{(i)})} \cdot (E_j(x) - E_i(x)) = 0, \end{aligned} \quad (82)$$

for all pairs  $(i, j)$ . Since  $E_i \neq E_j$  for  $i \neq j$ , there exists some point  $x_0 \in \mathbb{R}^D$  such that  $E_i(x_0) \neq E_j(x_0)$ . Substituting  $x = x_0$  into Equation 82 and simplifying by canceling all common nonzero factor, we get:

$$e^{b^{(i)} + \widehat{b}^{(j)}} = e^{b^{(j)} + \widehat{b}^{(i)}}, \quad (83)$$

1458 which implies the equality  
 1459

$$1460 \quad b^{(i)} + \hat{b}^{(j)} = b^{(j)} + \hat{b}^{(i)}, \quad (84)$$

1461 or, equivalently,  
 1462

$$1463 \quad b^{(i)} - \hat{b}^{(i)} = b^{(j)} - \hat{b}^{(j)}. \quad (85)$$

1465 This shows that the difference  $b^{(i)} - \hat{b}^{(i)}$  is constant across all  $i$ . Letting  $\gamma_b := \hat{b}^{(1)} - b^{(1)}$ , we  
 1466 conclude that  
 1467

$$1468 \quad \hat{b}_i = b_i + \gamma_b \quad \text{for all } i = 1, \dots, n_e. \quad (86)$$

1469 This completes the proof of Theorem B.7.  $\square$   
 1470

1471 *Remark B.8* (Rationale behind the assumptions in Theorem B.7). For a model architecture, we  
 1472 require the symmetry group to be intrinsic to the model as a whole, not to hinge on special choices of  
 1473 individual weight vectors. In other words, the group of symmetries should act universally throughout  
 1474 the weight space. Concretely, this leads to the following four conditions in Theorem B.7:  
 1475

- 1476 1.  $n_e$  experts  $\{\mathbb{E}(\cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)})\}_{i=1}^{n_e}$  are  $n_e$  pairwise distinct functions;  
 1477
- 1478 2.  $\widehat{n_e}$  experts  $\{\mathbb{E}(\cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)})\}_{i=1}^{\widehat{n_e}}$  are  $\widehat{n_e}$  pairwise distinct functions;  
 1479
- 1480 3.  $W^{(G,i)} - W^{(G,j)}$  are pairwise distinct for all  $1 \leq i, j \leq n_e$  such that  $i \neq j$ ;  
 1481
- 1482 4.  $\widehat{W}^{(G,i)} - \widehat{W}^{(G,j)}$  are pairwise distinct for all  $1 \leq i, j \leq \widehat{n_e}$  such that  $i \neq j$ ;  
 1483

1484 We examine the underlying nature of these assumptions.

1485 *Assumption 1 and 2.* If Assumptions 1 and 2 are violated—specifically, when two experts compute  
 1486 the same function and are assigned identical gating scores—the resulting model behavior remains  
 1487 unchanged under permutations of those experts. This introduces additional, non-essential permutations  
 1488 into the symmetry group, which we refer to as spurious symmetries. These symmetries  
 1489 do not reflect fundamental structural invariances but arise only in degenerate parameter configura-  
 1490 tions—singularities in the space of model parameters.

1491 *Assumption 3 and 4.* Assumptions 3 and 4 address a subtler issue: they exclude cases where  
 1492 linear dependencies among the gating weight vectors might lead to indistinguishable gating behavior  
 1493 across experts. While less immediately obvious than the consequences of violating Assumptions 1  
 1494 and 2, such dependencies can also enlarge the symmetry group beyond its intended structure. To  
 1495 illustrate this more concretely, we provide the following explicit example. Let  $D = D_e = 1$ ,  
 1496  $n_e = \widehat{n_e} = 3$ , and consider parameter settings  $\theta, \widehat{\theta}$  such that:  
 1497

- 1498 •  $W^{(G,1)} = \widehat{W}^{(G,1)} = -1, W^{(G,2)} = \widehat{W}^{(G,2)} = 0, W^{(G,3)} = \widehat{W}^{(G,3)} = 1$ ,
- 1499
- 1500 •  $W^{(A,1)}, W^{(A,2)}, W^{(A,3)}, \widehat{W}^{(A,1)}, \widehat{W}^{(A,2)}$ , and  $\widehat{W}^{(A,3)}$  are arbitrary.
- 1501
- 1502 •  $b^{(A,1)}, b^{(A,2)}, b^{(A,3)}, \widehat{b}^{(A,1)}, \widehat{b}^{(A,2)}$ , and  $\widehat{b}^{(A,3)}$  are arbitrary.
- 1503
- 1504 •  $W^{(B,1)} = W^{(B,2)} = W^{(B,3)} = \widehat{W}^{(B,1)} = \widehat{W}^{(B,2)} = \widehat{W}^{(B,3)} = 0$ .

1505 We now choose the bias parameters  $b^{(G,i)}, b^{(B,i)}, \widehat{b}^{(G,i)}, \widehat{b}^{(B,i)}$  so that the model outputs satisfy  
 1506  $\text{MoE}(\cdot; \theta) = \text{MoE}(\cdot; \widehat{\theta})$ , even though there exists no transformation of the form described in The-  
 1507 rem B.7 that maps  $\theta$  to  $\widehat{\theta}$ . For each  $i = 1, 2, 3$ , the expert functions reduce to constant outputs:  
 1508

$$1509 \quad \mathbb{E}\left(x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right) = b^{(B,i)},$$

$$1510 \quad \mathbb{E}\left(x; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)}\right) = \widehat{b}^{(B,i)}. \quad (87)$$

To simplify notation, we write  $b^{(G,i)} = b^{(i)}$  and  $\widehat{b}^{(G,i)} = \widehat{b}^{(i)}$ . Our goal is to ensure that  $\text{MoE}(\cdot; \theta) = \text{MoE}(\cdot; \widehat{\theta})$ , which requires that

$$\begin{aligned}
 & \frac{e^{-x+b^{(1)}}}{e^{-x+b^{(1)}} + e^{b^{(2)}} + e^{x+b^{(3)}}} \cdot b^{(B,1)} \\
 & \quad + \frac{e^{b^{(2)}}}{e^{-x+b^{(1)}} + e^{b^{(2)}} + e^{x+b^{(3)}}} \cdot b^{(B,2)} \\
 & \quad + \frac{e^{x+b^{(3)}}}{e^{-x+b^{(1)}} + e^{b^{(2)}} + e^{x+b^{(3)}}} \cdot b^{(B,3)} \\
 = & \frac{e^{-x+\widehat{b}^{(1)}}}{e^{-x+\widehat{b}^{(1)}} + e^{\widehat{b}^{(2)}} + e^{x+\widehat{b}^{(3)}}} \cdot \widehat{b}^{(B,1)} \\
 & \quad + \frac{e^{\widehat{b}^{(2)}}}{e^{-x+\widehat{b}^{(1)}} + e^{\widehat{b}^{(2)}} + e^{x+\widehat{b}^{(3)}}} \cdot \widehat{b}^{(B,2)} \\
 & \quad + \frac{e^{x+\widehat{b}^{(3)}}}{e^{-x+\widehat{b}^{(1)}} + e^{\widehat{b}^{(2)}} + e^{x+\widehat{b}^{(3)}}} \cdot \widehat{b}^{(B,3)}. \quad (88)
 \end{aligned}$$

Again, we simplify the notation by setting

$$\begin{aligned}
 e^{b^{(G,1)}} &= a_1, & e^{\widehat{b}^{(G,1)}} &= a_2, \\
 e^{b^{(G,2)}} &= b_1, & e^{\widehat{b}^{(G,2)}} &= b_2, \\
 e^{b^{(G,3)}} &= c_1, & e^{\widehat{b}^{(G,3)}} &= c_2, \\
 b^{(B,1)} &= A_1, & \widehat{b}^{(B,1)} &= A_2, \\
 b^{(B,2)} &= B_1, & \widehat{b}^{(B,2)} &= B_2, \\
 b^{(B,3)} &= C_1, & \widehat{b}^{(B,3)} &= C_2. \quad (89)
 \end{aligned}$$

We can now rewrite Equation 88 as

$$\begin{aligned}
 & \frac{e^{-x}a_1}{e^{-x}a_1 + b_1 + e^x c_1} \cdot A_1 + \frac{b_1}{e^{-x}a_1 + b_1 + e^x c_1} \cdot B_1 + \frac{e^x c_1}{e^{-x}a_1 + b_1 + e^x c_1} \cdot C_1 \\
 = & \frac{e^{-x}a_2}{e^{-x}a_2 + b_2 + e^x c_2} \cdot A_2 + \frac{b_2}{e^{-x}a_2 + b_2 + e^x c_2} \cdot B_2 + \frac{e^x c_2}{e^{-x}a_2 + b_2 + e^x c_2} \cdot C_2, \quad (90)
 \end{aligned}$$

which is equivalent to

$$\begin{aligned}
 & (e^{-x}a_1 A_1 + b_1 B_1 + e^x c_1 C_1) (e^{-x}a_2 + b_2 + e^x c_2) \\
 & = (e^{-x}a_2 A_2 + b_2 B_2 + e^x c_2 C_2) (e^{-x}a_1 + b_1 + e^x c_1). \quad (91)
 \end{aligned}$$

By matching the coefficients of  $e^{-2x}, e^{-x}, 1, e^x, e^{2x}$ , we obtain

$$\begin{aligned}
 e^{-2x} &: a_1 a_2 A_1 &= a_1 a_2 A_2, \\
 e^{2x} &: c_1 c_2 C_1 &= c_1 c_2 C_2, \\
 e^x &: b_1 c_2 B_1 + c_1 b_2 C_1 &= b_1 c_2 C_2 + c_1 b_2 B_2, \\
 e^{-x} &: b_1 a_2 B_1 + a_1 b_2 A_1 &= b_1 a_2 A_2 + a_1 b_2 B_2, \\
 1 &: a_1 c_2 A_1 + c_1 a_2 C_1 + b_1 b_2 B_1 &= a_1 c_2 C_2 + c_1 a_2 A_2 + b_1 b_2 B_2. \quad (92)
 \end{aligned}$$

By setting  $A_1 = A_2 = A$  and  $C_1 = C_2 = C$ , the equations corresponding to the terms  $e^{-2x}$  and  $e^{2x}$  are automatically satisfied. Removing these, Equation 92 simplifies to

$$\begin{aligned}
 e^x &: b_1 c_2 B_1 + c_1 b_2 C &= b_1 c_2 C + c_1 b_2 B_2, \\
 e^{-x} &: b_1 a_2 B_1 + a_1 b_2 A &= b_1 a_2 A + a_1 b_2 B_2, \quad (93) \\
 1 &: a_1 c_2 A + c_1 a_2 C + b_1 b_2 B_1 &= a_1 c_2 C + c_1 a_2 A + b_1 b_2 B_2.
 \end{aligned}$$

1566 From the equations associated with  $e^{-x}$  and  $e^x$ , and assuming  $c_1b_2 \neq b_1c_2$  and  $a_1b_2 \neq b_1a_2$ , we  
 1567 obtain

$$\begin{aligned} 1569 \quad A &= \frac{a_1b_2B_2 - b_1a_2B_1}{a_1b_2 - b_1a_2}, \\ 1570 \quad C &= \frac{c_1b_2B_2 - b_1c_2B_1}{c_1b_2 - b_1c_2}. \end{aligned} \tag{94}$$

1573 The equation corresponding to the constant term in Equation 93 can be rewritten as

$$1575 \quad b_1b_2(B_1 - B_2) = (C - A)(a_1c_2 - c_1a_2). \tag{95}$$

1576 Next, we compute the difference  $A - C$  as follows:

$$\begin{aligned} 1577 \quad A - C &= \frac{a_1b_2B_2 - b_1a_2B_1}{a_1b_2 - b_1a_2} - \frac{c_1b_2B_2 - b_1c_2B_1}{c_1b_2 - b_1c_2} \\ 1578 \quad &= \frac{b_1b_2(B_1 - B_2)(a_1c_2 - c_1a_2)}{(a_1b_2 - b_1a_2)(c_1b_2 - b_1c_2)}. \end{aligned} \tag{96}$$

1582 Substituting this expression for  $(A - C)$  into Equation 95 yields

$$1584 \quad b_1b_2(B_1 - B_2) = -\frac{b_1b_2(B_1 - B_2)(a_1c_2 - c_1a_2)}{(a_1b_2 - b_1a_2)(c_1b_2 - b_1c_2)}(a_1c_2 - c_1a_2). \tag{97}$$

1586 Assuming that  $B_1 \neq B_2$  and  $b_1b_2 \neq 0$ , we can divide both sides of the equation by  $b_1b_2(B_1 - B_2)$ ,  
 1587 which leads to

$$1588 \quad (a_1b_2 - b_1a_2)(b_1c_2 - c_1b_2) = (a_1c_2 - c_1a_2)^2. \tag{98}$$

1589 Although this equation can be solved explicitly, for our purposes it suffices to exhibit a single solu-  
 1590 tion. In this case, we choose

$$\begin{aligned} 1592 \quad (a_1, a_2) &= (1, 2), \\ 1593 \quad (b_1, b_2) &= (3, 5), \\ 1594 \quad (c_1, c_2) &= (2, 3). \end{aligned} \tag{99}$$

1597 With this choice, the values of  $B_1$  and  $B_2$  can be selected arbitrarily. These parameter assignments  
 1598 determine corresponding values for  $\theta$  and  $\hat{\theta}$ . It is straightforward to verify that no transformation of  
 1599 the form described in Theorem B.7 maps  $\theta$  to  $\hat{\theta}$ .

## 1601 C FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

1603 In this section, we characterize when two elements of the weight space of SMoE define the same  
 1604 SMoE map.

### 1606 C.1 AUXILIARY RESULTS

1608 The following definition formalizes the notion of the strongly distinct property, which is later be  
 1609 used in Theorem C.5.

1610 **Definition C.1** (Strongly distinct). Two functions  $f$  and  $g$  from  $X$  to  $Y$  are called *strongly distinct*  
 1611 if  $\{x \in X : f(x) \neq g(x)\}$  is a dense subset of  $X$ .

1612 *Example C.2.* Two distinct polynomials on  $\mathbb{R}^n$  or  $\mathbb{C}^n$  are strongly distinct. Two distinct holomorphic  
 1613 functions are strongly distinct. Two distinct locally affine functions are not strongly distinct in  
 1614 general. Indeed:

- 1616 • Consider  $f_1, f_2 : \mathbb{R} \rightarrow \mathbb{R}$  as follows:

$$1617 \quad f_1(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1618 \quad x & \text{if } x \geq 0, \end{cases} \quad f_2(x) = 1. \tag{100}$$

1619 Then  $f_1$  and  $f_2$  are strongly distinct.

1620 • Consider  $g_1, g_2: \mathbb{R} \rightarrow \mathbb{R}$  as follows:

1621

$$1622 g_1(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1623 x & \text{if } x \geq 0, \end{cases} \quad g_2(x) = 0. \quad (101)$$

1624 Then  $g_1$  and  $g_2$  are distinct but not strongly distinct.

1626 We define a class of subsets of  $\mathbb{R}^D$  as follows: for

1627

$$1628 \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \in \left( \mathbb{R}^D \times \mathbb{R} \right)^{n_e}, \quad (102)$$

1629 define

1630

$$1631 \Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right) \\ 1632 := \left\{ x \in \mathbb{R}^D : W^{(G,i)}x + b^{(G,i)} \text{ is pairwise distinct for all } i = 1, \dots, n_e \right\} \\ 1633 \\ 1634 \\ 1635 \quad (103)$$

1636 The following result establishes a sufficient condition on the gating parameters under which the Top-  
1637  $K$  operator is capable of selecting every possible subset of  $K$  experts from the full set of experts.

1638 **Proposition C.3.** *Assume that  $\{W^{(G,i)}\}_{i=1}^{n_e}$  satisfies  $\{W^{(G,i-1)} - W^{(G,i)}\}_{i=2}^{n_e}$  is a linear in-  
1639 dependent subset of  $\mathbb{R}^D$ . Then, for all subsets  $A$  of  $K$  elements of  $\{1, \dots, n_e\}$ , there exists  
1640  $x \in \Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$  such that:*

1641

$$1642 \text{Top-}K \left( \left( W^{(G,i)}x + b^{(G,i)} \right)_{i=1}^{n_e} \right) = A. \quad (104)$$

1643 *Proof.* Without loss of generality, assume that  $A = \{1, \dots, K\}$ . To show that there exists  $x \in$   
1644  $\Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$  such that:

1645

$$1646 \text{Top-}K \left( \left( W^{(G,i)}x + b^{(G,i)} \right)_{i=1}^{n_e} \right) = \{1, \dots, K\}, \quad (105)$$

1647 it is enough to show that there exists  $x \in \mathbb{R}^D$  such that

1648

$$1649 W^{(G,1)}x + b^{(G,1)} > W^{(G,2)}x + b^{(G,2)} > \dots > W^{(G,n_e)}x + b^{(G,n_e)}. \quad (106)$$

1650 We simplify it even more, we find  $x \in \mathbb{R}^D$  such that

1651

$$1652 (W^{(G,1)}x + b^{(G,1)}) - (W^{(G,2)}x + b^{(G,2)}) = 1, \\ 1653 (W^{(G,2)}x + b^{(G,2)}) - (W^{(G,3)}x + b^{(G,3)}) = 1, \\ 1654 \dots \\ 1655 (W^{(G,n_e-1)}x + b^{(G,n_e-1)}) - (W^{(G,n_e)}x + b^{(G,n_e)}) = 1. \quad (107)$$

1656 This is equivalent to

1657

$$1658 (W^{(G,1)} - W^{(G,2)})x = 1 - (b^{(G,1)} - b^{(G,2)}), \\ 1659 (W^{(G,2)} - W^{(G,3)})x = 1 - (b^{(G,2)} - b^{(G,3)}), \\ 1660 \dots \\ 1661 (W^{(G,n_e-1)} - W^{(G,n_e)})x = 1 - (b^{(G,n_e-1)} - b^{(G,n_e)}). \quad (108)$$

1662 Since the set  $\{W^{(G,i-1)} - W^{(G,i)}\}_{i=2}^{n_e}$  is linear independent, there exists  $x \in \mathbb{R}^D$  satisfies Equation  
1663 108.  $\square$

1664 *Remark C.4.* Proposition C.5 will be used in Theorem C.5. A justification of the linear independence  
1665 assumption is provided in Remark C.9.

1674 C.2 FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS  
1675

1676 We present a functional equivalence result for the SMoE architecture, analogous to the one estab-  
1677 lished for MoE in Theorem B.7. However, our result is restricted to the case  $K > 1$ , as the setting  
1678  $K = 1$  introduces singularities that invalidate the general equivalence structure. A detailed justifi-  
1679 cation for the exclusion of the  $K = 1$  case is provided in Remark C.10.

1680 **Theorem C.5** (Functional equivalence in SMoE). *Let  $\theta \in \Theta(n_e)$  and  $\widehat{\theta} \in \Theta(\widehat{n}_e)$  be given by*

$$1682 \theta = \left( \left( W^{(G,i)}, b^{(G,i)} \right), \left( W^{(A,i)}, b^{(A,i)} \right), \left( W^{(B,i)}, b^{(B,i)} \right) \right)_{i=1, \dots, n_e}, \quad (109)$$

$$1684 \widehat{\theta} = \left( \left( \widehat{W}^{(G,i)}, \widehat{b}^{(G,i)} \right), \left( \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)} \right), \left( \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)} \right) \right)_{i=1, \dots, \widehat{n}_e}, \quad (110)$$

1687 and suppose they define the same SMoE map, i.e.,

$$1688 \text{SMoE}(x; \theta) = \text{SMoE}(x; \widehat{\theta}) \text{ for all } x \in \mathbb{R}^D. \quad (111)$$

1690 Denote the two corresponding gating maps as follows

$$1692 T(x) = T \left( x; \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right) = \text{Top-}K \left( \left( W^{(G,i)} x + b^{(G,i)} \right)_{i=1}^{n_e} \right), \quad (112)$$

$$1694 \widehat{T}(x) = \widehat{T} \left( x; \left\{ \widehat{W}^{(G,i)}, \widehat{b}^{(G,i)} \right\}_{i=1}^{\widehat{n}_e} \right) = \text{Top-}K \left( \left( \widehat{W}^{(G,i)} x + \widehat{b}^{(G,i)} \right)_{i=1}^{\widehat{n}_e} \right). \quad (113)$$

1696 If  $\theta$  and  $\widehat{\theta}$  satisfy the four assumptions:

1698 1.  $n_e$  experts  $\left\{ \mathbb{E} \left( \cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right) \right\}_{i=1}^{n_e}$  are  $n_e$  pairwise strongly distinct func-  
1699 tions;

1701 2.  $\widehat{n}_e$  experts  $\left\{ \mathbb{E} \left( \cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)} \right) \right\}_{i=1}^{\widehat{n}_e}$  are  $\widehat{n}_e$  pairwise strongly distinct  
1702 functions;

1704 3.  $\{W^{(G,i-1)} - W^{(G,i)}\}_{i=2}^{n_e}$  is a linear independent subset of  $\mathbb{R}^D$ ;

1706 4.  $\{\widehat{W}^{(G,i-1)} - \widehat{W}^{(G,i)}\}_{i=2}^{\widehat{n}_e}$  is a linear independent subset of  $\mathbb{R}^D$ ;

1708 then,  $n_e = \widehat{n}_e$ , and there exists  $\tau \in S_{n_e}$ ,  $\gamma_W \in \mathbb{R}^D$ ,  $\gamma_b \in \mathbb{R}$  such that for all  $i = 1, \dots, n_e$ ,

$$1709 \widehat{W}^{(G,i)} = W^{(G,\tau(i))} + \gamma_W, \quad \widehat{b}^{(G,i)} = b^{(G,\tau(i))} + \gamma_b, \quad (114)$$

1711 and

$$1712 \mathbb{E} \left( x; W^{(A,\tau(i))}, b^{(A,\tau(i))}, W^{(B,\tau(i))}, b^{(B,\tau(i))} \right) = \mathbb{E} \left( x; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)} \right), \quad (115)$$

1714 for all  $x \in \Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$  such that  $\tau(i) \in T(x)$ .

1717 Before we proceed to the proof of Theorem C.5, we first make two remarks.

1718 **Remark C.6.** Note that, if  $n_e = \widehat{n}_e$ , and there exists  $\tau \in S_{n_e}$ ,  $\gamma_W \in \mathbb{R}^D$ ,  $\gamma_b \in \mathbb{R}$  such that for all  
1719  $i = 1, \dots, n_e$ ,

$$1720 \widehat{W}^{(G,i)} = W^{(G,\tau(i))} + \gamma_W, \quad \widehat{b}^{(G,i)} = b^{(G,\tau(i))} + \gamma_b, \quad (116)$$

1722 then the two sets  $\Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$  and  $\Omega \left( \left\{ \widehat{W}^{(G,i)}, \widehat{b}^{(G,i)} \right\}_{i=1}^{n_e} \right)$  are equal. Moreover, for  
1723 any  $x$  in this set, it holds that  $\tau(i) \in T(x)$  if and only if  $i \in \widehat{T}(x)$ .

1725 **Remark C.7.** It is straightforward to verify that Assumptions 3 and 4 in Theorem C.5 imply Ass-  
1726 sumptions 3 and 4 in Theorem B.7.

1727 *Proof.* For better readability, we begin by providing a high-level outline of the upcoming proof:

1728 1. Explicitly express the equation  $\text{SMoE}(\cdot; \theta) = \text{SMoE}(\cdot; \widehat{\theta})$  and introduce simplified notation  
 1729 for clarity.  
 1730

1731 2. Define a partition of the space into regions where the Top- $K$  map selects the same indices,  
 1732 and where each expert is affine.  
 1733

1734 3. Prove that the desired property holds for a fixed number of experts. The key idea is to apply  
 1735 the result for MoE in Theorem B.7.  
 1736

1737 4. Extend the result to show that the desired property holds for all experts.

1738 We now present the derivations and proofs corresponding to each of the four steps.

1739 **Step 1.** Since  $\text{SMoE}(\cdot; \theta) = \text{SMoE}(\cdot; \widehat{\theta})$ , we have

$$\begin{aligned} & \sum_{i \in T(x)} \text{softmax}_i \left( \left\{ W^{(G,i)} x + b^{(G,i)} \right\}_{i \in T(x)} \right) \cdot \mathbb{E} \left( x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right) \\ &= \sum_{i \in \widehat{T}(x)} \text{softmax}_i \left( \left\{ \widehat{W}^{(G,i)} x + \widehat{b}^{(G,i)} \right\}_{i \in \widehat{T}(x)} \right) \cdot \mathbb{E} \left( x; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)} \right), \end{aligned} \quad (117)$$

1747 for all  $x \in \mathbb{R}^D$ . Denote

$$\begin{aligned} \mathbb{E}_i(\cdot) &= \mathbb{E} \left( \cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right), \\ \widehat{\mathbb{E}}_i(\cdot) &= \mathbb{E} \left( \cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)} \right), \end{aligned} \quad (118)$$

1752 and simplify the notation by setting  $W^{(G,i)} = W^{(i)}, b^{(G,i)} = b^{(i)}, \widehat{W}^{(G,i)} = \widehat{W}^{(i)}, \widehat{b}^{(G,i)} = \widehat{b}^{(i)}$ .  
 1753 We rewrite Equation 117 as follows:

$$\begin{aligned} & \sum_{i \in T(x)} \text{softmax}_i \left( \left\{ W^{(i)} x + b^{(i)} \right\}_{i \in T(x)} \right) \cdot \mathbb{E}_i(x) \\ &= \sum_{i \in \widehat{T}(x)} \text{softmax}_i \left( \left\{ \widehat{W}^{(i)} x + \widehat{b}^{(i)} \right\}_{i \in \widehat{T}(x)} \right) \cdot \widehat{\mathbb{E}}_i(x). \end{aligned} \quad (119)$$

1760 **Step 2.** We make two key observations:

1761 • Assumptions 3 and 4 ensure that the parameter pairs  $\{W^{(i)}, b^{(i)}\}$  are pairwise distinct for  
 1762  $i = 1, \dots, n_e$ , and similarly,  $\{\widehat{W}^{(i)}, \widehat{b}^{(i)}\}$  are pairwise distinct for  $i = 1, \dots, \widehat{n}_e$ . By  
 1763 Proposition A.1, the set  
 1764

$$\Omega_1 = \Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right) \cap \Omega \left( \left\{ \widehat{W}^{(G,i)}, \widehat{b}^{(G,i)} \right\}_{i=1}^{\widehat{n}_e} \right), \quad (120)$$

1765 is an open and dense subset of  $\mathbb{R}^D$ , such that for all  $x \in \Omega_1$ , the values  $W^{(i)}x + b^{(i)}$  are  
 1766 pairwise distinct for  $i = 1, \dots, n_e$ , and  $\widehat{W}^{(i)}x + \widehat{b}^{(i)}$  are pairwise distinct for  $i = 1, \dots, \widehat{n}_e$ .  
 1767 By construction, for every  $x \in \Omega_1$ , there exists a neighborhood of  $x$  in  $\Omega_1$  on which the  
 1768 functions  $T(\cdot)$  and  $\widehat{T}(\cdot)$  remain constant.

1769 • From the analysis in Appendix B.2, there exists a set  $\Omega_2 \subset \mathbb{R}^D$  that is open and dense, such  
 1770 that for every  $x \in \Omega_2$ , there exists a neighborhood of  $x$  in  $\Omega_2$  on which all expert functions  
 1771  $\mathbb{E}_i$  and  $\widehat{\mathbb{E}}_i$  are affine.  
 1772

1773 By taking the intersection  $\Omega = \Omega_1 \cap \Omega_2$ , we obtain a set  $\Omega$  that is also open and dense. Moreover,  
 1774 since  $T(\cdot)$  and  $\widehat{T}(\cdot)$  remain constant,  $\mathbb{E}_i$  and  $\widehat{\mathbb{E}}_i$  are affine in small neighborhoods around each point  
 1775 in  $\Omega$ , there exists a collection of open sets  $\{U_k\}_{k \in I}$  covering  $\Omega$ , i.e.,  
 1776

$$\Omega = \bigcup_{k \in I} U_k, \quad (121)$$

such that within each set  $U_k$  in the collection, the expert functions  $E_i$  and  $\widehat{E}_j$  are affine, and the selection functions  $T(\cdot)$  and  $\widehat{T}(\cdot)$  are constant.

**Step 3.** Consider an arbitrary set  $U$  from the cover in Equation 121. Without loss of generality, we may reindex so that  $T(\cdot) = \widehat{T}(\cdot) = \{1, \dots, K\}$  on  $U$ . Under this reindexing, Equation 119 simplifies to

$$\begin{aligned} & \sum_{i=1}^K \text{softmax}_i \left( \left\{ W^{(i)} x + b^{(i)} \right\}_{i=1}^K \right) \cdot E_i(x) \\ &= \sum_{i=1}^K \text{softmax}_i \left( \left\{ \widehat{W}^{(i)} x + \widehat{b}^{(i)} \right\}_{i=1}^K \right) \cdot \widehat{E}_i(x) \quad \text{for all } x \in U. \end{aligned} \quad (122)$$

By Assumption 1, the expert functions  $E_i$  are strongly distinct, which implies they remain distinct over the open set  $U$ . The same conclusion applies to the  $\widehat{E}_i$  by Assumption 2. Therefore, the first four assumptions of Theorem C.5, together with Equation 122, reduce the setting to that of Theorem B.7. As a result, up to a reindexing of the experts, there exist constants  $\gamma_W \in \mathbb{R}^D$  and  $\gamma_b \in \mathbb{R}$  such that for all  $i = 1, \dots, K$ ,

$$\widehat{W}^{(i)} = W^{(i)} + \gamma_W, \quad \widehat{b}^{(i)} = b^{(i)} + \gamma_b, \quad (123)$$

and  $E_i = \widehat{E}_i$  on  $U$ .

**Step 4.** Now, for any  $k = 3, 4, \dots, n_e$ , we apply Proposition C.3 to choose a set  $V_1$  from the cover in Equation 121 such that both indices 1 and  $k$  are included in  $T(V_1)$ . Considering Equation 119 restricted to  $V_1$  and applying Theorem C.5, we conclude that there exist indices  $1 \leq t_1, s_1 \leq \widehat{n}_e$  such that

$$W_1 - W_k = \widehat{W}_{t_1} - \widehat{W}_{s_1}. \quad (124)$$

Applying the same reasoning for indices 2 and  $k$ , we find  $1 \leq t_2, s_2 \leq \widehat{n}_e$  satisfying

$$W_2 - W_k = \widehat{W}_{t_2} - \widehat{W}_{s_2}. \quad (125)$$

Subtracting Equations 125 from 124, we obtain

$$\widehat{W}_1 - \widehat{W}_2 = W_1 - W_2 = (W_1 - W_k) - (W_2 - W_k) = (\widehat{W}_{t_1} - \widehat{W}_{s_1}) - (\widehat{W}_{t_2} - \widehat{W}_{s_2}). \quad (126)$$

By Assumption 4, which guarantees linear independence, it follows that  $t_1 = 1, t_2 = 2$ , and  $s_1 = s_2$ . Let us denote this common index as  $\tau(k)$ , i.e.,  $\tau(k) = s_1 = s_2$ . Then, we have

$$W_1 - W_k = \widehat{W}_1 - \widehat{W}_{\tau(k)}, \quad (127)$$

which is equivalent to

$$\widehat{W}_{\tau(k)} - W_k = \widehat{W}_1 - W_1 = \gamma_W. \quad (128)$$

We also have

$$\widehat{b}_{\tau(k)} - b_k = \widehat{b}_1 - b_1 = \gamma_b. \quad (129)$$

Finally, since  $k$  ranges over  $\{3, 4, \dots, n_e\}$ , the values  $\tau(k)$  must be distinct. Indeed, suppose there exist  $k \neq k'$  such that  $\tau(k) = \tau(k')$ . Then it would follow that

$$W_k - W_{k'} = \widehat{W}_{\tau(k)} - \widehat{W}_{\tau(k')} = 0, \quad (130)$$

which contradicts Assumption 3. By applying a symmetric argument to the parameters of  $\widehat{\text{SMoE}}$ , we conclude that  $n_e = \widehat{n}_e$ . Furthermore, up to a suitable permutation  $\tau$  of the indices, we have:

$$\widehat{W}^{(G,i)} = W^{(G,\tau(i))} + \gamma_W, \quad \widehat{b}^{(G,i)} = b^{(G,\tau(i))} + \gamma_b. \quad (131)$$

Additionally, the above analysis implies the following: for any  $x \in \Omega \left( \{W^{(G,i)}, b^{(G,i)}\}_{i=1}^{n_e} \right)$  such that  $\tau(i) \in T(x)$ —that is, index  $i$  is selected by the Top- $K$  mechanism in SMoE—we have

$$E_i(x) = \widehat{E}_i(x). \quad (132)$$

This completes the proof of Theorem C.5.  $\square$

1836 *Remark C.8.* Although Theorem C.5 is conceptually aligned with Theorem B.7, it is important to  
 1837 emphasize that the case of SMoE is significantly more challenging to establish. The primary source  
 1838 of this difficulty lies in the presence of the Top- $K$  operator, which introduces discontinuities by  
 1839 altering the set of contributing experts in a nontrivial and input-dependent manner. This behavior is  
 1840 notably difficult to analyze and control within the theoretical framework.

