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ABSTRACT

In neural networks, the parameter space serves as a proxy for the function class
realized during training; however, the degree to which this parameterization pro-
vides a faithful and injective encoding of the underlying functional landscape re-
mains insufficiently understood. A central challenge in this regard is the phe-
nomenon of functional equivalence, wherein distinct parameter configurations
give rise to identical input–output mappings, thereby revealing the inherent non-
injectivity of the parameter-to-function correspondence. While this issue has been
extensively studied in classical architectures-such as fully connected and convo-
lutional neural networks with varying widths and activation functions—recent re-
search has increasingly extended to modern architectures, particularly those utiliz-
ing multihead attention mechanisms. Motivated by this line of inquiry, we under-
take a formal investigation of functional equivalence in Mixture-of-Experts-a class
of architectures widely recognized for their scalability and efficiency. We analyze
both dense and sparse gating regimes and demonstrate that functional equivalence
in the Mixture-of-Experts architecture is fully characterized by permutation sym-
metries acting on both the expert modules and the gating mechanism. These find-
ings have direct implications for the design of equivariant metanetworks-neural
architectures that operate on pretrained weights to perform downstream tasks-
where reasoning about functional identity is essential. Our results highlight the
importance of analyzing functional equivalence in uncovering model symmetries
and informing the development of more principled and robust metanetwork archi-
tectures.

1 INTRODUCTION

Despite the practical success of deep learning, many underlying mechanisms remain elusive. A par-
ticularly intriguing phenomenon is the ability of highly overparameterized neural networks-those
with more parameters than training samples-to generalize well to unseen data, rather than over-
fit (Cybenko, 1989; Hornik et al., 1989). This observation challenges conventional expectations.
While classical results suggest that shallow networks can approximate any function, empirical ev-
idence consistently shows that deeper, complex architectures perform better (Zhang et al., 2017;
Allen-Zhu et al., 2019). These apparent contradictions have spurred growing interest in understand-
ing overparameterization and its broader implications for optimization, generalization, and model
expressivity (Du et al., 2019; Frankle & Carbin, 2019; Neyshabur et al., 2019; Novak et al., 2018).

An important feature of overparameterized neural networks is their functional equivalence-the fact
that multiple distinct parameter configurations can realize the same input-output function. This
redundancy raises fundamental questions about how neural networks encode, optimize, and gener-
alize learned representations (Allen-Zhu et al., 2019; Belkin et al., 2019; Du et al., 2019; Frankle &
Carbin, 2018; Novak et al., 2018). The notion of functional equivalence has found many applica-
tions in different areas such as weight generation using diffusions (Soro et al., 2024; Saragih et al.,
2025; Wang et al., 2025; Xie et al., 2024; Meynent et al., 2025; Andreis et al., 2024), model ensem-
bling (Wortsman et al., 2022; Ganaie et al., 2022; Lakshminarayanan et al., 2017; Mohammed &
Kora, 2023), and exploring mode connectivity (Goodfellow et al., 2014; Keskar et al., 2016; Sagun
et al., 2017; Venturi et al., 2019; Neyshabur et al., 2020; Tatro et al., 2020; Yunis et al., 2022; Zhou
et al., 2023). Functional equivalence has also recently been applied to the design of equivariant
metanetworks (Tran et al., 2024b;a; Vo et al., 2025; Zhou et al., 2024c;b;a; Navon et al., 2023).
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These metanetworks operate on internal components such as weights or gradients—rather than raw
weights themselves—and have been used in a variety of tasks including learnable optimization (Ben-
gio et al., 2013; Runarsson & Jonsson, 2000; Andrychowicz et al., 2016; Metz et al., 2022), feature
extraction from implicit representations (Müller et al., 2023; Stanley, 2007; Mildenhall et al., 2021),
model editing (Sinitsin et al., 2020; Cao et al., 2021; Mitchell et al., 2022), policy evaluation (Harb
et al., 2020), and Bayesian inference (Sokota et al., 2021).

The problem of determining the functional equivalence of multilayer perceptrons (MLPs) was ini-
tially posed by Hecht-Nielsen (Hecht-Nielsen, 1990). It was observed that interchanging weights of
two units in a hidden layer of an MLP does not change the network’s input-output function, provided
corresponding weights in the subsequent layer are adjusted accordingly (Allen-Zhu et al., 2019; Du
et al., 2019; Frankle & Carbin, 2018; Belkin et al., 2019; Neyshabur et al., 2018). For the same class
of MLPs, Fefferman and Markel (Fefferman & Markel, 1993) proved a strong result, showing that
input-output mapping of an MLP with tanh activations determines both architecture and weights,
up to permutations and sign flips. Since then, a variety of results under different settings have been
established for MLPs (Albertini & Sontag, 1993b;a; Bui Thi Mai & Lampert, 2020; Chen et al.,
1993; Kurkova & Kainen, 1994), and similarly for convolutional neural networks (CNNs) (Brea
et al., 2019; Novak et al., 2018; Bui Thi Mai & Lampert, 2020; Tran et al., 2024a; Vo et al., 2024).

While functional equivalence has been well studied in traditional architectures such as MLPs and
CNNs, its characterization in modern architectures like Transformers (Vaswani et al., 2017; Devlin
et al., 2018; Brown et al., 2020) and Mixture-of-Experts (MoE) (Jacobs et al., 1991; Shazeer et al.,
2017; Lepikhin et al., 2020; Fedus et al., 2022) remains underexplored. For Transformers, recent
work (Tran et al., 2025; Knyazev et al., 2024) has identified the maximal symmetry group of the
multihead attention and established necessary and sufficient conditions for functional equivalence.
In contrast, the functional characterization of MoE architectures remains an open problem.

Contributions. Inspired by this line of inquiry, we propose a comprehensive framework for con-
structing equivariant metanetworks for MoE architecture, based on the functional behavior. The
paper is organized as follows:

1. In Section 2, we introduce the notion of the weight space associated with an MoE model and
construct a group action that preserves its functional behavior. This formulation applies to
both dense and sparse gating scenarios.

2. In Section 3, we establish two key theoretical results demonstrating that the proposed group
action characterizes all universal symmetries inherent to the gating mechanism of MoE mod-
els. These results are supported by rigorous formal proofs.

3. In Section 4, we apply these theoretical findings to the design of equivariant metanetworks
for MoE Transformer architectures. We introduce a metanetwork that is equivariant under
the group action induced by the structure of the multi-head attention and MoE modules. We
also release the MoE Transformer Zoos dataset, containing 179,000 MoE Transformer check-
points, to support future research on MoE weight spaces. Experimental results demonstrate
that our equivariant metanetwork consistently outperforms baseline models across datasets.

Additional materials—including a table of notation, theoretical derivations, detailed proofs, and
experimental configurations—are provided in the Appendix.

2 WEIGHT SPACE OF MIXTURE-OF-EXPERTS AND ITS GROUP ACTION

This section provides a concise overview of the MoE architecture. We define the associated weight
space and introduce a group action on this space that preserves the overall functionality. A compre-
hensive and formal treatment of these concepts is presented in Appendix A.

2.1 BACKGROUND ON MIXTURE-OF-EXPERTS

Throughout the paper, we denote by σ the ReLU activation function.

Mixture-of-Experts. Let D denote the token dimension and De the hidden width. We consider
Expert maps implemented as single-hidden-layer ReLU networks, E : RD ! RD, defined as:

E(x;W (A), b(A),W (B), b(B)) = σ(xW (A) + b(A))W (B) + b(B), (1)
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with parameters (W (A), b(A),W (B), b(B)) ∈ RD×De × R1×De × RDe×D × R1×D. Given ne

denoting the number of experts, an MoE is defined as a map MoE : RD ! RD:

MoE
(
x;
{
W (G,i), b(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
=

ne∑
i=1

softmaxi

({
W (G,i)x+ b(G,i)

}ne

i=1

)
· E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
. (2)

Here, (W (A,i), b(A,i),W (B,i), b(B,i)) ∈ RD×De × R1×De × RDe×D × R1×D are the parameters
of the ith expert, while (W (G,i), b(G,i)) ∈ RD × R are the corresponding gating parameters. The
vector softmax(W (G,i)x+ b(G,i)ne

i=1) sets the contribution of each expert to the final MoE output.

Sparse Mixture-of-Experts. Given a positive integer K ≤ ne, the Top-K map is defined by
Top-K(x) = {i1, . . . , iK} for x = (x1, . . . , xn) ∈ Rn, where i1, . . . , iK are the indices corre-
sponding to the K largest components of x. In the event of ties, we select smaller indices first.
Using this, a Sparse Mixture-of-Experts (SMoE) is the map SMoE : RD ! RD defined by:

SMoE
(
x;
{
W (G,i), b(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
=
∑

i∈T (x)

softmaxi

({
W (G,i)x+ b(G,i)

}
i∈T (x)

)
· E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
, (3)

where T (x) = T (x; {W (G,i), b(G,i)}ne
i=1) = Top-K((W (G,i)x+ b(G,i))ne

i=1).

2.2 WEIGHT SPACE OF MIXTURE-OF-EXPERTS

The map MoE is parameterized as MoE(x; θ) where

θ =
((

W (G,i), b(G,i)
)
,
(
W (A,i), b(A,i)

)
,
(
W (B,i), b(B,i)

))
i=1,...,ne

∈ Θ(ne) :=
((

RD × R
)
×
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

))ne

. (4)

Here, Θ(ne) is called the weight space of a Mixture-of-ne-experts. Varying the number of experts
leads to an MoE weight space that spans across expert sets of different sizes, denoted by

Θ =

∞⊔
ne=1

Θ(ne) =

∞⊔
ne=1

((
RD × R

)
×
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

))ne

. (5)

Note that, the weight space of SMoE coincides with that of the standard MoE, since the map Top-K
does not introduce any new trainable parameters.

2.3 GROUP ACTION ON WEIGHT SPACE OF MIXTURE-OF-EXPERTS

We define the group G(ne) as the direct product G(ne) = RD × R× Sne
of the groups RD, R with

addition, and the permutation group Sne
. Each element g ∈ G(ne) is of the form g = (γW , γb, τ),

where γW ∈ RD, γb ∈ R and τ ∈ Sne
. The group G(ne) acts on the weight space Θ(ne) as follows.

For g ∈ G(ne) and θ ∈ Θ(ne) presented as in Equation 4, define:

gθ :=
((

W (G,τ(i)) + γW , b(G,τ(i)) + γb
)
,(

W (A,τ(i)), b(A,τ(i))
)
,
(
W (B,τ(i)), b(B,τ(i))

))
i=1,...,ne

. (6)

The result below establishes that this group action preserves the MoE map.
Proposition 2.1 (Weight space invariance of MoE). The MoE map is G(ne)-invariance under the
action of G(ne) on its weight space Θ(ne), i.e. MoE(·; θ) = MoE(·; gθ).

A proof of Proposition 2.1 is presented in Proposition A.4. An analogous invariance result holds in
the case of SMoE. However, since the Top-K selection map is generally discontinuous—primarily
due to tie cases in the gating scores—additional conditions are required to ensure the validity of
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the invariance result. To address this, we focus on a subset of RD where the Top-K scores are
unambiguously defined. Specifically, for {W (G,i), b(G,i)}ne

i=1 ∈
(
RD × R

)ne , we define:

Ω
(
{W (G,i), b(G,i)}ne

i=1

)
:=
{
x ∈ RD : (W (G,i)x+ b(G,i))ne

i=1 are pairwise distinct
}
. (7)

The following result concerns the domain and the continuity properties of the SMoE map.

Proposition 2.2. If {W (G,i), b(G,i)} are pairwise distinct for i = 1, . . . , ne, then
Ω({W (G,i), b(G,i)}ne

i=1) is an open and dense subset of RD. Moreover, the SMoE map, as defined in
Equation 3, is continuous on Ω({W (G,i), b(G,i)}ne

i=1).

A proof of Proposition 2.2 is presented in Propositions A.1 and A.2. We now establish that the
invariance property of the SMoE map holds under restriction to this domain.
Proposition 2.3 (Weight space invariance of SMoE). Given the SMoE map, as defined in Equa-
tion 3. Assume that {W (G,i), b(G,i)} are pairwise distinct for i = 1, . . . , ne. Then, the set
Ω({W (G,i), b(G,i)}ne

i=1) is invariant under the group action of G(ne), i.e. for g = (γW , γb, τ) ∈
G(ne), we have Ω({W (G,i), b(G,i)}ne

i=1) = Ω({W (G,τ(i)) + γW , b(G,τ(i)) + γb}ne
i=1). Moreover, the

SMoE map, restricted to Ω({W (G,i), b(G,i)}ne
i=1), is G(ne)-invariance under the action of G(ne) on

their weight space, i.e. SMoE(·; θ) = SMoE(·; gθ) on Ω({W (G,i), b(G,i)}ne
i=1).

A proof of Proposition 2.3 is presented in Proposition A.5.
Remark 2.4. The invariance properties of both MoE and SMoE models in Proposition 2.1 and 2.3
stem from two fundamental characteristics: permutation invariance of the summation operator and
translation invariance of the softmax function. Additionally, in the case of SMoE, these invariance
properties are further supported by the permutation and translation invariance of the Top-K map.

3 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

This section is concerned with the correspondence between two sets of parameters that yield identi-
cal MoE maps. Our objective is to rigorously demonstrate that the group action induced by G(ne),
as defined in Equation 6, fully characterizes the symmetries inherent in the gating mechanism of
MoE architectures. The dense and sparse cases will be analyzed separately due to their fundamen-
tally distinct structural and analytical properties. Throughout the remainder of this section, we let
θ ∈ Θ(ne) and θ̂ ∈ Θ(n̂e) denote the parameters of two models under comparison.

θ =
((

W (G,i), b(G,i)
)
,
(
W (A,i), b(A,i)

)
,
(
W (B,i), b(B,i)

))
i=1,...,ne

, (8)

θ̂ =
((

Ŵ (G,i), b̂(G,i)
)
,
(
Ŵ (A,i), b̂(A,i)

)
,
(
Ŵ (B,i), b̂(B,i)

))
i=1,...,n̂e

. (9)

3.1 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

The following result establishes a complete characterization of when θ and θ̂, under certain assump-
tions, define the same MoE map, with particular emphasis on the behavior of the gating mechanism.

Theorem 3.1 (Functional equivalence in MoE). Suppose θ, θ̂ define the same MoE map, i.e.
MoE(·; θ) = MoE(·; θ̂). If θ, θ̂ satisfy the following four assumptions:

1. ne experts
{

E(·;W (A,i), b(A,i),W (B,i), b(B,i)
)
}ne
i=1 are pairwise distinct functions;

2. n̂e experts {E(·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i))}n̂e
i=1 are pairwise distinct functions;

3. W (G,i) −W (G,j) are pairwise distinct for all 1 ≤ i, j ≤ ne such that i ̸= j;

4. Ŵ (G,i) − Ŵ (G,j) are pairwise distinct for all 1 ≤ i, j ≤ n̂e such that i ̸= j;

then, ne = n̂e, and there exist τ ∈ Sne , γW ∈ RD, γb ∈ R such that for all
i = 1, . . . , ne, we have Ŵ (G,i) = W (G,τ(i)) + γW , b̂(G,i) = b(G,τ(i)) + γb, and
E(·;W (A,τ(i)), b(A,τ(i)),W (B,τ(i)), b(B,τ(i))) = E(·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)) on RD.

4
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A proof of Theorem 3.1 is presented in Appendix B. The proof relies on two key components: a
result concerning the linear independence property of exponential functions, as stated in Lemma B.2,
and an observation regarding the local affineness of ReLU networks, as discussed in Appendix B.2.
Remark 3.2. The four assumptions stated in Theorem 3.1 are introduced for technical reasons. At a
high level, the goal in symmetry analysis is to identify universal symmetries that are independent of
specific parameter choices, while excluding singular symmetries that arise only under special con-
figurations of the weights. In particular, Assumptions 1 and 2 prevent degenerate cases in which two
experts implement the same function and receive identical gating scores, thereby rendering their
permutation inconsequential to the model’s output. Assumptions 3 and 4 address a more subtle
issue: they rule out configurations where linear dependencies among the gating weight vectors re-
sult in indistinguishable gating behavior across different experts. A complete justification of these
assumptions, accompanied by illustrative examples, is provided in Remark B.8.

3.2 FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

In the context of the sparse case, we first introduce the notion of the strongly distinct property.
Specifically, two functions f and g defined on a topological space X are said to be strongly distinct
if the set {x ∈ X : f(x) ̸= g(x)} is dense in X .
Remark 3.3. For instance, distinct polynomials are strongly distinct, whereas distinct ReLU net-
works are not strongly distinct in general. A formal definition of this property, along with illustrative
examples, is provided in Definition C.1 and Example C.2.

We now present a result that serves as an analogue of Theorem 3.1 in the context of SMoE for
K > 1, formulated under a set of assumptions that are stronger than those required in the former.

Theorem 3.4 (Functional equivalence in SMoE). Suppose θ, θ̂ define the same SMoE maps, i.e.
SMoE(·; θ) = SMoE(·; θ̂). If θ, θ̂ satisfy the following four assumptions:

1. ne experts {E(·;W (A,i), b(A,i),W (B,i), b(B,i))}ne
i=1 are pairwise strongly distinct func-

tions;

2. n̂e experts {E(·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i))}n̂e
i=1 are pairwise strongly distinct func-

tions;

3. {W (G,i−1) −W (G,i)}ne
i=2 is a linear independent subset of RD;

4. {Ŵ (G,i−1) − Ŵ (G,i)}n̂e
i=2 is a linear independent subset of RD;

then, ne = n̂e, and there exist τ ∈ Sne
, γW ∈ RD, γb ∈ R such that for all

i = 1, . . . , ne, we have Ŵ (G,i) = W (G,τ(i)) + γW , b̂(G,i) = b(G,τ(i)) + γb, and
E(x;W (A,τ(i)), b(A,τ(i)),W (B,τ(i)), b(B,τ(i))) = E(x; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)), for all x ∈
Ω({W (G,i), b(G,i)}ne

i=1) such that τ(i) ∈ Top-K((W (G,i)x+ b(G,i))ne
i=1).

A proof of Theorem 3.4 is presented in Appendix C. Although Theorem 3.4 is conceptually aligned
with Theorem 3.1, it is important to emphasize that the SMoE case is significantly more challenging
to establish. The primary source of this difficulty lies in the presence of Top-K operator, which in-
troduces discontinuities by altering the set of contributing experts in a nontrivial and input-dependent
manner. This behavior is notably difficult to analyze and control within the theoretical framework.
Remark 3.5. As previously stated, Theorem 3.4 is formulated under a stronger set of assumptions
than those required in Theorem 3.1. Indeed, the assumptions of the latter directly imply those of
the former. The rationale for imposing these stronger conditions stems from the observation that
an expert’s behavior is unconstrained on regions where it is not selected by the gating mechanism,
thereby allowing arbitrary behavior in such domains. As a result, distinct collections of expert
functions may yield identical overall outputs when restricted to their respective regions of activation.
This ambiguity gives rise to singular symmetries, as discussed in Remark 3.2. A comprehensive
justification of these assumptions, along with illustrative examples, is provided in Remark C.9.

The case of K = 1. In the special case where K = 1, the Top-1 gating mechanism in SMoE selects
only the expert with the highest gating score, resulting in a softmax distribution that collapses to a
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single entry equal to 1. Thus, the SMoE map with K = 1 also admits nontrivial symmetries under
the action of the multiplicative group R>0. Specifically, for any a > 0, we have

SMoE
(
x;
{
W (G,i), b(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
= SMoE

(
x;
{
aW (G,i), ab(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
. (10)

This invariance holds because the argmax used for expert selection is unaffected by uniform positive
scaling, i.e. argmaxi=1,...,ne

(
W (G,i)x+ b(G,i)

)
= argmaxi=1,...,ne

(aW (G,i)x + ab(G,i)), for all
x ∈ Ω({W (G,i), b(G,i)}ne

i=1). Moreover, since only one expert is activated per input, no explicit
interactions are formed among the expert components. This leads to a rich set of hidden symmetries
within the architecture. Due to the complexity introduced by these symmetries, we choose to exclude
the case K = 1 from our main analysis and leave its exploration to future work.

3.3 REMARKS ON FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS MODELS

Theorems 3.1 and 3.4 provide a formal characterization of functional equivalence in both dense and
sparse MoE architectures, with a primary focus on the role and structure of the gating mechanism.
Nonetheless, these results do not exhaustively account for all symmetries inherent in the MoE and
SMoE architectures as defined in Equations 2 and 3. In particular, further symmetries may exist
within the internal structure of individual experts, especially when those experts are implemented as
ReLU networks, as mentioned in Section 1. Since this work centers on the architectural properties
of MoE, our analysis prioritizes the gating component, while abstracting expert networks by their
input-output behavior rather than their internal parameterizations.

4 EQUIVARIANT METANETWORKS FOR MOE TRANSFORMERS

Metanetworks are neural architectures that take internal components of other models (weights, gra-
dients, sparsity patterns, ...) as input to enable meta-level learning (Zhou et al., 2024b). A central de-
sign principle is that they operate on functions defined by parameters, not raw weights—motivating
equivariance: functionally equivalent parameters should yield consistent outputs. This has led to
permutation-equivariant metanetworks (Navon et al., 2023; Zhou et al., 2024b; Kofinas et al., 2024;
Zhou et al., 2024c), with extensions to symmetries like scaling, sign flipping via graph message
passing (Kalogeropoulos et al., 2024) and parameter sharing (Tran et al., 2024a; Vo et al., 2025).