1841 *Remark C.9 (Rationale behind the assumptions in Theorem C.5).* We begin by recalling the four  
 1842 assumptions stated in Theorem C.5:

- 1843 1.  $n_e$  experts  $\{E(\cdot; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)})\}_{i=1}^{n_e}$  are  $n_e$  pairwise strongly distinct func-  
 1844 tions;
- 1845 2.  $\widehat{n_e}$  experts  $\{\widehat{E}(\cdot; \widehat{W}^{(A,i)}, \widehat{b}^{(A,i)}, \widehat{W}^{(B,i)}, \widehat{b}^{(B,i)})\}_{i=1}^{\widehat{n_e}}$  are  $\widehat{n_e}$  pairwise strongly distinct  
 1846 functions;
- 1847 3.  $\{W^{(G,i-1)} - W^{(G,i)}\}_{i=2}^{n_e}$  is a linear independent subset of  $\mathbb{R}^D$ ;
- 1848 4.  $\{\widehat{W}^{(G,i-1)} - \widehat{W}^{(G,i)}\}_{i=2}^{\widehat{n_e}}$  is a linear independent subset of  $\mathbb{R}^D$ ;

1849 The set of assumptions in Theorem C.5 is strictly stronger than that of Theorem B.7. We analyze  
 1850 them as follows.

1851 *Assumptions 1 and 2.* Assumptions 1 and 2 primarily arise due to the use of the Top- $K$  operator,  
 1852 which induces input-dependent expert selection. As a result, an expert's behavior is unconstrained  
 1853 in regions where it is not selected by the gating mechanism, allowing it to behave arbitrarily in  
 1854 those domains. Therefore, if we only assume that the experts are pairwise distinct—rather than  
 1855 pairwise strongly distinct—it is possible for different sets of expert functions, when restricted to  
 1856 their respective activated regions, to yield the same overall function. This ambiguity underscores the  
 1857 necessity of strong distinctness to ensure identifiability in the SMoE architecture.

1858 *Assumptions 3 and 4.* In practical scenarios, the number of experts  $n_e$  is typically much smaller  
 1859 than the token dimension  $D$ . Consequently, the sets  $\{W^{(G,i-1)} - W^{(G,i)}\}_{i=2}^{n_e}$  and  $\{\widehat{W}^{(G,i-1)} -$   
 1860  $\widehat{W}^{(G,i)}\}_{i=2}^{\widehat{n_e}}$  are generally linearly independent. However, when this condition fails, certain pairs of  
 1861 experts may never be selected simultaneously by the gating mechanism for any input. This limitation  
 1862 gives rise to singular symmetries, wherein different parameter configurations result in identical  
 1863 functional outputs, yet cannot be transformed into one another via the equivalence described in  
 1864 Theorem C.5.

1865 To elucidate the implications of this behavior, we present a concrete example illustrating how such  
 1866 symmetries can manifest within the SMoE architecture. Consider the case with  $n_e = 4$  and  $K = 2$ ,  
 1867 and let  $E_1, E_2, E_3, E_4$  be arbitrary experts. Define two MoE functions  $f_1$  and  $f_2$  with gating logits  
 1868 given by  $(-2x, -x, x, 2x)$  and  $(-3x, -2x, 2x, 3x)$ , respectively. The explicit forms of  $f_1$  and  $f_2$   
 1869 are:

$$1870 f_1(x) = \begin{cases} \text{softmax}_1(-2x, -x) \cdot E_1(x) + \text{softmax}_2(-2x, -x) \cdot E_2(x) & \text{if } x < 0, \\ \text{softmax}_1(x, 2x) \cdot E_3(x) + \text{softmax}_2(x, 2x) \cdot E_4(x) & \text{if } x > 0, \end{cases} \quad (133)$$

1871 and,

$$1872 f_2(x) = \begin{cases} \text{softmax}_1(-3x, -2x) \cdot E_1(x) + \text{softmax}_2(-3x, -2x) \cdot E_2(x) & \text{if } x < 0, \\ \text{softmax}_1(2x, 3x) \cdot E_3(x) + \text{softmax}_2(2x, 3x) \cdot E_4(x) & \text{if } x > 0. \end{cases} \quad (134)$$

1873 It is evident that  $f_1(x) = f_2(x)$  for all  $x \in \mathbb{R} \setminus 0$ , where the gating scores are pairwise distinct  
 1874 and the Top- $K$  selection is stable. However, there exists no transformation of the form described in  
 1875 Theorem C.5 that maps one function to the other, highlighting the presence of singular symmetries  
 1876 in the SMoE architecture for some sets of parameters.

1877 *Remark C.10 (The case of  $K = 1$ ).* In the special case where  $K = 1$ , the SMoE function from  
 1878 Equation 22 simplifies as follows:

$$1879 \text{SMoE}\left(x; \left\{W^{(G,i)}, b^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right\}_{i=1}^{n_e}\right) \\ 1880 = E\left(x; W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)}\right), \quad (135)$$

1890 where the index  $i$  is given by  
 1891

$$1892 \quad i = \operatorname{argmax}_{i=1, \dots, n_e} \left( W^{(G,i)} x + b^{(G,i)} \right). \quad (136)$$

1894 Here, the Top-1 routing mechanism selects only the expert with the highest gating score, resulting in  
 1895 a softmax distribution that collapses to a single entry equal to 1. In addition to the group  $\mathcal{G}(n_e)$  acting  
 1896 on the expert parameters, the SMoE mapping with  $K = 1$  also admits a nontrivial and nonsingular  
 1897 symmetry under the action of the multiplicative group  $\mathbb{R}_{>0}$ . Specifically, for any  $a > 0$ , we have:  
 1898

$$1899 \quad \text{SMoE} \left( x; \left\{ W^{(G,i)}, b^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right\}_{i=1}^{n_e} \right) \\ 1900 \\ 1901 \quad = \text{SMoE} \left( x; \left\{ aW^{(G,i)}, ab^{(G,i)}, W^{(A,i)}, b^{(A,i)}, W^{(B,i)}, b^{(B,i)} \right\}_{i=1}^{n_e} \right). \quad (137)$$

1903 This invariance holds because the argmax used for expert selection is unaffected by uniform positive  
 1904 scaling:

$$1905 \quad \operatorname{argmax}_{i=1, \dots, n_e} \left( W^{(G,i)} x + b^{(G,i)} \right) = \operatorname{argmax}_{i=1, \dots, n_e} \left( aW^{(G,i)} x + ab^{(G,i)} \right), \quad (138)$$

1908 for all  $x \in \Omega \left( \left\{ W^{(G,i)}, b^{(G,i)} \right\}_{i=1}^{n_e} \right)$ . Moreover, since only one expert is activated per input, no  
 1909 explicit interactions are formed among the expert components. This leads to a rich set of hidden  
 1910 symmetries within the architecture. Due to the complexity introduced by these symmetries, we  
 1911 choose to exclude the case  $K = 1$  from our main analysis and leave its exploration to future work.  
 1912

## 1913 D WEIGHT SPACES OF MOE TRANSFORMER AND ITS GROUP ACTION

1916 Since the weight space, symmetry, and group action are the same for both MoE and SMoE, we will  
 1917 describe the equivariant metanetwork for the MoE Transformer in this section. The construction for  
 1918 the SMoE Transformer is identical.

1919 An MoE Transformer layer comprises a multihead attention module followed by an MoE module,  
 1920 where each expert in the MoE module is realized as a single hidden-layer network. Formally, an  
 1921 MoE Tranformer layer, which will be denoted by MoETransformer, transforms an input sequence  
 1922  $X \in \mathbb{R}^{L \times D}$  to an output sequence MoETransformer( $X$ )  $\in \mathbb{R}^{L \times D}$  defined as follows:  
 1923

$$1924 \quad \text{MoETransformer}(X) = \text{LayerNorm} \left( \text{MoE} \left( \hat{X}; \left\{ [W]^{(G,i)}, [b]^{(G,i)}, [W]^{(A,i)}, [b]^{(A,i)}, [W]^{(B,i)}, [b]^{(B,i)} \right\}_{i=1}^{n_e} \right) \right), \\ 1925 \\ 1926 \quad \hat{X} = \text{LayerNorm} \left( \text{MultiHead} \left( X; \left\{ [W]^{(Q,i)}, [W]^{(K,i)}, [W]^{(V,i)}, [W]^{(O,i)} \right\}_{i=1}^{n_h} \right) \right),$$

1928 where the MoE operator is a token-wise operator and is defined in Equation 2. While the MultiHead  
 1929 is defined in (Tran et al., 2025) as

$$1930 \quad \text{MultiHead} \left( X; W^{(O)}, \left\{ W^{(Q,i)}, W^{(K,i)}, W^{(V,i)} \right\}_{i=1}^h \right) \\ 1931 \\ 1932 \quad = \left( \bigoplus_{i=1}^h \text{Head} \left( X; W^{(Q,i)}, W^{(K,i)}, W^{(V,i)} \right) \right) W^{(O)} \\ 1933 \\ 1934 \quad = \sum_{i=1}^h \text{Head} \left( X; W^{(Q,i)}, W^{(K,i)}, W^{(V,i)} \right) W^{(O,i)} \\ 1935 \\ 1936 \quad = \sum_{i=1}^h \text{softmax} \left( X \cdot \left( \frac{W^{(Q,i)} \cdot (W^{(K,i)})^\top}{\sqrt{D_k}} \right) \cdot X^\top \right) \cdot X \cdot (W^{(V,i)} \cdot W^{(O,i)}),$$

1942 where  $W^{(O)} = (W^{(O,1)}, \dots, W^{(O,h)})$  with each  $W^{(O,i)} \in \mathbb{R}^{D_v \times D}$ . The positive integers  $n_h$  and  
 1943  $n_e$  represent the number of heads in the multihead attention module and the number of experts in  
 the MoE module, respectively.

1944 Accordingly, the *weight space*  $\mathcal{U}$  of an MoE Transformer layer with  $n_e$  experts is defined as the  
 1945 vector space:  
 1946

$$\begin{aligned} 1947 \quad \mathcal{U} &= \left( \mathbb{R}^{D \times D_k} \times \mathbb{R}^{D \times D_k} \times \mathbb{R}^{D \times D_v} \times \mathbb{R}^{D_v \times D} \right)^{n_h} \\ 1948 \quad &\times \left( \left( \mathbb{R}^D \times \mathbb{R} \right) \times \left( \mathbb{R}^{D \times D_e} \times \mathbb{R}^{1 \times D_e} \right) \times \left( \mathbb{R}^{D_e \times D} \times \mathbb{R}^{1 \times D} \right) \right)^{n_e}. \quad (139) \end{aligned}$$

1951 An element  $U \in \mathcal{U}$  takes the form:  
 1952

$$\begin{aligned} 1953 \quad U &= \left( \left( [W]^{(Q,i)}, [W]^{(K,i)}, [W]^{(V,i)}, [W]^{(O,i)} \right)_{i=1, \dots, n_h}, \right. \\ 1954 \quad &\left. \left( [W]^{(G,i)}, [b]^{(G,i)} \right), \left( [W]^{(A,i)}, [b]^{(A,i)} \right), \left( [W]^{(B,i)}, [b]^{(B,i)} \right) \right)_{i=1, \dots, n_e}. \quad (140) \end{aligned}$$

1955 Define the group  
 1956

$$\mathcal{G}_{\mathcal{U}} = \left( S_{n_h} \times \left( \text{GL}_{D_k}(\mathbb{R}) \times \text{GL}_{D_v}(\mathbb{R}) \right)^{n_h} \right) \times \left( \mathbb{R}^D \times \mathbb{R} \right) \times \left( S_{n_e} \times \left( \mathcal{P}_{D_e} \right)^{n_e} \right). \quad (141)$$

1963 Each element  $g \in \mathcal{G}_{\mathcal{U}}$  takes the form:  
 1964

$$g = \left( \left( \tau_h, \left\{ M_k^{(i)}, M_v^{(i)} \right\}_{i=1, \dots, n_h} \right), \{ \gamma_W, \gamma_b \}, \left( \tau_e \times \left\{ \pi_e^{(i)} \right\}_{i=1, \dots, n_e} \right) \right). \quad (142)$$

1968 The action of  $\mathcal{G}_{\mathcal{U}}$  on  $\mathcal{U}$  is defined to be  $\mathcal{G}_{\mathcal{U}} \times \mathcal{U} \rightarrow \mathcal{U}$ , which maps  $(g, U) \in \mathcal{G}_{\mathcal{U}} \times \mathcal{U}$  to:  
 1969

$$\begin{aligned} 1970 \quad gU &= \left( \left( [gW]^{(Q,i)}, [gW]^{(K,i)}, [gW]^{(V,i)}, [gW]^{(O,i)} \right)_{i=1, \dots, n_h}, \right. \\ 1971 \quad &\left. \left( \left( [gW]^{(G,i)}, [gb]^{(G,i)} \right), \left( [gW]^{(A,i)}, [gb]^{(A,i)} \right), \left( [gW]^{(B,i)}, [gb]^{(B,i)} \right) \right)_{i=1, \dots, n_e} \right), \quad (143) \end{aligned}$$

1975 where

$$\begin{aligned} 1977 \quad [gW]^{(Q,i)} &:= [W]^{(Q, \tau_h(i))} \cdot \left( M_k^{(\tau_h(i))} \right)^\top, \\ 1978 \quad [gW]^{(K,i)} &:= [W]^{(K, \tau_h(i))} \cdot \left( M_k^{(\tau_h(i))} \right)^{-1}, \\ 1979 \quad [gW]^{(V,i)} &:= [W]^{(V, \tau_h(i))} \cdot M_v^{(\tau_h(i))}, \\ 1980 \quad [gW]^{(O,i)} &:= \left( M_v^{(\tau_h(i))} \right)^{-1} \cdot [W]^{(O, \tau_h(i))}, \\ 1981 \quad [gW]^{(QK,i)} &:= [W]^{(QK, \tau_h(i))}, \\ 1982 \quad [gW]^{(VO,i)} &:= [W]^{(VO, \tau_h(i))}, \\ 1983 \quad [gW]^{(G,i)} &:= [W]^{(G, \tau_e(i))} + \gamma_W, \\ 1984 \quad [gb]^{(G,i)} &:= [b]^{(G, \tau_e(i))} + \gamma_b, \\ 1985 \quad [gW]^{(A,i)} &:= [W]^{(A, \tau_e(i))} \cdot P_{\pi_e^{(\tau_e(i))}}, \\ 1986 \quad [gb]^{(A,i)} &:= [b]^{(A, \tau_e(i))} \cdot P_{\pi_e^{(\tau_e(i))}}, \\ 1987 \quad [gW]^{(B,i)} &:= \left( P_{\pi_e^{(\tau_e(i))}} \right)^{-1} \cdot [W]^{(B, \tau_e(i))}, \\ 1988 \quad [gb]^{(B,i)} &:= [b]^{(B, \tau_e(i))}. \quad (144) \end{aligned}$$

1989 When express the set of Equations 144 in terms of individual entries, this takes the form:  
 1990

$$\begin{aligned}
1998 \\
1999 \\
2000 \quad [gW]_{j,k}^{(Q,i)} &:= \left[ [W]^{(Q,\tau_h(i))} \cdot \left( M_k^{(\tau_h(i))} \right)^\top \right]_{j,k}, \\
2001 \\
2002 \quad [gW]_{j,k}^{(K,i)} &:= \left[ [W]^{(K,\tau_h(i))} \cdot \left( M_k^{(\tau_h(i))} \right)^{-1} \right]_{j,k}, \\
2003 \\
2004 \quad [gW]_{j,k}^{(V,i)} &:= \left[ [W]^{(V,\tau_h(i))} \cdot M_v^{(\tau_h(i))} \right]_{j,k}, \\
2005 \\
2006 \quad [gW]_{j,k}^{(O,i)} &:= \left[ \left( M_v^{(\tau_h(i))} \right)^{-1} \cdot [W]^{(O,\tau_h(i))} \right]_{j,k}, \\
2007 \\
2008 \quad [gW]_{j,k}^{(QK,i)} &:= \left[ [W]^{(QK,\tau_h(i))} \right]_{j,k}, \\
2009 \\
2010 \quad [gW]_{j,k}^{(VO,i)} &:= \left[ [W]^{(VO,\tau_h(i))} \right]_{j,k}, \\
2011 \\
2012 \quad [gW]_j^{(G,i)} &:= [W]_j^{(G,\tau_e(i))} + (\gamma_W)_j, \\
2013 \\
2014 \quad [gb]^{(G,i)} &:= [b]^{(G,\tau_e(i))} + \gamma_b, \\
2015 \\
2016 \quad [gW]_{j,k}^{(A,i)} &:= [W]_{j,\pi_e^{(\tau_e(i))}(k)}^{(A,\tau_e(i))}, \\
2017 \\
2018 \quad [gb]_j^{(A,i)} &:= [b]_{\pi_e^{(\tau_e(i))}(j)}^{(A,\tau_e(i))}, \\
2019 \\
2020 \quad [gW]_{j,k}^{(B,i)} &:= [W]_{\pi_e^{(\tau_e(i))}(j),k}^{(B,\tau_e(i))}, \\
2021 \\
2022 \quad [gb]_j^{(B,i)} &:= [b]_j^{(B,\tau_e(i))}.
\end{aligned} \tag{145}$$

## E METANETWORK FOR MOE TRANSFORMERS: A POLYNOMIAL LAYER AND NOTATIONS

Our objective is twofold:

1. to construct a network mapping from  $\mathcal{U}^d$  to  $\mathcal{U}^{d'}$  that is  $\mathcal{G}_{\mathcal{U}}$ -equivariant;
2. to construct a network mapping from  $\mathcal{U}^d$  to  $\mathcal{U}^{d'}$  that is  $\mathcal{G}_{\mathcal{U}}$ -invariant,

where  $d$  and  $d'$  represent the input and output dimensions, respectively.

To this end, we design equivariant and invariant layers with respect to the group action induced by  $\mathcal{G}_{\mathcal{U}}$ . These layers adopt a quadratic polynomial in the input weights with unknown coefficients, in line with recent developments of metanetworks for Transformers in Tran et al. (2025). Rather than providing explicit functional expressions for each layer, we offer an illustrative and structured description in Tables 4, 5, 6 and 7. Each table includes visual cues and concrete examples to facilitate understanding.

1. Table 4 presents each layer as an affine transformation, with parameters denoted by expressions of the form  $\Phi_-$ . The superscript and subscript indices respectively indicate the output and input positions of the parameters. Importantly, the index notation is constructed so that one can unambiguously determine the dependency between inputs and outputs. Throughout, the indices  $i, j, k$  refer to output components, while  $s, p, q$  correspond to input components. With the exception of the symbol  $\mathbf{1}$ , which denotes the bias term, all other components are defined in Appendix D.
2. Table 5 is a color-annotated version of Table 4. Elements related to the output are highlighted in **blue**, while those associated with the input are shown in **red**, including their corresponding indices.
3. Table 6 provides a detailed breakdown of the parameter notation  $\Phi_-$ . Each parameter entry corresponds to the output indicated by its column and the input indicated by its row. For instance:

2052  
 2053     • The term  $\Phi_{(V,s):p,q}^{(G,i):j}$  denotes the parameter connecting  $[W]_{p,q}^{(V,s)} \rightarrow [W]_j^{(G,i)}$ .  
 2054     • The term  $\Phi_{(O,s):p,q}^{(B,i):j,k}$  denotes the parameter connecting  $[W]_{p,q}^{(O,s)} \rightarrow [W]_{j,k}^{(B,i)}$ .  
 2055     • The term  $\Phi_{(A,s):p,q}^{(G,i)}$  denotes the parameter connecting  $[W]_{p,q}^{(A,s)} \rightarrow [b]^{(G,i)}$ .  
 2056     • The term  $\Phi_{(A,s):p}^{(V,i):j,k}$  denotes the parameter connecting  $[b]_p^{(A,s)} \rightarrow [W]_{j,k}^{(V,i)}$ .  
 2057

2058     4. The output is computed as follows. In Table 7, for each output entry, we take a "dot  
 2059     product" between the corresponding column indicating the output and the final column  
 2060     representing the input. The summation is carried out over all indices that are compatible  
 2061     according to the indexing scheme. For example:

2062     • The output  $[W]_{j,k}^{(V,i)}$  is computed as:

$$\begin{aligned}
 [W]_{j,k}^{(V,i)} = & \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(Q,s)} + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(K,s)} \\
 & + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(V,s)} + \sum_{s=1}^{n_h} \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(O,s)} \\
 & + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(QK,s)} + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(VO,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(V,i):j,k} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(V,i):j,k} [b]^{(G,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_e} \Phi_{(A,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_e} \Phi_{(A,s):p}^{(V,i):j,k} [b]_p^{(A,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_e} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(V,i):j,k} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(B,s):p}^{(V,i):j,k} [b]_p^{(B,s)} \\
 & + \Phi_1^{(V,i):j,k}
 \end{aligned} \tag{146}$$

2084     • The output  $[W]_{j,k}^{(A,i)}$  is computed as:

$$\begin{aligned}
 [W]_{j,k}^{(A,i)} = & \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(Q,s)} + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(K,s)} \\
 & + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(V,s)} + \sum_{s=1}^{n_h} \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(O,s)} \\
 & + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(QK,s)} + \sum_{s=1}^{n_h} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(VO,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j,k} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j,k} [b]^{(G,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_e} \Phi_{(A,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_e} \Phi_{(A,s):p}^{(A,i):j,k} [b]_p^{(A,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_e} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(B,s):p}^{(A,i):j,k} [b]_p^{(B,s)} \\
 & + \Phi_1^{(A,i):j,k}
 \end{aligned} \tag{147}$$

Table 4: This table presents each layer as an affine transformation, with parameters denoted by expressions of the form  $\Phi_-^i$ . The superscript and subscript indices respectively indicate the output and input positions of the parameters. Importantly, the index notation is constructed so that one can unambiguously determine the dependency between inputs and outputs. Throughout, the indices  $i, j, k$  refer to output components, while  $s, p, q$  correspond to input components. With the exception of the symbol 1, which denotes the bias term, all other components are defined in Appendix D.

|                     | $[W]_{j,k}^{(Q,i)}$             | $[W]_{j,k}^{(K,i)}$             | $[W]_{j,k}^{(V,i)}$             | $[W]_{j,k}^{(O,i)}$             | $[W]_j^{(G,i)}$               | $[b]^{(G,i)}$                   | $[W]_{j,k}^{(A,i)}$             | $[b]_j^{(A,i)}$                 | $[W]_{j,k}^{(B,i)}$             | $[b]_j^{(B,i)}$               |                      |
|---------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|----------------------|
| $\Phi_{(Q,s);p,q}$  | $\Phi_{(Q,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(K,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(V,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(O,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(G,i);j}$  | $\Phi_{(Q,s);p,q}^{(A,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(A,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(B,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(B,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(Q,s)}$  |
| $\Phi_{(K,s);p,q}$  | $\Phi_{(K,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(K,s);p,q}^{(K,i);j,k}$  | $\Phi_{(V,s);p,q}^{(V,i);j,k}$  | $\Phi_{(K,s);p,q}^{(O,i);j,k}$  | $\Phi_{(K,s);p,q}^{(G,i);j}$  | $\Phi_{(K,s);p,q}^{(A,i);j,k}$  | $\Phi_{(K,s);p,q}^{(A,i);j,k}$  | $\Phi_{(K,s);p,q}^{(B,i);j,k}$  | $\Phi_{(K,s);p,q}^{(B,i);j,k}$  | $\Phi_{(K,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(K,s)}$  |
| $\Phi_{(V,s);p,q}$  | $\Phi_{(V,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(V,s);p,q}^{(K,i);j,k}$  | $\Phi_{(V,s);p,q}^{(V,i);j,k}$  | $\Phi_{(V,s);p,q}^{(O,i);j,k}$  | $\Phi_{(V,s);p,q}^{(G,i);j}$  | $\Phi_{(V,s);p,q}^{(A,i);j,k}$  | $\Phi_{(V,s);p,q}^{(A,i);j,k}$  | $\Phi_{(V,s);p,q}^{(B,i);j,k}$  | $\Phi_{(V,s);p,q}^{(B,i);j,k}$  | $\Phi_{(V,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(V,s)}$  |
| $\Phi_{(O,s);p,q}$  | $\Phi_{(O,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(O,s);p,q}^{(K,i);j,k}$  | $\Phi_{(O,s);p,q}^{(V,i);j,k}$  | $\Phi_{(O,s);p,q}^{(O,i);j,k}$  | $\Phi_{(O,s);p,q}^{(G,i);j}$  | $\Phi_{(O,s);p,q}^{(A,i);j,k}$  | $\Phi_{(O,s);p,q}^{(A,i);j,k}$  | $\Phi_{(O,s);p,q}^{(B,i);j,k}$  | $\Phi_{(O,s);p,q}^{(B,i);j,k}$  | $\Phi_{(O,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(O,s)}$  |
| $\Phi_{(QK,s);p,q}$ | $\Phi_{(QK,s);p,q}^{(Q,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(K,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(V,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(O,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(G,i);j}$ | $\Phi_{(QK,s);p,q}^{(A,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(A,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(B,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(B,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(B,i);j}$ | $[W]_{p,q}^{(QK,s)}$ |
| $\Phi_{(VO,s);p,q}$ | $\Phi_{(VO,s);p,q}^{(Q,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(K,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(V,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(O,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(G,i);j}$ | $\Phi_{(VO,s);p,q}^{(A,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(A,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(B,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(B,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(B,i);j}$ | $[W]_{p,q}^{(VO,s)}$ |
| $\Phi_{(G,s);p}$    | $\Phi_{(G,s);p}^{(Q,i);j,k}$    | $\Phi_{(G,s);p}^{(K,i);j,k}$    | $\Phi_{(G,s);p}^{(V,i);j,k}$    | $\Phi_{(G,s);p}^{(O,i);j,k}$    | $\Phi_{(G,s);p}^{(G,i);j}$    | $\Phi_{(G,s);p}^{(A,i);j,k}$    | $\Phi_{(G,s);p}^{(A,i);j,k}$    | $\Phi_{(G,s);p}^{(B,i);j,k}$    | $\Phi_{(G,s);p}^{(B,i);j,k}$    | $\Phi_{(G,s);p}^{(B,i);j}$    | $[W]_p^{(G,s)}$      |
| $\Phi_{(G,s)}$      | $\Phi_{(G,s)}^{(Q,i);j,k}$      | $\Phi_{(G,s)}^{(K,i);j,k}$      | $\Phi_{(G,s)}^{(V,i);j,k}$      | $\Phi_{(G,s)}^{(O,i);j,k}$      | $\Phi_{(G,s)}^{(G,i);j}$      | $\Phi_{(G,s)}^{(A,i);j,k}$      | $\Phi_{(G,s)}^{(A,i);j,k}$      | $\Phi_{(G,s)}^{(B,i);j,k}$      | $\Phi_{(G,s)}^{(B,i);j,k}$      | $\Phi_{(G,s)}^{(B,i);j}$      | $[b]^{(G,s)}$        |
| $\Phi_{(A,s);p,q}$  | $\Phi_{(A,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(A,s);p,q}^{(K,i);j,k}$  | $\Phi_{(A,s);p,q}^{(V,i);j,k}$  | $\Phi_{(A,s);p,q}^{(O,i);j,k}$  | $\Phi_{(A,s);p,q}^{(G,i);j}$  | $\Phi_{(A,s);p,q}^{(A,i);j,k}$  | $\Phi_{(A,s);p,q}^{(A,i);j,k}$  | $\Phi_{(A,s);p,q}^{(B,i);j,k}$  | $\Phi_{(A,s);p,q}^{(B,i);j,k}$  | $\Phi_{(A,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(A,s)}$  |
| $\Phi_{(A,s);p}$    | $\Phi_{(A,s);p}^{(Q,i);j,k}$    | $\Phi_{(A,s);p}^{(K,i);j,k}$    | $\Phi_{(A,s);p}^{(V,i);j,k}$    | $\Phi_{(A,s);p}^{(O,i);j,k}$    | $\Phi_{(A,s);p}^{(G,i);j}$    | $\Phi_{(A,s);p}^{(A,i);j,k}$    | $\Phi_{(A,s);p}^{(A,i);j,k}$    | $\Phi_{(A,s);p}^{(B,i);j,k}$    | $\Phi_{(A,s);p}^{(B,i);j,k}$    | $\Phi_{(A,s);p}^{(B,i);j}$    | $[b]_p^{(A,s)}$      |
| $\Phi_{(B,s);p,q}$  | $\Phi_{(B,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(B,s);p,q}^{(K,i);j,k}$  | $\Phi_{(B,s);p,q}^{(V,i);j,k}$  | $\Phi_{(B,s);p,q}^{(O,i);j,k}$  | $\Phi_{(B,s);p,q}^{(G,i);j}$  | $\Phi_{(B,s);p,q}^{(A,i);j,k}$  | $\Phi_{(B,s);p,q}^{(A,i);j,k}$  | $\Phi_{(B,s);p,q}^{(B,i);j,k}$  | $\Phi_{(B,s);p,q}^{(B,i);j,k}$  | $\Phi_{(B,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(B,s)}$  |
| $\Phi_{(B,s);p}$    | $\Phi_{(B,s);p}^{(Q,i);j,k}$    | $\Phi_{(B,s);p}^{(K,i);j,k}$    | $\Phi_{(B,s);p}^{(V,i);j,k}$    | $\Phi_{(B,s);p}^{(O,i);j,k}$    | $\Phi_{(B,s);p}^{(G,i);j}$    | $\Phi_{(B,s);p}^{(A,i);j,k}$    | $\Phi_{(B,s);p}^{(A,i);j,k}$    | $\Phi_{(B,s);p}^{(B,i);j,k}$    | $\Phi_{(B,s);p}^{(B,i);j,k}$    | $\Phi_{(B,s);p}^{(B,i);j}$    | $[b]_p^{(B,s)}$      |
| $\Phi_1$            | $\Phi_1^{(Q,i);j,k}$            | $\Phi_1^{(K,i);j,k}$            | $\Phi_1^{(V,i);j,k}$            | $\Phi_1^{(O,i);j,k}$            | $\Phi_1^{(G,i);j}$            | $\Phi_1^{(A,i);j,k}$            | $\Phi_1^{(A,i);j,k}$            | $\Phi_1^{(B,i);j,k}$            | $\Phi_1^{(B,i);j,k}$            | $\Phi_1^{(B,i);j}$            | 1                    |
|                     | $\Phi^{(Q,i);j,k}$              | $\Phi^{(K,i);j,k}$              | $\Phi^{(V,i);j,k}$              | $\Phi^{(O,i);j,k}$              | $\Phi^{(G,i);j}$              | $\Phi^{(A,i);j,k}$              | $\Phi^{(A,i);j,k}$              | $\Phi^{(B,i);j,k}$              | $\Phi^{(B,i);j,k}$              | $\Phi^{(B,i);j}$              |                      |

Table 5: This table is a color-annotated version of Table 4. Elements related to the output are highlighted in **blue**, while those associated with the input are shown in **red**, including their corresponding indices.