While metanetworks have been studied in MLPs, CNNs, and Transformers, no prior work, to our
knowledge, has investigated equivariant metanetworks for MoE Transformers. Using the established
functional equivalence for MoE architecture, we provide a design for an equivariant metanetwork
for MoE Transformers. We also release a dataset containing 179k MoE Transformer checkpoints
spanning both language and vision tasks, enabling systematic analysis of their weight space.

4.1 EQUIVARIANT METANETWORKS FOR MOE TRANSFORMERS

Since the weight space, symmetry, and group action are the same for both MoE and SMoE, we
describe the equivariant metanetwork for the MoE Transformer in this section. The construction for
the SMoE Transformer is identical.

An MoE Transformer layer comprises a multihead attention module followed by an MoE module,
where each expert in the MoE module is realized as a single hidden-layer network. Formally, an
MoE Tranformer layer, denoted as MoETransformer, transforms an input sequence X ∈ RL×D to
an output sequence MoETransformer(X) ∈ RL×D, is defined as follows:

MoETransformer(X) =

LayerNorm
(
X̂ + MoE

(
X̂;
{
[W ](G,i), [b](G,i), [W ](A,i), [b](A,i), [W ](B,i), [b](B,i)

}ne

i=1

))
,

where X̂ = LayerNorm
(
X + MultiHead

(
X; {[W ](Q,i), [W ](K,i), [W ](V,i), [W ](O,i)}nh

i=1

))
.

Here, the MoE operator is a token-wise operator and is defined in Equation 2, and the MultiHead is
defined in (Tran et al., 2025). The positive integers nh and ne represent the number of heads in the
multihead attention module and the number of experts in the MoE module, respectively.
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The weight space of the MoE Transformer layer is a direct product of the weight space of the
multihead attention module (detailed description in Tran et al. (2025)) and the MoE module (refer
to Section 2). In particular, the weight space U of the MoE Transformer layer above is defined as:

U =
(
RD×Dk × RD×Dk × RD×Dv × RDv×D

)nh

×
((

RD × R
)
×
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

))ne

. (11)

An element U ∈ U takes the form:

U =
((

[W ](Q,i), [W ](K,i), [W ](V,i), [W ](O,i)
)
i=1,...,nh

,((
[W ](G,i), [b](G,i)

)
,
(
[W ](A,i), [b](A,i)

)
,
(
[W ](B,i), [b](B,i)

))
i=1,...,ne

)
. (12)

Here, for i = 1, . . . , nh, the matrices [W ](Q,i) ∈ RD×Dk , [W ](K,i) ∈ RD×Dk , [W ](V,i) ∈ RD×Dv ,
and [W ](O,i) ∈ RDv×D are the query, key, value, and linear projection matrices, respectively, of the
ith head of the multihead attention. The rest of U includes the parameters of the MoE component.

The symmetry group of the weight space U , denoted GU , is defined as the direct product of the
symmetry group of the multi-head attention module and that of the MoE module, i.e.,

GU =
(

Snh
×
(
GLDk

(R)× GLDv
(R)
)nh
)
×
(
RD × R

)
×
(

Sne
×
(
PDe

)ne
)
. (13)

Each element g ∈ GU takes the form:

g =
((

τh,
{
M

(i)
k ,M (i)

v

}
i=1,...,nh

)
, {γW , γb},

(
τe ×

{
π(i)
e

}
i=1,...,ne

))
. (14)

Here, the first component (τh, {M (i)
k ,M

(i)
v }i=1,...,nh

) of g arises from the symmetry of the multi-
head attention module. The second component {γW , γb} corresponds to the symmetry of the gat-
ing score functions. The third component (τe, {π(i)

e }i=1,...,ne
) captures the permutation symmetry

among the ne experts as well as the permutation symmetries within the hidden layers of each expert.

The action of GU on U is defined to be the map GU × U ! U , which maps (g, U) ∈ GU × U
to gU ∈ U . Intuitively, gU is obtained by independently applying the first component of g to the
weights of the multi-head attention module, and then applying the remaining components of g to the
MoE module. As a consequence of Theorems 3.1 and 3.4, the MoE Transformer is invariant under
this group action. Equivalently, U and gU yield the same MoE Transformer maps for every U ∈ U
and g ∈ GU . Detailed formulation for gU and its properties are given explicitly in Appendix D.

Equvariant and invariant metanetwork layers are the essential components in the construction of our
equivariant metanetworks for MoE Transformer models. In particular, an equivariant metanetwork
layer is a map E : U ! U such that E(gU) = gE(U) for all U ∈ U and g ∈ GU . To construct E(U),
we follow the design of equivariant polynomial layers in Tran et al. (2025), we adopt a quadratic
polynomial in the input weights U with unknown coefficients. In particular, each entry of E(U) is
designed to be a linear combination with unknown coefficients of the entries of

• the products [W ](QK,s) = [W ](Q,s)
(
[W ](K,s)

)⊤
, and [W ](V O,s) = [W ](V,s)

(
[W ](O,s)

)−1
;

• the matrices [W ](Q,s), [W ](K,s), [W ](V,s), and [W ](O,s) inside the multihead attention module;

• the matrices [W ](G,s) and the vector [g](Q,s) in the gating functions, as well as the matrices
[W ](A,s), [W ](B,s) and the vectors [b](A,s), [b](B,s) of the experts;

for every index s and a bias term. Following the parameter-sharing technique, we solve the system
of equations arising from the condition E(gU) = gE(U) with all U ∈ U and g ∈ GU to obtain the
necessary and sufficient constraints on the unknown coefficients that ensure E is equivariant. The
invariant layer is constructed using the same approach. The construction of both equivariant and
invariant layers are quite lengthy and it is discussed in detail in Appendices F and G. A description
of how to implement the equivariant and invariant layers are presented in Appendix H.
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Table 1: Evaluation of model performance on the AgNews-MoEs dataset using Kendall’s τ rank
correlation. Error bars denote the standard error over 5 independent runs.

Accuracy threshold
No threshold 20% 40% 60% 80%

MLP 0.610± 0.007 0.610± 0.001 0.595± 0.021 0.538± 0.006 0.479± 0.013
XGBoost (Chen & Guestrin, 2016) 0.666± 0.002 0.665± 0.001 0.626± 0.001 0.619± 0.003 0.611± 0.001
LightGBM (Ke et al., 2017) 0.672± 0.003 0.673± 0.001 0.623± 0.017 0.621± 0.004 0.590± 0.002
Random Forest (Breiman, 2001) 0.619± 0.003 0.620± 0.002 0.583± 0.002 0.571± 0.002 0.558± 0.001
Support Vector Regression (Vapnik et al., 1996) 0.442± 0.012 0.407± 0.019 0.414± 0.003 0.374± 0.009 0.268± 0.012
Transformer-NFN (Tran et al., 2025) 0.777± 0.001 0.781± 0.002 0.732± 0.002 0.726± 0.001 0.712± 0.002

MoE-NFN (ours) 0.788± 0.001 0.790± 0.002 0.758± 0.001 0.745± 0.002 0.734± 0.001

4.2 DATASET: MOE TRANSFORMER MODEL ZOOS

Mixture of Experts (MoE) Transformers have been incorporated into several recent deep learning
architectures (DeepSeek-AI et al., 2025; Riquelme et al., 2021; Du et al., 2022). However, their
internal weight structures remain largely unexplored from the perspective of metanetworks—partly
due to the absence of suitable pretrained weight datasets. Existing datasets (Tran et al., 2024b) only
provide pretrained weights for standard Transformer architectures and do not include pretrained
MoE Transformer models. To address this gap, we introduce the MoE Transformer Model Zoos,
which comprise two datasets: AGNews-MoEs and MNIST-MoEs. These contain small-scale MoE
Transformer weights trained on text classification task using the AG News dataset (Zhang et al.,
2015) and image classification task using the MNIST dataset (LeCun & Cortes, 2005), respectively.

The AGNews-MoEs dataset includes 79,220 model checkpoints, while MNIST-MoEs comprises of
100,024 checkpoints. each generated under diverse training conditions. For each checkpoint, both
training and test accuracy are recorded. These datasets provide a foundation for training metanet-
works aimed at predicting model generalization performance directly from its weight, without re-
quiring access to the original test data. Comprehensive details on the structure of the pretrained
weights are provided in Appendix K. We release these datasets publicly to support further research
on modeling and understanding the weight space of MoE Transformer architectures.

4.3 EXPERIMENTAL RESULTS

To assess the effectiveness of our proposed MoE-NFN in modeling the weight space of MoE Trans-
formers, we conduct two generalization prediction experiments on AGNews-MoEs and MNIST-
MoEs. The goal is to test whether MoE-NFN can predict test accuracy directly from learned weights.
For Transformer-NFN (Tran et al., 2025), which is not fully compatible with gated MoEs, we adapt
inputs by averaging expert weights and removing gating. Other baselines—including MLPs, tree-
based models (Chen & Guestrin, 2016; Ke et al., 2017; Breiman, 2001), and SVR (Vapnik et al.,
1996)—use flattened weight vectors as input. Performance is measured with Kendall’s τ rank cor-
relation (Kendall, 1938). Full experiment details appear in Appendix L, with an additional ablation
study of layer size and depth in Appendix I.

4.3.1 GENERALIZATION PREDICTION FOR AGNEWS-MOES TRANSFORMER WEIGHTS

Experiment Setup. We evaluate the performance of MoE-NFN on the AGNews-MoEs dataset,
which consists of pretrained language model weights. As illustrated by the accuracy distribution
in Figure 1, the dataset is slightly skewed toward high-performing models. To enable a more bal-
anced and comprehensive evaluation, we partition the dataset into five subsets based on test accuracy
thresholds. The first subset includes all models without thresholding, while the remaining four con-
tain only models with test accuracy above 20%, 40%, 60%, and 80%, respectively. This setup allows
us to assess the generalization prediction performance of different models across a range of quality.

Results. Table 1 shows that our proposed MoE-NFN consistently achieves the highest performance
across all accuracy thresholds on the AGNews-MoEs dataset. Without any threshold, MoE-NFN
achieves a Kendall’s τ of 0.788, compared to 0.777 for Transformer-NFN (Tran et al., 2025). This
trend persists across all thresholds, where MoE-NFN consistently outperforms other baselines, and
Transformer-NFN ranks second in every case. These results highlight the importance of align-
ing the functional network’s design with the structure of the underlying pretrained models. While
Transformer-NFN is tailored to standard Transformers, MoE-NFN generalizes this formulation by
explicitly modeling gating and expert modularity.
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Table 2: Evaluation of model performance on the MNIST-MoEs dataset using Kendall’s τ rank
correlation. Error bars denote the standard error over 5 independent runs.

Accuracy threshold
No threshold 20% 40% 60% 80%

MLP 0.798± 0.002 0.767± 0.006 0.708± 0.001 0.662± 0.001 0.593± 0.013
XGBoost (Chen & Guestrin, 2016) 0.781± 0.002 0.778± 0.004 0.746± 0.001 0.728± 0.001 0.659± 0.002
LightGBM (Ke et al., 2017) 0.810± 0.001 0.784± 0.002 0.765± 0.001 0.737± 0.002 0.681± 0.004
Random Forest (Breiman, 2001) 0.747± 0.001 0.732± 0.003 0.697± 0.002 0.686± 0.004 0.624± 0.003
SVR (Vapnik et al., 1996) 0.442± 0.012 0.407± 0.019 0.415± 0.004 0.373± 0.009 0.268± 0.012
Transformer-NFN (Tran et al., 2025) 0.828± 0.002 0.786± 0.001 0.756± 0.001 0.686± 0.001 0.623± 0.003

MoE-NFN (ours) 0.833± 0.001 0.790± 0.001 0.770± 0.001 0.731± 0.001 0.672± 0.002

Table 3: Performance measured by Kendall’s τ of all models on the original and augmented test sets
for MNIST-MoEs and AGNews-MoEs using the group action GU .

Dataset Split MoE-NFN Transformer-NFN MLP SVR LightGBM Random Forest XGBoost

AGNews-MoEs
Original 0.788 0.769 0.608 0.445 0.671 0.621 0.665
Augmented 0.788 0.768 0.048 0.005 0.559 0.619 0.653
Gap 0 0.001 0.560 0.440 0.112 0.002 0.012

MNIST-MoEs
Original 0.833 0.828 0.798 0.451 0.811 0.747 0.781
Augmented 0.833 0.826 0.223 0.019 0.797 0.744 0.776
Gap 0 0.002 0.575 0.432 0.014 0.003 0.005

4.3.2 GENERALIZATION PREDICTION FOR MNIST-MOES TRANSFORMER WEIGHTS

Experiment Setup. We split the MNIST-MoEs dataset into five subsets based on accuracy thresh-
olds, following the same procedure used in the AGNews-MoEs analysis. For each subset, we evalu-
ate the ability of each metanetwork to predict generalization performance from pretrained weights.
The alignment between predicted and true test accuracy is measured by Kendall’s τ correlation.

Results. As shown in Table 2, our MoE-NFN achieves the highest Kendall’s τ on most thresholds:
the full test set (0.833), the 20% threshold (0.790), and the 40% threshold (0.770), while ranking
second at the 60% and 80% thresholds. Interestingly, LightGBM performs well at higher thresholds,
likely due to capturing strong nonlinear correlations in these high-accuracy subsets. Despite this,
MoE-NFN remains competitive and consistently strong, demonstrating robustness and adaptability.
It also outperforms Transformer-NFN (Tran et al., 2025) in all cases, highlighting the benefit of
modeling MoE-specific structures such as expert modularity and gating.

4.3.3 EFFECT OF GU TRANSFORMATIONS ON GENERALIZATION PREDICTION

Experiment Setup. Under the group action g ∈ GU , different parameter values can represent the
same underlying function. To evaluate whether models trained on the training set are invariant to
such transformations, we construct an augmented test set by applying randomly sampled elements
from GU to the test set weights, producing functionally equivalent but parametrically distinct models.

Results. Table 3 empirically confirms that MoE-NFN is invariant under the group transformation
GU , showing zero performance drop across both datasets. Notably, Transformer-NFN also demon-
strates strong stability, with only minor gaps of 0.002 on MNIST-MoEs and 0.001 on AGNews-
MoEs. This robustness can be attributed to its design: Transformer-NFN is explicitly invariant to
the subgroup Snh × (GLDk(R) × GLDv(R))nh , and also

(
RD × R

)
due to removal of gating. In

contrast, other models except Random Forest show notable performance drop on augmented sets.

5 CONCLUSION

This paper defines a weight space for Mixture-of-Experts (MoE) models and introduces a group
action that preserves functionality across dense and sparse gating. We prove that it captures all
universal MoE symmetries, though the Top-1 sparse case remains open for future analysis. Build-
ing on this, we develop an equivariant metanetwork framework for pretrained MoE weights and
release two benchmarks—MNIST-MoE and AGNews-MoE. Experiments and ablations show that
symmetry-aware functional reasoning significantly improves metanetwork performance. These re-
sults highlight the importance of symmetry and functional equivalence for both theoretical under-
standing and practical model design. One limitation is the assumption of a fixed weight, leaving
dynamic-weight settings as a direction for future work.
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Ethics Statement. Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work.

Reproducibility Statement. Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings are given in Section 4 and the Ap-
pendix L. All datasets used in this paper are publicly available through an anonymous link provided
in the README file of the supplementary material.

LLM Usage. In this paper, large language models (LLMs) were used solely as a tool to assist
and refine the writing process. They helped with phrasing, clarity, and stylistic polishing, but all
conceptual work, analyses, and conclusions were developed independently by the authors. The LLM
served only to improve readability and presentation, without contributing to the research content
itself
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TABLE OF NOTATION

nh Number of head of Attention module
ne Number of expert of MoE module
D Hidden dimension of the model
Dk Dimension of key/query vector in Attention module
Dv Dimension of value vector in Attention module
DA Hidden dimension of the expert
[W ]Q,i Weight of query matrix of head i

[W ]K,i Weight of key matrix of head i

[W ]V,i Weight of value matrix of head i

[W ]O,i Weight of out projection matrix of head i

[W ]G,i Weight of the gating MLP corresponding to expert i
[W ]A,i Weight of the first MLP of expert i
[W ]B,i Weight of the second MLP of expert i
[b]G,i Bias of the gating MLP corresponding to expert i
[b]A,i Bias of the first MLP of expert i
[b]B,i Bias of the second MLP of expert i
U Weight space of Transformer MoE
GU Symmetric group of the weight space
σ() Relu activation
τh Head permutation group action in Attention module
γW Symmetry parameterization of the gating weight
γb Symmetry parameterization of the gating bias
τh Expert permutation group action in MoE module
π
(i)
e Permutation group action of hidden vector of expert i

E() Equivariant layer
I() Invariant layer
Rd d-dimensional Euclidean space
⟨·, ·⟩ standard dot product
⊔ disjoint union
g element of group
GLD(R) General linear group of invertible D×D matrices over

R
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A WEIGHT SPACES OF MIXTURE-OF-EXPERTS AND THEIR GROUP ACTIONS

Denote the ReLU activation as σ.

A.1 WEIGHT SPACE OF MIXTURE-OF-EXPERTS

We recall the definition of the weight space for Mixture-of-Experts (MoE) where experts are imple-
mented as single-hidden-layer neural networks. Let D denote the input token dimension and De the
hidden layer size. We focus on expert maps E : RD ! RD of the form:

E
(
x;W (A), b(A),W (B), b(B)

)
= σ(xW (A) + b(A))W (B) + b(B), (15)

with learnable parameters((
W (A), b(A)

)
,
(
W (B), b(B)

))
∈
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

)
. (16)

Given a positive integer ne denoting the number of experts, an MoE is the map MoE : RD ! RD

defined by

MoE
(
x;
{
W (G,i), b(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
=

ne∑
i=1

softmaxi

({
W (G,i)x+ b(G,i)

}ne

i=1

)
· E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
. (17)
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The map MoE is parameterized as MoE(x; θ) where

θ =

((
W (G,i), b(G,i)

)
,
(
W (A,i), b(A,i)

)
,
(
W (B,i), b(B,i)

))
i=1,...,ne

∈
((

RD × R
)
×
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

))ne

. (18)

Denote the weight space of an MoE with ne-experts as

Θ(ne) =

((
RD × R

)
×
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

))ne

. (19)

Varying the number of experts leads to an MoE weight space that spans across expert sets of different
sizes, denoted by

Θ =

∞⊔
ne=1

Θ(ne) =

∞⊔
ne=1

((
RD × R

)
×
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

))ne

. (20)

A.2 WEIGHT SPACE OF SPARSE MIXTURE-OF-EXPERTS

Given a positive integer K ≤ ne, the Top-K map is defined by: for any vector x = (x1, . . . , xn) ∈
Rn,

Top-K(x) = {i1, . . . , iK}, (21)

where i1, . . . , iK are the indices corresponding to the K largest components of x. In the event of
ties, we select smaller indices first. Using this, a Sparse Mixture-of-Experts (SMoE) is the map
SMoE : RD ! RD defined by

SMoE
(
x;
{
W (G,i), b(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
=
∑

i∈T (x)

softmaxi

({
W (G,i)x+ b(G,i)

}
i∈T (x)

)
· E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
, (22)

where

T (x) = T
(
x;
{
W (G,i), b(G,i)

}ne

i=1

)
= Top-K

((
W (G,i)x+ b(G,i)

)ne

i=1

)
. (23)

The weight space of SMoE coincides with that of the standard MoE, since the map Top-K does not
introduce any new trainable parameters.

Note on the sparse gating. The SMoE map is generally not continuous due to the presence of the
Top-K operator, particularly in cases where ties occur among the gating scores. To address this, we
focus on a subset of RD where the top K scores are unambiguously defined. Specifically, for{

W (G,i), b(G,i)
}ne

i=1
∈
(
RD × R

)ne
, (24)

we define

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
:=
{
x ∈ RD :

(
W (G,i)x+ b(G,i)

)ne

i=1
are pairwise distinct

}
. (25)

We present two results concerning this domain and the behavior of the SMoE map when restricted
to it.

Proposition A.1. If
{
W (G,i), b(G,i)

}
are pairwise distinct for i = 1, . . . , ne, then

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
is an open and dense subset of RD.
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Proof. We have

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
=
{
x ∈ RD : W (G,i)x+ b(G,i) is pairwise distinct for all i = 1, . . . , ne

}
=

⋂
1≤i,j≤ne

{
x ∈ RD : W (G,i)x+ b(G,i) ̸= W (G,j)x+ b(G,j)

}
=

⋂
1≤i,j≤ne

(
RD \

{
x ∈ RD : W (G,i)x+ b(G,i) = W (G,j)x+ b(G,j)

})
. (26)

Note that, the set{
x ∈ RD : W (G,i)x+ b(G,i) = W (G,j)x+ b(G,j)

}
=
{
x ∈ RD :

(
W (G,i) −W (G,j)

)
x = b(G,j) − b(G,i)

}
, (27)

is either a hyperplane (when W (G,i) ̸= W (G,j)) or the empty set (when (W (G,i) = W (G,j) and
b(G,j) ̸= b(G,i)). In both cases, its complement in RD is an open and dense subset of RD. By
Equation 26, since the finite intersection of open and dense subsets of RD is also open and dense,
the set Ω

({
W (G,i), b(G,i)

}ne

i=1

)
is open and dense.

Proposition A.2. If
{
W (G,i), b(G,i)

}
are pairwise distinct for i = 1, . . . , ne, Then the map SMoE,

as defined in Equation 22, is continuous on Ω
({

W (G,i), b(G,i)
}ne

i=1

)
.

Proof. Let x ∈ Ω
({

W (G,i), b(G,i)
}ne

i=1

)
. By the definition of this domain, there exists an open

neighborhood U of x contained in Ω
({

W (G,i), b(G,i)
}ne

i=1

)
such that

Top-K
((

W (G,i)x+ b(G,i)
)ne

i=1

)
= Top-K

((
W (G,i)y + b(G,i)

)ne

i=1

)
(28)

holds for all y ∈ U . This ensures the sparse gating mechanism in Equation 22 remains fixed within
U , and thus the SMoE map is continuous on this domain.