|                     | $[W]_{j,k}^{(Q,i)}$             | $[W]_{j,k}^{(K,i)}$             | $[W]_{j,k}^{(V,i)}$             | $[W]_{j,k}^{(O,i)}$             | $[W]_j^{(G,i)}$               | $[b]^{(G,i)}$                   | $[W]_{j,k}^{(A,i)}$             | $[b]_j^{(A,i)}$                 | $[W]_{j,k}^{(B,i)}$             | $[b]_j^{(B,i)}$               |                      |
|---------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|----------------------|
| $\Phi_{(Q,s);p,q}$  | $\Phi_{(Q,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(K,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(V,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(O,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(G,i);j}$  | $\Phi_{(Q,s);p,q}^{(A,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(A,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(B,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(B,i);j,k}$  | $\Phi_{(Q,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(Q,s)}$  |
| $\Phi_{(K,s);p,q}$  | $\Phi_{(K,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(K,s);p,q}^{(K,i);j,k}$  | $\Phi_{(V,s);p,q}^{(V,i);j,k}$  | $\Phi_{(K,s);p,q}^{(O,i);j,k}$  | $\Phi_{(K,s);p,q}^{(G,i);j}$  | $\Phi_{(K,s);p,q}^{(A,i);j,k}$  | $\Phi_{(K,s);p,q}^{(A,i);j,k}$  | $\Phi_{(K,s);p,q}^{(B,i);j,k}$  | $\Phi_{(K,s);p,q}^{(B,i);j,k}$  | $\Phi_{(K,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(K,s)}$  |
| $\Phi_{(V,s);p,q}$  | $\Phi_{(V,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(V,s);p,q}^{(K,i);j,k}$  | $\Phi_{(V,s);p,q}^{(V,i);j,k}$  | $\Phi_{(V,s);p,q}^{(O,i);j,k}$  | $\Phi_{(V,s);p,q}^{(G,i);j}$  | $\Phi_{(V,s);p,q}^{(A,i);j,k}$  | $\Phi_{(V,s);p,q}^{(A,i);j,k}$  | $\Phi_{(V,s);p,q}^{(B,i);j,k}$  | $\Phi_{(V,s);p,q}^{(B,i);j,k}$  | $\Phi_{(V,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(V,s)}$  |
| $\Phi_{(O,s);p,q}$  | $\Phi_{(O,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(O,s);p,q}^{(K,i);j,k}$  | $\Phi_{(O,s);p,q}^{(V,i);j,k}$  | $\Phi_{(O,s);p,q}^{(O,i);j,k}$  | $\Phi_{(O,s);p,q}^{(G,i);j}$  | $\Phi_{(O,s);p,q}^{(A,i);j,k}$  | $\Phi_{(O,s);p,q}^{(A,i);j,k}$  | $\Phi_{(O,s);p,q}^{(B,i);j,k}$  | $\Phi_{(O,s);p,q}^{(B,i);j,k}$  | $\Phi_{(O,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(O,s)}$  |
| $\Phi_{(QK,s);p,q}$ | $\Phi_{(QK,s);p,q}^{(Q,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(K,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(V,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(O,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(G,i);j}$ | $\Phi_{(QK,s);p,q}^{(A,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(A,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(B,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(B,i);j,k}$ | $\Phi_{(QK,s);p,q}^{(B,i);j}$ | $[W]_{p,q}^{(QK,s)}$ |
| $\Phi_{(VO,s);p,q}$ | $\Phi_{(VO,s);p,q}^{(Q,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(K,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(V,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(O,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(G,i);j}$ | $\Phi_{(VO,s);p,q}^{(A,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(A,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(B,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(B,i);j,k}$ | $\Phi_{(VO,s);p,q}^{(B,i);j}$ | $[W]_{p,q}^{(VO,s)}$ |
| $\Phi_{(G,s);p}$    | $\Phi_{(G,s);p}^{(Q,i);j,k}$    | $\Phi_{(G,s);p}^{(K,i);j,k}$    | $\Phi_{(G,s);p}^{(V,i);j,k}$    | $\Phi_{(G,s);p}^{(O,i);j,k}$    | $\Phi_{(G,s);p}^{(G,i);j}$    | $\Phi_{(G,s);p}^{(A,i);j,k}$    | $\Phi_{(G,s);p}^{(A,i);j,k}$    | $\Phi_{(G,s);p}^{(B,i);j,k}$    | $\Phi_{(G,s);p}^{(B,i);j,k}$    | $\Phi_{(G,s);p}^{(B,i);j}$    | $[W]_p^{(G,s)}$      |
| $\Phi_{(G,s)}$      | $\Phi_{(G,s)}^{(Q,i);j,k}$      | $\Phi_{(G,s)}^{(K,i);j,k}$      | $\Phi_{(G,s)}^{(V,i);j,k}$      | $\Phi_{(G,s)}^{(O,i);j,k}$      | $\Phi_{(G,s)}^{(G,i);j}$      | $\Phi_{(G,s)}^{(A,i);j,k}$      | $\Phi_{(G,s)}^{(A,i);j,k}$      | $\Phi_{(G,s)}^{(B,i);j,k}$      | $\Phi_{(G,s)}^{(B,i);j,k}$      | $\Phi_{(G,s)}^{(B,i);j}$      | $[b]^{(G,s)}$        |
| $\Phi_{(A,s);p,q}$  | $\Phi_{(A,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(A,s);p,q}^{(K,i);j,k}$  | $\Phi_{(A,s);p,q}^{(V,i);j,k}$  | $\Phi_{(A,s);p,q}^{(O,i);j,k}$  | $\Phi_{(A,s);p,q}^{(G,i);j}$  | $\Phi_{(A,s);p,q}^{(A,i);j,k}$  | $\Phi_{(A,s);p,q}^{(A,i);j,k}$  | $\Phi_{(A,s);p,q}^{(B,i);j,k}$  | $\Phi_{(A,s);p,q}^{(B,i);j,k}$  | $\Phi_{(A,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(A,s)}$  |
| $\Phi_{(A,s);p}$    | $\Phi_{(A,s);p}^{(Q,i);j,k}$    | $\Phi_{(A,s);p}^{(K,i);j,k}$    | $\Phi_{(A,s);p}^{(V,i);j,k}$    | $\Phi_{(A,s);p}^{(O,i);j,k}$    | $\Phi_{(A,s);p}^{(G,i);j}$    | $\Phi_{(A,s);p}^{(A,i);j,k}$    | $\Phi_{(A,s);p}^{(A,i);j,k}$    | $\Phi_{(A,s);p}^{(B,i);j,k}$    | $\Phi_{(A,s);p}^{(B,i);j,k}$    | $\Phi_{(A,s);p}^{(B,i);j}$    | $[b]_p^{(A,s)}$      |
| $\Phi_{(B,s);p,q}$  | $\Phi_{(B,s);p,q}^{(Q,i);j,k}$  | $\Phi_{(B,s);p,q}^{(K,i);j,k}$  | $\Phi_{(B,s);p,q}^{(V,i);j,k}$  | $\Phi_{(B,s);p,q}^{(O,i);j,k}$  | $\Phi_{(B,s);p,q}^{(G,i);j}$  | $\Phi_{(B,s);p,q}^{(A,i);j,k}$  | $\Phi_{(B,s);p,q}^{(A,i);j,k}$  | $\Phi_{(B,s);p,q}^{(B,i);j,k}$  | $\Phi_{(B,s);p,q}^{(B,i);j,k}$  | $\Phi_{(B,s);p,q}^{(B,i);j}$  | $[W]_{p,q}^{(B,s)}$  |
| $\Phi_{(B,s);p}$    | $\Phi_{(B,s);p}^{(Q,i);j,k}$    | $\Phi_{(B,s);p}^{(K,i);j,k}$    | $\Phi_{(B,s);p}^{(V,i);j,k}$    | $\Phi_{(B,s);p}^{(O,i);j,k}$    | $\Phi_{(B,s);p}^{(G,i);j}$    | $\Phi_{(B,s);p}^{(A,i);j,k}$    | $\Phi_{(B,s);p}^{(A,i);j,k}$    | $\Phi_{(B,s);p}^{(B,i);j,k}$    | $\Phi_{(B,s);p}^{(B,i);j,k}$    | $\Phi_{(B,s);p}^{(B,i);j}$    | $[b]_p^{(B,s)}$      |
| $\Phi_1$            | $\Phi_1^{(Q,i);j,k}$            | $\Phi_1^{(K,i);j,k}$            | $\Phi_1^{(V,i);j,k}$            | $\Phi_1^{(O,i);j,k}$            | $\Phi_1^{(G,i);j}$            | $\Phi_1^{(A,i);j,k}$            | $\Phi_1^{(A,i);j,k}$            | $\Phi_1^{(B,i);j,k}$            | $\Phi_1^{(B,i);j,k}$            | $\Phi_1^{(B,i);j}$            | 1                    |
|                     | $\Phi^{(Q,i);j,k}$              | $\Phi^{(K,i);j,k}$              | $\Phi^{(V,i);j,k}$              | $\Phi^{(O,i);j,k}$              | $\Phi^{(G,i);j}$              | $\Phi^{(A,i);j,k}$              | $\Phi^{(A,i);j,k}$              | $\Phi^{(B,i);j,k}$              | $\Phi^{(B,i);j,k}$              | $\Phi^{(B,i);j}$              |                      |

2160  
2161 Table 6: This table provides a detailed breakdown of the parameter notation  $\Phi_-$ . Each parameter  
2162 entry corresponds to the output indicated by its column and the input indicated by its row.  
2163

|                     | $[W]_{j,k}^{(Q,i)}$ | $[W]_{j,k}^{(K,i)}$ | $[W]_{j,k}^{(V,i)}$ | $[W]_{j,k}^{(O,i)}$ | $[W]_{j}^{(G,i)}$ | $[b]^{(G,i)}$                | $[W]_{j,k}^{(A,i)}$ | $[b]_j^{(A,i)}$  | $[W]_{j,k}^{(B,i)}$ | $[b]_j^{(B,i)}$      |
|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|------------------------------|---------------------|------------------|---------------------|----------------------|
| $\Phi_{(Q,s):p,q}$  |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_{p,q}^{(Q,s)}$  |
| $\Phi_{(K,s):p,q}$  |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_{p,q}^{(K,s)}$  |
| $\Phi_{(V,s):p,q}$  |                     |                     |                     |                     |                   | $\Phi_{(V,s):p,q}^{(G,i):j}$ |                     |                  |                     | $[W]_{p,q}^{(V,s)}$  |
| $\Phi_{(O,s):p,q}$  |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_{p,q}^{(O,s)}$  |
| $\Phi_{(QK,s):p,q}$ |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_{p,q}^{(QK,s)}$ |
| $\Phi_{(VO,s):p,q}$ |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_{p,q}^{(VO,s)}$ |
| $\Phi_{(G,s):p}$    |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_p^{(G,s)}$      |
| $\Phi_{(A,s):p}$    |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[b]_p^{(A,s)}$      |
| $\Phi_{(A,s):p,q}$  |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_{p,q}^{(A,s)}$  |
| $\Phi_{(A,s):p}$    |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[b]_p^{(A,s)}$      |
| $\Phi_{(B,s):p,q}$  |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[W]_{p,q}^{(B,s)}$  |
| $\Phi_{(B,s):p}$    |                     |                     |                     |                     |                   |                              |                     |                  |                     | $[b]_p^{(B,s)}$      |
| $\Phi_1$            |                     |                     |                     |                     |                   |                              |                     |                  |                     | 1                    |
|                     | $\Phi_{(Q,i):j,k}$  | $\Phi_{(K,i):j,k}$  | $\Phi_{(V,i):j,k}$  | $\Phi_{(O,i):j,k}$  | $\Phi_{(G,i):j}$  | $\Phi_{(G,i)}$               | $\Phi_{(A,i):j,k}$  | $\Phi_{(A,i):j}$ | $\Phi_{(B,i):j,k}$  | $\Phi_{(B,i):j}$     |

2185 Table 7: The output is computed as follows. For each output entry, we take a "dot product" between  
2186 the corresponding column indicating the output and the final column representing the input. The  
2187 summation is carried out over all indices that are compatible according to the indexing scheme.  
2188

|                     | $[W]_{j,k}^{(Q,i)}$ | $[W]_{j,k}^{(K,i)}$             | $[W]_{j,k}^{(V,i)}$ | $[W]_{j,k}^{(O,i)}$ | $[W]_{j}^{(G,i)}$ | $[b]^{(G,i)}$  | $[W]_{j,k}^{(A,i)}$             | $[b]_j^{(A,i)}$  | $[W]_{j,k}^{(B,i)}$ | $[b]_j^{(B,i)}$  |
|---------------------|---------------------|---------------------------------|---------------------|---------------------|-------------------|----------------|---------------------------------|------------------|---------------------|------------------|
| $\Phi_{(Q,s):p,q}$  |                     | $\Phi_{(Q,s):p,q}^{(V,i):j,k}$  |                     |                     |                   |                | $\Phi_{(Q,s):p,q}^{(A,i):j,k}$  |                  |                     |                  |
| $\Phi_{(K,s):p,q}$  |                     | $\Phi_{(K,s):p,q}^{(V,i):j,k}$  |                     |                     |                   |                | $\Phi_{(K,s):p,q}^{(A,i):j,k}$  |                  |                     |                  |
| $\Phi_{(V,s):p,q}$  |                     | $\Phi_{(V,s):p,q}^{(V,i):j,k}$  |                     |                     |                   |                | $\Phi_{(V,s):p,q}^{(A,i):j,k}$  |                  |                     |                  |
| $\Phi_{(O,s):p,q}$  |                     | $\Phi_{(O,s):p,q}^{(V,i):j,k}$  |                     |                     |                   |                | $\Phi_{(O,s):p,q}^{(A,i):j,k}$  |                  |                     |                  |
| $\Phi_{(QK,s):p,q}$ |                     | $\Phi_{(QK,s):p,q}^{(V,i):j,k}$ |                     |                     |                   |                | $\Phi_{(QK,s):p,q}^{(A,i):j,k}$ |                  |                     |                  |
| $\Phi_{(VO,s):p,q}$ |                     | $\Phi_{(VO,s):p,q}^{(V,i):j,k}$ |                     |                     |                   |                | $\Phi_{(VO,s):p,q}^{(A,i):j,k}$ |                  |                     |                  |
| $\Phi_{(G,s):p}$    |                     | $\Phi_{(G,s):p}^{(V,i):j,k}$    |                     |                     |                   |                | $\Phi_{(G,s):p}^{(A,i):j,k}$    |                  |                     |                  |
| $\Phi_{(A,s):p}$    |                     | $\Phi_{(A,s):p}^{(V,i):j,k}$    |                     |                     |                   |                | $\Phi_{(A,s):p}^{(A,i):j,k}$    |                  |                     |                  |
| $\Phi_{(A,s):p}$    |                     | $\Phi_{(A,s):p}^{(V,i):j,k}$    |                     |                     |                   |                | $\Phi_{(A,s):p}^{(A,i):j,k}$    |                  |                     |                  |
| $\Phi_{(B,s):p,q}$  |                     | $\Phi_{(B,s):p,q}^{(V,i):j,k}$  |                     |                     |                   |                | $\Phi_{(B,s):p,q}^{(A,i):j,k}$  |                  |                     |                  |
| $\Phi_{(B,s):p}$    |                     | $\Phi_{(B,s):p}^{(V,i):j,k}$    |                     |                     |                   |                | $\Phi_{(B,s):p}^{(A,i):j,k}$    |                  |                     |                  |
| $\Phi_1$            |                     | $\Phi_1^{(V,i):j,k}$            |                     |                     |                   |                | $\Phi_{(B,s):p}^{(A,i):j,k}$    |                  |                     |                  |
|                     | $\Phi_{(Q,i):j,k}$  | $\Phi_{(K,i):j,k}$              | $\Phi_{(V,i):j,k}$  | $\Phi_{(O,i):j,k}$  | $\Phi_{(G,i):j}$  | $\Phi_{(G,i)}$ | $\Phi_{(A,i):j,k}$              | $\Phi_{(A,i):j}$ | $\Phi_{(B,i):j,k}$  | $\Phi_{(B,i):j}$ |

2214 **F EQUIVARIANT LAYER**  
2215

2216 In this section, we provide a detailed computation of  $E(U)$ . To construct  $E(U)$ , following the design  
2217 of equivariant polynomial layers in Tran et al. (2025), we adopt a quadratic polynomial in the input  
2218 weights  $U$  with unknown coefficients, as described in the previous section, and use a parameter-  
2219 sharing technique to determine the constraints on these coefficients that ensure  $E$  is equivariant. We  
2220 begin with the formulation of  $E(U)$  below:  
2221

2222  
2223 
$$E(U) = \left( \left( [E(W)]^{(Q,i)}, [E(W)]^{(K,i)}, [E(W)]^{(V,i)}, [E(W)]^{(O,i)} \right)_{i=1,\dots,n_h}, \right.$$
  
2224  
2225 
$$\left( \left( [E(W)]^{(G,i)}, [E(b)]^{(G,i)} \right), \right.$$
  
2226  
2227 
$$\left( [E(W)]^{(AE,i)}, [E(b)]^{(A,i)} \right), \left( [E(W)]^{(B,i)}, [E(b)]^{(B,i)} \right) \right)_{i=1,\dots,n_e} \right). \quad (148)$$
  
2228  
2229  
2230  
2231

2232 **F.1 COMPUTING  $E(gU)$**   
2233

2234 We borrow the following lemmas from Tran et al. (2025).  
2235

2236 **Lemma F.1** (See (Tran et al., 2025, Section D.2)). *Assume that  $E: \mathcal{U} \rightarrow \mathcal{U}$  is a function defined  
2237 as in Equation 148 for some coefficients  $\Phi_-$ . If  $E(U) = 0$  for all  $U \in \mathcal{U}$ , then all coefficients are  
2238 equal to zero.*

2239 **Lemma F.2** (See (Tran et al., 2025, Section D.2)). *Let  $h$  and  $D$  be positive integers. Let  
2240  $f_s^{(1)}, f_s^{(2)}: \mathbb{R}^{D \times D} \rightarrow \mathbb{R}$  be  $\mathbb{R}$ -linear functions for each  $s = 1, \dots, h$ . Assume that there exists  
2241 a constant  $\lambda \in \mathbb{R}$  such that*

2242  
2243 
$$\sum_{s=1}^h f_s^{(1)} \left( M^{(s)} \right) + f_s^{(2)} \left( \left( M^{(s)} \right)^{-1} \right) = \lambda, \quad (149)$$
  
2244

2245 for all  $(M^{(1)}, \dots, M^{(h)}) \in \mathrm{GL}_D(\mathbb{R})^h$ . Then  
2246

2247 
$$f_s^{(1)}(M) = f_s^{(2)}(M) = \lambda = 0$$
  
2248

2249 for all  $s = 1, \dots, h$  and  $M \in \mathrm{GL}_D(\mathbb{R})$ .  
2250

2251 We now return to the computation of  $E(U)$ . A detailed explanation of the  $E(U)$  layer and its  
2252 associated computations is provided in Section E.  
2253

2254 By Equation 143, we have:  
2255

2256  
2257 
$$E(gU) = \left( \left( [E(gW)]^{(Q,i)}, [E(gW)]^{(K,i)}, [E(gW)]^{(V,i)}, [E(gW)]^{(O,i)} \right)_{i=1,\dots,n_h}, \right.$$
  
2258  
2259 
$$\left( \left( [E(gW)]^{(G,i)}, [E(gb)]^{(G,i)} \right), \left( [E(gW)]^{(A,i)}, [E(gb)]^{(A,i)} \right), \left( [E(gW)]^{(B,i)}, [E(gb)]^{(B,i)} \right) \right)_{i=1,\dots,n_e} \right), \quad (150)$$
  
2260  
2261  
2262

2263 where  
2264

2265  
2266 
$$[E(gW)]_{j,k}^{(Q,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(Q,i):j,k} [gWgW]_{p,q}^{(QK,s)}$$
  
2267

$$\begin{aligned}
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(Q,i):j,k} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(Q,i):j,k} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^{D_k} \sum_{q=1}^D \Phi_{(K,s):p,q}^{(Q,i):j,k} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(Q,i):j,k} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(Q,i):j,k} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(Q,i):j,k} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^{(Q,i):j,k} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(Q,i):j,k} [gW]_{p,q}^{(B,s)} \\
& \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(Q,i):j,k} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(Q,i):j,k} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(Q,i):j,k} [gb]_q^{(B,s)} + \Phi_1^{(Q,i):j,k}, \\
\end{aligned} \tag{151}$$

$$\begin{aligned}
& [E(gW)]_{j,k}^{(K,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(K,i):j,k} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(K,i):j,k} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(K,i):j,k} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(K,i):j,k} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(K,i):j,k} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(O,s):p,q}^{(K,i):j,k} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(K,i):j,k} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^{(K,i):j,k} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(K,i):j,k} [gW]_{p,q}^{(B,s)} \\
& \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(K,i):j,k} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(K,i):j,k} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(K,i):j,k} [gb]_q^{(B,s)} + \Phi_1^{(K,i):j,k}, \\
\end{aligned} \tag{152}$$

$$\begin{aligned}
& [E(gW)]_{j,k}^{(V,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(V,i):j,k} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(V,i):j,k} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(V,i):j,k} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(V,i):j,k} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(V,i):j,k} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(O,s):p,q}^{(V,i):j,k} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(V,i):j,k} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^{(V,i):j,k} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(V,i):j,k} [gW]_{p,q}^{(B,s)} \\
& \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(V,i):j,k} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(V,i):j,k} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(V,i):j,k} [gb]_q^{(B,s)} + \Phi_1^{(V,i):j,k}, \\
\end{aligned} \tag{153}$$

$$\begin{aligned}
& [E(gW)]_{j,k}^{(O,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(O,i):j,k} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(O,i):j,k} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(O,i):j,k} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(O,i):j,k} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(O,i):j,k} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(O,i):j,k} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(O,i):j,k} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^{(O,i):j,k} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(O,i):j,k} [gW]_{p,q}^{(B,s)} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(O,i):j,k} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(O,i):j,k} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(O,i):j,k} [gb]_q^{(B,s)} + \Phi_1^{(O,i):j,k}, \\
\end{aligned} \tag{154}$$

$$\begin{aligned}
& [E(gW)]_j^{(G,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i):j} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i):j} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(G,i):j} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(G,i):j} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(G,i):j} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(G,i):j} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^{(G,i):j} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i):j} [gW]_{p,q}^{(B,s)} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i):j} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i):j} [gb]_q^{(B,s)} + \Phi_1^{(G,i):j}, \\
\end{aligned} \tag{155}$$

$$\begin{aligned}
& [E(gW)]_{j,k}^{(A,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,i):j,k} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,i):j,k} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(A,i):j,k} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(A,i):j,k} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(A,i):j,k} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(A,i):j,k} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j,k} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^{(A,i):j,k} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,i):j,k} [gW]_{p,q}^{(B,s)} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j,k} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,i):j,k} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,i):j,k} [gb]_q^{(B,s)} + \Phi_1^{(A,i):j}, \\
\end{aligned}$$

$$\begin{aligned}
& \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j,k} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,i):j,k} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,i):j,k} [gb]_q^{(B,s)} + \Phi_1^{(A,i):j,k},
\end{aligned} \tag{156}$$

$$\begin{aligned}
& [E(gW)]_{j,k}^{(B,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,i):j,k} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,i):j,k} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(B,i):j,k} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(B,i):j,k} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(B,i):j,k} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(B,i):j,k} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,i):j,k} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,i):j,k} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,i):j,k} [gW]_{p,q}^{(B,s)} \\
& \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j,k} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,i):j,k} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,i):j,k} [gb]_q^{(B,s)} + \Phi_1^{(B,i):j,k},
\end{aligned} \tag{157}$$

$$\begin{aligned}
& [E(gb)]^{(G,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i)} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i)} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(G,i)} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(G,i)} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(G,i)} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(G,i)} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i)} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,i)} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i)} [gW]_{p,q}^{(B,s)} \\
& \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i)} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i)} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i)} [gb]_q^{(B,s)} + \Phi_1^{(G,i)},
\end{aligned} \tag{158}$$

$$\begin{aligned}
& [E(gb)]_j^{(A,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,i):j} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,i):j} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(A,i):j} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(A,i):j} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(A,i):j} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(A,i):j} [gW]_{p,q}^{(O,s)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,i):j} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,i):j} [gW]_{p,q}^{(B,s)} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,i):j} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,i):j} [gb]_q^{(B,s)} + \Phi_1^{(A,i):j},
\end{aligned} \tag{159}$$

$$\begin{aligned}
& [E(gb)]_j^{(B,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,i):j} [gWgW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,i):j} [gWgW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(B,i):j} [gW]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(B,i):j} [gW]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(B,i):j} [gW]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(B,i):j} [gW]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,i):j} [gW]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^{(B,i):j} [gW]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,i):j} [gW]_{p,q}^{(B,s)} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} [gb]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,i):j} [gb]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,i):j} [gb]_q^{(B,s)} + \Phi_1^{(B,i):j}.
\end{aligned} \tag{160}$$

Plugging the transformation for each index defined in Equation 145, we obtain:

$$\begin{aligned}
& [E(gW)]_{j,k}^{(Q,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(Q,i):j,k} [WW]_{p,q}^{(QK, \tau_h(s))} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(Q,i):j,k} [WW]_{p,q}^{(VO, \tau_h(s))} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(Q,i):j,k} \left[ [W]^{(Q, \tau_h(s))} \cdot \left( M_k^{(\tau_h(s))} \right)^\top \right]_{p,q} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(Q,i):j,k} \left[ [W]^{(K, \tau_h(s))} \cdot \left( M_k^{(\tau_h(s))} \right)^{-1} \right]_{p,q} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(Q,i):j,k} \left[ [W]^{(V, \tau_h(s))} \cdot M_v^{(\tau_h(s))} \right]_{p,q} \\
& + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(Q,i):j,k} \left[ \left( M_v^{(\tau_h(s))} \right)^{-1} \cdot [W]^{(O, \tau_h(s))} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(Q,i):j,k} \left[ [W]^{(G, \tau_e(s))} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(Q,i):j,k} \left[ [W]^{(A, \tau_e(s))} \cdot P_{\pi_e^{(\tau_e(s))}} \right]_{p,q}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(Q,i):j,k} \left[ \left( P_{\pi_e^{(\tau_e(s))}} \right)^{-1} \cdot [W]^{(B,\tau_e(s))} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(Q,i):j,k} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(Q,i):j,k} \left[ [b]^{(A,\tau_e(s))} \cdot P_{\pi_e^{(\tau_e(s))}} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(Q,i):j,k} \left[ [b]^{(B,\tau_e(s))} \right]_q \\
& + \Phi_1^{(Q,i):j,k}.
\end{aligned} \tag{161}$$

We observe that

$$[gE(W)]_{j,k}^{(Q,i)} = \left[ [E(W)]^{(Q,\tau_h(i))} \cdot \left( M_k^{(\tau_h(i))} \right)^\top \right]_{j,k} \tag{162}$$

is an  $\mathbb{R}$ -linear function of  $M_k^{(\tau_h(i))}$ . Therefore, by equating

$$[E(gW)]_{j,k}^{(Q,i)} = [gE(W)]_{j,k}^{(Q,i)} \tag{163}$$

and applying Lemma F.2, we conclude that the only nonzero parameters  $\Phi$  in the expression must correspond to terms that are  $\mathbb{R}$ -linear functions of  $M_k^{(\tau_h(i))}$ . Consequently, only the coefficients  $\Phi_{(Q,s):p,q}^{(Q,i):j,k}$  can remain nonzero. Thus, we can rewrite the expression for  $Q$  component as:

$$[E(gW)]_{j,k}^{(Q,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(Q,i):j,k} \left[ W^{(Q,\tau_h(s))} \cdot \left( M_k^{(\tau_h(s))} \right)^\top \right]_{p,q}.$$

Combining the result for the  $Q$  component with analogous reasoning applied to  $K$ ,  $V$ , and  $O$ , we obtain the following expressions:

$$\begin{aligned}
[E(gW)]_{j,k}^{(Q,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^{(Q,i):j,k} \left[ W^{(Q,\tau_h(s))} \cdot \left( M_k^{(\tau_h(s))} \right)^\top \right]_{p,q}, \\
[E(gW)]_{j,k}^{(K,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^{(K,i):j,k} \left[ [W]^{(K,\tau_h(s))} \cdot \left( M_k^{(\tau_h(s))} \right)^{-1} \right]_{p,q}, \\
[E(gW)]_{j,k}^{(V,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^{(V,i):j,k} \left[ [W]^{(V,\tau_h(s))} \cdot M_v^{(\tau_h(s))} \right]_{p,q}, \\
[E(gW)]_{j,k}^{(O,i)} &= \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(O,i):j,k} \left[ \left( M_v^{(\tau_h(s))} \right)^{-1} \cdot [W]^{(O,\tau_h(s))} \right]_{p,q}.
\end{aligned}$$

Using symmetry of the indices, we obtain:

$$\begin{aligned}
[E(gW)]_{j,k}^{(Q,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,\tau_h^{-1}(s)):p,q}^{(Q,i):j,k} \left[ W^{(Q,s)} \cdot \left( M_k^{(s)} \right)^\top \right]_{p,q}, \\
[E(gW)]_{j,k}^{(K,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,\tau_h^{-1}(s)):p,q}^{(K,i):j,k} \left[ [W]^{(K,s)} \cdot \left( M_k^{(s)} \right)^{-1} \right]_{p,q}, \\
[E(gW)]_{j,k}^{(V,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,\tau_h^{-1}(s)):p,q}^{(V,i):j,k} \left[ [W]^{(V,s)} \cdot M_v^{(s)} \right]_{p,q},
\end{aligned}$$

$$[E(gW)]_{j,k}^{(O,i)} = \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O, \tau_h^{-1}(s)) : p, q}^{(O,i):j,k} \left[ \left( M_v^{(s)} \right)^{-1} \cdot [W]^{(O,s)} \right]_{p,q}.$$

2541

2542 Now consider the equivariant component corresponding to the gate component. By using the ex-  
2543 pression of the equivariant layer and plugging in Equation 145, we obtain:

$$\begin{aligned}
[ E(gW) ]_j^{(G,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i):j} [WW]_{p,q}^{(QK, \tau_h(s))} \\
&\quad + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i):j} [WW]_{p,q}^{(VO, \tau_h(s))} \\
&\quad + \sum_{s=1}^h \sum_{p=1}^{D_k} \sum_{q=1}^D \Phi_{(Q,s):p,q}^{(G,i):j} \left[ [W]^{(Q, \tau_h(s))} \cdot \left( M_k^{(\tau_h(s))} \right)^\top \right]_{p,q} \\
&\quad + \sum_{s=1}^h \sum_{p=1}^{D_k} \sum_{q=1}^D \Phi_{(K,s):p,q}^{(G,i):j} \left[ [W]^{(K, \tau_h(s))} \cdot \left( M_k^{(\tau_h(s))} \right)^{-1} \right]_{p,q} \\
&\quad + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(V,s):p,q}^{(G,i):j} \left[ [W]^{(V, \tau_h(s))} \cdot M_v^{(\tau_h(s))} \right]_{p,q} \\
&\quad + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^{(G,i):j} \left[ \left( M_v^{(\tau_h(s))} \right)^{-1} \cdot [W]^{(O, \tau_h(s))} \right]_{p,q} \\
&\quad + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} \left[ [W]^{(G, \tau_e(s))} + \gamma_W \right]_p \\
&\quad + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,i):j} \left[ [W]^{(A, \tau_e(s))} \cdot P_{\pi_e^{(\tau_e(s))}} \right]_{p,q} \\
&\quad + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i):j} \left[ \left( P_{\pi_e^{(\tau_e(s))}} \right)^{-1} \cdot [W]^{(B, \tau_e(s))} \right]_{p,q} \\
&\quad + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} \left( [b]^{(G, \tau_e(s))} + \gamma_b \right) \\
&\quad + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i):j} \left[ [b]^{(A, \tau_e(s))} \cdot P_{\pi_e^{(\tau_e(s))}} \right]_q \\
&\quad + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i):j} \left[ [b]^{(B, \tau_e(s))} \right]_q \\
&\quad + \Phi_1^{(G,i):j}.
\end{aligned} \tag{164}$$

2582

2583 From Equation 145, we observe that:

$$[gE(W)]_j^{(G,i)} = \left[ [E(W)]^{(G, \tau_e(i))} + \gamma_W \right]_j. \tag{165}$$

2586

2587 When equating  $[gE(W)]_j^{(G,i)} = [E(gW)]_j^{(G,i)}$ , we notice that all components involving  $\mathbb{R}$ -linear  
2588 functions of  $M_k^{(\tau_h(s))}$ ,  $(M_k^{(\tau_h(s))})^{-1}$ ,  $M_v^{(\tau_h(s))}$ ,  $(M_v^{(\tau_h(s))})^{-1}$  appear exclusively in  $[E(gW)]_j^{(G,i)}$   
2589 and not in  $[gE(W)]_j^{(G,i)}$ . Consequently, the corresponding  $\Phi$ -parameters corresponding to the inputs  
2590 from  $W_q, W_k, W_v, W_o$  must vanish. This allows us to express the  $G$  component of the equivariant  
2591 layer as:

$$\begin{aligned}
& [E(gW)]_j^{(G,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i):j} [WW]_{p,q}^{(QK,\tau_h(s))} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i):j} [WW]_{p,q}^{(VO,\tau_h(s))} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} \left[ [W]^{(G,\tau_e(s))} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,i):j} \left[ [W]^{(A,\tau_e(s))} \cdot P_{\pi_e^{(\tau_e(s))}} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i):j} \left[ \left( P_{\pi_e^{(\tau_e(s))}} \right)^{-1} \cdot [W]^{(B,\tau_e(s))} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i):j} \left[ [b]^{(A,\tau_e(s))} \cdot P_{\pi_e^{(\tau_e(s))}} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i):j} \left[ [b]^{(B,\tau_e(s))} \right]_q \\
& + \Phi_1^{(G,i):j}. \tag{166}
\end{aligned}$$

Applying the same reasoning to  $A$  and  $B$  components and combining them with the expression for  $G$ , we obtain the set of equations:

$$\begin{aligned}
& [E(gW)]_j^{(G,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i):j} [WW]_{p,q}^{(QK,\tau_h(s))} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i):j} [WW]_{p,q}^{(VO,\tau_h(s))} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} \left[ [W]^{(G,\tau_e(s))} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,i):j} \left[ [W]^{(A,\tau_e(s))} \right]_{p,\pi_e^{(\tau_e(s))}(q)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i):j} \left[ [W]^{(B,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(p),q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i):j} \left[ [b]^{(A,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(q)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i):j} \left[ [b]^{(B,\tau_e(s))} \right]_q
\end{aligned}$$

$$2646 \quad + \Phi_1^{(G,i):j}, \quad (167)$$

$$\begin{aligned}
2647 \quad & [E(gW)]_{j,k}^{(A,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,i):j,k} [WW]_{p,q}^{(QK,\tau_h(s))} \\
2648 \quad & + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,i):j,k} [WW]_{p,q}^{(VO,\tau_h(s))} \\
2649 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j,k} \left[ [W]^{(G,\tau_e(s))} + \gamma_W \right]_p \\
2650 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,i):j,k} \left[ [W]^{(A,\tau_e(s))} \right]_{p,\pi_e^{(\tau_e(s))}(q)} \\
2651 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,i):j,k} \left[ [W]^{(B,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(p),q} \\
2652 \quad & + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j,k} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
2653 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,i):j,k} \left[ [b]^{(A,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(q)} \\
2654 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,i):j,k} \left[ [b]^{(B,\tau_e(s))} \right]_q \\
2655 \quad & + \Phi_1^{(A,i):j,k}, \quad (168)
\end{aligned}$$

$$\begin{aligned}
2656 \quad & [E(gW)]_{j,k}^{(B,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,i):j,k} [WW]_{p,q}^{(QK,\tau_h(s))} \\
2657 \quad & + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,i):j,k} [WW]_{p,q}^{(VO,\tau_h(s))} \\
2658 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,i):j,k} \left[ [W]^{(G,\tau_e(s))} + \gamma_W \right]_p \\
2659 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,i):j,k} \left[ [W]^{(A,\tau_e(s))} \right]_{p,\pi_e^{(\tau_e(s))}(q)} \\
2660 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,i):j,k} \left[ [W]^{(B,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(p),q} \\
2661 \quad & + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j,k} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
2662 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,i):j,k} \left[ [b]^{(A,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(q)} \\
2663 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,i):j,k} \left[ [b]^{(B,\tau_e(s))} \right]_q \\
2664 \quad & + \Phi_1^{(B,i):j,k}, \quad (169)
\end{aligned}$$