Remark A.3. Propositions A.1 and A.2 will be key components in establishing the proof of Theo-
rem C.5.

A.3 GROUP ACTION ON WEIGHT SPACES

We define the group G = G(ne) by

G(ne) =
(
RD × R

)
× Sne

, (29)

which is the direct product between the group RD with addition, the group R with addition, and the
permutation group Sne

. Each element of G(ne) is of the form

g = (γW , γb, τ), where γW ∈ RD, γb ∈ R, and τ ∈ Sne . (30)

The group G(ne) acts on the weight space Θ(ne) as follows: For g ∈ G(ne) and θ ∈ Θ(ne)
presented as in Equation 18, define

gθ :=

((
W (G,τ(i)) + γW , b(G,τ(i)) + γb

)
,(

W (A,τ(i)), b(A,τ(i))
)
,
(
W (B,τ(i)), b(B,τ(i))

))
i=1,...,ne

. (31)

The action of G(ne) on the weight space of MoE and SMoE preserves these two maps. This invari-
ance is a consequence of two fundamental properties: the permutation invariance of the summation
operator and the translation invariance of the softmax function. We start with a result concerning the
invariance of MoE maps under this group action.
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Proposition A.4 (Weight space invariance of MoE). The MoE map is G(ne)-invariance under the
action of G(ne) on their weight space, i.e.,

MoE(·; θ) = MoE(·; gθ). (32)

Proof. Given g = (γW , γb, τ) ∈ G(ne). For all x ∈ RD, we have

MoE(x; gθ) =
ne∑
i=1

softmaxi

({(
W (G,τ(i)) + γW

)
x+

(
b(G,τ(i)) + γb

)}ne

i=1

)
· E
(
x;W (A,τ(i)), b(A,τ(i)),W (B,τ(i)), b(B,τ(i))

)
=

ne∑
i=1

softmaxi

({
W (G,τ(i))x+ b(G,τ(i))

}ne

i=1

)
· E
(
x;W (A,τ(i)), b(A,τ(i)),W (B,τ(i)), b(B,τ(i))

)
=

ne∑
i=1

softmaxi

({
W (G,i)x+ b(G,i)

}ne

i=1

)
· E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
= MoE(x; θ). (33)

Thus, the proposition is proven.

The analysis of the SMoE architecture necessitates additional assumptions, owing to the inherent
discontinuity of the Top-K selection operator. We now demonstrate that the SMoE map, when
restricted to this region, remains invariant under the group action of G(ne).
Proposition A.5 (Weight space invariance of SMoE). Given the map SMoE, as defined in Equa-
tion 22 Assume that

{
W (G,i), b(G,i)

}
are pairwise distinct for i = 1, . . . , ne. Then, the set

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
is invariant under the group action of G(ne), i.e.,

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
= Ω

(
g
{
W (G,i), b(G,i)

}ne

i=1

)
. (34)

Moreover, the SMoE map, restricted to

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
, (35)

is G(ne)-invariance under the action of G(ne) on their weight space, i.e.,

SMoE(·; θ) = SMoE(·; gθ) on Ω
({

W (G,i), b(G,i)
}ne

i=1

)
. (36)

Proof. Given g = (γW , γb, τ) ∈ G(ne). We first verify that the group action of G(ne) preserves this
set. Indeed:

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
=
{
x ∈ RD : W (G,i)x+ b(G,i) is pairwise distinct for all i = 1, . . . , ne

}
=
{
x ∈ RD :

(
W (G,τ(i)) + γW

)
x+

(
b(G,τ(i)) + γb

)
is pairwise distinct for all i = 1, . . . , ne

}
= Ω

(
g
{
W (G,i), b(G,i)

}ne

i=1

)
. (37)

Now, denote

gT (x) = Top-K
(((

W (G,τ(i)) + γW

)
x+

(
b(G,τ(i)) + γb

))ne

i=1

)
. (38)

For all x ∈ Ω
({

W (G,i), b(G,i)
}ne

i=1

)
, we have gT (x) = τ(T (x)). The proposition now can be

proven in the same manner as in Proposition A.4.
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Remark A.6. While the group action on the MoE architecture is defined as in Equation 23, it is
worth noting that additional symmetries exist within the MoE architecture. For instance, each ex-
pert admits internal neuron permutations that preserve the overall network function. However, our
primary focus is on the gating mechanism of MoE, and the symmetries internal to each expert are
regarded as standard neural network symmetries, which have been extensively studied in prior work.

B FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

In this section, we characterize when two elements of the weight space of MoE define the same MoE
map.

B.1 AN AUXILIARY RESULT RELATED TO HOLOMORPHIC FUNCTIONS ON Cn

A function f : Cn ! C is called holomorphic on Cn if it is complex differentiable at every point
of Cn. A function is called meromorphic on Cn if it can be locally expressed as the quotient of two
holomorphic functions, where the denominator is not identically zero. The set of all holomorphic
functions on Cn forms an integral domain, denoted by D, and the set of all meromorphic functions
on Cn forms a field, denoted by F . Note that F is the field of fractions of the integral domain D.
Let C[x] = C[x1, . . . , xn] denote the ring of polynomials in n variables with complex coefficients,
and let C(x) = C(x1, . . . , xn) denote the field of rational functions in n variables with complex
coefficients. Then C[x] ⊂ D is an integral domain, and C(x) ⊂ F is a field that is the field of
fractions of C[x].
Remark B.1. For p ∈ C[x], one has ep ∈ D. In other words, the exponential of a polynomial is
holomorphic on Cn.

Since C(x) is a subfield of F , we can regard F as a vector space over C(x). The following result
concerns the linear independence of exponentials of polynomials within F .

Lemma B.2. Let p1, . . . , pN be polynomials in C[x] such that pi − pj is nonconstant for every
i ̸= j. Then the functions ep1 , . . . , epN (considered as elements of F ) are linearly independent over
the field C(x).

Proof. We prove the lemma by induction on N . The case N = 1 is clear, since ep is nonzero for any
p ∈ C[x]. Assume that N ≥ 2 and that the lemma holds for all smaller values of N . Let r1, . . . , rN
be polynomials in C[x] such that

r1 · ep1 + · · ·+ rN · epN = 0, (39)

We aim to show that r1 = · · · = rN = 0. Suppose, for contradiction, that this is not the case. Then
at least one of the ri is nonzero. Without loss of generality, assume that rN ̸= 0. From Equation 39,
it follows that

r1
rN

· er1−rN + · · ·+ rN−1

rN
· erN−1−rN + 1 = 0. (40)

Differentiating both sides with respect to xi for each i = 1, . . . , n, we obtain

N−1∑
j=1

(
∂

∂xi

(
rj
rN

)
+

rj
rN

· ∂

∂xi
(pj − pN )

)
· epj−pN = 0. (41)

Observe that

∂

∂xi

(
rj
rN

)
+

rj
rN

· ∂

∂xi
(pj − pN ) ∈ C(x). (42)

For the N − 1 polynomials pi − pN in C[x], where i = 1, . . . , N − 1, and the difference (pi −
pN ) − (pj − pN ) = pi − pj is nonconstant for every i ̸= j. By the induction hypothesis, the
functions ep1−pN , . . . , epN−1−pN are linearly independent over C(x). Therefore, from Equation 41,
we conclude that for all j = 1, . . . , N − 1 and i = 1, . . . , n,

∂

∂xi

(
rj
rN

)
+

rj
rN

· ∂

∂xi
(pj − pN ) = 0, (43)
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which implies that
∂

∂xi

(
rj
rN

· epj−pN

)
= 0. (44)

Hence, for all j = 1, . . . , N − 1,

rj
rN

· epj−pN = cj ∈ C, (45)

is a constant function. If cj ̸= 0, then rj ̸= 0 and epj−pN =
cjrN
rj

. This holds only if both
epj−pN and cjrN

rj
are constant functions. In particular, this would imply that pj − pN is constant,

contradicting the assumption. Therefore, we must have cj = 0. Thus, rj = 0 for all j = 1, . . . , N −
1. However, this contradicts Equation 40. The lemma is therefore proved.

Remark B.3. This result is fundamental and will be invoked multiple times in the proofs of Theo-
rem B.7 and Theorem C.5.

B.2 LOCAL AFFINENESS OF RELU NEURAL NETWORKS

A polytope is a geometric object defined by flat boundaries, which may be either bounded or un-
bounded. We define the notion of local affineness as follows.

Definition B.4 (Local affineness). A function f : RD ! RD′
is said to be locally affine if there

exists a partition of RD into a collection of polytopes such that, on each polytope, f coincides with
an affine map from RD to RD′

.

Remark B.5. It is worth noting that the term local affineness may carry different meanings in other
contexts. However, the usage adopted in Definition B.4 is unambiguous within the scope of this
work.

We investigate the local affineness property of ReLU neural networks. Consider a neural network
f : Rn0 ! RnL composed of affine transformations and ReLU activations, defined as

f = fL ◦ σ ◦ fL−1 ◦ · · · ◦ σ ◦ f1, (46)

where each fi : Rni−1 ! Rni is an affine map given by fi(x) = Wix + bi, and σ is the ReLU
activation function applied elementwise. The composition of these affine transformations and ReLU
activations partitions the input space Rn0 into a finite number of convex polytopes. Within each
polytope, the activation pattern of the ReLU units—i.e., which units are active (passing their in-
put unchanged) and which are inactive (outputting zero)—remains constant. This fixed activation
pattern determines a subnetwork where each ReLU acts either as the identity map or as the zero
map. Because ReLU is piecewise linear and affine transformations are closed under composition,
the entire network behaves as an affine function within each region of fixed activation.

Thus, the network is locally affine:

f(x) = Aix+ bi, for x ∈ Pi, (47)

where Pi is a polytope in the partition {Pi}mi=1 of the input space, and Ai, bi define the affine
transformation in that region.
Remark B.6. Let ∂Pi denote the boundary of the region Pi in the partition {Pi}mi=1. Then the set

Rn0 \
m⋃
i=1

∂Pi (48)

is clearly open and dense in Rn0 . In other words, the union of the interiors of the polytopes {Pi}
forms a set that is both open and dense.

Now consider a finite collection of ReLU networks f (k), for k = 1, . . . , n. Since the intersection of
finitely many open dense sets is again open and dense, there exists a set Ω ⊂ Rn0 that is open and
dense, such that for every x ∈ Ω, there exists a neighborhood of x on which all functions f (k) are
affine.
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B.3 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

The following result establishes the equivalence between two sets of weights that define the same
MoE map. Certain assumptions are introduced for technical reasons, and their justification is pro-
vided in Remark B.8.

Theorem B.7 (Functional equivalence in MoE). Let θ ∈ Θ(ne) and θ̂ ∈ Θ(n̂e) be given by

θ =

((
W (G,i), b(G,i)

)
,
(
W (A,i), b(A,i)

)
,
(
W (B,i), b(B,i)

))
i=1,...,ne

, (49)

θ̂ =

((
Ŵ (G,i), b̂(G,i)

)
,
(
Ŵ (A,i), b̂(A,i)

)
,
(
Ŵ (B,i), b̂(B,i)

))
i=1,...,n̂e

, (50)

and suppose they define the same MoE map, i.e.,

MoE(x; θ) = MoE(x; θ̂) for all x ∈ RD. (51)

If θ and θ̂ satisfy the four assumptions:

1. ne experts
{

E
(
·;W (A,i), b(A,i),W (B,i), b(B,i)

)}ne

i=1
are ne pairwise distinct functions;

2. n̂e experts
{

E
(
·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)}n̂e

i=1
are n̂e pairwise distinct functions;

3. W (G,i) −W (G,j) are pairwise distinct for all 1 ≤ i, j ≤ ne such that i ̸= j;

4. Ŵ (G,i) − Ŵ (G,j) are pairwise distinct for all 1 ≤ i, j ≤ n̂e such that i ̸= j;

then, ne = n̂e, and there exists τ ∈ Sne
, γW ∈ RD, γb ∈ R such that for all i = 1, . . . , ne,

Ŵ (G,i) = W (G,τ(i)) + γW , b̂(G,i) = b(G,τ(i)) + γb, (52)

and

E
(
·;W (A,τ(i)), b(A,τ(i)),W (B,τ(i)), b(B,τ(i))

)
= E

(
·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)
, (53)

Proof. For better readability, we begin by providing a high-level outline of the upcoming proof:

1. Explicitly express the equation MoE(·; θ) = MoE(·; θ̂) and introduce simplified notation
for clarity.

2. Observe that each expert can be locally identified as an affine function.

3. Show that ne = n̂e, and establish the existence of the desired permutation τ and transfor-
mation γW .

4. Demonstrate the equality between the two sets of experts.

5. Show that the desired transformation γb exists.

We now present the derivations and proofs corresponding to each of the five steps.

Step 1. Since MoE(·; θ) = MoE(·; θ̂), we have
ne∑
i=1

softmaxi

({
W (G,i)x+ b(G,i)

}ne

i=1

)
· E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)

=

n̂e∑
i=1

softmaxi

({
Ŵ (G,i)x+ b̂(G,i)

}n̂e

i=1

)
· E
(
x; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)
, (54)
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for all x ∈ RD. Denote

Ei(·) = E
(
·;W (A,i), b(A,i),W (B,i), b(B,i)

)
,

Êi(·) = E
(
·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)
, (55)

and simplify the notation by setting W (G,i) = W (i), b(G,i) = b(i), Ŵ (G,i) = Ŵ (i), b̂(G,i) = b̂(i).
Then, by writing out the explicit form of the softmax operator in Equation 54, we have

ne∑
i=1

eW
(i)x+b(i)∑ne

j=1 e
W (j)x+b(j)

· Ei(x) =

n̂e∑
i=1

eŴ
(i)x+b̂(i)∑n̂e

j=1 e
Ŵ (j)x+b̂(j)

· Êi(x). (56)

This leads to n̂e∑
j=1

eŴ
(j)x+b̂(j)

 ·

(
ne∑
i=1

eW
(i)x+b(i) · Ei(x)

)

=

 ne∑
j=1

eW
(j)x+b(j)

 ·

(
n̂e∑
i=1

eŴ
(i)x+b̂(i) · Êi(x)

)
, (57)

or
ne∑
i=1

n̂e∑
j=1

e(W
(i)+Ŵ (j))x+(b(i)+b̂(j)) ·

(
Ei(x)− Êj(x)

)
= 0. (58)

Step 2. Since the functions Ei and Êj are locally affine, it follows from the observation in Ap-
pendix B.2 that there exists an open set Ω ⊂ RD, which is dense in RD, such that: for every point
a ∈ Ω, there exists an open neighborhood U ⊂ Ω of a on which all Ei and Êj are affine. In par-
ticular, each of these functions coincides with a polynomial on U . In other words, there exists a
collection of open sets {Uk}k∈I covering Ω, i.e.,

Ω =
⋃
k∈I

Uk, (59)

such that for each U = Uk in the collection, there exist polynomials pU,i, p̂U,j ∈ R[x] satisfying

Ei(x) = pU,i(x), and Êj(x) = p̂U,j(x) for all x ∈ U. (60)

From Equation 58, we have:

ne∑
i=1

n̂e∑
j=1

e(W
(i)+Ŵ (j))x+(b(i)+b̂(j)) · (pU,i(x)− p̂U,j(x)) = 0 for all x ∈ U. (61)

Note that the function on the left-hand side of the equation above is holomorphic. By the Identity
Theorem for Holomorphic Functions (see Ahlfors (1979); Rudin (1987); Conway (1978); Stein &
Shakarchi (2003)), it follows that:

ne∑
i=1

n̂e∑
j=1

e(W
(i)+Ŵ (j))x+(b(i)+b̂(j)) · (pU,i(x)− p̂U,j(x)) = 0 for all x ∈ CD. (62)

Step 3. From Assumptions 3 and 4, the sets {W (i)}ne
i=1 and {Ŵ (j)}n̂e

j=1 consist of pairwise
distinct elements. Thus, there exists a direction

α ∈ SD−1 = {x ∈ RD : ∥x∥2 = 1}, (63)

such that the projections {W (i)α}ne
i=1 and {Ŵ (j)α}n̂e

j=1 yield ne and n̂e distinct real numbers, re-
spectively. Without loss of generality, we may reorder the indices so that:

W (1)α < W (2)α < . . . < W (ne)α and Ŵ (1)α < Ŵ (2)α < . . . < Ŵ (n̂e)α. (64)
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Moreover, note that the problem, along with all the equations above, remains invariant under the
addition of a constant vector to the set {Ŵ (j)}n̂e

j=1. Therefore, without loss of generality, we may

assume that W (1) = Ŵ (1). Under this setting, we will show that ne = n̂e and that W (i) = Ŵ (i) for
all i = 1, . . . , ne. To this end, we first prove that W (i) = Ŵ (i) for all i = 1, . . . ,min{ne, n̂e} by
mathematical induction.

Base case. By assumption, we have W (1) = Ŵ (1), so the base case holds trivially.

Auxiliary result for the inductive step. For all pairs (i, j) ̸= (1, 1), the following inequality holds:

W (1)α+ Ŵ (1)α < W (i)α+ Ŵ (j)α. (65)

Thus, W (1) + Ŵ (1) is distinct from W (i) + Ŵ (j) for all (i, j) such that (i, j) ̸= (1, 1). From
Equation 62 and Lemma B.2, it follows that

pU,1 = p̂U,1. (66)

Inductive step. Suppose that W (i) = Ŵ (i) holds for all 1 ≤ i < n, where n is an integer satisfying
1 < n ≤ min{ne, n̂e}. Assume, toward a contradiction, that W (n) ̸= Ŵ (n). We examine the two
quantities W (1) + Ŵ (n) and W (n) + Ŵ (1). Given our assumption, these two expressions must be
distinct. Without loss of generality, we may assume that

W (1)α+ Ŵ (n)α ≤ W (n)α+ Ŵ (1)α. (67)

• For all (i, j) with i ≥ n, we have

W (1)α+ Ŵ (n)α ≤ W (n)α+ Ŵ (1)α ≤ W (i)α+ Ŵ (j)α. (68)

Equality holds if and only if (i, j) = (n, 1). Moreover, since W (1)+Ŵ (n) and W (n)+Ŵ (1)

are distinct, it follows that W (1) + Ŵ (n) is distinct from W (i) + Ŵ (j) for all (i, j) with
i ≥ n.

• For all (i, j) with j ≥ n, we have

W (1)α+ Ŵ (n)α ≤ W (i)α+ Ŵ (j)α. (69)

Equality holds if and only if (i, j) = (1, n). Therefore, W (1) + Ŵ (n) is distinct from
W (i) + Ŵ (j) for all (i, j) ̸= (1, n) with j ≥ n.

• For all (i, j) such that i, j < n, we claim that W (1) + Ŵ (n) is distinct from W (i) + Ŵ (j).
Indeed, suppose for contradiction that

W (1) + Ŵ (n) = W (i) + Ŵ (j) (70)

for some (i, j) with i, j < n. Then, by the induction hypothesis, it follows that

Ŵ (1) + Ŵ (n) = Ŵ (i) + Ŵ (j). (71)

Rearranging gives

Ŵ (1) − Ŵ (j) = Ŵ (i) − Ŵ (n), (72)

which leads to a contradiction, since (1, j) ̸= (i, n) and the differences are assumed to be
pairwise distinct.

From the observations above, we conclude that W (1) + Ŵ (n) is distinct from W (i) + Ŵ (j) for all
(i, j) ̸= (1, n). Combining this with Equation 62 and Lemma B.2, it follows that

pU,1 = p̂U,n. (73)

Moreover, from Equation 66, we also have

p̂U,1 = p̂U,n. (74)
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Hence, Ê1 = Ên on U . Since this holds for every open set U ∈ {Uk}k∈I , we conclude that Ê1 = Ên

on Ω. Because Ω is dense in RD, by continuity, it follows that Ê1 = Ên on RD. This contradicts
the assumption that the Êj are pairwise distinct. Therefore, our assumption must be false, and we
conclude that W (1) + Ŵ (n) = W (n) + Ŵ (1), which implies W (n) = Ŵ (n).

Conclusion. By mathematical induction, we have shown that W (i) = Ŵ (i) for all i =
1, . . . ,min{ne, n̂e}. It remains to show that ne = n̂e. Assume, for contradiction, that ne < n̂e.
Consider the sum W (1) + Ŵ (n̂e). We claim that this sum is distinct from all W (i) + Ŵ (j) for
(i, j) ̸= (1, n̂e). Indeed, suppose

W (1) + Ŵ (n̂e) = W (i) + Ŵ (j) (75)

for some (i, j) ̸= (1, n̂e). Then, using the inductive result W (i) = Ŵ (i) for i ≤ ne, we obtain

Ŵ (1) + Ŵ (n̂e) = Ŵ (i) + Ŵ (j), (76)

which implies

Ŵ (1) − Ŵ (j) = Ŵ (i) − Ŵ (n̂e). (77)

This contradicts the assumption that all differences Ŵ (i) − Ŵ (j) are pairwise distinct. Hence,
W (1)+Ŵ (n̂e) is distinct from all W (i)+Ŵ (j) with (i, j) ̸= (1, n̂e). By Equation 62 and Lemma B.2,
this implies

pU,1 = p̂U,n̂e
. (78)

From Equation 66, we also have

p̂U,1 = p̂U,n̂e
. (79)

Therefore, Ê1 = Ên̂e
on U . Since this holds for every open set U ∈ {Uk}k∈I , we conclude that

Ê1 = Ên̂e
on Ω. As Ω is dense in RD, by continuity, it follows that Ê1 = Ên̂e

on RD, contradicting
the assumption that the experts Êj are pairwise distinct. Thus, our assumption must be false, and
we conclude that ne = n̂e. Finally, the reindexing and the translation applied to the set {Ŵ (j)}n̂e

j=1

throughout the proof establish the existence of a permutation τ ∈ Sne and a shift vector γW ∈ RD.