2698

2700  $[E(gb)]^{(G,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i)} [WW]_{p,q}^{(QK,\tau_h(s))}$   
 2701  
 2702  
 2703  
 2704  
 2705  
 2706  
 2707  
 2708  
 2709  
 2710  
 2711  
 2712  
 2713  
 2714  
 2715  
 2716  
 2717  
 2718  
 2719  
 2720  
 2721  
 2722  
 2723  
 2724  
 2725  
 2726  
 2727  
 2728  
 2729  
 2730  
 2731  
 2732  
 2733  
 2734  
 2735  
 2736  
 2737  
 2738  
 2739  
 2740  
 2741  
 2742  
 2743  
 2744  
 2745  
 2746  
 2747  
 2748  
 2749  
 2750  
 2751  
 2752  
 2753

$$\begin{aligned}
 & + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i)} [WW]_{p,q}^{(VO,\tau_h(s))} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i)} \left[ [W]^{(G,\tau_e(s))} + \gamma_W \right]_p \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,i)} \left[ [W]^{(A,\tau_e(s))} \right]_{p,\pi_e^{(\tau_e(s))}(q)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i)} \left[ [W]^{(B,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(p),q} \\
 & + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i)} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
 & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i)} \left[ [b]^{(A,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(q)} \\
 & + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i)} \left[ [b]^{(B,\tau_e(s))} \right]_q \\
 & + \Phi_1^{(G,i)}, \tag{170}
 \end{aligned}$$

2726  $[E(gb)]_j^{(A,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,i):j} [WW]_{p,q}^{(QK,\tau_h(s))}$   
 2727  
 2728  
 2729  
 2730  
 2731  
 2732  
 2733  
 2734  
 2735  
 2736  
 2737  
 2738  
 2739  
 2740  
 2741  
 2742  
 2743  
 2744  
 2745  
 2746  
 2747  
 2748  
 2749  
 2750  
 2751  
 2752  
 2753

$$\begin{aligned}
 & + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,i):j} [WW]_{p,q}^{(VO,\tau_h(s))} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j} \left[ [W]^{(G,\tau_e(s))} + \gamma_W \right]_p \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,i):j} \left[ [W]^{(A,\tau_e(s))} \right]_{p,\pi_e^{(\tau_e(s))}(q)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,i):j} \left[ [W]^{(B,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(p),q} \\
 & + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
 & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,i):j} \left[ [b]^{(A,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(q)} \\
 & + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,i):j} \left[ [b]^{(B,\tau_e(s))} \right]_q \\
 & + \Phi_1^{(A,i):j}, \tag{171}
 \end{aligned}$$

2751  $[E(gb)]_j^{(B,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,i):j} [WW]_{p,q}^{(QK,\tau_h(s))}$   
 2752  
 2753

$$\begin{aligned}
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,i):j} [WW]_{p,q}^{(VO,\tau_h(s))} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,i):j} \left[ [W]^{(G,\tau_e(s))} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,i):j} \left[ [W]^{(A,\tau_e(s))} \right]_{p,\pi_e^{(\tau_e(s))}(q)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,i):j} \left[ [W]^{(B,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(p),q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} \left( [b]^{(G,\tau_e(s))} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,i):j} \left[ [b]^{(A,\tau_e(s))} \right]_{\pi_e^{(\tau_e(s))}(q)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,i):j} \left[ [b]^{(B,\tau_e(s))} \right]_q \\
& + \Phi_1^{(B,i):j}.
\end{aligned} \tag{172}$$

By making use of index symmetry in the summation:

$$\begin{aligned}
[E(gW)]_j^{(G,i)} & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(G,i):j} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\tau_h^{-1}(s)):p,q}^{(G,i):j} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,\tau_e^{-1}(s)):p}^{(G,i):j} \left[ [W]^{(G,s)} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,\tau_e^{-1}(s)):p,(\pi_e^{(s)})^{-1}(q)}^{(G,i):j} \left[ [W]^{(A,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p),q}^{(G,i):j} \left[ [W]^{(B,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G,\tau_e^{-1}(s))}^{(G,i):j} \left( [b]^{(G,s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(G,i):j} \left[ [b]^{(A,s)} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):q}^{(G,i):j} \left[ [b]^{(B,s)} \right]_q \\
& + \Phi_1^{(G,i):j}, \\
[E(gW)]_{j,k}^{(A,i)} & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(A,i):j,k} [WW]_{p,q}^{(QK,s)}
\end{aligned} \tag{173}$$

$$\begin{aligned}
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(A, i):j, k} [WW]_{p, q}^{(VO, s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^{(A, i):j, k} \left[ [W]^{(G, s)} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(A, i):j, k} \left[ [W]^{(A, s)} \right]_{p, q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p), q}^{(A, i):j, k} \left[ [W]^{(B, s)} \right]_{p, q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^{(A, i):j, k} \left( [b]^{(G, s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(A, i):j, k} \left[ [b]^{(A, s)} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^{(A, i):j, k} \left[ [b]^{(B, s)} \right]_q \\
& + \Phi_1^{(A, i):j, k}, \tag{174}
\end{aligned}$$

$$\begin{aligned}
[E(gW)]_{j, k}^{(B, i)} & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \tau_h^{-1}(s)):p, q}^{(B, i):j, k} [WW]_{p, q}^{(QK, s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(B, i):j, k} [WW]_{p, q}^{(VO, s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^{(B, i):j, k} \left[ [W]^{(G, s)} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(B, i):j, k} \left[ [W]^{(A, s)} \right]_{p, q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p), q}^{(B, i):j, k} \left[ [W]^{(B, s)} \right]_{p, q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^{(B, i):j, k} \left( [b]^{(G, s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(B, i):j, k} \left[ [b]^{(A, s)} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^{(B, i):j, k} \left[ [b]^{(B, s)} \right]_q \\
& + \Phi_1^{(B, i):j, k}, \tag{175}
\end{aligned}$$

$$\begin{aligned}
[E(gb)]^{(G, i)} & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \tau_h^{-1}(s)):p, q}^{(G, i)} [WW]_{p, q}^{(QK, s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(G, i)} [WW]_{p, q}^{(VO, s)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^{(G,i)} \left[ [W]^{(G,s)} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(G,i)} \left[ [W]^{(A,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(G,i)} \left[ [W]^{(B,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^{(G,i)} \left( [b]^{(G,s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(G,i)} \left[ [b]^{(A,s)} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^{(G,i)} \left[ [b]^{(B,s)} \right]_q \\
& + \Phi_1^{(G,i)}, \tag{176}
\end{aligned}$$

$$\begin{aligned}
[E(gb)]_j^{(A,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \tau_h^{-1}(s)):p,q}^{(A,i):j} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p,q}^{(A,i):j} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^{(A,i):j} \left[ [W]^{(G,s)} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(A,i):j} \left[ [W]^{(A,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(A,i):j} \left[ [W]^{(B,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^{(A,i):j} \left( [b]^{(G,s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(A,i):j} \left[ [b]^{(A,s)} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^{(A,i):j} \left[ [b]^{(B,s)} \right]_q \\
& + \Phi_1^{(A,i):j}, \tag{177}
\end{aligned}$$

$$\begin{aligned}
[E(gb)]_j^{(B,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \tau_h^{-1}(s)):p,q}^{(B,i):j} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p,q}^{(B,i):j} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^{(B,i):j} \left[ [W]^{(G,s)} + \gamma_W \right]_p
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(B, i):j} \left[ [W]^{(A, s)} \right]_{p, q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(B, i):j} \left[ [W]^{(B, s)} \right]_{p, q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^{(B, i):j} \left( [b]^{(G, s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(B, i):j} \left[ [b]^{(A, s)} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^{(B, i):j} \left[ [b]^{(B, s)} \right]_q \\
& + \Phi_1^{(B, i):j}.
\end{aligned} \tag{178}$$

## F.2 COMPUTING $gE(U)$

Using Equation 143:

$$\begin{aligned}
gE(U) &= \left( \left( [gE(W)]^{(Q, i)}, [gE(W)]^{(K, i)}, [gE(W)]^{(V, i)}, [gE(W)]^{(O, i)} \right)_{i=1, \dots, n_h}, \right. \\
&\quad \left. \left( \left( [gE(W)]^{(G, i)}, [gE(b)]^{(G, i)} \right), \left( [gE(W)]^{(A, i)}, [gE(b)]^{(A, i)} \right), \left( [gE(W)]^{(B, i)}, [gE(b)]^{(B, i)} \right) \right)_{i=1, \dots, n_e} \right)
\end{aligned} \tag{179}$$

Using Equation 145 to rewrite the group transformation in index-wise form, we obtain:

$$\begin{aligned}
[gE(W)]_{j, k}^{(Q, i)} &= \left[ [E(W)]^{(Q, \tau_h(i))} \cdot \left( M_k^{(\tau_h(i))} \right)^\top \right]_{j, k} \\
&= \sum_{l=1}^{D_k} [E(W)]_{j, l}^{(Q, \tau(i))} \cdot \left( M^{(\tau(i))} \right)_{l, k}^\top \\
&= \sum_{l=1}^{D_k} M_{k, l}^{(\tau(i))} \cdot \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q, s):p, q}^{(Q, \tau(i)):j, l} [W]_{p, q}^{(Q, s)},
\end{aligned} \tag{180}$$

$$\begin{aligned}
[gE(W)]_{j, k}^{(K, i)} &= \left[ [E(W)]^{(K, \tau_h(i))} \cdot \left( M_k^{(\tau_h(i))} \right)^{-1} \right]_{j, k} \\
&= \sum_{l=1}^{D_k} [E(W)]_{j, l}^{(K, \tau(i))} \cdot \left( M^{(\tau(i))} \right)_{l, k}^{-1} \\
&= \sum_{l=1}^{D_k} \left( M^{(\tau(i))} \right)_{l, k}^{-1} \cdot \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K, s):p, q}^{(K, \tau(i)):j, l} [W]_{p, q}^{(K, s)},
\end{aligned} \tag{181}$$

$$\begin{aligned}
[gE(W)]_{j, k}^{(V, i)} &= \left[ [E(W)]^{(V, \tau_h(i))} \cdot M_v^{(\tau_h(i))} \right]_{j, k} \\
&= \sum_{l=1}^{D_v} [E(W)]_{j, l}^{(V, \tau_h(i))} \cdot (M_v^{(\tau_h(i))})_{l, k}
\end{aligned}$$

$$\begin{aligned}
&= \sum_{l=1}^{D_v} (M_v^{(\tau_h(i))})_{l,k} \cdot \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(V,s):p,q}^{(V,\tau(i)):j,l} [W]_{p,q}^{(V,s)}, \tag{182}
\end{aligned}$$

$$\begin{aligned}
&[gE(W)]_{j,k}^{(O,i)} = \left[ \left( M_v^{(\tau_h(i))} \right)^{-1} \cdot [E(W)]^{(O,\tau_h(i))} \right]_{j,k} \\
&= \sum_{l=1}^{D_v} \left( \left( M_v^{(\tau_h(i))} \right)^{-1} \right)_{j,l} \cdot [E(W)]_{l,k}^{(O,\tau_h(i))} \\
&= \sum_{l=1}^{D_v} \left( \left( M_v^{(\tau_h(i))} \right)^{-1} \right)_{j,l} \cdot \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^{D_k} \Phi_{(O,s):p,q}^{(O,\tau(i)):l,k} [W]_{p,q}^{(V,s)}, \tag{183}
\end{aligned}$$

$$\begin{aligned}
&[gE(W)]_j^{(G,i)} = [E(W)]_j^{(G,\tau_e(i))} + (\gamma_W)_j \\
&= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,\tau_e(i)):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,\tau_e(i)):j} [WW]_{p,q}^{(VO,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,\tau_e(i)):j} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,\tau_e(i)):j} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,\tau_e(i)):j} [W]_{p,q}^{(B,s)} \\
&+ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,\tau_e(i)):j} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(G,\tau_e(i)):j} + (\gamma_W)_j, \tag{184}
\end{aligned}$$

$$\begin{aligned}
&[gE(W)]_{j,k}^{(A,i)} = [E(W)]_{j,\pi_e^{(\tau_e(i))}(k)}^{(A,\tau_e(i))} \\
&= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [WW]_{p,q}^{(VO,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [W]_{p,q}^{(A,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [b]_q^{(A,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)} [b]_q^{(B,s)} + \Phi_1^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)}, \tag{185}
\end{aligned}$$

$$\begin{aligned}
&[gE(W)]_{j,k}^{(B,i)} = [E(W)]_{\pi_e^{(\tau_e(i))}(j),k}^{(B,\tau_e(i))} \\
&= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [WW]_{p,q}^{(VO,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [W]_{p,q}^{(A,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [b]_q^{(A,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(j),k}, \tag{186}
\end{aligned}$$

3024

3025

$$\begin{aligned}
 3026 \quad [gE(b)]^{(G,i)} &= [E(b)]^{(G,\tau_e(i))} + \gamma_b \\
 3027 \quad &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,\tau_e(i))} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,\tau_e(i))} [WW]_{p,q}^{(VO,s)} \\
 3028 \quad &+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,\tau_e(i))} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,\tau_e(i))} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,\tau_e(i))} [W]_{p,q}^{(B,s)} \\
 3029 \quad &+ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,\tau_e(i))} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,\tau_e(i))} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,\tau_e(i))} [b]_q^{(B,s)} + \Phi_1^{(G,\tau_e(i))} + \gamma_b,
 \end{aligned} \tag{187}$$

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

$$\begin{aligned}
 3038 \quad [gE(b)]_j^{(A,i)} &= [E(b)]_{\pi_e^{(\tau_e(i))}(j)}^{(A,\tau_e(i))} \\
 3039 \quad &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [WW]_{p,q}^{(VO,s)} \\
 3040 \quad &+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [W]_{p,q}^{(A,s)} \\
 3041 \quad &+ \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [b]^{(G,s)} \\
 3042 \quad &+ \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)} [b]_q^{(B,s)} + \Phi_1^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)},
 \end{aligned} \tag{188}$$

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

$$\begin{aligned}
 3054 \quad [gE(b)]_j^{(B,i)} &= [E(b)]_j^{(B,\tau_e(i))} \\
 3055 \quad &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,\tau_e(i)):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,\tau_e(i)):j} [WW]_{p,q}^{(VO,s)} \\
 3056 \quad &+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,\tau_e(i)):j} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,\tau_e(i)):j} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,\tau_e(i)):j} [W]_{p,q}^{(B,s)} \\
 3057 \quad &+ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,\tau_e(i)):j} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}.
 \end{aligned} \tag{189}$$

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

### F.3 COMPARE COEFFICIENTS FROM EQUATION $E(gU) = gE(U)$

3068

3069 To enforce equivariance property, we solve the following equalities to identify the constraints on the  
3070 parameters  $\Phi$ :

$$\begin{aligned}
 3071 \quad [E(gW)]_{j,k}^{(Q,i)} &= [gE(W)]_{j,k}^{(Q,i)}, \\
 3072 \quad [E(gW)]_{j,k}^{(K,i)} &= [gE(W)]_{j,k}^{(K,i)}, \\
 3073 \quad [E(gW)]_{j,k}^{(V,i)} &= [gE(W)]_{j,k}^{(V,i)}, \\
 3074 \quad [E(gW)]_{j,k}^{(O,i)} &= [gE(W)]_{j,k}^{(O,i)}, \\
 3075 \quad [E(gW)]_j^{(G,i)} &= [gE(W)]_j^{(G,i)},
 \end{aligned}$$

$$\begin{aligned}
3078 \quad [E(gW)]_{j,k}^{(A,i)} &= [gE(W)]_{j,k}^{(A,i)}, \\
3079 \quad [E(gW)]_{j,k}^{(B,i)} &= [gE(W)]_{j,k}^{(B,i)}, \\
3080 \quad [E(gb)]_{j,k}^{(G,i)} &= [gE(b)]_{j,k}^{(A,i)}, \\
3081 \quad [E(gb)]_j^{(A,i)} &= [gE(b)]_j^{(A,i)}, \\
3082 \quad [E(gb)]_j^{(B,i)} &= [gE(b)]_j^{(B,i)}. \\
3083 \\
3084 \\
3085 \\
3086 \\
3087
\end{aligned}$$

We break the process into multiple steps to solve each constraint as follows.

**Step 1. Solving**  $[E(gW)]_{j,k}^{(Q,i)} = [gE(W)]_{j,k}^{(Q,i)}$ .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see that

$$\Phi_{(Q,i):p,k}^{(Q,i):j,k} = \Phi_{(Q,\tau(i)):p,k'}^{(Q,\tau(i)):j,k'}. \quad (190)$$

**Step 2. Solving**  $[E(gW)]_{j,k}^{(K,i)} = [gE(W)]_{j,k}^{(K,i)}$ .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see that

$$\Phi_{(K,i):p,k}^{(K,i):j,k} = \Phi_{(K,\tau(i)):p,k'}^{(K,\tau(i)):j,k'}. \quad (191)$$

**Step 3. Solving**  $[E(gW)]_{j,k}^{(V,i)} = [gE(W)]_{j,k}^{(V,i)}$ .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see that

$$\Phi_{(V,i):p,k}^{(V,i):j,k} = \Phi_{(V,\tau(i)):p,k'}^{(V,\tau(i)):j,k'}. \quad (192)$$

**Step 4. Solving**  $[E(gW)]_{j,k}^{(O,i)} = [gE(W)]_{j,k}^{(O,i)}$ .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see that

$$\Phi_{(O,i):j,q}^{(O,i):j,k} = \Phi_{(O,\tau(i)):j',q}^{(O,\tau(i)):j',k}. \quad (193)$$

and all other indices equal to 0.

**Step 5. Solving**  $[E(gW)]_j^{(G,i)} = [gE(W)]_j^{(G,i)}$ .

To solve the constraint for this equation, we expand both sides in full and apply the index-wise group action defined in Equation 145, which yields:

$$\begin{aligned}
3118 \quad & \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(G,i):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\tau_h^{-1}(s)):p,q}^{(G,i):j} [WW]_{p,q}^{(VO,s)} \\
3119 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,\tau_e^{-1}(s)):p}^{(G,i):j} \left[ [W]^{(G,s)} + \gamma_W \right]_p + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):p,(\pi_e^{(s)})^{-1}(q)}^{(G,i):j} \left[ [W]^{(A,s)} \right]_{p,q} \\
3120 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p),q}^{(G,i):j} \left[ [W]^{(B,s)} \right]_{p,q} + \sum_{s=1}^{n_e} \Phi_{(G,\tau_e^{-1}(s))}^{(G,i):j} \left( [b]^{(G,s)} + \gamma_b \right) \\
3121 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(G,i):j} \left[ [b]^{(A,s)} \right]_q + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):q}^{(G,i):j} \left[ [b]^{(B,s)} \right]_q + \Phi_1^{(G,i):j} \\
3122 \quad & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,\tau_e(i)):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,\tau_e(i)):j} [WW]_{p,q}^{(VO,s)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,\tau_e(i)):j} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,\tau_e(i)):j} [W]_{p,q}^{(A,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,\tau_e(i)):j} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,\tau_e(i)):j} [b]^{(G,s)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(G,\tau_e(i)):j} + (\gamma_W)_j. \tag{194}
\end{aligned}$$

Using lemma F.1, we obtain the constraints:

$$\begin{aligned}
\Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(G,i):j} &= \Phi_{(QK,s):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(VO,\tau_h^{-1}(s)):p,q}^{(G,i):j} &= \Phi_{(VO,s):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(G,\tau_e^{-1}(s)):p}^{(G,i):j} &= \Phi_{(G,s):p}^{(G,\tau_e(i)):j}, \\
\Phi_{(A,\tau_e^{-1}(s)):p,(\pi_e^{(s)})^{-1}(q)}^{(G,i):j} &= \Phi_{(A,s):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(B,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p),q}^{(G,i):j} &= \Phi_{(B,s):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(G,\tau_e^{-1}(s))}^{(G,i):j} &= \Phi_{(G,s)}^{(G,\tau_e(i)):j}, \\
\Phi_{(A,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(G,i):j} &= \Phi_{(A,s):q}^{(G,\tau_e(i)):j}, \\
\Phi_{(B,\tau_e^{-1}(s)):q}^{(G,i):j} &= \Phi_{(B,s):q}^{(G,\tau_e(i)):j}, \\
\Phi_1^{(G,i):j} &= \Phi_1^{(G,\tau_e(i)):j}, \\
\sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,\tau_e^{-1}(s)):p}^{(G,i):j} [\gamma_W]_p &= (\gamma_W)_j, \\
\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} &= 0.
\end{aligned}$$

By a change of indexes, we obtain:

$$\begin{aligned}
\Phi_{(QK,s):p,q}^{(G,i):j} &= \Phi_{(QK,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(VO,s):p,q}^{(G,i):j} &= \Phi_{(VO,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(G,s):p}^{(G,i):j} &= \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i)):j}, \\
\Phi_{(A,s):p,q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\
\Phi_{(B,s):p,q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\
\Phi_{(G,s)}^{(G,i):j} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i)):j}, \\
\Phi_{(A,s):q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\
\Phi_{(B,s):q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\
\Phi_1^{(G,i):j} &= \Phi_1^{(G,\tau_e(i)):j}, \\
\sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} [\gamma_W]_p &= (\gamma_W)_j, \\
\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} &= 0.
\end{aligned}$$

3186 As a consequence, we have:

$$\begin{aligned}
 3188 \quad \Phi_{(QK,s):p,q}^{(G,i):j} &= \Phi_{(QK,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\
 3189 \quad \Phi_{(VO,s):p,q}^{(G,i):j} &= \Phi_{(VO,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\
 3190 \quad \Phi_{(G,s):p}^{(G,i):j} &= \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i)):j}, \\
 3191 \quad \Phi_{(A,s):p,q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{\tau_e(s)}(q)}^{(G,\tau_e(i)):j}, \\
 3192 \quad \Phi_{(B,s):p,q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):\pi_e^{\tau_e(s)}(p),q}^{(G,\tau_e(i)):j}, \\
 3193 \quad \Phi_{(G,s)}^{(G,i):j} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i)):j}, \\
 3194 \quad \Phi_{(A,s):q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):\pi_e^{\tau_e(s)}(q)}^{(G,\tau_e(i)):j}, \\
 3195 \quad \Phi_{(B,s):q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):q}^{(G,\tau_e(i)):j}, \\
 3196 \quad \Phi_1^{(G,i):j} &= \Phi_1^{(G,\tau_e(i)):j}, \\
 3197 \quad \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(G,i):j} &= 0 \quad (p \neq j), \\
 3198 \quad \sum_{s=1}^{n_e} \Phi_{(G,s):j}^{(G,i):j} &= 1, \\
 3199 \quad \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} &= 0. \tag{195}
 \end{aligned}$$

3200 **Step 6. Solving**  $[E(gW)]_{j,k}^{(A,i)} = [gE(W)]_{j,k}^{(A,i)}$ .

3201 For this equation, we proceed as follow:

$$\begin{aligned}
 3202 \quad & \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(A,i):j,k} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\tau_h^{-1}(s)):p,q}^{(A,i):j,k} [WW]_{p,q}^{(VO,s)} \\
 3203 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,\tau_e^{-1}(s)):p}^{(A,i):j,k} \left[ [W]^{(G,s)} + \gamma_W \right]_p + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):p,(\pi_e^{(s)})^{-1}(q)}^{(A,i):j,k} \left[ [W]^{(A,s)} \right]_{p,q} \\
 3204 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p),q}^{(A,i):j,k} \left[ [W]^{(B,s)} \right]_{p,q} + \sum_{s=1}^{n_e} \Phi_{(G,\tau_e^{-1}(s))}^{(A,i):j,k} \left( [b]^{(G,s)} + \gamma_b \right) \\
 3205 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(A,i):j,k} \left[ [b]^{(A,s)} \right]_q + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):q}^{(A,i):j,k} \left[ [b]^{(B,s)} \right]_q + \Phi_1^{(A,i):j,k} \\
 3206 \quad & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [WW]_{p,q}^{(VO,s)} \\
 3207 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [W]_{p,q}^{(A,s)} \\
 3208 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [b]^{(G,s)} \\
 3209 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)} [b]_q^{(B,s)} + \Phi_1^{(A,\tau_e(i)):j,\pi_e^{\tau_e(i)}(k)}. \tag{196}
 \end{aligned}$$

3240

3241

3242

3243 Using lemma F.1, we obtain the constraints:

$$\begin{aligned}
\Phi_{(QK, \tau_h^{-1}(s)):p, q}^{(A, i):j, k} &= \Phi_{(QK, s):p, q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(A, i):j, k} &= \Phi_{(VO, s):p, q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(G, \tau_e^{-1}(s)):p}^{(A, i):j, k} &= \Phi_{(G, s):p}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(A, i):j, k} &= \Phi_{(A, s):p, q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(B, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p), q}^{(A, i):j, k} &= \Phi_{(B, s):p, q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(G, \tau_e^{-1}(s))}^{(A, i):j, k} &= \Phi_{(G, s)}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(A, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(A, i):j, k} &= \Phi_{(A, s):q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(B, \tau_e^{-1}(s)):q}^{(A, i):j, k} &= \Phi_{(B, s):q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_1^{(A, i):j, k} &= \Phi_1^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s)):p}^{(A, i):j, k} &= 0, \\
\sum_{s=1}^{n_e} \Phi_{(G, s)}^{(A, i):j, k} &= 0.
\end{aligned}$$

3267

3268 Therefore,

$$\begin{aligned}
\Phi_{(QK, s):p, q}^{(A, i):j, k} &= \Phi_{(QK, \tau_h(s)):p, q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(VO, s):p, q}^{(A, i):j, k} &= \Phi_{(VO, \tau_h(s)):p, q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(G, s):p}^{(A, i):j, k} &= \Phi_{(G, \tau_e(s)):p}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(A, s):p, q}^{(A, i):j, k} &= \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(B, s):p, q}^{(A, i):j, k} &= \Phi_{(B, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q), q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(G, s)}^{(A, i):j, k} &= \Phi_{(G, \tau_e(s))}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(A, s):q}^{(A, i):j, k} &= \Phi_{(A, \tau_e(s)):q, \pi_e^{(\tau_e(s))}(q)}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(B, s):q}^{(A, i):j, k} &= \Phi_{(B, \tau_e(s)):q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_1^{(A, i):j, k} &= \Phi_1^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\sum_{s=1}^{n_e} \Phi_{(G, s):p}^{(A, i):j, k} &= 0, \\
\sum_{s=1}^{n_e} \Phi_{(G, s)}^{(A, i):j, k} &= 0.
\end{aligned} \tag{197}$$

3291

3292 **Step 7. Solving**  $[E(gW)]_{j, k}^{(B, i)} = [gE(W)]_{j, k}^{(B, i)}$ .

For this equation, we proceed as follow:

3297 
$$\sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \tau_h^{-1}(s)):p, q}^{(B, i):j, k} [WW]_{p, q}^{(QK, s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(B, i):j, k} [WW]_{p, q}^{(VO, s)}$$
  
 3298  
 3299  
 3300  
 3301 
$$+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^{(B, i):j, k} \left[ [W]^{(G, s)} + \gamma_W \right]_p + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(B, i):j, k} \left[ [W]^{(A, s)} \right]_{p, q}$$
  
 3302  
 3303  
 3304 
$$+ \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(B, i):j, k} \left[ [W]^{(B, s)} \right]_{p, q} + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^{(B, i):j, k} \left( [b]^{(G, s)} + \gamma_b \right)$$
  
 3305  
 3306  
 3307 
$$+ \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(B, i):j, k} \left[ [b]^{(A, s)} \right]_q + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^{(B, i):j, k} \left[ [b]^{(B, s)} \right]_q + \Phi_1^{(B, i):j, k}$$
  
 3308  
 3309  
 3310 
$$= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [WW]_{p, q}^{(QK, s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [WW]_{p, q}^{(VO, s)}$$
  
 3311  
 3312  
 3313 
$$+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, s):p}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [W]_p^{(G, s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [W]_{p, q}^{(A, s)}$$
  
 3314  
 3315  
 3316 
$$+ \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [W]_{p, q}^{(B, s)} + \sum_{s=1}^{n_e} \Phi_{(G, s)}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [b]^{(G, s)}$$
  
 3317  
 3318  
 3319 
$$+ \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, s):q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [b]_q^{(A, s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, s):q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k} [b]_q^{(B, s)} + \Phi_1^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}$$
  
 3320  
 3321 
$$(198)$$

Using lemma F.1, we obtain the constraints:

3326  $\Phi_{(QK, \tau_h^{-1}(s)):p, q}^{(B, i):j, k} = \Phi_{(QK, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3327  
 3328  $\Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(B, i):j, k} = \Phi_{(VO, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3329  
 3330  $\Phi_{(G, \tau_e^{-1}(s)):p}^{(B, i):j, k} = \Phi_{(G, s):p}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3331  
 3332  $\Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(B, i):j, k} = \Phi_{(A, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3333  
 3334  $\Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(B, i):j, k} = \Phi_{(B, s):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3335  
 3336  $\Phi_{(G, \tau_e^{-1}(s))}^{(B, i):j, k} = \Phi_{(G, s)}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3337  
 3338  $\Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(B, i):j, k} = \Phi_{(A, s):q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3339  
 3340  $\Phi_{(B, \tau_e^{-1}(s)):q}^{(B, i):j, k} = \Phi_{(B, s):q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3341  
 3342  $\Phi_1^{(B, i):j, k} = \Phi_1^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k},$   
 3343  
 3344  $\sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s)):p}^{(B, i):j, k} = 0,$   
 3345  
 3346  
 3347  $\sum_{s=1}^{n_e} \Phi_{(G, s)}^{(B, i):j, k} = 0.$

3348 Therefore:

$$\begin{aligned}
 3349 \quad & \Phi_{(QK,s):p,q}^{(B,i):j,k} = \Phi_{(QK,\tau_h(s)):p,q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3350 \quad & \Phi_{(VO,s):p,q}^{(B,i):j,k} = \Phi_{(VO,\tau_h(s)):p,q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3351 \quad & \Phi_{(G,s):p}^{(B,i):j,k} = \Phi_{(G,\tau_e(s)):p}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3352 \quad & \Phi_{(A,s):p,q}^{(B,i):j,k} = \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3353 \quad & \Phi_{(B,s):p,q}^{(B,i):j,k} = \Phi_{(B,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3354 \quad & \Phi_{(G,s)}^{(B,i):j,k} = \Phi_{(G,\tau_e(s))}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3355 \quad & \Phi_{(A,s):q}^{(B,i):j,k} = \Phi_{(A,\tau_e(s)):q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3356 \quad & \Phi_{(B,s):q}^{(B,i):j,k} = \Phi_{(B,\tau_e(s)):q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3357 \quad & \Phi_1^{(B,i):j,k} = \Phi_1^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
 3358 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(B,i):j,k} = 0, \\
 3359 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j,k} = 0. \tag{199}
 \end{aligned}$$

3372 **Step 8. Solving**  $[E(gb)]^{(G,i)} = [gE(b)]^{(G,i)}$ .

3373

3374 For this equation, we proceed as follow:

$$\begin{aligned}
 3375 \quad & \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(G,i)} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\tau_h^{-1}(s)):p,q}^{(G,i)} [WW]_{p,q}^{(VO,s)} \\
 3376 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,\tau_e^{-1}(s)):p}^{(G,i)} \left[ [W]^{(G,s)} + \gamma_W \right]_p + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):p,(\pi_e^{(s)})^{-1}(q)}^{(G,i)} \left[ [W]^{(A,s)} \right]_{p,q} \\
 3377 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p),q}^{(G,i)} \left[ [W]^{(B,s)} \right]_{p,q} + \sum_{s=1}^{n_e} \Phi_{(G,\tau_e^{-1}(s))}^{(G,i)} \left( [b]^{(G,s)} + \gamma_b \right) \\
 3378 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(G,i)} \left[ [b]^{(A,s)} \right]_q + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):q}^{(G,i)} \left[ [b]^{(B,s)} \right]_q + \Phi_1^{(G,i)} \\
 3379 \quad & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,\tau_e(i))} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,\tau_e(i))} [WW]_{p,q}^{(VO,s)} \\
 3380 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,\tau_e(i))} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,\tau_e(i))} [W]_{p,q}^{(A,s)} \\
 3381 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,\tau_e(i))} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,\tau_e(i))} [b]^{(G,s)} \\
 3382 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,\tau_e(i))} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,\tau_e(i))} [b]_q^{(B,s)} + \Phi_1^{(G,\tau_e(i))} + \gamma_b. \tag{200}
 \end{aligned}$$

3400

3401 Using lemma F.1, we obtain the constraints:

3402  
 3403  $\Phi_{(QK, \tau_h^{-1}(s)):p, q}^{(G, i)} = \Phi_{(QK, s):p, q}^{(G, \tau_e(i))},$   
 3404  $\Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(G, i)} = \Phi_{(VO, s):p, q}^{(G, \tau_e(i))},$   
 3405  $\Phi_{(G, \tau_e^{-1}(s)):p}^{(G, i)} = \Phi_{(G, s):p}^{(G, \tau_e(i))},$   
 3406  $\Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(G, i)} = \Phi_{(A, s):p, q}^{(G, \tau_e(i))},$   
 3407  $\Phi_{(B, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p), q}^{(G, i)} = \Phi_{(B, s):p, q}^{(G, \tau_e(i))},$   
 3408  $\Phi_{(G, \tau_e^{-1}(s))}^{(G, i)} = \Phi_{(G, s)}^{(G, \tau_e(i))},$   
 3409  $\Phi_{(A, \tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(G, i)} = \Phi_{(A, s):q}^{(G, \tau_e(i))},$   
 3410  $\Phi_{(B, \tau_e^{-1}(s)):q}^{(G, i)} = \Phi_{(B, s):q}^{(G, \tau_e(i))},$   
 3411  $\Phi_1^{(G, i)} = \Phi_1^{(G, \tau_e(i))},$   
 3412  
 3413  
 3414  
 3415  
 3416  
 3417  
 3418  
 3419  $\sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s)):p}^{(G, i)} = 0,$   
 3420  
 3421  
 3422  $\sum_{s=1}^{n_e} \Phi_{(G, s)}^{(G, i)} = 1.$   
 3423  
 3424

3425 Therefore:

3426  $\Phi_{(QK, s):p, q}^{(G, i)} = \Phi_{(QK, \tau_h(s)):p, q}^{(G, \tau_e(i))},$   
 3427  $\Phi_{(VO, s):p, q}^{(G, i)} = \Phi_{(VO, \tau_h(s)):p, q}^{(G, \tau_e(i))},$   
 3428  $\Phi_{(G, s):p}^{(G, i)} = \Phi_{(G, \tau_e(s)):p}^{(G, \tau_e(i))},$   
 3429  $\Phi_{(A, s):p, q}^{(G, i)} = \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(G, \tau_e(i))},$   
 3430  $\Phi_{(B, s):p, q}^{(G, i)} = \Phi_{(B, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(G, \tau_e(i))},$   
 3431  $\Phi_{(G, s)}^{(G, i)} = \Phi_{(G, \tau_e(s))}^{(G, \tau_e(i))},$   
 3432  $\Phi_{(A, s):q}^{(G, i)} = \Phi_{(A, \tau_e(s)):q, \pi_e^{(\tau_e(s))}(q)}^{(G, \tau_e(i))},$   
 3433  $\Phi_{(B, s):q}^{(G, i)} = \Phi_{(B, \tau_e(s)):q}^{(G, \tau_e(i))},$   
 3434  $\Phi_1^{(G, i)} = \Phi_1^{(G, \tau_e(i))},$   
 3435  
 3436  
 3437  
 3438  
 3439  
 3440  
 3441  $\sum_{s=1}^{n_e} \Phi_{(G, s):p}^{(G, i)} = 0,$   
 3442  
 3443  
 3444  $\sum_{s=1}^{n_e} \Phi_{(G, s)}^{(G, i)} = 1.$   
 3445  
 3446

3447 **Step 9. Solving**  $[E(gb)]_j^{(A, i)} = [gE(b)]_j^{(A, i)}.$   
 3448

3449 For this equation, we proceed as follow:

3450  $\sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \tau_h^{-1}(s)):p, q}^{(A, i):j} [WW]_{p, q}^{(QK, s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(A, i):j} [WW]_{p, q}^{(VO, s)}$   
 3451  
 3452  
 3453  
 3454  $+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^{(A, i):j} \left[ [W]^{(G, s)} + \gamma_W \right]_p + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(A, i):j} \left[ [W]^{(A, s)} \right]_{p, q}$   
 3455

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(A, i): j} \left[ [W]^{(B, s)} \right]_{p, q} + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^{(A, i): j} \left( [b]^{(G, s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(A, i): j} \left[ [b]^{(A, s)} \right]_q + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): q}^{(A, i): j} \left[ [b]^{(B, s)} \right]_q + \Phi_1^{(A, i): j}, \\
& = \sum_{s=1}^h \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(QK, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [WW]_{p, q}^{(QK, s)} + \sum_{s=1}^h \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(VO, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [WW]_{p, q}^{(VO, s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \Phi_{(G, s): p}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [W]_p^{(G, s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [W]_{p, q}^{(A, s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [W]_{p, q}^{(B, s)} + \sum_{s=1}^{n_e} \Phi_{(G, s)}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [b]^{(G, s)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, s): q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [b]_q^{(A, s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, s): q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)} [b]_q^{(B, s)} + \Phi_1^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}. \tag{202}
\end{aligned}$$

Using lemma F.1, we obtain the constraints:

$$\begin{aligned}
\Phi_{(QK, \tau_h^{-1}(s)): p, q}^{(A, i): j} &= \Phi_{(QK, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(VO, \tau_h^{-1}(s)): p, q}^{(A, i): j} &= \Phi_{(VO, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(G, \tau_e^{-1}(s)): p}^{(A, i): j} &= \Phi_{(G, s): p}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(A, \tau_e^{-1}(s)): p, (\pi_e^{(s)})^{-1}(q)}^{(A, i): j} &= \Phi_{(A, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(A, i): j} &= \Phi_{(B, s): p, q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(G, \tau_e^{-1}(s))}^{(A, i): j} &= \Phi_{(G, s)}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(A, i): j} &= \Phi_{(A, s): q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(B, \tau_e^{-1}(s)): q}^{(A, i): j} &= \Phi_{(B, s): q}^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\Phi_1^{(A, i): j} &= \Phi_1^{(A, \tau_e(i)): \pi_e^{(\tau_e(i))}(j)}, \\
\sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s)): p}^{(A, i): j} &= 0, \\
\sum_{s=1}^{n_e} \Phi_{(G, s)}^{(A, i): j} &= 0.
\end{aligned}$$

3510 Therefore:

$$\begin{aligned}
 3511 \quad & \Phi_{(QK,s):p,q}^{(A,i):j} = \Phi_{(QK,\tau_h(s)):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3512 \quad & \Phi_{(VO,s):p,q}^{(A,i):j} = \Phi_{(VO,\tau_h(s)):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3513 \quad & \Phi_{(G,s):p}^{(A,i):j} = \Phi_{(G,\tau_e(s)):p}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3514 \quad & \Phi_{(A,s):p,q}^{(A,i):j} = \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3515 \quad & \Phi_{(B,s):p,q}^{(A,i):j} = \Phi_{(B,\tau_e(s)):\pi_e^{(\tau_e(s))}(p),q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3516 \quad & \Phi_{(G,s)}^{(A,i):j} = \Phi_{(G,\tau_e(s))}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3517 \quad & \Phi_{(A,s):q}^{(A,i):j} = \Phi_{(A,\tau_e(s)):\pi_e^{(\tau_e(s))}(q)}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3518 \quad & \Phi_{(B,s):q}^{(A,i):j} = \Phi_{(B,\tau_e(s)):q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3519 \quad & \Phi_1^{(A,i):j} = \Phi_1^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3520 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3521 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} = 0. \\
 3522 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3523 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} = 0. \\
 3524 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3525 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} = 0. \\
 3526 \quad & \Phi_1^{(A,i):j} = \Phi_1^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3527 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3528 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} = 0. \\
 3529 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3530 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} = 0. \\
 3531 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3532 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} = 0. \\
 3533 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3534 \quad & \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} = 0. \\
 3535 \quad & \text{Step 10. Solving } [E(gb)]_j^{(B,i)} = [gE(b)]_j^{(B,i)}. \\
 3536 \quad & \text{For this equation, we proceed as follow:} \\
 3537 \quad & \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(B,i):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\tau_h^{-1}(s)):p,q}^{(B,i):j} [WW]_{p,q}^{(VO,s)} \\
 3538 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,\tau_e^{-1}(s)):p}^{(B,i):j} \left[ [W]^{(G,s)} + \gamma_W \right]_p + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):p,(\pi_e^{(s)})^{-1}(q)}^{(B,i):j} \left[ [W]^{(A,s)} \right]_{p,q} \\
 3539 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(p),q}^{(B,i):j} \left[ [W]^{(B,s)} \right]_{p,q} + \sum_{s=1}^{n_e} \Phi_{(G,\tau_e^{-1}(s))}^{(B,i):j} \left( [b]^{(G,s)} + \gamma_b \right) \\
 3540 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,\tau_e^{-1}(s)):(\pi_e^{(s)})^{-1}(q)}^{(B,i):j} \left[ [b]^{(A,s)} \right]_q + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,\tau_e^{-1}(s)):q}^{(B,i):j} \left[ [b]^{(B,s)} \right]_q + \Phi_1^{(B,i):j} \\
 3541 \quad & = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,\tau_e(i)):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,\tau_e(i)):j} [WW]_{p,q}^{(VO,s)} \\
 3542 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,\tau_e(i)):j} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,\tau_e(i)):j} [W]_{p,q}^{(A,s)} \\
 3543 \quad & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,\tau_e(i)):j} [W]_{p,q}^{(B,s)} + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,\tau_e(i)):j} [b]^{(G,s)} \\
 3544 \quad & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3545 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3546 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3547 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3548 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3549 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3550 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3551 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3552 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3553 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3554 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3555 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3556 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3557 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3558 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3559 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3560 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3561 \quad & \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):(p,(\pi_e^{(s)})^{-1}(q))}^{(B,\tau_e(i)):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,\tau_e(i)):j} [b]_q^{(B,s)} + \Phi_1^{(B,\tau_e(i)):j}. \\
 3562 \quad & \text{Using Lemma F.1, we obtain the constraints:} \\
 3563 \quad & \Phi_{(QK,\tau_h^{-1}(s)):p,q}^{(B,i):j} = \Phi_{(QK,s):p,q}^{(B,\tau_e(i)):j}, \\
 \end{aligned} \tag{204}$$

$$\begin{aligned}
3564 \quad & \Phi_{(VO, \tau_h^{-1}(s)):p, q}^{(B, i):j} = \Phi_{(VO, s):p, q}^{(B, \tau_e(i)):j}, \\
3565 \quad & \Phi_{(G, \tau_e^{-1}(s)):p}^{(B, i):j} = \Phi_{(G, s):p}^{(B, \tau_e(i)):j}, \\
3566 \quad & \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^{(B, i):j} = \Phi_{(A, s):p, q}^{(B, \tau_e(i)):j}, \\
3567 \quad & \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^{(B, i):j} = \Phi_{(B, s):p, q}^{(B, \tau_e(i)):j}, \\
3568 \quad & \Phi_{(G, \tau_e^{-1}(s))}^{(B, i):j} = \Phi_{(G, s)}^{(B, \tau_e(i)):j}, \\
3569 \quad & \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^{(B, i):j} = \Phi_{(A, s):q}^{(B, \tau_e(i)):j}, \\
3570 \quad & \Phi_{(B, \tau_e^{-1}(s)):q}^{(B, i):j} = \Phi_{(B, s):q}^{(B, \tau_e(i)):j}, \\
3571 \quad & \Phi_1^{(B, i):j} = \Phi_1^{(B, \tau_e(i)):j}, \\
3572 \quad & \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s)):p}^{(B, i):j} = 0, \\
3573 \quad & \sum_{s=1}^{n_e} \Phi_{(G, s)}^{(B, i):j} = 0.
\end{aligned}$$

3584 Therefore:

$$\begin{aligned}
3585 \quad & \Phi_{(QK, s):p, q}^{(B, i):j} = \Phi_{(QK, \tau_h(s)):p, q}^{(B, \tau_e(i)):j}, \\
3586 \quad & \Phi_{(VO, s):p, q}^{(B, i):j} = \Phi_{(VO, \tau_h(s)):p, q}^{(B, \tau_e(i)):j}, \\
3587 \quad & \Phi_{(G, s):p}^{(B, i):j} = \Phi_{(G, \tau_e(s)):p}^{(B, \tau_e(i)):j}, \\
3588 \quad & \Phi_{(A, s):p, q}^{(B, i):j} = \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(B, \tau_e(i)):j}, \\
3589 \quad & \Phi_{(B, s):p, q}^{(B, i):j} = \Phi_{(B, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(p), q}^{(B, \tau_e(i)):j}, \\
3590 \quad & \Phi_{(G, s)}^{(B, i):j} = \Phi_{(G, \tau_e(s))}^{(B, \tau_e(i)):j}, \\
3591 \quad & \Phi_{(A, s):q}^{(B, i):j} = \Phi_{(A, \tau_e(s)): \pi_e^{(\tau_e(s))}(q)}^{(B, \tau_e(i)):j}, \\
3592 \quad & \Phi_1^{(B, i):j} = \Phi_1^{(B, \tau_e(i)):j}, \\
3593 \quad & \sum_{s=1}^{n_e} \Phi_{(G, s):p}^{(B, i):j} = 0, \\
3594 \quad & \sum_{s=1}^{n_e} \Phi_{(G, s)}^{(B, i):j} = 0.
\end{aligned} \tag{205}$$

#### F.4 FINAL FORM OF THE EQUIVARIANT POLYNOMIAL LAYER

3609 The final form of  $E(U)$  after solving all constraints are given below for each entries:

3610 1.  $[E(W)]_{j,k}^{(Q,i)}$  is given by

$$3613 \quad [E(W)]_{j,k}^{(Q,i)} = \sum_{p=1}^D \Phi_{(Q,i):p, k}^{(Q,i):j, k} [W]_{p,k}^{(Q,i)},
3614$$

3615 with constraints

$$3616 \quad \Phi_{(Q,i):p, k}^{(Q,i):j, k} = \Phi_{(Q, \tau(i)):p, k'}^{(Q, \tau(i)):j, k'} \tag{206}$$

3618 2.  $[E(W)]_{j,k}^{(K,i)}$  is given by  
 3619

3620  
 3621  $[E(W)]_{j,k}^{(K,i)} = \sum_{p=1}^D \Phi_{(K,i):p,k}^{(K,i):j,k} [W]_{p,k}^{(K,i)},$   
 3622  
 3623

3624 with constraints  
 3625

3626  
 3627  $\Phi_{(K,i):p,k}^{(K,i):j,k} = \Phi_{(K,\tau(i)):p,k'}^{(K,\tau(i)):j,k'}. \quad (207)$   
 3628  
 3629

3630 3.  $[E(W)]_{j,k}^{(V,i)}$  is given by  
 3631  
 3632

3633  
 3634  $[E(W)]_{j,k}^{(V,i)} = \sum_{p=1}^D \Phi_{(V,i):p,k}^{(V,i):j,k} [W]_{p,k}^{(V,i)},$   
 3635  
 3636  
 3637

3638 with constraints  
 3639

3640  
 3641  $\Phi_{(V,i):p,k}^{(V,i):j,k} = \Phi_{(V,\tau(i)):p,k'}^{(V,\tau(i)):j,k'}. \quad (208)$   
 3642  
 3643

3644 4.  $[E(W)]_{j,k}^{(O,i)}$  is given by  
 3645  
 3646

3647  
 3648  $[E(W)]_{j,k}^{(O,i)} = \sum_{p=1}^{D_k} \Phi_{(O,i):j,q}^{(O,i):j,k} [W]_{p,k}^{(O,i)},$   
 3649  
 3650  
 3651

3652 with constraints  
 3653

3654  
 3655  $\Phi_{(O,i):j',q}^{(O,i):j',k} = \Phi_{(O,\tau(i)):j',q}^{(O,\tau(i)):j,k}. \quad (209)$   
 3656  
 3657

3658 5.  $[E(W)]_j^{(G,i)}$  is given by  
 3659  
 3660

3661  
 3662  $[E(W)]_j^{(G,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i):j} [WW]_{p,q}^{(VO,s)}$   
 3663  
 3664  
 3665  $+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,i):j} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i):j} [W]_{p,q}^{(B,s)}$   
 3666  
 3667  
 3668  $+ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i):j} [b]_q^{(B,s)} + \Phi_1^{(G,i):j}$   
 3669  
 3670  
 3671

3672 with constraints

3673

3674

3675

3676

3677

3678

$$\begin{aligned}
\Phi_{(QK,s):p,q}^{(G,i):j} &= \Phi_{(QK,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(VO,s):p,q}^{(G,i):j} &= \Phi_{(VO,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\
\Phi_{(G,s):p}^{(G,i):j} &= \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i)):j}, \\
\Phi_{(A,s):p,q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\
\Phi_{(B,s):p,q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):\pi_e^{(\tau_e(s))}(p),q}^{(G,\tau_e(i)):j}, \\
\Phi_{(G,s)}^{(G,i):j} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i)):j}, \\
\Phi_{(A,s):q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\
\Phi_{(B,s):q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):q}^{(G,\tau_e(i)):j}, \\
\Phi_1^{(G,i):j} &= \Phi_1^{(G,\tau_e(i)):j}, \\
\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(G,i):j} &= 0 \quad (p \neq j), \\
\sum_{s=1}^{n_e} \Phi_{(G,s):j}^{(G,i):j} &= 1, \\
\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} &= 0.
\end{aligned} \tag{210}$$

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

6.  $[E(W)]_{j,k}^{(A,i)}$  is given by

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

$$\begin{aligned}
[E(W)]_{j,k}^{(A,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,i):j,k} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,i):j,k} [WW]_{p,q}^{(VO,s)} \\
&\quad + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j,k} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,i):j,k} [W]_{p,q}^{(B,s)} \\
&\quad + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j,k} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,i):j,k} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,i):j,k} [b]_q^{(B,s)} + \Phi_1^{(A,i):j,k}
\end{aligned}$$

3726 with constraints

3727

3728

3729

3730

3731

3732

3733

$$\Phi_{(QK,s):p,q}^{(A,i):j,k} = \Phi_{(QK,\tau_h(s)):p,q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3734

$$\Phi_{(VO,s):p,q}^{(A,i):j,k} = \Phi_{(VO,\tau_h(s)):p,q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3735

$$\Phi_{(G,s):p}^{(A,i):j,k} = \Phi_{(G,\tau_e(s)):p}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3736

$$\Phi_{(A,s):p,q}^{(A,i):j,k} = \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3737

$$\Phi_{(B,s):p,q}^{(A,i):j,k} = \Phi_{(B,\tau_e(s)):p,q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3738

$$\Phi_{(G,s)}^{(A,i):j,k} = \Phi_{(G,\tau_e(s))}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3739

$$\Phi_{(A,s):q}^{(A,i):j,k} = \Phi_{(A,\tau_e(s)):q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3740

$$\Phi_{(B,s):q}^{(A,i):j,k} = \Phi_{(B,\tau_e(s)):q}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3741

$$\Phi_1^{(A,i):j,k} = \Phi_1^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)},$$

3742

$$\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j,k} = 0,$$

3743

$$\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j,k} = 0.$$

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

7.  $[E(W)]_{j,k}^{(B,i)}$  is given by

3765

3766

3767

3768

3769

3770

3771

3772

$$\begin{aligned} [E(W)]_{j,k}^{(B,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,i):j,k} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,i):j,k} [WW]_{p,q}^{(VO,s)} \\ &\quad + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,i):j,k} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,i):j,k} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,i):j,k} [W]_{p,q}^{(B,s)} \\ &\quad + \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j,k} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,i):j,k} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,i):j,k} [b]_q^{(B,s)} + \Phi_1^{(B,i):j,k} \end{aligned}$$

3780 with constraints

$$\begin{aligned}
3781 \quad \Phi_{(QK,s):p,q}^{(B,i):j,k} &= \Phi_{(QK,\tau_h(s)):p,q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3782 \quad \Phi_{(VO,s):p,q}^{(B,i):j,k} &= \Phi_{(VO,\tau_h(s)):p,q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3783 \quad \Phi_{(G,s):p}^{(B,i):j,k} &= \Phi_{(G,\tau_e(s)):p}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3784 \quad \Phi_{(A,s):p,q}^{(B,i):j,k} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3785 \quad \Phi_{(B,s):p,q}^{(B,i):j,k} &= \Phi_{(B,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3786 \quad \Phi_{(G,s)}^{(B,i):j,k} &= \Phi_{(G,s)}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3787 \quad \Phi_{(A,s):q}^{(B,i):j,k} &= \Phi_{(A,\tau_e(s)):q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3788 \quad \Phi_{(B,s):q}^{(B,i):j,k} &= \Phi_{(B,\tau_e(s)):q}^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3789 \quad \Phi_1^{(B,i):j,k} &= \Phi_1^{(B,\tau_e(i)):\pi_e^{(\tau_e(i))}(j),k}, \\
3790 \quad \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(B,i):j,k} &= 0, \\
3791 \quad \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j,k} &= 0. \tag{212}
\end{aligned}$$

3803 8.  $[E(b)]^{(G,i)}$  is given by

$$\begin{aligned}
3804 \quad [E(b)]^{(G,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(G,i)} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(G,i)} [WW]_{p,q}^{(VO,s)} \\
3805 \quad &+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i)} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(G,i)} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(G,i)} [W]_{p,q}^{(B,s)} \\
3806 \quad &+ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i)} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(G,i)} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(G,i)} [b]_q^{(B,s)} + \Phi_1^{(G,i)}
\end{aligned}$$

3814 with constraints

$$\begin{aligned}
3815 \quad \Phi_{(QK,s):p,q}^{(G,i)} &= \Phi_{(QK,\tau_h(s)):p,q}^{(G,\tau_e(i))}, \\
3816 \quad \Phi_{(VO,s):p,q}^{(G,i)} &= \Phi_{(VO,\tau_h(s)):p,q}^{(G,\tau_e(i))}, \\
3817 \quad \Phi_{(G,s):p}^{(G,i)} &= \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i))}, \\
3818 \quad \Phi_{(A,s):p,q}^{(G,i)} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i))}, \\
3819 \quad \Phi_{(B,s):p,q}^{(G,i)} &= \Phi_{(B,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i))}, \\
3820 \quad \Phi_{(G,s)}^{(G,i)} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i))}, \\
3821 \quad \Phi_{(A,s):q}^{(G,i)} &= \Phi_{(A,\tau_e(s)):q}^{(G,\tau_e(i))}, \\
3822 \quad \Phi_{(B,s):q}^{(G,i)} &= \Phi_{(B,\tau_e(s)):q}^{(G,\tau_e(i))}, \\
3823 \quad \Phi_1^{(G,i)} &= \Phi_1^{(G,\tau_e(i))}, \\
3824 \quad \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(G,i)} &= 0, \\
3825 \quad \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i)} &= 1. \tag{213}
\end{aligned}$$

3834 9.  $[E(b)]_j^{(A,i)}$  is given by  
 3835

$$\begin{aligned}
 3838 [E(b)]_j^{(A,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(A,i):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(A,i):j} [WW]_{p,q}^{(VO,s)} \\
 3839 &+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(A,i):j} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(A,i):j} [W]_{p,q}^{(B,s)} \\
 3840 &\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(A,i):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(A,i):j} [b]_q^{(B,s)} + \Phi_1^{(A,i):j} \\
 3841 & \\
 3842 & \\
 3843 & \\
 3844 & \\
 3845 & \\
 3846 & \\
 3847 & \\
 3848 & \\
 3849 \text{with constraints} \\
 3850 & \\
 3851 & \\
 3852 \Phi_{(QK,s):p,q}^{(A,i):j} = \Phi_{(QK,\tau_h(s)):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3853 & \\
 3854 \Phi_{(VO,s):p,q}^{(A,i):j} = \Phi_{(VO,\tau_h(s)):p,q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3855 & \\
 3856 \Phi_{(G,s):p}^{(A,i):j} = \Phi_{(G,\tau_e(s)):p}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3857 & \\
 3858 \Phi_{(A,s):p,q}^{(A,i):j} = \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3859 & \\
 3860 \Phi_{(B,s):p,q}^{(A,i):j} = \Phi_{(B,\tau_e(s)):\pi_e^{(\tau_e(s))}(p),q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3861 & \\
 3862 \Phi_{(G,s)}^{(A,i):j} = \Phi_{(G,\tau_e(s))}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3863 & \\
 3864 \Phi_{(A,s):q}^{(A,i):j} = \Phi_{(A,\tau_e(s)):\pi_e^{(\tau_e(s))}(q)}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3865 & \\
 3866 \Phi_{(B,s):q}^{(A,i):j} = \Phi_{(B,\tau_e(s)):q}^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3867 & \\
 3868 \Phi_1^{(A,i):j} = \Phi_1^{(A,\tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
 3869 & \\
 3870 & \\
 3871 \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j} = 0, \\
 3872 & \\
 3873 & \\
 3874 & \\
 3875 & \\
 3876 10.  $[E(b)]_j^{(B,i)}$  is given by  
 3877
 \end{aligned} \tag{214}$$

3878  
 3879  
 3880 10.  $[E(b)]_j^{(B,i)}$  is given by  
 3881

$$\begin{aligned}
 3880 [E(b)]_j^{(B,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^{(B,i):j} [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^{(B,i):j} [WW]_{p,q}^{(VO,s)} \\
 3881 &+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(B,i):j} [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^{(B,i):j} [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^{(B,i):j} [W]_{p,q}^{(B,s)} \\
 3882 &\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^{(B,i):j} [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^{(B,i):j} [b]_q^{(B,s)} + \Phi_1^{(B,i):j}, \\
 3883 & \\
 3884 & \\
 3885 & \\
 3886 & \\
 3887 &
 \end{aligned}$$

3888 with constraints

3889  $\Phi_{(QK,s):p,q}^{(B,i):j} = \Phi_{(QK,\tau_h(s)):p,q}^{(B,\tau_e(i)):j}$

3890  $\Phi_{(VO,s):p,q}^{(B,i):j} = \Phi_{(VO,\tau_h(s)):p,q}^{(B,\tau_e(i)):j}$

3891  $\Phi_{(G,s):p}^{(B,i):j} = \Phi_{(G,\tau_e(s)):p}^{(B,\tau_e(i)):j}$

3892  $\Phi_{(A,s):p,q}^{(B,i):j} = \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):j}$

3893  $\Phi_{(B,s):p,q}^{(B,i):j} = \Phi_{(B,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):j}$

3894  $\Phi_{(G,s)}^{(B,i):j} = \Phi_{(G,\tau_e(s))}^{(B,\tau_e(i)):j}$

3895  $\Phi_{(A,s):q}^{(B,i):j} = \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):j}$

3896  $\Phi_{(B,s):q}^{(B,i):j} = \Phi_{(B,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(B,\tau_e(i)):j}$

3897  $\Phi_1^{(B,i):j} = \Phi_1^{(B,\tau_e(i)):j}$

3898  $\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(B,i):j} = 0$

3899  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3900  $\sum_{s=1}^{n_e} \Phi_{(G,s):q}^{(B,i):j} = 0$

3901  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3902  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3903  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3904  $\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(B,i):j} = 0$

3905  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3906  $\sum_{s=1}^{n_e} \Phi_{(G,s):q}^{(B,i):j} = 0$

3907  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3908  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3909  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3910  $\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(B,i):j} = 0$

3911  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3912  $\sum_{s=1}^{n_e} \Phi_{(G,s):q}^{(B,i):j} = 0$

3913  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3914  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3915  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3916  $\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(B,i):j} = 0$

3917  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3918  $\sum_{s=1}^{n_e} \Phi_{(G,s):q}^{(B,i):j} = 0$

3919  $\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j} = 0$

3920  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3921  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3922  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3923  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3924  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3925  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3926  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3927  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3928  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3929  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3930  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3931  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3932  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3933  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3934  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3935  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3936  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3937  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3938  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3939  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3940  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

3941  $\sum_{s=1}^{n_e} \Phi_1^{(B,i):j} = 0$

(215)

## G INVARIANT LAYER

In this section, we provide a detailed computation of the invariant layer  $I(U)$  following the parameter-sharing technique as the computation of equivariant layer above. We begin with the formulation of  $I(U)$  below:

$$\begin{aligned}
 I(U)_i = & \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^i [WW]_{p,q}^{(QK,s)} \\
 & + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^i [WW]_{p,q}^{(VO,s)} \\
 & + \sum_{s=1}^h \sum_{p=1}^{D_k} \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^i [W]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^{D_k} \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^i [W]_{p,q}^{(K,s)} \\
 & + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^i [W]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^{D_v} \Phi_{(O,s):p,q}^i [W]_{p,q}^{(O,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^i [W]_p^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^{D_A} \Phi_{(A,s):p,q}^i [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^{D_A} \Phi_{(B,s):p,q}^i [W]_{p,q}^{(B,s)} \\
 & + \sum_{s=1}^{n_e} \Phi_{(G,s)}^i [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^i [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(B,s):q}^i [b]_q^{(B,s)} + \Phi_1^i
 \end{aligned}
 \tag{216}$$

### G.1 COMPUTING $I(gU)$

Plugging entry-wise group action 145 into Equation 216, we obtain the following expression:

$$I(gU)_i = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\tau_h(s)):p,q}^i [WW]_{p,q}^{(QK,s)}$$

$$\begin{aligned}
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p,q}^i [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q, \tau_h^{-1}(s)):p,q}^i \left[ [W]^{(Q,s)} \cdot \left( M_k^{(s)} \right)^\top \right]_{p,q} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K, \tau_h^{-1}(s)):p,q}^i \left[ [W]^{(K,s)} \cdot \left( M_k^{(s)} \right)^{-1} \right]_{p,q} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V, \tau_h^{-1}(s)):p,q}^i \left[ [W]^{(V,s)} \cdot M_v^{(s)} \right]_{p,q} \\
& + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^i \left[ \left( M_v^{(\tau_h(s))} \right)^{-1} \cdot [W]^{(O, \tau_h(s))} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^i \left[ [W]^{(G,s)} + \gamma_W \right]_p \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^i \left[ [W]^{(A,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^i \left[ [W]^{(B,s)} \right]_{p,q} \\
& + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^i \left( [b]^{(G,s)} + \gamma_b \right) \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^i \left[ [b]^{(A,s)} \right]_q \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^i \left[ [b]^{(B,s)} \right]_q \\
& + \Phi_1^i. \tag{217}
\end{aligned}$$

(218)

## G.2 COMPARE COEFFICIENTS FROM EQUATION $I(gU) = I(U)$

In the following, we solve the equation  $I(gU) = I(U)$  for all  $U \in \mathcal{U}$  and  $g \in \mathcal{G}_{\mathcal{U}}$  to determine the constraints for the unknown coefficients  $\Phi$ .

**Solving for  $I(U)_i = I(gU)_i$ .**

$$\begin{aligned}
& \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,s):p,q}^i [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,s):p,q}^i [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q,s):p,q}^i [W]_{p,q}^{(Q,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K,s):p,q}^i [W]_{p,q}^{(K,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V,s):p,q}^i [W]_{p,q}^{(V,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(O,s):p,q}^i [W]_{p,q}^{(O,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(G,s):p,q}^i [W]_{p,q}^{(G,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(A,s):p,q}^i [W]_{p,q}^{(A,s)} + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,s):p,q}^i [W]_{p,q}^{(B,s)}
\end{aligned}$$

$$\begin{aligned}
& \sum_{s=1}^{n_e} \Phi_{(G,s)}^i [b]^{(G,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,s):q}^i [b]_q^{(A,s)} + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,s):q}^i [b]_q^{(B,s)} + \Phi_1^i, \\
&= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \tau_h^{-1}(s)):p,q}^i [WW]_{p,q}^{(QK,s)} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \tau_h^{-1}(s)):p,q}^i [WW]_{p,q}^{(VO,s)} \\
&+ \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(Q, \tau_h^{-1}(s)):p,q}^i \left[ [W]^{(Q,s)} \cdot \left( M_k^{(s)} \right)^\top \right]_{p,q} + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_k} \Phi_{(K, \tau_h^{-1}(s)):p,q}^i \left[ [W]^{(K,s)} \cdot \left( M_k^{(s)} \right)^{-1} \right]_{p,q} \\
&+ \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_v} \Phi_{(V, \tau_h^{-1}(s)):p,q}^i \left[ [W]^{(V,s)} \cdot M_v^{(s)} \right]_{p,q} + \sum_{s=1}^h \sum_{p=1}^{D_v} \sum_{q=1}^D \Phi_{(O,s):p,q}^i \left[ \left( M_v^{(\tau_h(s))} \right)^{-1} \cdot [W]^{(O, \tau_h(s))} \right]_{p,q} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G, \tau_e^{-1}(s)):p}^i \left[ [W]^{(G,s)} + \gamma_W \right]_p + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^i \left[ [W]^{(A,s)} \right]_{p,q} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^i \left[ [W]^{(B,s)} \right]_{p,q} + \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^i \left( [b]^{(G,s)} + \gamma_b \right) \\
&+ \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^i \left[ [b]^{(A,s)} \right]_q + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \tau_e^{-1}(s)):q}^i \left[ [b]^{(B,s)} \right]_q + \Phi_1^i.
\end{aligned}$$

Using lemma F.1, we obtain the constraints:

$$\begin{aligned}
& \Phi_{(QK,s):p,q}^i = \Phi_{(QK, \tau_h^{-1}(s)):p,q}^i, \\
& \Phi_{(VO,s):p,q}^i = \Phi_{(VO, \tau_h^{-1}(s)):p,q}^i, \\
& \Phi_{(Q, \tau_h^{-1}(s)):p,q}^i = 0, \\
& \Phi_{(K, \tau_h^{-1}(s)):p,q}^i = 0, \\
& \Phi_{(V, \tau_h^{-1}(s)):p,q}^i = 0, \\
& \Phi_{(O, \tau_h^{-1}(s)):p,q}^i = 0, \\
& \Phi_{(G,s):p}^i = \Phi_{(G, \tau_e^{-1}(s)):p}^i, \\
& \Phi_{(A,s):p,q}^i = \Phi_{(A, \tau_e^{-1}(s)):p, (\pi_e^{(s)})^{-1}(q)}^i, \\
& \Phi_{(B,s):p,q}^i = \Phi_{(B, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(p), q}^i, \\
& \Phi_{(G,s)}^i = \Phi_{(G, \tau_e^{-1}(s))}^i, \\
& \Phi_{(A,s):q}^i = \Phi_{(A, \tau_e^{-1}(s)): (\pi_e^{(s)})^{-1}(q)}^i, \\
& \Phi_{(B,s):q}^i = \Phi_{(B, \tau_e^{-1}(s)):q}^i, \\
& \Phi_1^i = \Phi_1^i, \\
& \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s)):p}^i = 0, \\
& \sum_{s=1}^{n_e} \Phi_{(G, \tau_e^{-1}(s))}^i = 0.
\end{aligned}$$

Therefore:

$$\begin{aligned}
4050 & \Phi_{(QK,s):p,q}^i = \Phi_{(QK,\tau_h(s)):p,q}^i, \\
4051 & \Phi_{(VO,s):p,q}^i = \Phi_{(VO,\tau_h(s)):p,q}^i, \\
4052 & \Phi_{(Q,s):p,q}^i = 0, \\
4053 & \Phi_{(K,s):p,q}^i = 0, \\
4054 & \Phi_{(V,s):p,q}^i = 0, \\
4055 & \Phi_{(O,s):p,q}^i = 0, \\
4056 & \Phi_{(G,s):p}^i = \Phi_{(G,\tau_e(s)):p}^i, \\
4057 & \Phi_{(A,s):p,q}^i = \Phi_{(A,\tau_e(s)):p,\pi_e^{(s)}(q)}^i, \\
4058 & \Phi_{(B,s):p,q}^i = \Phi_{(B,\tau_e(s)):\pi_e^{(s)}(p),q}^i, \\
4059 & \Phi_{(G,s)}^i = \Phi_{(G,\tau_e(s))}^i, \\
4060 & \Phi_{(A,s):q}^i = \Phi_{(A,\tau_e(s)):\pi_e^{(s)}(q)}^i, \\
4061 & \Phi_{(B,s):q}^i = \Phi_{(B,\tau_e(s)):\pi_e^{(s)}(q)}^i, \\
4062 & \sum_{s=1}^{n_e} \Phi_{(G,s):p}^i = 0, \\
4063 & \sum_{s=1}^{n_e} \Phi_{(G,s)}^i = 0.
\end{aligned} \tag{219}$$

## H IMPLEMENTATION DETAILS OF THE EQUIVARIANT AND INVARIANT LAYER

In this section, we provide implementation details for the equivariant and invariant layers described in the previous sections. The bullet notation  $\bullet$  is used to indicate index-wise equality. For example,  $x_{i,\bullet}$  denotes that all values along the second index are equal, i.e.,  $x_{i,j} = x_{i,j'}$  for all pairs  $(j, j')$ .