Step 4. We now prove that Ei = Êi on RD for all i = 1, . . . , ne. From Step 3, we know that
ne = n̂e and W (i) = Ŵ (i) for every i = 1, . . . , ne. Consider any pair (i, j). If W (i) + Ŵ (j) =

W (i′) + Ŵ (j′), then (i′, j′) must equal either (i, j) or (j, i). In particular, W (i) + Ŵ (i) is distinct
from W (j) + Ŵ (k) for all (j, k) ̸= (i, i). Applying Equation 62 and Lemma B.2, we obtain

pU,i = p̂U,i. (80)

This mirrors the situation encountered in Step 3, and by a similar argument, it follows that Ei = Êi

on RD. Since this holds for all i = 1, . . . , ne, the claim is proven.

Step 5. We now show that there exists a constant γb ∈ R such that

b̂i = bi + γb for all i = 1, . . . , ne. (81)

Recall from Step 4 that if W (i) + Ŵ (j) = W (i′) + Ŵ (j′), then (i′, j′) must equal either (i, j) or
(j, i). Using this fact, along with Equation 58, Lemma B.2, and the result Ei = Êi established in
Step 4, we obtain the following identity:

e(W
(i)+Ŵ (j))x+(b(i)+b̂(j)) · (Ei(x)− Ej(x))

+ e(W
(j)+Ŵ (i))x+(b(j)+b̂(i)) · (Ej(x)− Ei(x)) = 0, (82)

for all pairs (i, j). Since Ei ̸= Ej for i ̸= j, there exists some point x0 ∈ RD such that Ei(x0) ̸=
Ej(x0). Substituting x = x0 into Equation 82 and simplifying by canceling all common nonzero
factor, we get:

eb
(i)+b̂(j) = eb

(j)+b̂(i) , (83)
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which implies the equality

b(i) + b̂(j) = b(j) + b̂(i), (84)

or, equivalently,

b(i) − b̂(i) = b(j) − b̂(j). (85)

This shows that the difference b(i) − b̂(i) is constant across all i. Letting γb := b̂(1) − b(1), we
conclude that

b̂i = bi + γb for all i = 1, . . . , ne. (86)

This completes the proof of Theorem B.7.

Remark B.8 (Rationale behind the assumptions in Theorem B.7). For a model architecture, we
require the symmetry group to be intrinsic to the model as a whole, not to hinge on special choices of
individual weight vectors. In other words, the group of symmetries should act universally throughout
the weight space. Concretely, this leads to the following four conditions in Theorem B.7:

1. ne experts
{

E
(
·;W (A,i), b(A,i),W (B,i), b(B,i)

)}ne

i=1
are ne pairwise distinct functions;

2. n̂e experts
{

E
(
·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)}n̂e

i=1
are n̂e pairwise distinct functions;

3. W (G,i) −W (G,j) are pairwise distinct for all 1 ≤ i, j ≤ ne such that i ̸= j;

4. Ŵ (G,i) − Ŵ (G,j) are pairwise distinct for all 1 ≤ i, j ≤ n̂e such that i ̸= j;

We examine the underlying nature of these assumptions.

Assumption 1 and 2. If Assumptions 1 and 2 are violated—specifically, when two experts compute
the same function and are assigned identical gating scores—the resulting model behavior remains
unchanged under permutations of those experts. This introduces additional, non-essential permu-
tations into the symmetry group, which we refer to as spurious symmetries. These symmetries
do not reflect fundamental structural invariances but arise only in degenerate parameter configura-
tions—singularities in the space of model parameters.

Assumption 3 and 4. Assumptions 3 and 4 address a subtler issue: they exclude cases where
linear dependencies among the gating weight vectors might lead to indistinguishable gating behavior
across experts. While less immediately obvious than the consequences of violating Assumptions 1
and 2, such dependencies can also enlarge the symmetry group beyond its intended structure. To
illustrate this more concretely, we provide the following explicit example. Let D = De = 1,
ne = n̂e = 3, and consider parameter settings θ, θ̂ such that:

• W (G,1) = Ŵ (G,1) = −1,W (G,2) = Ŵ (G,2) = 0,W (G,3) = Ŵ (G,3) = 1,

• W (A,1),W (A,2),W (A,3), Ŵ (A,1), Ŵ (A,2), and Ŵ (A,3) are arbitrary.

• b(A,1), b(A,2), b(A,3), b̂(A,1), b̂(A,2), and b̂(A,3) are arbitrary.

• W (B,1) = W (B,2) = W (B,3) = Ŵ (B,1) = Ŵ (B,2) = Ŵ (B,3) = 0.

We now choose the bias parameters b(G,i), b(B,i), b̂(G,i), b̂(B,i) so that the model outputs satisfy
MoE(·; θ) = MoE(·; θ̂), even though there exists no transformation of the form described in Theo-
rem B.7 that maps θ to θ̂. For each i = 1, 2, 3, the expert functions reduce to constant outputs:

E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
= b(B,i),

E
(
x; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)
= b̂(B,i). (87)
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To simplify notation, we write b(G,i) = b(i) and b̂(G,i) = b̂(i). Our goal is to ensure that MoE(·; θ) =
MoE(·; θ̂), which requires that

e−x+b(1)

e−x+b(1) + eb(2) + ex+b(3)
· b(B,1)

+
eb

(2)

e−x+b(1) + eb(2) + ex+b(3)
· b(B,2)

+
ex+b(3)

e−x+b(1) + eb(2) + ex+b(3)
· b(B,3)

=
e−x+b̂(1)

e−x+b̂(1) + eb̂(2) + ex+b̂(3)
· b̂(B,1)

+
eb̂

(2)

e−x+b̂(1) + eb̂(2) + ex+b̂(3)
· b̂(B,2)

+
ex+b̂(3)

e−x+b̂(1) + eb̂(2) + ex+b̂(3)
· b̂(B,3). (88)

Again, we simplify the notation by setting

eb
(G,1)

= a1, eb̂
(G,1)

= a2,

eb
(G,2)

= b1, eb̂
(G,2)

= b2,

eb
(G,3)

= c1, eb̂
(G,3)

= c2,

b(B,1) = A1, b̂(B,1) = A2,

b(B,2) = B1, b̂(B,2) = B2,

b(B,3) = C1, b̂(B,3) = C2.

(89)

We can now rewrite Equation 88 as
e−xa1

e−xa1 + b1 + exc1
·A1 +

b1
e−xa1 + b1 + exc1

·B1 +
exc1

e−xa1 + b1 + exc1
· C1

=
e−xa2

e−xa2 + b2 + exc2
·A2 +

b2
e−xa2 + b2 + exc2

·B2 +
exc2

e−xa2 + b2 + exc2
· C2, (90)

which is equivalent to(
e−xa1A1 + b1B1 + exc1C1

) (
e−xa2 + b2 + exc2

)
=
(
e−xa2A2 + b2B2 + exc2C2

) (
e−xa1 + b1 + exc1

)
. (91)

By matching the coefficients of e−2x, e−x, 1, ex, e2x, we obtain

e−2x : a1a2A1 = a1a2A2,

e2x : c1c2C1 = c1c2C2,

ex : b1c2B1 + c1b2C1 = b1c2C2 + c1b2B2,

e−x : b1a2B1 + a1b2A1 = b1a2A2 + a1b2B2,

1 : a1c2A1 + c1a2C1 + b1b2B1 = a1c2C2 + c1a2A2 + b1b2B2.

(92)

By setting A1 = A2 = A and C1 = C2 = C, the equations corresponding to the terms e−2x and
e2x are automatically satisfied. Removing these, Equation 92 simplifies to

ex : b1c2B1 + c1b2C = b1c2C + c1b2B2,

e−x : b1a2B1 + a1b2A = b1a2A+ a1b2B2,

1 : a1c2A+ c1a2C + b1b2B1 = a1c2C + c1a2A+ b1b2B2.

(93)
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From the equations associated with e−x and ex, and assuming c1b2 ̸= b1c2 and a1b2 ̸= b1a2, we
obtain

A =
a1b2B2 − b1a2B1

a1b2 − b1a2
,

C =
c1b2B2 − b1c2B1

c1b2 − b1c2
.

(94)

The equation corresponding to the constant term in Equation 93 can be rewritten as

b1b2(B1 −B2) = (C −A)(a1c2 − c1a2). (95)

Next, we compute the difference A− C as follows:

A− C =
a1b2B2 − b1a2B1

a1b2 − b1a2
− c1b2B2 − b1c2B1

c1b2 − b1c2

=
b1b2(B1 −B2)(a1c2 − c1a2)

(a1b2 − b1a2)(c1b2 − b1c2)
. (96)

Substituting this expression for (A− C) into Equation 95 yields

b1b2(B1 −B2) = −b1b2(B1 −B2)(a1c2 − c1a2)

(a1b2 − b1a2)(c1b2 − b1c2)
(a1c2 − c1a2). (97)

Assuming that B1 ̸= B2 and b1b2 ̸= 0, we can divide both sides of the equation by b1b2(B1 −B2),
which leads to

(a1b2 − b1a2)(b1c2 − c1b2) = (a1c2 − c1a2)
2. (98)

Although this equation can be solved explicitly, for our purposes it suffices to exhibit a single solu-
tion. In this case, we choose

(a1, a2) = (1, 2),

(b1, b2) = (3, 5),

(c1, c2) = (2, 3).

(99)

With this choice, the values of B1 and B2 can be selected arbitrarily. These parameter assignments
determine corresponding values for θ and θ̂. It is straightforward to verify that no transformation of
the form described in Theorem B.7 maps θ to θ̂.

C FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

In this section, we characterize when two elements of the weight space of SMoE define the same
SMoE map.

C.1 AUXILIARY RESULTS

The following definition formalizes the notion of the strongly distinct property, which is later be
used in Theorem C.5.
Definition C.1 (Strongly distinct). Two functions f and g from X to Y are called strongly distinct
if {x ∈ X : f(x) ̸= g(x)} is a dense subset of X .
Example C.2. Two distinct polynomials on Rn or Cn are strongly distinct. Two distinct holomorphic
functions are strongly distinct. Two distinct locally affine functions are not strongly distinct in
general. Indeed:

• Consider f1, f2 : R ! R as follows:

f1(x) =

{
0 if x < 0,

x if x ≥ 0,
f2(x) = 1. (100)

Then f1 and f2 are strongly distinct.
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• Consider g1, g2 : R ! R as follows:

g1(x) =

{
0 if x < 0,

x if x ≥ 0,
g2(x) = 0. (101)

Then g1 and g2 are distinct but not strongly distinct.