Based on the constraints derived in Section F.4, we express all formulations using bullet notation, which provides a more practical and concise format for implementation. This notation not only streamlines the empirical realization of the constraints but also clearly highlights the underlying parameter-sharing structure. Each summation written in bullet notation is implemented using PyTorch's `einsum`, as detailed in Section H.4. For certain parameterization constraints that are not straightforward, we rely on Propositions H.1, H.4, and Corollaries H.3, H.5 from Section H.1 to present them in bullet notation.

### H.1 EQUIVARIANT CONSTRAINT REDUCTION TO BULLET FORM

**Proposition H.1.** *Under the parameter sharing constraint:*

$$\begin{cases} \Phi_{(G,s):p}^{(G,i):j} = \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i)):j}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):j}^{(G,i):j} = 1, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(G,i):j} = 0, \quad \text{for } p \neq j, \end{cases}$$

we can write the summation

$$\begin{aligned}
4099 & \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} [W]_p^{(G,s)} \\
4100 & = [W]_j^{(G,i)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(G,\bullet):j} \right)_1 [W]_p^{(G,s)} - n_e \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(G,\bullet):j} \right)_1 [W]_p^{(G,i)}.
\end{aligned}$$

4104 *Proof.* From the constraint  $\Phi_{(G,s):p}^{(G,i):j} = \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i)):j}$ , we obtain:  
 4105

$$\Phi_{(G,s):p}^{(G,i):j} = \begin{cases} (\varphi_1)_p^j & \text{if } i \neq s, \\ (\varphi_2)_p^j & \text{if } i = s. \end{cases}$$

4106 To determine the constraints on  $(\varphi_1)_p^j$  and  $(\varphi_2)_p^j$ , we examine two cases:  
 4107  
 4108

4109 **Case 1:**  $p = j$   
 4110

4111 From the constraint  
 4112

$$\sum_{s=1}^{n_e} \Phi_{(G,s):j}^{(G,i):j} = 1,$$

4113 we substitute the expression for  $\Phi$  and obtain:  
 4114  
 4115

$$(\varphi_2)_j^j + (n_e - 1)(\varphi_1)_j^j = 1, \Rightarrow (\varphi_2)_j^j = 1 - (n_e - 1)(\varphi_1)_j^j.$$

4116 **Case 2:**  $p \neq j$   
 4117

4118 From the constraint  
 4119

$$\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(G,i):j} = 0,$$

4120 we similarly obtain:  
 4121

$$(\varphi_2)_p^j + (n_e - 1)(\varphi_1)_p^j = 0, \Rightarrow (\varphi_2)_p^j = -(n_e - 1)(\varphi_1)_p^j.$$

4122 Combining both cases, we conclude with the following expressions ( $i \neq s, p \neq j$ ):  
 4123

$$\begin{aligned} \Phi_{(G,i):j}^{(G,i):j} &= 1 - (n_e - 1)(\varphi_1)_j^j, \\ \Phi_{(G,s):j}^{(G,i):j} &= (\varphi_1)_j^j, \\ \Phi_{(G,i):p}^{(G,i):j} &= -(n_e - 1)(\varphi_1)_p^j, \\ \Phi_{(G,s):p}^{(G,i):j} &= (\varphi_1)_p^j. \end{aligned} \tag{220}$$

4124 We have the following chain of reduction:  
 4125

$$\begin{aligned} \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} [W]_p^{(G,s)} \\ &= \sum_{s=1}^{n_e} \left( \sum_{p \neq j} \Phi_{(G,s):p}^{(G,i):j} [W]_p^{(G,s)} + \Phi_{(G,s):j}^{(G,i):j} [W]_j^{(G,s)} \right) \\ &= \sum_{s \neq i} \sum_{p \neq j} \Phi_{(G,s):p}^{(G,i):j} [W]_p^{(G,s)} + \sum_{p \neq j} \Phi_{(G,i):p}^{(G,i):j} [W]_p^{(G,i)} + \sum_{s \neq i} \Phi_{(G,s):j}^{(G,i):j} [W]_j^{(G,s)} + \Phi_{(G,i):j}^{(G,i):j} [W]_j^{(G,i)}. \end{aligned}$$

4126 Plugging Equation 220 into the expression, we obtain:  
 4127

$$\begin{aligned} \sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(G,i):j} [W]_p^{(G,s)} \\ &= \sum_{s \neq i} \sum_{p \neq j} (\varphi_1)_p^j - (n_e - 1) \sum_{p \neq j} (\varphi_1)_p^j [W]_p^{(G,i)} + (\varphi_1)_j^j \sum_{s \neq i} [W]_j^{(G,s)} + (1 - (n_e - 1)(\varphi_1)_j^j) [W]_j^{(G,i)} \\ &= [W]_j^{(G,i)} - (n_e - 1) \left( \sum_{p \neq j} (\varphi_1)_p^j [W]_p^{(G,i)} + (\varphi_1)_j^j [W]_j^{(G,i)} \right) + \sum_{s \neq i} \sum_{p \neq j} (\varphi_1)_p^j [W]_p^{(G,s)} + (\varphi_1)_j^j \sum_{s \neq i} [W]_j^{(G,s)} \end{aligned}$$

$$\begin{aligned}
&= [W]_j^{(G,i)} - n_e \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)} + \left( \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)} + \sum_{s \neq i} \sum_{p \neq j} (\varphi_1)_p^j [W]_p^{(G,s)} + (\varphi_1)_j^j \sum_{s \neq i} [W]_s^{(G,s)} \right) \\
&= [W]_j^{(G,i)} - n_e \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)} + \left( \sum_{s \neq i} \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,s)} + (\varphi_1)_j^j \sum_{s \neq i} [W]_s^{(G,s)} \right) \\
&= [W]_j^{(G,i)} - n_e \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)} + \sum_{s=1}^{n_e} \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,s)}.
\end{aligned}$$

Define  $(\varphi_i)_p^j = \left( \Phi_{(G,\bullet):p}^{(G,\bullet):j} \right)_1$ . This concludes the proof of the proposition.  $\square$

**Remark H.2.** As shown in Proposition H.1, the equivariant layer for the  $W_G$  component naturally introduces a skip connection  $[W]_j^{(G,i)}$ . This behavior is absent in equivariant layers defined under the symmetry group of standard Transformers and arises specifically from the group structure associated with MoE Transformers. Thus, it highlights a distinctive feature of the MoE-specific equivariant formulation.

**Corollary H.3.** *Under the parameter sharing constraint:*

$$\begin{cases} \Phi_{(G,s)}^{(G,i)} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i))}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i)} &= 1, \end{cases}$$

we can write the summation

$$\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i)} [W]_s^{(G,s)} = [W]_j^{(G,i)} + \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^{(G,\bullet)} \right)_1 [W]_s^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(G,\bullet)} \right)_1 [W]_j^{(G,i)}.$$

*Proof.* Applying Proposition H.1 with  $D = 1$  and renaming the index, we obtain the desired result and thus conclude the proof of Corollary H.3.  $\square$

**Proposition H.4.** *Under the parameter sharing constraint:*

$$\begin{cases} \Phi_{(G,s):p}^{(A,i):j,k} &= \Phi_{(G,\tau_e(s)):p}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j,k} &= 0, \end{cases}$$

we can write the summation

$$\sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j,k} [W]_p^{(G,s)} = \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(A,\bullet):j,\bullet} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G,\bullet):p}^{(A,\bullet):j,\bullet} \right)_1 [W]_p^{(G,i)}.$$

*Proof.* From the constraint  $\Phi_{(G,s):p}^{(A,i):j,k} = \Phi_{(G,\tau_e(s)):p}^{(A,\tau_e(i)):j,\pi_e^{(\tau_e(i))}(k)}$ , we obtain:

$$\Phi_{(G,s):p}^{(A,i):j,k} = \begin{cases} (\varphi_1)_p^j & \text{if } i \neq s, \\ (\varphi_2)_p^j & \text{if } i = s. \end{cases}$$

From the constraint

$$\sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j,k} = 0,$$

we substitute the expression for  $\Phi$  to obtain:

$$(n_e - 1)(\varphi_1)_p^j + (\varphi_2)_p^j = 0 \Rightarrow (\varphi_2)_p^j = -(n_e - 1)(\varphi_1)_p^j.$$

4212 We conclude the following expressions ( $i \neq s$ ):  
4213

$$\begin{aligned}\Phi_{(G,s):p}^{(A,i):j,k} &= (\varphi_1)_p^j, \\ \Phi_{(G,i):p}^{(A,i):j,k} &= -(n_e - 1)(\varphi_1)_p^j.\end{aligned}$$

4217 We consider the following chain of reduction:

$$\begin{aligned}\sum_{s=1}^{n_e} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j,k} [W]_p^{(G,s)} &= \sum_{s \neq i} \sum_{p=1}^D \Phi_{(G,s):p}^{(A,i):j,k} [W]_p^{(G,s)} + \sum_{p=1}^D \Phi_{(G,i):p}^{(A,i):j,k} [W]_p^{(G,i)} \\ &= \sum_{s \neq i} \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,s)} - (n_e - 1) \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)} \\ &= \left( \sum_{s \neq i} \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,s)} + \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)} \right) - n_e \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)} \\ &= \sum_{s=1}^{n_e} \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,s)} - n_e \sum_{p=1}^D (\varphi_1)_p^j [W]_p^{(G,i)}.\end{aligned}$$

4231 Define  $(\varphi_1)_p^j = \left( \Phi_{(G,\bullet):p}^{(A,\bullet):j,\bullet} \right)_1$ , this concludes the proof of the proposition.  $\square$   
4232

4233 **Corollary H.5.** *Under the parameter sharing constraint:*

$$\begin{cases} \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} &= 0, \\ \Phi_{(G,s)}^{(G,i):j} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i)):j}, \end{cases}$$

4238 we can write the summation

$$\sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} [b]^{(G,s)} = \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^{(G,\bullet):j} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(G,\bullet):j} \right)_1 [b]^{(G,i)}.$$

4243 *Proof.* Applying Proposition H.4 with  $D = 1$  and renaming the index, we conclude the proof of the  
4244 Corollary.  $\square$

## 4245 H.2 EQUIVARIANT LAYERS WITH BULLET NOTATION

4246 1. Weight sharing form for  $[E(W)]_{j,k}^{(Q,i)}$ .

4247 From Equation 206:

$$\Phi_{(Q,i):p,k}^{(Q,i):j,k} = \Phi_{(Q,\tau(i)):p,k'}^{(Q,\tau(i)):j,k'}. \quad (221)$$

4248 Since the constraint is satisfied with any  $\tau$ , we obtain the following weight sharing form:

$$[E(W)]_{j,k}^{(Q,i)} = \sum_{p=1}^D \Phi_{(Q,\bullet):p,\bullet}^{(Q,\bullet):j,\bullet} [W]_{p,k}^{(Q,i)}.$$

4249 2. Weight sharing form for  $[E(W)]_{j,k}^{(K,i)}$ .

4250 From Equation 207:

$$\Phi_{(K,i):p,k}^{(K,i):j,k} = \Phi_{(K,\tau(i)):p,k'}^{(K,\tau(i)):j,k'}. \quad (222)$$

4251 Similarly, we obtain the weight sharing form:

$$[E(W)]_{j,k}^{(K,i)} = \sum_{p=1}^D \Phi_{(K,\bullet):p,\bullet}^{(K,\bullet):j,\bullet} [W]_{p,k}^{(K,i)}.$$

4266 3. Weight sharing form for  $[E(W)]_{j,k}^{(V,i)}$ .  
4267  
4268 From Equation 208:

$$\Phi_{(V,i):p,k}^{(V,i):j,k} = \Phi_{(V,\tau(i)):p,k'}^{(V,\tau(i)):j,k'}. \quad (223)$$

4271 We obtain the weight sharing form:

$$[E(W)]_{j,k}^{(V,i)} = \sum_{p=1}^D \Phi_{(V,\bullet):p,\bullet}^{(V,\bullet):j,\bullet} [W]_{p,k}^{(V,i)}.$$

4276 4. Weight sharing form for  $[E(W)]_{j,k}^{(O,i)}$ .  
4277  
4278 From Equation 209:

$$\Phi_{(O,i):j',q}^{(O,i):j',k} = \Phi_{(O,\tau(i)):j',q}^{(O,\tau(i)):j,k}. \quad (224)$$

4281 We obtain the weight sharing form:

$$[E(W)]_{j,k}^{(O,i)} = \sum_{q=1}^D \Phi_{(O,\bullet):\bullet,q}^{(O,\bullet):\bullet,k} [W]_{j,k}^{(O,i)}.$$

4287 5. Weight sharing form for  $[E(W)]_j^{(G,i)}$ .  
4288  
4289 From Equation 210:

$$\begin{aligned} \Phi_{(QK,s):p,q}^{(G,i):j} &= \Phi_{(QK,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\ \Phi_{(VO,s):p,q}^{(G,i):j} &= \Phi_{(VO,\tau_h(s)):p,q}^{(G,\tau_e(i)):j}, \\ \Phi_{(A,s):p,q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\ \Phi_{(B,s):p,q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):\pi_e^{(\tau_e(s))}(p),q}^{(G,\tau_e(i)):j}, \\ \Phi_{(A,s):q}^{(G,i):j} &= \Phi_{(A,\tau_e(s)):\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i)):j}, \\ \Phi_{(B,s):q}^{(G,i):j} &= \Phi_{(B,\tau_e(s)):q}^{(G,\tau_e(i)):j}, \\ \Phi_1^{(G,i):j} &= \Phi_1^{(G,\tau_e(i)):j}, \\ \begin{cases} \Phi_{(G,s):p}^{(G,i):j} &= \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i)):j}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(G,i):j} &= 0 \quad (p \neq j), \\ \sum_{s=1}^{n_e} \Phi_{(G,s):j}^{(G,i):j} &= 1, \end{cases} \\ \begin{cases} \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i):j} &= 0, \\ \Phi_{(G,s)}^{(G,i):j} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i)):j}. \end{cases} \end{aligned}$$

4311 Using Proposition H.1 and Corollary H.5, we obtain the weight sharing form:

$$\begin{aligned} [E(W)]_j^{(G,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^{(G,\bullet):j} [WW]_{p,q}^{(QK,s)} \\ &\quad + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^{(G,\bullet):j} [WW]_{p,q}^{(VO,s)} \\ &\quad + [W]_j^{(G,i)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(G,\bullet):j} \right)_1 [W]_p^{(G,s)} - n_e \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(G,\bullet):j} \right)_1 [W]_p^{(G,i)} \end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(G, \bullet):j} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(G, \bullet):j} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet): \bullet, q}^{(G, \bullet):j} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet): \bullet, q}^{(G, \bullet):j} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G, \bullet)}^{(G, \bullet):j} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G, \bullet)}^{(G, \bullet):j} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet): \bullet}^{(G, \bullet):j} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet): \bullet}^{(G, \bullet):j} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B, \bullet):q}^{(G, \bullet):j} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B, \bullet):q}^{(G, \bullet):j} \right)_1 [b]_q^{(B,i)} \\
& + \Phi_1^{(G, \bullet):j}.
\end{aligned}$$

6. Weight sharing form for  $[E(W)]_{j,k}^{(A,i)}$ .

From Equation 211:

$$\begin{aligned}
\Phi_{(QK,s):p,q}^{(A,i):j,k} &= \Phi_{(QK, \tau_h(s)):p,q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(VO,s):p,q}^{(A,i):j,k} &= \Phi_{(VO, \tau_h(s)):p,q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(A,s):p,q}^{(A,i):j,k} &= \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(B,s):p,q}^{(A,i):j,k} &= \Phi_{(B, \tau_e(s)): \pi_e^{(\tau_e(s))}(p), q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(A,s):q}^{(A,i):j,k} &= \Phi_{(A, \tau_e(s)): \pi_e^{(\tau_e(s))}(q)}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_{(B,s):q}^{(A,i):j,k} &= \Phi_{(B, \tau_e(s)):q}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
\Phi_1^{(A,i):j,k} &= \Phi_1^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\
& \left\{ \begin{array}{ll} \Phi_{(G,s):p}^{(A,i):j,k} &= \Phi_{(G, \tau_e(s)):p}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(A,i):j,k} &= 0, \end{array} \right. \\
& \left\{ \begin{array}{ll} \Phi_{(G,s)}^{(A,i):j,k} &= \Phi_{(G, \tau_e(s))}^{(A, \tau_e(i)):j, \pi_e^{(\tau_e(i))}(k)}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(A,i):j,k} &= 0. \end{array} \right.
\end{aligned}$$

Using Proposition H.4 and Corollary H.5, we obtain the weight sharing form:

$$\begin{aligned}
[E(W)]_{j,k}^{(A,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(QK, \bullet):p, q}^{(A, \bullet):j, \bullet} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(VO, \bullet):p, q}^{(A, \bullet):j, \bullet} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G, \bullet):p}^{(A, \bullet):j, \bullet} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G, \bullet):p}^{(A, \bullet):j, \bullet} \right)_1 [W]_p^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_2 [W]_{p,q}^{(A,i)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_3 [W]_{p,k}^{(A,s)} + \sum_{p=1}^D \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_4 [W]_{p,k}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, \bullet, q}^{(A, \bullet):j, \bullet} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, \bullet, q}^{(A, \bullet):j, \bullet} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, \bullet, q}^{(A, \bullet):j, \bullet} \right)_3 [W]_{k,q}^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, \bullet, q}^{(A, \bullet):j, \bullet} \right)_4 [W]_{k,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G, \bullet)}^{(A, \bullet):j, \bullet} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G, \bullet)}^{(A, \bullet):j, \bullet} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_3 [b]_k^{(A,s)} + \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_4 [b]_k^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, \bullet}^{(A, \bullet):j, \bullet} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(A, \bullet):j, \bullet}.
\end{aligned}$$

7. Weight sharing form for  $[E(W)]_{j,k}^{(B,i)}$ .

From Equation 212:

$$\begin{aligned}
\Phi_{(QK,s):p,q}^{(B,i):j,k} &= \Phi_{(QK, \tau_h(s)):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\
\Phi_{(VO,s):p,q}^{(B,i):j,k} &= \Phi_{(VO, \tau_h(s)):p, q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\
\Phi_{(A,s):p,q}^{(B,i):j,k} &= \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\
\Phi_{(B,s):p,q}^{(B,i):j,k} &= \Phi_{(B, \tau_e(s)): \pi_e^{(\tau_e(s))}(p), q}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\
\Phi_{(A,s):q}^{(B,i):j,k} &= \Phi_{(A, \tau_e(s)): \pi_e^{(\tau_e(s))}(q)}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\
\Phi_1^{(B,i):j,k} &= \Phi_1^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\
& \left\{ \begin{array}{l} \Phi_{(G,s):p}^{(B,i):j,k} = \Phi_{(G, \tau_e(s)):p}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(B,i):j,k} = 0, \end{array} \right. \\
& \left\{ \begin{array}{l} \Phi_{(G,s)}^{(B,i):j,k} = \Phi_{(G, \tau_e(s))}^{(B, \tau_e(i)): \pi_e^{(\tau_e(i))}(j), k}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(B,i):j,k} = 0. \end{array} \right.
\end{aligned}$$

Using Corollary H.5, we obtain the weight sharing form:

$$\begin{aligned}
[E(W)]_{j,k}^{(B,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK, \bullet):p, q}^{(B, \bullet): \bullet, k} [WW]_{p,q}^{(QK,s)} \\
&+ \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO, \bullet):p, q}^{(B, \bullet): \bullet, k} [WW]_{p,q}^{(VO,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G, \bullet):p}^{(B, \bullet): \bullet, k} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G, \bullet):p}^{(B, \bullet): \bullet, k} \right)_1 [W]_p^{(G,i)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_3 [W]_{p,j}^{(A,s)} + \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_4 [W]_{p,j}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_3 [W]_{j,q}^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_4 [W]_{j,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^{(B,\bullet):\bullet,k} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(B,\bullet):\bullet,k} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_3 [b]_j^{(A,s)} + \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_4 [b]_j^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):\bullet,k} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):\bullet,k} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(B,\bullet):\bullet,k}.
\end{aligned}$$

8. Weight sharing form for  $[E(b)]^{(G,i)}$ .

From Equation 213:

$$\begin{aligned}
\Phi_{(QK,s):p,q}^{(G,i)} &= \Phi_{(QK,\tau_h(s)):p,q}^{(G,\tau_e(i))}, \\
\Phi_{(VO,s):p,q}^{(G,i)} &= \Phi_{(VO,\tau_h(s)):p,q}^{(G,\tau_e(i))}, \\
\Phi_{(A,s):p,q}^{(G,i)} &= \Phi_{(A,\tau_e(s)):p,\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i))}, \\
\Phi_{(B,s):p,q}^{(G,i)} &= \Phi_{(B,\tau_e(s)):\pi_e^{(\tau_e(s))}(p),q}^{(G,\tau_e(i))}, \\
\Phi_{(A,s):q}^{(G,i)} &= \Phi_{(A,\tau_e(s)):\pi_e^{(\tau_e(s))}(q)}^{(G,\tau_e(i))}, \\
\Phi_{(B,s):q}^{(G,i)} &= \Phi_{(B,\tau_e(s)):q}^{(G,\tau_e(i))}, \\
\Phi_1^{(G,i)} &= \Phi_1^{(G,\tau_e(i))}, \\
& \begin{cases} \Phi_{(G,s):p}^{(G,i)} &= \Phi_{(G,\tau_e(s)):p}^{(G,\tau_e(i))}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):p}^{(G,i)} &= 0, \end{cases} \\
& \begin{cases} \Phi_{(G,s)}^{(G,i)} &= \Phi_{(G,\tau_e(s))}^{(G,\tau_e(i))}, \\ \sum_{s=1}^{n_e} \Phi_{(G,s)}^{(G,i)} &= 1. \end{cases}
\end{aligned}$$

Using Proposition H.4 and Corollary H.3, we obtain the weight sharing form:

$$\begin{aligned}
[E(b)]^{(G,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(QK,\bullet):p,q}^{(G,\bullet)} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(VO,\bullet):p,q}^{(G,\bullet)} [WW]_{p,q}^{(VO,s)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G, \bullet):p}^{(G, \bullet)} \right)_1 [W]_p^{(G, s)} - \sum_{p=1}^D n_e \left( \Phi_{(G, \bullet):p}^{(G, \bullet)} \right)_1 [W]_p^{(G, i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \bullet):p, \bullet}^{(G, \bullet)} [W]_{p, q}^{(A, s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \bullet):p, \bullet}^{(G, \bullet)} [W]_{p, q}^{(A, i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, q}^{(G, \bullet)} \right) [W]_{p, q}^{(B, s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, q}^{(G, \bullet)} \right) [W]_{p, q}^{(B, i)} \\
& + [b]^{(G, i)} + \sum_{s=1}^{n_e} \left( \Phi_{(G, \bullet)}^{(G, \bullet)} \right)_1 [b]^{(G, s)} - n_e \left( \Phi_{(G, \bullet)}^{(G, \bullet)} \right)_1 [b]^{(G, i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, q}^{(G, \bullet)} \right)_1 [b]_q^{(A, s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, q}^{(G, \bullet)} \right)_2 [b]_q^{(A, i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, q}^{(G, \bullet)} \right)_1 [b]_q^{(B, s)} + \sum_{q=1}^D \left( \Phi_{(B, \bullet):p, q}^{(G, \bullet)} \right)_2 [b]_q^{(B, i)} \\
& + \Phi_1^{(G, \bullet)}.
\end{aligned}$$

9. Weight sharing form for  $[E(b)]_j^{(A, i)}$ .

From Equation 214:

$$\begin{aligned}
\Phi_{(QK, s):p, q}^{(A, i):j} &= \Phi_{(QK, \tau_h(s)):p, q}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(VO, s):p, q}^{(A, i):j} &= \Phi_{(VO, \tau_h(s)):p, q}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(A, s):p, q}^{(A, i):j} &= \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(B, s):p, q}^{(A, i):j} &= \Phi_{(B, \tau_e(s)):\pi_e^{(\tau_e(s))}(p), q}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(A, s):q}^{(A, i):j} &= \Phi_{(A, \tau_e(s)):\pi_e^{(\tau_e(s))}(q)}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
\Phi_{(B, s):q}^{(A, i):j} &= \Phi_{(B, \tau_e(s)):q}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
\Phi_1^{(A, i):j} &= \Phi_1^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\
& \left\{ \begin{array}{l} \Phi_{(G, s):p}^{(A, i):j} = \Phi_{(G, \tau_e(s)):p}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\ \sum_{s=1}^{n_e} \Phi_{(G, s):p}^{(A, i):j} = 0, \end{array} \right. \\
& \left\{ \begin{array}{l} \Phi_{(G, s)}^{(A, i):j} = \Phi_{(G, \tau_e(s))}^{(A, \tau_e(i)):\pi_e^{(\tau_e(i))}(j)}, \\ \sum_{s=1}^{n_e} \Phi_{(G, s)}^{(A, i):j} = 0. \end{array} \right.
\end{aligned}$$

Using Corollary H.5, we obtain the weight sharing form:

$$\begin{aligned}
[E(b)]_j^{(A, i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(QK, \bullet):p, q}^{(A, \bullet):\bullet} [WW]_{p, q}^{(QK, s)} \\
&+ \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(VO, \bullet):p, q}^{(A, \bullet):\bullet} [WW]_{p, q}^{(VO, s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G, \bullet):p}^{(A, \bullet):\bullet} \right)_1 [W]_p^{(G, s)} - \sum_{p=1}^D n_e \left( \Phi_{(G, \bullet):p}^{(A, \bullet):\bullet} \right)_1 [W]_p^{(G, i)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet): \bullet} \right)_1 [W]_{p, q}^{(A, s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet): \bullet} \right)_2 [W]_{p, q}^{(A, i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet): \bullet} \right)_3 [W]_{p, j}^{(A, s)} + \sum_{p=1}^D \left( \Phi_{(A, \bullet):p, \bullet}^{(A, \bullet): \bullet} \right)_4 [W]_{p, j}^{(A, i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet): \bullet, q}^{(A, \bullet): \bullet} \right)_1 [W]_{p, q}^{(B, s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B, \bullet): \bullet, q}^{(A, \bullet): \bullet} \right)_2 [W]_{p, q}^{(B, i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B, \bullet): \bullet, q}^{(A, \bullet): \bullet} \right)_3 [W]_{j, q}^{(B, s)} + \sum_{q=1}^D \left( \Phi_{(B, \bullet): \bullet, q}^{(A, \bullet): \bullet} \right)_4 [W]_{j, q}^{(B, i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G, \bullet)}^{(A, \bullet): \bullet} \right)_1 [b]^{(G, s)} - n_e \left( \Phi_{(G, \bullet)}^{(A, \bullet): \bullet} \right)_1 [b]^{(G, i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet): \bullet}^{(A, \bullet): \bullet} \right)_1 [b]_q^{(A, s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A, \bullet): \bullet}^{(A, \bullet): \bullet} \right)_2 [b]_q^{(A, i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(A, \bullet): \bullet}^{(A, \bullet): \bullet} \right)_3 [b]_j^{(A, s)} + \left( \Phi_{(A, \bullet): \bullet}^{(A, \bullet): \bullet} \right)_4 [b]_j^{(A, i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B, \bullet): q}^{(A, \bullet): \bullet} \right)_1 [b]_q^{(B, s)} + \sum_{q=1}^D \left( \Phi_{(B, \bullet): q}^{(A, \bullet): \bullet} \right)_2 [b]_q^{(B, i)} \\
& + \Phi_1^{(A, \bullet): \bullet}.
\end{aligned}$$

10. Weight sharing form for  $[E(b)]_j^{(B, i)}$ .

From Equation 215:

$$\begin{aligned}
\Phi_{(QK, s):p, q}^{(B, i):j} &= \Phi_{(QK, \tau_h(s)):p, q}^{(B, \tau_e(i)):j}, \\
\Phi_{(VO, s):p, q}^{(B, i):j} &= \Phi_{(VO, \tau_h(s)):p, q}^{(B, \tau_e(i)):j}, \\
\Phi_{(A, s):p, q}^{(B, i):j} &= \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(B, \tau_e(i)):j}, \\
\Phi_{(B, s):p, q}^{(B, i):j} &= \Phi_{(B, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(p, q)}^{(B, \tau_e(i)):j}, \\
\Phi_{(A, s):q}^{(B, i):j} &= \Phi_{(A, \tau_e(s)):p, \pi_e^{(\tau_e(s))}(q)}^{(B, \tau_e(i)):j}, \\
\Phi_{(B, s):q}^{(B, i):j} &= \Phi_{(B, \tau_e(s)):q}^{(B, \tau_e(i)):j}, \\
\Phi_1^{(B, i):j} &= \Phi_1^{(B, \tau_e(i)):j}, \\
& \begin{cases} \Phi_{(G, s):p}^{(B, i):j} &= \Phi_{(G, \tau_e(s)):p}^{(B, \tau_e(i)):j}, \\ \sum_{s=1}^{n_e} \Phi_{(G, s):p}^{(B, i):j} &= 0, \end{cases} \\
& \begin{cases} \Phi_{(G, s)}^{(B, i):j} &= \Phi_{(G, \tau_e(s))}^{(B, \tau_e(i)):j}, \\ \sum_{s=1}^{n_e} \Phi_{(G, s)}^{(B, i):j} &= 0. \end{cases}
\end{aligned}$$

Using Corollary H.5, we obtain the weight sharing form:

$$\begin{aligned}
[E(b)]_j^{(B, i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(QK, \bullet):p, q}^{(B, \bullet):j} [WW]_{p, q}^{(QK, s)} \\
&+ \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(VO, \bullet):p, q}^{(B, \bullet):j} [WW]_{p, q}^{(VO, s)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(B,\bullet):j} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G,\bullet):p}^{(B,\bullet):j} \right)_1 [W]_p^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):j} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):j} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):j} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):j} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \left( \Phi_{(G,\bullet)}^{(B,\bullet):j} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(B,\bullet):j} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):j} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):j} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):j} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):j} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(B,\bullet):j}.
\end{aligned}$$

### H.3 INVARIANT LAYERS WITH BULLET NOTATION

From Equation 219:

$$\begin{aligned}
\Phi_{(QK,s):p,q}^i &= \Phi_{(QK,\tau_h(s)):p,q}^i, \\
\Phi_{(VO,s):p,q}^i &= \Phi_{(VO,\tau_h(s)):p,q}^i, \\
\Phi_{(Q,s):p,q}^i &= 0, \\
\Phi_{(K,s):p,q}^i &= 0, \\
\Phi_{(V,s):p,q}^i &= 0, \\
\Phi_{(O,s):p,q}^i &= 0, \\
\Phi_{(A,s):p,q}^i &= \Phi_{(A,\tau_e(s)):\pi_e^{(s)}(p),\pi_e^{(s)}(q)}^i, \\
\Phi_{(B,s):p,q}^i &= \Phi_{(B,\tau_e(s)):\pi_e^{(s)}(p),q}^i, \\
\Phi_{(A,s):q}^i &= \Phi_{(A,\tau_e(s)):\pi_e^{(s)}(q)}^i, \\
\Phi_{(B,s):q}^i &= \Phi_{(B,\tau_e(s)):\pi_e^{(s)}(q)}^i, \\
\left\{ \begin{array}{l} \Phi_{(G,s):p}^i = \Phi_{(G,\tau_e(s)):\pi_e^{(s)}(p)}^i, \\ \sum_{s=1}^{n_e} \Phi_{(G,s):p}^i = 0, \end{array} \right. \\
\left\{ \begin{array}{l} \Phi_{(G,s)}^i = \Phi_{(G,\tau_e(s))}^i, \\ \sum_{s=1}^{n_e} \Phi_{(G,s)}^i = 0. \end{array} \right.
\end{aligned}$$

Which results in the weight sharing form:

$$\begin{aligned}
I(U)_i &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^i [WW]_{p,q}^{(QK,s)} \\
&+ \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^i [WW]_{p,q}^{(VO,s)}
\end{aligned}$$

Table 8: Summary of key dimensions involved in the implementation

| Symbol      | Description                                                                    |
|-------------|--------------------------------------------------------------------------------|
| $d$         | Number of input channels for the equivariant and invariant layer               |
| $e$         | Number of output channels for the equivariant and invariant layer              |
| $D$         | Embedding dimension of the input and output sequences of the transformer block |
| $D_k = D_q$ | Embedding dimension for key and query vectors in the transformer block         |
| $D_v$       | Embedding dimension for value vectors in the transformer block                 |
| $D_e$       | MoE hidden dimension                                                           |
| $h$         | Number of attention heads in the transformer block                             |
| $b$         | Batch size                                                                     |
| $n_e$       | Number of experts in MoE layer                                                 |
| $D'$        | Embedding dimension of the invariant layer's output                            |

Table 9: Shapes of input terms used in the implementation

| Term                  | Shape                 |
|-----------------------|-----------------------|
| $[W]_{p,q}^{(Q,i)}$   | $[b, d, h, D, D_q]$   |
| $[W]_{p,q}^{(K,i)}$   | $[b, d, h, D, D_k]$   |
| $[W]_{p,q}^{(V,i)}$   | $[b, d, h, D, D_v]$   |
| $[W]_{p,q}^{(O,i)}$   | $[b, d, h, D_v, D]$   |
| $[W]_p^{(G,s)}$       | $[b, d, n_e, D]$      |
| $[b]_q^{(G,s)}$       | $[b, d, n_e]$         |
| $[WW]_{p,q}^{(QK,i)}$ | $[b, d, h, D, D]$     |
| $[WW]_{p,q}^{(VO,i)}$ | $[b, d, h, D, D]$     |
| $[W]_{p,q}^{(A,s)}$   | $[b, d, n_e, D, D_e]$ |
| $[b]_q^{(A,s)}$       | $[b, d, n_e, D_e]$    |
| $[W]_{p,q}^{(B,s)}$   | $[b, d, n_e, D_e, D]$ |
| $[b]_q^{(B,s)}$       | $[b, d, n_e, D]$      |

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^i - \frac{1}{n_e} \sum_{s=1}^{n_e} \Phi_{(G,\bullet):p}^i \right) [W]_p^{(G,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^{D_A} \Phi_{(A,\bullet):p,\bullet}^i [W]_{p,q}^{(A,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B,\bullet):\bullet,q}^i [W]_{p,q}^{(B,s)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^i - \frac{1}{n_e} \sum_{s=1}^{n_e} \Phi_{(G,\bullet)}^i \right) [b]^{(G,s)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A,\bullet):\bullet}^i [b]_q^{(A,s)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B,\bullet):q}^i [b]_q^{(B,s)} \\
& + \Phi_1^i.
\end{aligned}$$

4698    **H.4 EQUIVARIANT LAYERS PSEUDOCODE**  
 4699  
 4700    **H.4.1  $[E(W)]_{j,k}^{(Q,i)}$  PSEUDOCODE**  
 4701  
 4702     $[E(W)]_{j,k}^{(Q,i)} = \sum_{p=1}^D \Phi_{(Q,\bullet):p,\bullet}^{(Q,\bullet):j,\bullet} [W]_{p,k}^{(Q,i)}.$   
 4703  
 4704  
 4705    •  $\Phi_{(Q,\bullet):p,\bullet}^{(Q,\bullet):j,\bullet} [W]_{p,k}^{(Q,i)}$   
 4706       **Shapes:**  
 4707        $[W]_{p,k}^{(Q,i)} : [b, d, h, D, D]$   
 4708        $\Phi_{(Q,\bullet):p,\bullet}^{(Q,\bullet):j,\bullet} : [e, d, D, D].$   
 4709  
 4710       **Pseudocode:** einsum( $bdkhp$ ,  $edjp$  →  $behjk$ )  
 4711  
 4712  
 4713    **H.4.2  $[E(W)]_{j,k}^{(K,i)}$  PSEUDOCODE**  
 4714  
 4715     $[E(W)]_{j,k}^{(K,i)} = \sum_{p=1}^D \Phi_{(K,\bullet):p,\bullet}^{(K,\bullet):j,\bullet} [W]_{p,k}^{(K,i)}.$   
 4716  
 4717  
 4718    •  $\Phi_{(K,\bullet):p,\bullet}^{(K,\bullet):j,\bullet} [W]_{p,k}^{(K,i)}$   
 4719       **Shapes:**  
 4720        $[W]_{p,k}^{(K,i)} : [b, d, h, D, D]$   
 4721        $\Phi_{(K,\bullet):p,\bullet}^{(K,\bullet):j,\bullet} : [e, d, D, D]$   
 4722       **Pseudocode:** einsum( $bdkhp$ ,  $edjp$  →  $behjk$ )  
 4723  
 4724  
 4725    **H.4.3  $[E(W)]_{j,k}^{(V,i)}$  PSEUDOCODE**  
 4726  
 4727     $[E(W)]_{j,k}^{(V,i)} = \sum_{p=1}^D \Phi_{(V,\bullet):p,\bullet}^{(V,\bullet):j,\bullet} [W]_{p,k}^{(V,i)}.$   
 4728  
 4729  
 4730    •  $\Phi_{(V,\bullet):p,\bullet}^{(V,\bullet):j,\bullet} [W]_{p,k}^{(V,i)}$   
 4731       **Shapes:**  
 4732        $[W]_{p,k}^{(V,i)} : [b, d, h, D, D]$   
 4733        $\Phi_{(V,\bullet):p,\bullet}^{(V,\bullet):j,\bullet} : [e, d, D, D]$   
 4734       **Pseudocode:** einsum( $bdkhp$ ,  $edjp$  →  $behjk$ )  
 4735  
 4736  
 4737  
 4738  
 4739  
 4740    **H.4.4  $[E(W)]_{j,k}^{(O,i)}$  PSEUDOCODE**  
 4741  
 4742     $[E(W)]_{j,k}^{(O,i)} = \sum_{q=1}^D \Phi_{(O,\bullet):\bullet,q}^{(O,\bullet):\bullet,k} [W]_{j,k}^{(O,i)}.$   
 4743  
 4744  
 4745    •  $\Phi_{(O,\bullet):p,\bullet}^{(O,\bullet):j,\bullet} [W]_{j,k}^{(O,i)}$   
 4746       **Shapes:**  
 4747        $[W]_{j,k}^{(O,i)} : [b, d, h, D_v, D]$   
 4748        $\Phi_{(O,\bullet):\bullet,q}^{(O,\bullet):\bullet,k} : [e, d, D, D].$   
 4749  
 4750  
 4751       **Pseudocode:** einsum( $bdkhp$ ,  $edkq$  →  $behkq$ )

4752 H.4.5  $[E(W)]_j^{(G,i)}$  PSEUDOCOI  
4753

$$\begin{aligned}
& [E(W)]_j^{(G,i)} = \sum_{p=1}^D \sum_{q=1}^D \sum_{s=1}^h \Phi_{(QK,\bullet):p,q}^{(G,\bullet):j} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{p=1}^D \sum_{q=1}^D \sum_{s=1}^h \Phi_{(VO,\bullet):p,q}^{(G,\bullet):j} [WW]_{p,q}^{(VO,s)} \\
& + [W]_j^{(G,i)} + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(G,\bullet):j} \right)_1 [W]_p^{(G,s)} - n_e \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(G,\bullet):j} \right)_1 [W]_p^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet,q}^{(G,\bullet):j} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet,q}^{(G,\bullet):j} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(G,\bullet):j} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(G,\bullet):j} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^{(G,\bullet):j} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(G,\bullet):j} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(G,\bullet):j} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(G,\bullet):j} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(G,\bullet):j} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(G,\bullet):j} \right)_1 [b]_q^{(B,i)} \\
& + \Phi_1^{(G,\bullet):j}.
\end{aligned}$$

**Shapes and pseudocode:** See Table 10.

#### H.4.6 $[E(W)]_{j,k}^{(A,i)}$ PSEUDOCODE

$$\begin{aligned}
& [E(W)]_{j,k}^{(A,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^{(A,\bullet):j,\bullet} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^{(A,\bullet):j,\bullet} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(A,\bullet):j,\bullet} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G,\bullet):p}^{(A,\bullet):j,\bullet} \right)_1 [W]_p^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet} \right)_3 [W]_{p,k}^{(A,s)} + \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet} \right)_4 [W]_{p,k}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet} \right)_3 [W]_{k,q}^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet} \right)_4 [W]_{k,q}^{(B,i)}
\end{aligned}$$

| 4806 | Input                 | Input shape           | Weight                                                        | Weight shape      | Einsum                                   |
|------|-----------------------|-----------------------|---------------------------------------------------------------|-------------------|------------------------------------------|
| 4807 | $[WW]_{p,q}^{(QK,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(QK,\bullet):p,q}^{(G,\bullet):j}$                     | $[e, d, D, D, D]$ | $(bdhpq, edjpq \rightarrow bej).usq(-2)$ |
| 4808 | $[WW]_{p,q}^{(VO,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(VO,\bullet):p,q}^{(G,\bullet):j}$                     | $[e, d, D, D, D]$ | $(bdhpq, edjpq \rightarrow bej).usq(-2)$ |
| 4809 | $[W]_p^{(G,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(G,\bullet):p}^{(G,\bullet):j}\right)_1$         | $[e, d, D, D]$    | $(bdnp, edpq \rightarrow beq).usq(-2)$   |
| 4810 | $[W]_p^{(G,s)}$       | $[b, d, n_e, D]$      | $n_e \left(\Phi_{(G,\bullet):p}^{(G,\bullet):j}\right)_1$     | $[e, d, D, D]$    | $(bdnp, edpq \rightarrow benq)$          |
| 4811 | $[W]_{p,q}^{(A,s)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):\bullet,q}^{(G,\bullet):j}\right)_1$ | $[e, d, D, D_e]$  | $(bdnpq, edjq \rightarrow bej).usq(-2)$  |
| 4812 | $[W]_{p,q}^{(A,i)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):\bullet,q}^{(G,\bullet):j}\right)_2$ | $[e, d, D, D_e]$  | $(bdnpq, edjq \rightarrow benj)$         |
| 4813 | $[W]_{p,q}^{(B,s)}$   | $[b, d, n_e, D_e, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(G,\bullet):j}\right)_1$ | $[e, d, D, D]$    | $(bdnpq, edjq \rightarrow bej).usq(-2)$  |
| 4814 | $[W]_{p,q}^{(B,i)}$   | $[b, d, n_e, D_e, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(G,\bullet):j}\right)_2$ | $[e, d, D, D]$    | $(bdnpq, edjq \rightarrow benj)$         |
| 4815 | $[b]^{(G,s)}$         | $[b, d, n_e]$         | $\left(\Phi_{(G,\bullet)}^{(G,\bullet):j}\right)_1$           | $[e, d, D]$       | $(bdn, edj \rightarrow bej).usq(-2)$     |
| 4816 | $[b]^{(G,s)}$         | $[b, d, n_e]$         | $n_e \left(\Phi_{(G,\bullet)}^{(G,\bullet):j}\right)_1$       | $[e, d, D]$       | $(bdn, edj \rightarrow benj)$            |
| 4817 | $[b]_q^{(A,s)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(G,\bullet):j}\right)_1$   | $[e, d, D]$       | $(bdnq, edj \rightarrow bej).usq(-2)$    |
| 4818 | $[b]_q^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(G,\bullet):j}\right)_2$   | $[e, d, D]$       | $(bdnq, edj \rightarrow benj)$           |
| 4819 | $[b]_q^{(B,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(G,\bullet):j}\right)_1$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow bej).usq(-2)$   |
| 4820 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(G,\bullet):j}\right)_1$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow benj)$          |
| 4821 |                       |                       | $\Phi_1^{(G,\bullet):j}$                                      | $[e, D]$          | $(ej \rightarrow ej).usq(0).usq(-2)$     |

Table 10: Pseudocode for  $[E(W)]_j^{(G,i)}$ .

| 4860 | Input                 | Input shape           | Weight                                                                | Weight shape      | Einsum                                           |
|------|-----------------------|-----------------------|-----------------------------------------------------------------------|-------------------|--------------------------------------------------|
| 4861 | $[WW]_{p,q}^{(QK,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(QK,\bullet):p,q}^{(A,\bullet):j,\bullet}$                     | $[e, d, D, D, D]$ | $(bdhpq, edjpq \rightarrow bej).usq(-2).usq(-1)$ |
| 4862 | $[WW]_{p,q}^{(VO,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(VO,\bullet):p,q}^{(A,\bullet):j,\bullet}$                     | $[e, d, D, D, D]$ | $(bdhpq, edjpq \rightarrow bej).usq(-2).usq(-1)$ |
| 4863 | $[W]_p^{(G,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(G,\bullet):p}^{(A,\bullet):j,\bullet}\right)_1$         | $[e, d, D, D]$    | $(bdnp, edjp \rightarrow bej).usq(-2).usq(-1)$   |
| 4864 | $[W]_p^{(G,i)}$       | $[b, d, n_e, D]$      | $n_e \left(\Phi_{(G,\bullet):p}^{(A,\bullet):j,\bullet}\right)_1$     | $[e, d, D, D]$    | $(bdnp, edjp \rightarrow benj).usq(-1)$          |
| 4865 | $[W]_{p,q}^{(A,s)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet}\right)_1$ | $[e, d, D, D]$    | $(bdnpq, edjp \rightarrow bej).usq(-2).usq(-1)$  |
| 4866 | $[W]_{p,q}^{(A,i)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet}\right)_2$ | $[e, d, D, D]$    | $(bdnpq, edjp \rightarrow benj).usq(-1)$         |
| 4867 | $[W]_{p,k}^{(A,s)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet}\right)_3$ | $[e, d, D, D]$    | $(bdnpk, edjp \rightarrow bejk).usq(-3)$         |
| 4868 | $[W]_{p,k}^{(A,i)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):j,\bullet}\right)_4$ | $[e, d, D, D]$    | $(bdnpk, edjp \rightarrow benjk)$                |
| 4869 | $[W]_{p,q}^{(B,s)}$   | $[b, d, n_e, D_e, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet}\right)_1$ | $[e, d, D, D]$    | $(bdnpq, edjq \rightarrow bej).usq(-2).usq(-1)$  |
| 4870 | $[W]_{p,q}^{(B,i)}$   | $[b, d, n_e, D_e, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet}\right)_2$ | $[e, d, D, D]$    | $(bdnpq, edjq \rightarrow benj).usq(-1)$         |
| 4871 | $[W]_{k,q}^{(B,s)}$   | $[b, d, n_e, D_e, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet}\right)_3$ | $[e, d, D, D]$    | $(bdnkq, edjq \rightarrow bejk).usq(-3)$         |
| 4872 | $[W]_{k,q}^{(B,i)}$   | $[b, d, n_e, D_e, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):j,\bullet}\right)_4$ | $[e, d, D, D]$    | $(bdnkq, edjq \rightarrow benjk)$                |
| 4873 | $[b]^{(G,s)}$         | $[b, d, n_e]$         | $\Phi_{(G,\bullet)}^{(A,\bullet):j,\bullet}$                          | $[e, d, D]$       | $(bdn, edj \rightarrow bej).usq(-2).usq(-1)$     |
| 4874 | $[b]^{(G,s)}$         | $[b, d, n_e]$         | $n_e \Phi_{(G,\bullet)}^{(A,\bullet):j,\bullet}$                      | $[e, d, D]$       | $(bdn, edj \rightarrow benj).usq(-1)$            |
| 4875 | $[b]_q^{(A,s)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_1$   | $[e, d, D]$       | $(bdnq, edj \rightarrow bej).usq(-2).usq(-1)$    |
| 4876 | $[b]_q^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_2$   | $[e, d, D]$       | $(bdnq, edj \rightarrow benj).usq(-1)$           |
| 4877 | $[b]_k^{(A,s)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_3$   | $[e, d, D]$       | $(bdnk, edj \rightarrow bejk).usq(-3)$           |
| 4878 | $[b]_k^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_4$   | $[e, d, D]$       | $(bdnk, edj \rightarrow benjk)$                  |
| 4879 | $[b]_q^{(B,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_1$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow bej).usq(-2).usq(-1)$   |
| 4880 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_2$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow benj).usq(-1)$          |
| 4881 | $[b]_k^{(B,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_3$         | $[e, d, D, D]$    | $(bdnkq, edjq \rightarrow bejk).usq(-3)$         |
| 4882 | $[b]_k^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_4$         | $[e, d, D, D]$    | $(bdnkq, edjq \rightarrow benjk)$                |
| 4883 | $[b]^{(G,i)}$         | $[b, d, n_e]$         | $\Phi_{(G,\bullet)}^{(A,\bullet):j,\bullet}$                          | $[e, d, D]$       | $(bdn, edj \rightarrow bej).usq(-2).usq(-1)$     |
| 4884 | $[b]^{(G,i)}$         | $[b, d, n_e]$         | $n_e \Phi_{(G,\bullet)}^{(A,\bullet):j,\bullet}$                      | $[e, d, D]$       | $(bdn, edj \rightarrow benj).usq(-1)$            |
| 4885 | $[b]_q^{(A,s)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_1$   | $[e, d, D]$       | $(bdnq, edj \rightarrow bej).usq(-2).usq(-1)$    |
| 4886 | $[b]_q^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_2$   | $[e, d, D]$       | $(bdnq, edj \rightarrow benj).usq(-1)$           |
| 4887 | $[b]_k^{(A,s)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_3$   | $[e, d, D]$       | $(bdnk, edj \rightarrow bejk).usq(-3)$           |
| 4888 | $[b]_k^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_4$   | $[e, d, D]$       | $(bdnk, edj \rightarrow benjk)$                  |
| 4889 | $[b]^{(B,s)}$         | $[b, d, n_e]$         | $\Phi_{(B,\bullet)}^{(A,\bullet):j,\bullet}$                          | $[e, d, D]$       | $(bdn, edj \rightarrow bej).usq(-2).usq(-1)$     |
| 4890 | $[b]^{(B,s)}$         | $[b, d, n_e]$         | $n_e \Phi_{(B,\bullet)}^{(A,\bullet):j,\bullet}$                      | $[e, d, D]$       | $(bdn, edj \rightarrow benj).usq(-1)$            |
| 4891 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(B,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_1$   | $[e, d, D]$       | $(bdnq, edjq \rightarrow bej).usq(-2).usq(-1)$   |
| 4892 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(B,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_2$   | $[e, d, D]$       | $(bdnq, edjq \rightarrow benj).usq(-1)$          |
| 4893 | $[b]_k^{(B,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(B,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_3$   | $[e, d, D]$       | $(bdnkq, edjq \rightarrow bejk).usq(-3)$         |
| 4894 | $[b]_k^{(B,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(B,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_4$   | $[e, d, D]$       | $(bdnkq, edjq \rightarrow benjk)$                |
| 4895 | $[b]^{(B,i)}$         | $[b, d, n_e]$         | $\Phi_{(B,\bullet)}^{(A,\bullet):j,\bullet}$                          | $[e, d, D]$       | $(bdn, edj \rightarrow bej).usq(-2).usq(-1)$     |
| 4896 | $[b]^{(B,i)}$         | $[b, d, n_e]$         | $n_e \Phi_{(B,\bullet)}^{(A,\bullet):j,\bullet}$                      | $[e, d, D]$       | $(bdn, edj \rightarrow benj).usq(-1)$            |
| 4897 | $[b]_k^{(A,s)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_1$   | $[e, d, D]$       | $(bdnk, edj \rightarrow bejk).usq(-3)$           |
| 4898 | $[b]_k^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_2$   | $[e, d, D]$       | $(bdnk, edj \rightarrow benjk)$                  |
| 4899 | $[b]_k^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_3$   | $[e, d, D]$       | $(bdnk, edj \rightarrow bejk).usq(-3)$           |
| 4900 | $[b]_k^{(A,i)}$       | $[b, d, n_e, D_e]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet}\right)_4$   | $[e, d, D]$       | $(bdnk, edj \rightarrow benjk)$                  |
| 4901 | $[b]_q^{(B,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_1$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow bej).usq(-2).usq(-1)$   |
| 4902 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_2$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow benj).usq(-1)$          |
| 4903 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_3$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow benj).usq(-1)$          |
| 4904 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet}\right)_4$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow benj).usq(-1)$          |
| 4905 |                       |                       | $\Phi_1^{(A,\bullet):j,\bullet}$                                      | $[e, D]$          | $(ej \rightarrow ej).usq(0).usq(-2).usq(-1)$     |
| 4906 |                       |                       |                                                                       |                   |                                                  |

Table 11: Pseudocode for  $[E(W)]_{j,k}^{(A,i)}$ .

4907  
 4908  
 4909  
 4910  
 4911  
 4912  
 4913

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^{(A,\bullet):j,\bullet} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(A,\bullet):j,\bullet} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet} \right)_3 [b]_k^{(A,s)} + \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):j,\bullet} \right)_4 [b]_k^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(A,\bullet):j,\bullet} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(A,\bullet):j,\bullet}.
\end{aligned}$$

**Shapes and pseudocode:** See Table 11.

#### H.4.7 $[E(W)]_{j,k}^{(B,i)}$ PSEUDOCODE

$$\begin{aligned}
[E(W)]_{j,k}^{(B,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^{(B,\bullet):\bullet,k} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^{(B,\bullet):\bullet,k} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(B,\bullet):\bullet,k} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G,\bullet):p}^{(B,\bullet):\bullet,k} \right)_1 [W]_p^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_3 [W]_{p,j}^{(A,s)} + \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k} \right)_4 [W]_{p,j}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_3 [W]_{j,q}^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k} \right)_4 [W]_{j,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^{(B,\bullet):\bullet,k} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(B,\bullet):\bullet,k} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_3 [b]_j^{(A,s)} + \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k} \right)_4 [b]_j^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):\bullet,k} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):\bullet,k} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(B,\bullet):\bullet,k}.
\end{aligned}$$

**Shapes and pseudocode:** See Table 12.

| 4968 | Input                                        | Input shape           | Weight                                                                | Weight shape      | Einsum                                           |
|------|----------------------------------------------|-----------------------|-----------------------------------------------------------------------|-------------------|--------------------------------------------------|
| 4969 | $[WW]_{p,q}^{(QK,s)}$                        | $[b, d, h, D, D]$     | $\Phi_{(QK,\bullet):p,q}^{(B,\bullet):\bullet,k}$                     | $[e, d, D, D, D]$ | $(bdhpq, edkpq \rightarrow bek).usq(-2).usq(-2)$ |
| 4970 | $[WW]_{p,q}^{(VO,s)}$                        | $[b, d, h, D, D]$     | $\Phi_{(VO,\bullet):p,q}^{(B,\bullet):\bullet,k}$                     | $[e, d, D, D, D]$ | $(bdhpq, edkpq \rightarrow bek).usq(-2).usq(-2)$ |
| 4971 | $[W]_p^{(G,s)}$                              | $[b, d, n_e, D]$      | $\left(\Phi_{(G,\bullet):p}^{(B,\bullet):\bullet,k}\right)_1$         | $[e, d, D, D]$    | $(bdnp, edkp \rightarrow bek).usq(-2).usq(-2)$   |
| 4972 | $[W]_p^{(G,i)}$                              | $[b, d, n_e, D]$      | $n_e \left(\Phi_{(G,\bullet):p}^{(B,\bullet):\bullet,k}\right)_1$     | $[e, d, D, D]$    | $(bdnp, edkp \rightarrow benk).usq(-2)$          |
| 4973 | $[W]_{p,q}^{(A,s)}$                          | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k}\right)_1$ | $[e, d, D, D]$    | $(bdnpq, edkp \rightarrow bek).usq(-2).usq(-2)$  |
| 4974 | $[W]_{p,q}^{(A,i)}$                          | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k}\right)_2$ | $[e, d, D, D]$    | $(bdnpq, edkp \rightarrow benk).usq(-2)$         |
| 4975 | $[W]_{p,j}^{(A,s)}$                          | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k}\right)_3$ | $[e, d, D, D]$    | $(bdnpj, edkp \rightarrow bejk).usq(-3)$         |
| 4976 | $[W]_{p,j}^{(A,i)}$                          | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):\bullet,k}\right)_4$ | $[e, d, D, D]$    | $(bdnpj, edkp \rightarrow benjk)$                |
| 4977 | $[W]_{p,q}^{(B,s)}$                          | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k}\right)$   | $[e, d, D, D]$    | $(bdnpq, edkq \rightarrow bek).usq(-2).usq(-2)$  |
| 4978 | $[W]_{p,q}^{(B,i)}$                          | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k}\right)$   | $[e, d, D, D]$    | $(bdnpq, edkq \rightarrow benk).usq(-2)$         |
| 4979 | $[W]_{j,q}^{(B,s)}$                          | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k}\right)$   | $[e, d, D, D]$    | $(bdnjq, edkq \rightarrow bejk).usq(-3)$         |
| 4980 | $[W]_{j,q}^{(B,i)}$                          | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):\bullet,k}\right)$   | $[e, d, D, D]$    | $(bdnjq, edkq \rightarrow benjk)$                |
| 4981 | $[b]^{(G,s)}$                                | $[b, d, n_e]$         | $\left(\Phi_{(G,\bullet)}^{(B,\bullet):\bullet,k}\right)_1$           | $[e, d, D]$       | $(bdn, edk \rightarrow bek).usq(-2).usq(-2)$     |
| 4982 | $[b]^{(G,i)}$                                | $[b, d, n_e]$         | $n_e \left(\Phi_{(G,\bullet)}^{(B,\bullet):\bullet,k}\right)_1$       | $[e, d, D]$       | $(bdn, edk \rightarrow benk).usq(-2)$            |
| 4983 | $[b]_q^{(A,s)}$                              | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k}\right)_1$   | $[e, d, D]$       | $(bdnq, edk \rightarrow bek).usq(-2).usq(-2)$    |
| 4984 | $[b]_q^{(A,i)}$                              | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k}\right)_2$   | $[e, d, D]$       | $(bdnq, edk \rightarrow benk).usq(-2)$           |
| 4985 | $[b]_j^{(A,s)}$                              | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k}\right)_3$   | $[e, d, D]$       | $(bdnj, edk \rightarrow bejk).usq(-3)$           |
| 4986 | $[b]_j^{(A,j)}$                              | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(B,\bullet):\bullet,k}\right)_4$   | $[e, d, D]$       | $(bdnj, edk \rightarrow benjk)$                  |
| 4987 | $[b]_q^{(B,s)}$                              | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(B,\bullet):\bullet,k}\right)_1$         | $[e, d, D, D]$    | $(bdnq, edkq \rightarrow bek).usq(-2).usq(-2)$   |
| 4988 | $[b]_q^{(B,i)}$                              | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(B,\bullet):\bullet,k}\right)_2$         | $[e, d, D, D]$    | $(bdnq, edkq \rightarrow benk).usq(-2)$          |
| 4989 | $\Phi_1^{(B,\bullet):\bullet,k}$             |                       |                                                                       |                   |                                                  |
| 4990 | $[e, D]$                                     |                       |                                                                       |                   |                                                  |
| 4991 | $(ek \rightarrow ek).usq(0).usq(-2).usq(-2)$ |                       |                                                                       |                   |                                                  |

Table 12: Pseudocode for  $[E(W)]_{j,k}^{(B,i)}$ .

| 5022 | Input                 | Input shape           | Weight                                                    | Weight shape   | Einsum                                 |
|------|-----------------------|-----------------------|-----------------------------------------------------------|----------------|----------------------------------------|
| 5023 | $[WW]_{p,q}^{(QK,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(QK,\bullet):p,q}^{(G,\bullet)}$                   | $[e, d, D, D]$ | $(bdhpq, edpq \rightarrow be).usq(-1)$ |
| 5024 | $[WW]_{p,q}^{(VO,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(VO,\bullet):p,q}^{(G,\bullet)}$                   | $[e, d, D, D]$ | $(bdhpq, edpq \rightarrow be).usq(-1)$ |
| 5025 | $[W]_p^{(G,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(G,\bullet):p}^{(G,\bullet)}\right)_1$       | $[e, d, D]$    | $(bdnp, edp \rightarrow be).usq(-1)$   |
| 5026 | $[W]_p^{(G,i)}$       | $[b, d, n_e, D]$      | $n_e \left(\Phi_{(G,\bullet):p}^{(G,\bullet)}\right)_1$   | $[e, d, D]$    | $(bdnp, edp \rightarrow ben)$          |
| 5027 | $[W]_{p,q}^{(A,s)}$   | $[b, d, n_e, D, D_A]$ | $\Phi_{(A,\bullet):p,\bullet}^{(G,\bullet)}$              | $[e, d, D]$    | $(bdnpq, edp \rightarrow be).usq(-1)$  |
| 5028 | $[W]_{p,q}^{(A,i)}$   | $[b, d, n_e, D, D_A]$ | $\Phi_{(A,\bullet):p,\bullet}^{(G,\bullet)}$              | $[e, d, D]$    | $(bdnpq, edp \rightarrow ben)$         |
| 5029 | $[W]_{p,q}^{(B,s)}$   | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(G,\bullet)}\right)$ | $[e, d, D]$    | $(bdnpq, edq \rightarrow be).usq(-1)$  |
| 5030 | $[W]_{p,q}^{(B,i)}$   | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(G,\bullet)}\right)$ | $[e, d, D]$    | $(bdnpq, edq \rightarrow ben)$         |
| 5031 | $[b]^{(G,s)}$         | $[b, d, n_e]$         | $\left(\Phi_{(G,\bullet)}^{(G,\bullet)}\right)_1$         | $[e, d]$       | $(bdn, ed \rightarrow be).usq(-1)$     |
| 5032 | $[b]^{(G,i)}$         | $[b, d, n_e]$         | $n_e \left(\Phi_{(G,\bullet)}^{(G,\bullet)}\right)_1$     | $[e, d]$       | $(bdn, ed \rightarrow ben)$            |
| 5033 | $[b]_q^{(A,s)}$       | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(G,\bullet)}\right)_1$ | $[e, d]$       | $(bdnq, ed \rightarrow be).usq(-1)$    |
| 5034 | $[b]_q^{(A,i)}$       | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(G,\bullet)}\right)_2$ | $[e, d]$       | $(bdnq, ed \rightarrow ben)$           |
| 5035 | $[b]_q^{(B,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(G,\bullet)}\right)_1$       | $[e, d, D]$    | $(bdnq, edq \rightarrow be).usq(-1)$   |
| 5036 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(G,\bullet)}\right)_2$       | $[e, d, D]$    | $(bdnq, edq \rightarrow ben)$          |
| 5037 |                       |                       | $\Phi_1^{(G,\bullet)}$                                    | $[e]$          | $(e \rightarrow e).usq(0).usq(-1)$     |
| 5038 |                       |                       |                                                           |                |                                        |
| 5039 |                       |                       |                                                           |                |                                        |
| 5040 |                       |                       |                                                           |                |                                        |
| 5041 |                       |                       |                                                           |                |                                        |
| 5042 |                       |                       |                                                           |                |                                        |
| 5043 |                       |                       |                                                           |                |                                        |
| 5044 |                       |                       |                                                           |                |                                        |
| 5045 |                       |                       |                                                           |                |                                        |
| 5046 |                       |                       |                                                           |                |                                        |
| 5047 |                       |                       |                                                           |                |                                        |
| 5048 |                       |                       |                                                           |                |                                        |
| 5049 |                       |                       |                                                           |                |                                        |
| 5050 |                       |                       |                                                           |                |                                        |
| 5051 |                       |                       |                                                           |                |                                        |

Table 13: Pseudocode for  $[E(b)]^{(G,i)}$ .H.4.8  $[E(b)]^{(G,i)}$  PSEUDOCODE

$$\begin{aligned}
[E(b)]^{(G,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^{(G,\bullet)} [WW]_{p,q}^{(QK,s)} \\
&+ \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^{(G,\bullet)} [WW]_{p,q}^{(VO,s)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \left(\Phi_{(G,\bullet):p}^{(G,\bullet)}\right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left(\Phi_{(G,\bullet):p}^{(G,\bullet)}\right)_1 [W]_p^{(G,i)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,\bullet):p,\bullet}^{(G,\bullet)} [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A,\bullet):p,\bullet}^{(G,\bullet)} [W]_{p,q}^{(A,i)} \\
&+ \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left(\Phi_{(B,\bullet):\bullet,q}^{(G,\bullet)}\right) [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left(\Phi_{(B,\bullet):\bullet,q}^{(G,\bullet)}\right) [W]_{p,q}^{(B,i)} \\
&+ [b]^{(G,i)} + \sum_{s=1}^{n_e} \left(\Phi_{(G,\bullet)}^{(G,\bullet)}\right)_1 [b]^{(G,s)} - n_e \left(\Phi_{(G,\bullet)}^{(G,\bullet)}\right)_1 [b]^{(G,i)}
\end{aligned}$$

$$\begin{aligned}
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(G,\bullet)} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(G,\bullet)} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(G,\bullet)} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(G,\bullet)} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(G,\bullet)}.
\end{aligned}$$

**Shapes and pseudocode:** See Table 13.

#### H.4.9 $[E(b)]_j^{(A,i)}$ PSEUDOCODE

$$\begin{aligned}
[E(b)]_j^{(A,i)} &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^{(A,\bullet):\bullet} [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^{(A,\bullet):\bullet} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(A,\bullet):\bullet} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G,\bullet):p}^{(A,\bullet):\bullet} \right)_1 [W]_p^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet} \right)_3 [W]_{p,j}^{(A,s)} + \sum_{p=1}^D \left( \Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet} \right)_4 [W]_{p,j}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet} \right)_3 [W]_{j,q}^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet} \right)_4 [W]_{j,q}^{(B,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(G,\bullet)}^{(A,\bullet):\bullet} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(A,\bullet):\bullet} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet} \right)_3 [b]_j^{(A,s)} + \left( \Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet} \right)_4 [b]_j^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(A,\bullet):\bullet} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(A,\bullet):\bullet} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(A,\bullet):\bullet}.
\end{aligned}$$

**Shapes and pseudocode:** See Table 14.

#### H.4.10 $[E(b)]_j^{(B,i)}$ PSEUDOCODE

$$[E(b)]_j^{(B,i)} = \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^{(B,\bullet):j} [WW]_{p,q}^{(QK,s)}$$

| 5130 | Input                          | Input shape           | Weight                                                              | Weight shape   | Einsum                                         |
|------|--------------------------------|-----------------------|---------------------------------------------------------------------|----------------|------------------------------------------------|
| 5131 | $[WW]_{p,q}^{(QK,s)}$          | $[b, d, h, D, D]$     | $\Phi_{(QK,\bullet):p,q}^{(A,\bullet):\bullet}$                     | $[e, d, D, D]$ | $(bdhpq, edpq \rightarrow be).usq(-1).usq(-1)$ |
| 5132 | $[WW]_{p,q}^{(VO,s)}$          | $[b, d, h, D, D]$     | $\Phi_{(VO,\bullet):p,q}^{(A,\bullet):\bullet}$                     | $[e, d, D, D]$ | $(bdhpq, edpq \rightarrow be).usq(-1).usq(-1)$ |
| 5133 | $[W]_p^{(G,s)}$                | $[b, d, n_e, D]$      | $\left(\Phi_{(G,\bullet):p}^{(A,\bullet):\bullet}\right)_1$         | $[e, d, D]$    | $(bdnp, edp \rightarrow be).usq(-1).usq(-1)$   |
| 5134 | $[W]_p^{(G,i)}$                | $[b, d, n_e, D]$      | $n_e \left(\Phi_{(G,\bullet):p}^{(A,\bullet):\bullet}\right)_1$     | $[e, d, D]$    | $(bdnp, edp \rightarrow ben).usq(-1)$          |
| 5135 | $[W]_{p,q}^{(A,s)}$            | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet}\right)_1$ | $[e, d, D]$    | $(bdnpq, edp \rightarrow be).usq(-1).usq(-1)$  |
| 5136 | $[W]_{p,q}^{(A,i)}$            | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet}\right)_2$ | $[e, d, D]$    | $(bdnpq, edp \rightarrow ben).usq(-1)$         |
| 5137 | $[W]_{p,j}^{(A,s)}$            | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet}\right)_3$ | $[e, d, D]$    | $(bdnpj, edp \rightarrow bej).usq(-2)$         |
| 5138 | $[W]_{p,j}^{(A,i)}$            | $[b, d, n_e, D, D_A]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(A,\bullet):\bullet}\right)_4$ | $[e, d, D]$    | $(bdnpj, edp \rightarrow benj)$                |
| 5139 | $[W]_{p,q}^{(B,s)}$            | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet}\right)_1$ | $[e, d, D]$    | $(bdnpq, edq \rightarrow be).usq(-1).usq(-1)$  |
| 5140 | $[W]_{p,q}^{(B,i)}$            | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet}\right)_2$ | $[e, d, D]$    | $(bdnpq, edq \rightarrow ben).usq(-1)$         |
| 5141 | $[W]_{j,q}^{(B,s)}$            | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet}\right)_3$ | $[e, d, D]$    | $(bdnjq, edq \rightarrow bej).usq(-2)$         |
| 5142 | $[W]_{j,q}^{(B,i)}$            | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(A,\bullet):\bullet}\right)_4$ | $[e, d, D]$    | $(bdnjq, edq \rightarrow benj)$                |
| 5143 | $[b]^{(G,s)}$                  | $[b, d, n_e]$         | $\left(\Phi_{(G,\bullet)}^{(A,\bullet):\bullet}\right)_1$           | $[e, d]$       | $(bdn, ed \rightarrow be).usq(-1).usq(-1)$     |
| 5144 | $[b]^{(G,i)}$                  | $[b, d, n_e]$         | $n_e \left(\Phi_{(G,\bullet)}^{(A,\bullet):\bullet}\right)_1$       | $[e, d]$       | $(bdn, ed \rightarrow ben).usq(-1)$            |
| 5145 | $[b]_q^{(A,s)}$                | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet}\right)_1$   | $[e, d]$       | $(bdnq, ed \rightarrow be).usq(-1).usq(-1)$    |
| 5146 | $[b]_q^{(A,i)}$                | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet}\right)_2$   | $[e, d]$       | $(bdnq, ed \rightarrow ben).usq(-1)$           |
| 5147 | $[b]_j^{(A,s)}$                | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet}\right)_3$   | $[e, d]$       | $(bdnj, ed \rightarrow bej).usq(-2)$           |
| 5148 | $[b]_j^{(A,i)}$                | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(A,\bullet):\bullet}\right)_4$   | $[e, d]$       | $(bdnj, ed \rightarrow benj)$                  |
| 5149 | $[b]_q^{(B,s)}$                | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):\bullet}\right)_1$         | $[e, d, D]$    | $(bdnq, edq \rightarrow be).usq(-1).usq(-1)$   |
| 5150 | $[b]_q^{(B,i)}$                | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(A,\bullet):\bullet}\right)_2$         | $[e, d, D]$    | $(bdnq, edq \rightarrow ben).usq(-1)$          |
| 5151 | $\Phi_1^{(A,\bullet):\bullet}$ |                       |                                                                     | $[e]$          | $(e \rightarrow e).usq(0).usq(-1).usq(-1)$     |

Table 14: Pseudocode for  $[E(b)]_j^{(A,i)}$ .

| 5184 |                       |                       |                                                               |                   |                                          |
|------|-----------------------|-----------------------|---------------------------------------------------------------|-------------------|------------------------------------------|
| 5185 |                       |                       |                                                               |                   |                                          |
| 5186 |                       |                       |                                                               |                   |                                          |
| 5187 |                       |                       |                                                               |                   |                                          |
| 5188 |                       |                       |                                                               |                   |                                          |
| 5189 |                       |                       |                                                               |                   |                                          |
| 5190 |                       |                       |                                                               |                   |                                          |
| 5191 |                       |                       |                                                               |                   |                                          |
| 5192 |                       |                       |                                                               |                   |                                          |
| 5193 |                       |                       |                                                               |                   |                                          |
| 5194 |                       |                       |                                                               |                   |                                          |
| 5195 |                       |                       |                                                               |                   |                                          |
| 5196 | Input                 | Input shape           | Weight                                                        | Weight shape      | Einsum                                   |
| 5197 | $[WW]_{p,q}^{(QK,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(QK,\bullet):p,q}^{(B,\bullet):j}$                     | $[e, d, D, D, D]$ | $(bdhpq, edjpq \rightarrow bej).usq(-2)$ |
| 5198 | $[WW]_{p,q}^{(VO,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(VO,\bullet):p,q}^{(B,\bullet):j}$                     | $[e, d, D, D, D]$ | $(bdhpq, edjpq \rightarrow bej).usq(-2)$ |
| 5200 | $[W]_p^{(G,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(G,\bullet):p}^{(B,\bullet):j}\right)_1$         | $[e, d, D, D]$    | $(bdnp, edjp \rightarrow bej).usq(-2)$   |
| 5201 | $[W]_p^{(G,i)}$       | $[b, d, n_e, D]$      | $n_e \left(\Phi_{(G,\bullet):p}^{(B,\bullet):j}\right)_1$     | $[e, d, D, D]$    | $(bdnp, edjp \rightarrow benj)$          |
| 5202 | $[W]_{p,q}^{(A,s)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):j}\right)_1$ | $[e, d, D, D]$    | $(bdnpq, edjp \rightarrow bej).usq(-2)$  |
| 5203 | $[W]_{p,q}^{(A,i)}$   | $[b, d, n_e, D, D_e]$ | $\left(\Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):j}\right)_2$ | $[e, d, D, D]$    | $(bdnpq, edjp \rightarrow benj)$         |
| 5204 | $[W]_{p,q}^{(B,s)}$   | $[b, d, n_e, D_e, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):j}\right)_1$ | $[e, d, D, D]$    | $(bdnpq, edjq \rightarrow bej).usq(-2)$  |
| 5205 | $[W]_{p,q}^{(B,i)}$   | $[b, d, n_e, D_A, D]$ | $\left(\Phi_{(B,\bullet):\bullet,q}^{(B,\bullet):j}\right)_2$ | $[e, d, D, D]$    | $(bdnpq, edjq \rightarrow benj)$         |
| 5206 | $[b]^{(G,s)}$         | $[b, d, n_e]$         | $\left(\Phi_{(G,\bullet)}^{(B,\bullet):j}\right)_1$           | $[e, d, D]$       | $(bdn, edj \rightarrow bej).usq(-2)$     |
| 5207 | $[b]^{(G,i)}$         | $[b, d, n_e]$         | $n_e \left(\Phi_{(G,\bullet)}^{(B,\bullet):j}\right)_1$       | $[e, d, D]$       | $(bdn, edj \rightarrow benj)$            |
| 5208 | $[b]_q^{(A,s)}$       | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(B,\bullet):j}\right)_1$   | $[e, d, D]$       | $(bdnq, edj \rightarrow bej).usq(-2)$    |
| 5209 | $[b]_q^{(A,i)}$       | $[b, d, n_e, D_A]$    | $\left(\Phi_{(A,\bullet):\bullet}^{(B,\bullet):j}\right)_2$   | $[e, d, D]$       | $(bdnq, edj \rightarrow benj)$           |
| 5210 | $[b]_q^{(B,s)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(B,\bullet):j}\right)_1$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow bej).usq(-2)$   |
| 5211 | $[b]_q^{(B,i)}$       | $[b, d, n_e, D]$      | $\left(\Phi_{(B,\bullet):q}^{(B,\bullet):j}\right)_2$         | $[e, d, D, D]$    | $(bdnq, edjq \rightarrow benj)$          |
| 5212 |                       |                       |                                                               |                   |                                          |
| 5213 |                       |                       |                                                               |                   |                                          |
| 5214 |                       |                       |                                                               |                   |                                          |
| 5215 |                       |                       |                                                               |                   |                                          |
| 5216 |                       |                       |                                                               |                   |                                          |
| 5217 |                       |                       |                                                               |                   |                                          |
| 5218 |                       |                       |                                                               |                   |                                          |
| 5219 |                       |                       |                                                               |                   |                                          |
| 5220 |                       |                       |                                                               |                   |                                          |
| 5221 |                       |                       |                                                               |                   |                                          |
| 5222 |                       |                       |                                                               |                   |                                          |
| 5223 |                       |                       |                                                               |                   |                                          |
| 5224 |                       |                       | $\Phi_1^{(B,\bullet):j}$                                      | $[e, D]$          | $(ej \rightarrow ej).usq(0).usq(-2)$     |
| 5225 |                       |                       |                                                               |                   |                                          |

Table 15: Pseudocode for  $[E(b)]_j^{(B,i)}$ .

5226  
 5227  
 5228  
 5229  
 5230  
 5231  
 5232  
 5233  
 5234  
 5235  
 5236  
 5237

| 5238 | Input                 | Input shape           | Weight                           | Weight shape       | Einsum                           |
|------|-----------------------|-----------------------|----------------------------------|--------------------|----------------------------------|
| 5239 | $[WW]_{p,q}^{(QK,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(QK,\bullet):p,q}^i$      | $[e, d, D', D, D]$ | $(bdhpq, edipq \rightarrow bei)$ |
| 5240 | $[WW]_{p,q}^{(VO,s)}$ | $[b, d, h, D, D]$     | $\Phi_{(VO,\bullet):p,q}^i$      | $[e, d, D', D, D]$ | $(bdhpq, edipq \rightarrow bei)$ |
| 5241 | $[W]_p^{(G,s)}$       | $[b, d, n_e, D]$      | $\bar{\Phi}_{(G,\bullet):p}^i$   | $[e, d, D', D]$    | $(bdnp, edip \rightarrow bei)$   |
| 5242 | $[W]_{p,q}^{(A,s)}$   | $[b, d, n_e, D, D_e]$ | $\Phi_{(A,\bullet):p,\bullet}^i$ | $[e, d, D', D]$    | $(bdnpq, edip \rightarrow bei)$  |
| 5243 | $[W]_{p,q}^{(B,s)}$   | $[b, d, n_e, D_e, D]$ | $\Phi_{(B,\bullet):\bullet,q}^i$ | $[e, d, D', D]$    | $(bdnpq, ediq \rightarrow bei)$  |
| 5244 | $[b]^{(G,s)}$         | $[b, d, n_e]$         | $\bar{\Phi}_{(G,\bullet)}^i$     | $[e, d, D']$       | $(bdn, edi \rightarrow bei)$     |
| 5245 | $[b]_{q}^{(A,s)}$     | $[b, d, n_e, D_e]$    | $\Phi_{(A,\bullet):\bullet}^i$   | $[e, d, D']$       | $(bdnq, edi \rightarrow bei)$    |
| 5246 | $[b]_{q}^{(B,s)}$     | $[b, d, n_e, D]$      | $\Phi_{(B,\bullet):q}^i$         | $[e, d, D', D]$    | $(bdnq, ediq \rightarrow bei)$   |
| 5247 | $\Phi_1^i$            |                       |                                  | $[e, D']$          | $(ei \rightarrow ei).usq(0)$     |
| 5248 |                       |                       |                                  |                    |                                  |
| 5249 |                       |                       |                                  |                    |                                  |
| 5250 |                       |                       |                                  |                    |                                  |
| 5251 |                       |                       |                                  |                    |                                  |
| 5252 |                       |                       |                                  |                    |                                  |
| 5253 |                       |                       |                                  |                    |                                  |
| 5254 |                       |                       |                                  |                    |                                  |

Table 16: Pseudocode for Invariant Layer.

$$\begin{aligned}
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^{(B,\bullet):j} [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^{(B,\bullet):j} \right)_1 [W]_p^{(G,s)} - \sum_{p=1}^D n_e \left( \Phi_{(G,\bullet):p}^{(B,\bullet):j} \right)_1 [W]_p^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):j} \right)_1 [W]_{p,q}^{(A,s)} + \sum_{p=1}^D \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):p,\bullet}^{(B,\bullet):j} \right)_2 [W]_{p,q}^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):p,q}^{(B,\bullet):j} \right)_1 [W]_{p,q}^{(B,s)} + \sum_{p=1}^{D_A} \sum_{q=1}^D \left( \Phi_{(B,\bullet):p,q}^{(B,\bullet):j} \right)_2 [W]_{p,q}^{(B,i)} \\
& + \left( \Phi_{(G,\bullet)}^{(B,\bullet):j} \right)_1 [b]^{(G,s)} - n_e \left( \Phi_{(G,\bullet)}^{(B,\bullet):j} \right)_1 [b]^{(G,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):j} \right)_1 [b]_q^{(A,s)} + \sum_{q=1}^{D_A} \left( \Phi_{(A,\bullet):\bullet}^{(B,\bullet):j} \right)_2 [b]_q^{(A,i)} \\
& + \sum_{s=1}^{n_e} \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):j} \right)_1 [b]_q^{(B,s)} + \sum_{q=1}^D \left( \Phi_{(B,\bullet):q}^{(B,\bullet):j} \right)_2 [b]_q^{(B,i)} \\
& + \Phi_1^{(B,\bullet):j}.
\end{aligned}$$

5280 **Shapes and pseudocode:** See Table 15.

## 5281 H.5 INVARIANT LAYERS PSEUDOCODE

$$\begin{aligned}
I(U)_i &= \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(QK,\bullet):p,q}^i [WW]_{p,q}^{(QK,s)} \\
& + \sum_{s=1}^h \sum_{p=1}^D \sum_{q=1}^D \Phi_{(VO,\bullet):p,q}^i [WW]_{p,q}^{(VO,s)} \\
& + \sum_{s=1}^{n_e} \sum_{p=1}^D \left( \Phi_{(G,\bullet):p}^i - \frac{1}{n_e} \sum_{s=1}^{n_e} \Phi_{(G,\bullet):p}^i \right) [W]_p^{(G,s)}
\end{aligned}$$

5292 Table 17: Ablation study on network components for generalization prediction. Kendall’s  $\tau$  is  
 5293 reported for models using only the MoE Transformer blocks, only the classifier head, and both.  
 5294

| 5295 <b>Component Used</b> | 5296 MoE Transformer blocks | 5297 Classifier head | 5298 MoE Transformer blocks + Classifier head |
|----------------------------|-----------------------------|----------------------|-----------------------------------------------|
| Kendall’s $\tau$           | 0.775                       | 0.597                | <b>0.788</b>                                  |

$$\begin{aligned}
 & + \sum_{s=1}^{n_e} \sum_{p=1}^D \sum_{q=1}^{D_A} \Phi_{(A, \bullet):p, \bullet}^i [W]_{p,q}^{(A,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{p=1}^{D_A} \sum_{q=1}^D \Phi_{(B, \bullet): \bullet, q}^i [W]_{p,q}^{(B,s)} \\
 & + \sum_{s=1}^{n_e} \left( \Phi_{(G, \bullet)}^i - \frac{1}{n_e} \sum_{s=1}^{n_e} \Phi_{(G, \bullet)}^i \right) [b]^{(G,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{q=1}^{D_A} \Phi_{(A, \bullet): \bullet}^i [b]_q^{(A,s)} \\
 & + \sum_{s=1}^{n_e} \sum_{q=1}^D \Phi_{(B, \bullet): q}^i [b]_q^{(B,s)} \\
 & + \Phi_1^i.
 \end{aligned}$$

5316 **Shapes and pseudocode:** See Table 16.

## 5319 I ABLATION STUDY ON IMPORTANCE OF MOE TRANSFORMER BLOCKS IN 5320 PREDICTING MODEL PERFORMANCE

5323 **Experiment Setup.** It is natural to ask whether the MoE Transformer blocks or the classification  
 5324 head contribute more to predicting a model’s generalization performance. To investigate this, we  
 5325 conduct an ablation study on the AGNews-MoE dataset by restricting the input to the neural func-  
 5326 tional model. Specifically, we evaluate its performance when given access to: (1) both the MoE  
 5327 Transformer blocks and classification head weights, (2) only the MoE Transformer block weights,  
 5328 and (3) only the classification head weights. This allows us to assess which component is most  
 5329 predictive of model generalization.

5330 **Results.** Table 17 from demonstrates that using only the MoE Transformer blocks results in a  
 5331 Kendall’s  $\tau$  of 0.775, while using only the classifier head yields 0.597. When both components are  
 5332 included, performance improves to 0.788. This suggests that the MoE blocks contribute most to  
 5333 generalization prediction, while the classifier head provides complementary information.

## 5335 J ABLATION STUDY ON THE EFFECT OF LAYER SIZE AND DEPTH

5338 **Experiment Setup.** In this section, we examine how the number of layers and the hidden dimension  
 5339 of each MoE-NFN layer affect the model’s ability to predict generalization on the AGNews-MoEs.  
 5340 We do so by varying the hidden dimensions in  $\{2, 4, 6, 10\}$  and the number of layers in  $\{1, 2\}$ .

5341 **Results.** Table 19 from Appendix L shows that MoE-NFN achieves consistently strong performance  
 5342 across a range of model sizes. Notably, even the smallest configuration, with a single layer and hid-  
 5343 den size of 2, reaches a Kendall’s  $\tau$  of 0.784. In contrast, the best performance is obtained with two  
 5344 layers of hidden size 10, achieving a Kendall’s  $\tau$  of 0.806. This demonstrates that while increased ca-  
 5345 pacity can improve performance, MoE-NFN remains highly effective even under constrained model  
 sizes.

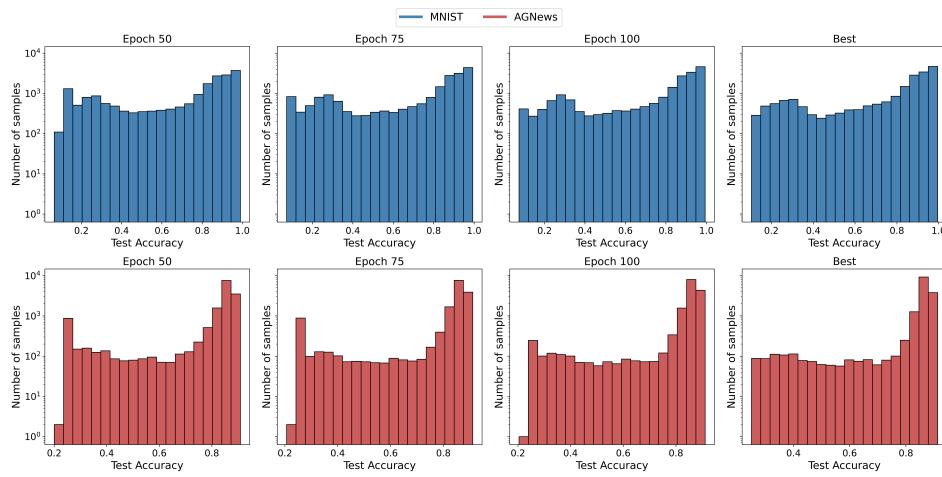


Figure 1: Histogram of test accuracy distribution in the MNIST-MoEs and AGNews-MoEs datasets.

## K ADDITIONAL DATASET DETAILS

To explore a rich landscape of Transformer-MoE architectures, we systematically vary eight core hyperparameters in our study: top-K, activation function, training data fraction, optimizer (selected from SGD, SGDM, Adam, or RMSprop), learning rate, L2 regularization coefficient, initialization standard deviation, and dropout probability. Each plays a distinct role - train fraction dictates how much of the dataset is fed into training, while the optimizer governs the learning dynamics. Learning rate, regularization, and initialization standard deviation modulate convergence behavior, and dropout serves as a defense against overfitting. For top-K, we test values 1, 2, and 4 - representing how many expert modules process a given token. As for activation, models flip between ReLU and GeLU.

We treat each hyperparameter dimension independently, selecting representative values before exhaustively combining them into a sweeping configuration grid. Early experiments highlighted that the ideal hyperparameter landscape diverges drastically depending on optimizer type. Thus, we separate our configurations into two distinct families: one for Adam and RMSprop, and another for SGD and SGDM. Table 18 lays out the full matrix. These setups remain consistent across tasks to ensure apples-to-apples comparisons. All models undergo 100 training epochs, with performance snapshots at epochs 50, 75, 100, and the epoch of peak accuracy. Crashed runs are promptly discarded.

Table 18: Hyperparameter configurations of the MoE Transformer Model Zoos dataset

| Hyperparameter                 | SGD-SGDM                       | Adam-RMSprop                   |
|--------------------------------|--------------------------------|--------------------------------|
| Top-K                          | [1,2,4]                        | [1,2,4]                        |
| Activation                     | [ReLU, GeLU]                   | [ReLU, GeLU]                   |
| Train Fraction                 | [1.0, 0.9, 0.8]                | [1.0, 0.9, 0.8]                |
| Dropout                        | [0.2, 0.15, 0.1, 0.05, 0]      | [0.2, 0.15, 0.1, 0.05, 0]      |
| Learning Rate - MNIST          | [1e-3, 3e-3, 5e-3, 1e-2, 3e-2] | [3e-4, 5e-4, 1e-3, 5e-3, 3e-2] |
| Learning Rate - AGNews         | [1e-3, 3e-3, 1e-2, 5e-2, 7e-2] | [3e-4, 1e-3, 5e-3, 3e-2, 5e-2] |
| Weight Init Standard Deviation | [0.1, 0.15, 0.2, 0.25]         | [0.1, 0.2, 0.3, 0.4]           |
| L2 Regularization - MNIST      | [1e-6, 1e-4, 1e-2]             | [1e-6, 1e-4, 1e-2]             |
| L2 Regularization - AGNews     | [1e-8, 1e-6, 1e-4]             | [1e-8, 1e-6, 1e-4]             |

**MNIST-MoE.** The MNIST dataset (LeCun & Cortes, 2005), a staple in the vision benchmark canon, presents  $28 \times 28$  grayscale images of handwritten digits ranging from 0 to 9. The goal: classify the digit shown. Our model begins with a 2D convolutional embedding that carves the image into patches, overlayed with fixed positional encodings to anchor spatial information. These em-

5400 Table 19: Effect of MoE-NFN architecture (width and depth) on generalization prediction.  
5401

---

| 5402 <b>Encoder Term</b> | [2]   | [2,2] | [4]   | [4,4] | [6]   | [6,6] | [10]  | [10,10] |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|---------|
| 5404 Kendall's $\tau$    | 0.784 | 0.794 | 0.788 | 0.797 | 0.775 | 0.799 | 0.781 | 0.806   |
| 5405 Params              | 1.5M  | 3.9M  | 2.9M  | 12.7M | 4.6M  | 26.5M | 8.4M  | 69.2M   |

---

5407 beddings pass through two Transformer-MoE blocks, which weave global dependencies across the  
5408 image. In the MoE block, there are 4 experts, each is a two-layer feedforward network. The re-  
5409 sulting representations are globally averaged and routed through a two-layer feedforward classifier,  
5410 separated by ReLU, culminating in a ten-class probability distribution. Using our hyperparameter  
5411 schema, we generate a massive 100,024 model samples for MNIST - 25,006 of which are check-  
5412 points from selected epochs. Figure 1 shows the accuracy histogram, with the accuracy distributed  
5413 across [0,1].

5414  
5415 **AGNews-MoE.** The AG's News dataset (Zhang et al., 2015) offers a text classification challenge  
5416 across four broad domains: World, Sports, Business, and Sci/Tech. For each article, the model  
5417 predicts its corresponding topic based on its description. Our Transformer-MoE variant kicks off  
5418 with token embeddings sourced from a pre-trained Word2Vec model, fused with fixed positional  
5419 encodings to maintain sequence order. These flow into a dual-layer Transformer-MoE encoder that  
5420 captures semantic interrelations across the input. In the MoE block, there are 4 experts, each is a  
5421 two-layer feedforward network. The encoder output undergoes global average pooling, then feeds  
5422 into a two-layer MLP with a ReLU bridge, concluding with a four-class softmax. Across this task,  
5423 we generate 79,220 checkpoints derived from 19,805 unique configurations, capturing performance  
5424 at epochs 50, 75, 100, and each model's best epoch. The accuracy distribution (Figure 1) reveals a  
5425 pronounced peak between 50% and 90%, with a sharp mode around 80%, and a modest secondary  
5426 cluster hovering near 25%.

5427 **Computing Resources** The whole dataset is trained on a cluster of 4x NVIDIA A100 SXM4 80GB  
5428 GPUs. We run 5 settings at a time on one GPU. The running time for a MNIST-MoE setting is  
5429 20 to 25 minutes, depending on the fraction of training data being set. The running time for an  
5430 AGNews-MoE setting is 30 to 35 minutes.

## 5431 L ADDITIONAL EXPERIMENT DETAILS

### 5432 L.1 GENERAL DETAILS

5433  
5434  
5435 **Training details** All models underwent training over 100 epochs with a batch size set to 16. Opti-  
5436 mization was carried out using Adam, capped at a peak learning rate of  $10^{-3}$  (In the case of MLP  
5437 the learning rate is  $10^{-4}$ ). To ease the model into learning, we implemented a linear learning rate  
5438 warmup during the first 10 epochs. The loss was computed using the Binary Cross Entropy criterion.

5439  
5440 **Computing resource** All experiments were conducted on a workstation equipped with an AMD  
5441 Ryzen Threadripper PRO 5945WX processor (24 cores) and four NVIDIA GeForce RTX 3090  
5442 GPUs (24GB VRAM each). GPU driver version 570.86.15 and CUDA 12.8 were used. Each exper-  
5443 iment was completed in under 12 hours using this hardware configuration.

5444  
5445 **Number of parameters** An overview of parameter counts for each model is presented in Table 20.  
5446 Complete architectural specifications and hyperparameter settings can be found in Appendices L.2  
5447 and L.3. For the baseline models, hyperparameters were carefully tuned to their optimal configura-  
5448 tions; any further increase in parameter size likely leads to overfitting rather than improved perfor-  
5449 mance.

### 5450 L.2 ARCHIECTURE AND HYPERPARAMETERS OF MOE-NFN

5451  
5452 The MoE-NFN architecture is structured around three core modules, each tailored to manage the  
5453 weight processing in a Transformer MoE system. The embedding and classification components

5454 are both implemented using standard multi-layer perceptrons (MLPs) with ReLU activation, each  
 5455 independently handling a distinct part of the input.  
 5456

5457 At the heart of the model lies the Transformer MoE block, which is governed by an invariant archi-  
 5458 tecture featuring multiple MoE-NFN equivariant polynomial layers. These layers specifically target  
 5459 the two MLP segments within the Transformer block and are activated using ReLU. Once processed,  
 5460 their output is funneled into an invariant polynomial layer of MoE-NFN, which further distills the  
 5461 representation. All intermediate outputs - vectorized by design - are concatenated and fed into a  
 5462 terminal MLP head equipped with a Sigmoid activation function to generate the prediction.  
 5463

5464 For our experiments, the embedding component consists of a single-layer MLP with 100 hidden  
 5465 units. The classification module is slightly deeper, comprising two MLP layers, each also with  
 5466 100 hidden units. Within the invariant MoE-NFN core, a single equivariant polynomial layer with  
 5467 4 hidden channels is used to process the Transformer weights, followed by an invariant poly-  
 5468 nomial layer that yields a 5-dimensional vector per input layer. These outputs are then combined and  
 5469 passed through another MLP, which expands them into a 100-dimensional vector space. Ultimately,  
 5470 the concatenated outputs from all three branches are directed through a final classification layer to  
 5471 produce the model’s prediction.  
 5472

### 5473 L.3 ARCHITECTURE AND HYPERPARAMETERS FOR OTHER BASELINES

5474 Here we describe the architecture of all baselines:

- 5475 • **Transformer-NFN** (Tran et al., 2025) This model comprises three primary modules re-  
 5476 sponsible for processing the input weights. The embedding is processed by a single layer  
 5477 MLP, while classifier component utilizes two-layer MLPs, each with 100 hidden units. The  
 5478 Transformer core is modeled using an invariant architecture that integrates 2 Transformer-  
 5479 NFN equivariant polynomial layers, with 12 hidden channels. These are followed by an  
 5480 invariant polynomial layer to finalize the transformation. Outputs from each module are  
 5481 encoded as vectors, concatenated, and passed through a concluding MLP head (100 hid-  
 5482 den units, Sigmoid activation) for prediction. To make this architecture compatible with  
 5483 Transformer-MoE inputs, we omit gating weights and average the expert-specific weights  
 5484 to form a unified feed-forward layer, suitable for Transformer-NFN. However, this adap-  
 5485 tation breaks the model’s original equivariance under the new group action introduced by  
 5486 Transformer-MoE.  
 5487
- 5488 • **MLP** In this baseline, all model component weights are flattened and processed individu-  
 5489 ally through dedicated MLPs. The embedding and Transformer-MoE components are each  
 5490 fed into a single-layer MLP with 64 hidden neurons. The classifier component, by contrast,  
 5491 is modeled with a two-layer MLP containing 256 neurons per layer. Outputs from all three  
 5492 branches are concatenated and passed through a final prediction head: a two-layer MLP  
 5493 with 100 hidden neurons in each layer.  
 5494
- 5495 • **XGBoost** (Chen & Guestrin, 2016), **LightGBM** (Ke et al., 2017), **Random Forest**  
 5496 (Breiman, 2001): For these tree-based models, we flatten the weights from all components  
 5497 and input them directly into the respective regressors. We used consistent hyperparameter  
 5498 settings across the three models: maximum tree depth of 10, minimum child weight of 50,  
 5499 and a cap of 256 leaves per tree.  
 5500
- 5501 • **SVR** (Vapnik et al., 1996): All input weights are first flattened and then reduced to 1000 di-  
 5502 mensions via Principal Component Analysis (PCA)(Pearson, 1901; Hotelling, 1933). The  
 5503 resulting feature set is processed by a linear Support Vector Regression (SVR) model using  
 5504 a linear kernel. We adopt the default configuration provided by the scikit-learn library.  
 5505

### 5506 L.4 $\mathcal{G}_{\mathcal{U}}$ TRANSFORMATION EXPERIMENT

5507 In this experiment, we keep all training settings the same as the AGNews-MoE performance pre-  
 5508 diction experiment. We retrain each of the baseline metanetwork and evaluate the trained model  
 5509 on both the original test set and an augmented version of the original test set. Then we record the  
 5510 Kendall’s  $\tau$  metric for both test sets and compute the gap between them.  
 5511

5508  
5509  
5510  
5511  
5512  
5513  
5514  
5515  
5516  
5517  
5518  
5519  
5520  
5521  
5522  
5523  
5524  
5525  
5526  
5527  
5528  
5529  
5530  
5531  
5532  
5533  
5534  
5535  
5536  
5537  
5538  
5539  
5540  
5541  
5542  
5543  
5544  
5545  
5546  
5547  
5548  
5549  
5550  
5551  
5552  
5553  
5554  
5555  
5556  
5557  
5558  
5559  
5560  
5561  
Table 20: Number of parameters for all models

| Model           | MNIST   | AGNews  |
|-----------------|---------|---------|
| MoE-NFN         | 3.088M  | 2.984M  |
| Transformer-NFN | 2.511M  | 2.406M  |
| MLP             | 11.359M | 11.255M |

The augmented version of the test set of AGNews-MoE dataset is produced by applying randomly selected transformations from the group  $\mathcal{G}_{\mathcal{U}}$  to the original model weights. These transformations yield new models that are functionally identical but differ in parameterization. We uniformly sample the permutations  $\tau_h$ ,  $\tau_e$ , and  $\pi_e^{(i)}$ , sample the scalars  $\gamma_W$  and  $\gamma_b$  from the interval  $[0, 1]$ , and sampling each entry of the transformation matrices  $M_k^{(i)}$  and  $M_v^{(i)}$  from a uniform distribution over  $[-100, 100]$ .

## M BROADER IMPACTS

This work contributes to the foundational understanding of functional equivalence in neural network architectures, particularly Mixture-of-Experts (MoE), with implications that extend to the design and interpretation of modern AI systems. By rigorously characterizing the symmetry-induced redundancies in MoE models, our analysis enables the development of more parameter - efficient, interpretable, and robust architectures. These insights are especially relevant for metanetworks - neural systems that reason over other networks - where ensuring functional identity is critical for tasks like model editing, transfer learning, and interpretability.

The societal benefits of this research stem from its potential to reduce computational waste by alleviate the computational need to evaluate language model. In domains such as healthcare and environmental science, where large-scale models are increasingly deployed for predictive diagnostics or climate modeling, such efficiency gains can reduce energy consumption, and make cutting-edge AI more accessible to under-resourced settings. Moreover, by deepening the theoretical understanding of neural network symmetries, this work contributes to safer and more transparent AI development, helping mitigate risks associated with model redundancy, overparameterization, and brittleness.

Overall, the theoretical advancements presented in this paper support the broader movement toward efficient, reliable, and responsible AI - enhancing both the scalability of current models and the interpretability of their inner workings, which are crucial for high-stakes and mission-critical applications.