We define a class of subsets of RD as follows: for{
W (G,i), b(G,i)

}ne

i=1
∈
(
RD × R

)ne

, (102)

define

Ω
({

W (G,i), b(G,i)
}ne

i=1

)
:=
{
x ∈ RD : W (G,i)x+ b(G,i) is pairwise distinct for all i = 1, . . . , ne

}
(103)

The following result establishes a sufficient condition on the gating parameters under which the Top-
K operator is capable of selecting every possible subset of K experts from the full set of experts.

Proposition C.3. Assume that {W (G,i)}ne
i=1 satisfies {W (G,i−1) − W (G,i)}ne

i=2 is a linear in-
dependent subset of RD. Then, for all subsets A of K elements of {1, . . . , ne}, there exists

x ∈ Ω
({

W (G,i), b(G,i)
}ne

i=1

)
such that:

Top-K
((

W (G,i)x+ b(G,i)
)ne

i=1

)
= A. (104)

Proof. Without loss of generality, assume that A = {1, . . . ,K}. To show that there exists x ∈
Ω
({

W (G,i), b(G,i)
}ne

i=1

)
such that:

Top-K
((

W (G,i)x+ b(G,i)
)ne

i=1

)
= {1, . . . ,K}, (105)

it is enough to show that there exists x ∈ RD such that

W (G,1)x+ b(G,1) > W (G,2)x+ b(G,2) > . . . > W (G,ne)x+ b(G,ne). (106)

We simplify it even more, we find x ∈ RD such that(
W (G,1)x+ b(G,1)

)
−
(
W (G,2)x+ b(G,2)

)
= 1,(

W (G,2)x+ b(G,2)
)
−
(
W (G,3)x+ b(G,3)

)
= 1,

. . .(
W (G,ne−1)x+ b(G,ne−1)

)
−
(
W (G,ne)x+ b(G,ne)

)
= 1.

(107)

This is equivalent to(
W (G,1) −W (G,2)

)
x = 1−

(
b(G,1) − b(G,2)

)
,(

W (G,2) −W (G,3)
)
x = 1−

(
b(G,2) − b(G,3)

)
,

. . .(
W (G,ne−1) −W (G,ne)

)
x = 1−

(
b(G,ne−1) − b(G,ne)

)
.

(108)

Since the set {W (G,i−1) − W (G,i)}ne
i=2 is linear independent, there exists x ∈ RD satisfies Equa-

tion 108.

Remark C.4. Proposition C.5 will be used in Theorem C.5. A justification of the linear independence
assumption is provided in Remark C.9.
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C.2 FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

We present a functional equivalence result for the SMoE architecture, analogous to the one estab-
lished for MoE in Theorem B.7. However, our result is restricted to the case K > 1, as the setting
K = 1 introduces singularities that invalidate the general equivalence structure. A detailed justifi-
cation for the exclusion of the K = 1 case is provided in Remark C.10.

Theorem C.5 (Functional equivalence in SMoE). Let θ ∈ Θ(ne) and θ̂ ∈ Θ(n̂e) be given by

θ =

((
W (G,i), b(G,i)

)
,
(
W (A,i), b(A,i)

)
,
(
W (B,i), b(B,i)

))
i=1,...,ne

, (109)

θ̂ =

((
Ŵ (G,i), b̂(G,i)

)
,
(
Ŵ (A,i), b̂(A,i)

)
,
(
Ŵ (B,i), b̂(B,i)

))
i=1,...,n̂e

, (110)

and suppose they define the same SMoE map, i.e.,

SMoE(x; θ) = SMoE(x; θ̂) for all x ∈ RD. (111)

Denote the two corresponding gating maps as follows

T (x) = T
(
x;
{
W (G,i), b(G,i)

}ne

i=1

)
= Top-K

((
W (G,i)x+ b(G,i)

)ne

i=1

)
, (112)

T̂ (x) = T̂

(
x;
{
Ŵ (G,i), b̂(G,i)

}n̂e

i=1

)
= Top-K

((
Ŵ (G,i)x+ b̂(G,i)

)n̂e

i=1

)
. (113)

If θ and θ̂ satisfy the four assumptions:

1. ne experts
{

E
(
·;W (A,i), b(A,i),W (B,i), b(B,i)

)}ne

i=1
are ne pairwise strongly distinct func-

tions;

2. n̂e experts
{

E
(
·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)}n̂e

i=1
are n̂e pairwise strongly distinct

functions;

3. {W (G,i−1) −W (G,i)}ne
i=2 is a linear independent subset of RD;

4. {Ŵ (G,i−1) − Ŵ (G,i)}n̂e
i=2 is a linear independent subset of RD;

then, ne = n̂e, and there exists τ ∈ Sne
, γW ∈ RD, γb ∈ R such that for all i = 1, . . . , ne,

Ŵ (G,i) = W (G,τ(i)) + γW , b̂(G,i) = b(G,τ(i)) + γb, (114)

and

E
(
x;W (A,τ(i)), b(A,τ(i)),W (B,τ(i)), b(B,τ(i))

)
= E

(
x; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)
, (115)

for all x ∈ Ω
({

W (G,i), b(G,i)
}ne

i=1

)
such that τ(i) ∈ T (x).

Before we proceed to the proof of Theorem C.5, we first make two remarks.
Remark C.6. Note that, if ne = n̂e, and there exists τ ∈ Sne

, γW ∈ RD, γb ∈ R such that for all
i = 1, . . . , ne,

Ŵ (G,i) = W (G,τ(i)) + γW , b̂(G,i) = b(G,τ(i)) + γb, (116)

then the two sets Ω
({

W (G,i), b(G,i)
}ne

i=1

)
and Ω

({
Ŵ (G,i), b̂(G,i)

}ne

i=1

)
are equal. Moreover, for

any x in this set, it holds that τ(i) ∈ T (x) if and only if i ∈ T̂ (x).
Remark C.7. It is straightforward to verify that Assumptions 3 and 4 in Theorem C.5 imply As-
sumptions 3 and 4 in Theorem B.7.

Proof. For better readability, we begin by providing a high-level outline of the upcoming proof:

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1. Explicitly express the equation SMoE(·; θ) = SMoE(·; θ̂) and introduce simplified notation
for clarity.

2. Define a partition of the space into regions where the Top-K map selects the same indices,
and where each expert is affine.

3. Prove that the desired property holds for a fixed number of experts. The key idea is to apply
the result for MoE in Theorem B.7.

4. Extend the result to show that the desired property holds for all experts.

We now present the derivations and proofs corresponding to each of the four steps.

Step 1. Since SMoE(·; θ) = SMoE(·; θ̂), we have∑
i∈T (x)

softmaxi

({
W (G,i)x+ b(G,i)

}
i∈T (x)

)
· E
(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
=

∑
i∈T̂ (x)

softmaxi

({
Ŵ (G,i)x+ b̂(G,i)

}
i∈T̂ (x)

)
· E
(
x; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)
, (117)

for all x ∈ RD. Denote

Ei(·) = E
(
·;W (A,i), b(A,i),W (B,i), b(B,i)

)
,

Êi(·) = E
(
·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)
, (118)

and simplify the notation by setting W (G,i) = W (i), b(G,i) = b(i), Ŵ (G,i) = Ŵ (i), b̂(G,i) = b̂(i).
We rewrite Equation 117 as follows:∑

i∈T (x)

softmaxi

({
W (i)x+ b(i)

}
i∈T (x)

)
· Ei(x)

=
∑

i∈T̂ (x)

softmaxi

({
Ŵ (i)x+ b̂(i)

}
i∈T̂ (x)

)
· Êi(x). (119)

Step 2. We make two key observations:

• Assumptions 3 and 4 ensure that the parameter pairs
{
W (i), b(i)

}
are pairwise distinct for

i = 1, . . . , ne, and similarly,
{
Ŵ (i), b̂(i)

}
are pairwise distinct for i = 1, . . . , n̂e. By

Proposition A.1, the set

Ω1 = Ω
({

W (G,i), b(G,i)
}ne

i=1

)
∩ Ω

({
Ŵ (G,i), b̂(G,i)

}n̂e

i=1

)
, (120)

is an open and dense subset of RD, such that for all x ∈ Ω1, the values W (i)x + b(i) are
pairwise distinct for i = 1, . . . , ne, and Ŵ (i)x+ b̂(i) are pairwise distinct for i = 1, . . . , n̂e.
By construction, for every x ∈ Ω1, there exists a neighborhood of x in Ω1 on which the
functions T (·) and T̂ (·) remain constant.

• From the analysis in Appendix B.2, there exists a set Ω2 ⊂ RD that is open and dense, such
that for every x ∈ Ω2, there exists a neighborhood of x in Ω2 on which all expert functions
Ei and Êj are affine.

By taking the intersection Ω = Ω1 ∩ Ω2, we obtain a set Ω that is also open and dense. Moreover,
since T (·) and T̂ (·) remain constant, Ei and Êi are affine in small neighborhoods around each point
in Ω, there exists a collection of open sets {Uk}k∈I covering Ω, i.e.,

Ω =
⋃
k∈I

Uk, (121)
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such that within each set Uk in the collection, the expert functions Ei and Êj are affine, and the
selection functions T (·) and T̂ (·) are constant.

Step 3. Consider an arbitrary set U from the cover in Equation 121. Without loss of generality,
we may reindex so that T (·) = T̂ (·) = {1, . . . ,K} on U . Under this reindexing, Equation 119
simplifies to

K∑
i=1

softmaxi

({
W (i)x+ b(i)

}K

i=1

)
· Ei(x)

=

K∑
i=1

softmaxi

({
Ŵ (i)x+ b̂(i)

}K

i=1

)
· Êi(x) for all x ∈ U. (122)

By Assumption 1, the expert functions Ei are strongly distinct, which implies they remain distinct
over the open set U . The same conclusion applies to the Êi by Assumption 2. Therefore, the first four
assumptions of Theorem C.5, together with Equation 122, reduce the setting to that of Theorem B.7.
As a result, up to a reindexing of the experts, there exist constants γW ∈ RD and γb ∈ R such that
for all i = 1, . . . ,K,

Ŵ (i) = W (i) + γW , b̂(i) = b(i) + γb, (123)

and Ei = Êi on U .

Step 4. Now, for any k = 3, 4, . . . , ne, we apply Proposition C.3 to choose a set V1 from the cover
in Equation 121 such that both indices 1 and k are included in T (V1). Considering Equation 119
restricted to V1 and applying Theorem C.5, we conclude that there exist indices 1 ≤ t1, s1 ≤ n̂e

such that
W1 −Wk = Ŵt1 − Ŵs1 . (124)

Applying the same reasoning for indices 2 and k, we find 1 ≤ t2, s2 ≤ n̂e satisfying

W2 −Wk = Ŵt2 − Ŵs2 . (125)

Subtracting Equations 125 from 124, we obtain

Ŵ1 − Ŵ2 = W1 −W2 = (W1 −Wk)− (W2 −Wk) = (Ŵt1 − Ŵs1)− (Ŵt2 − Ŵs2). (126)

By Assumption 4, which guarantees linear independence, it follows that t1 = 1, t2 = 2, and s1 = s2.
Let us denote this common index as τ(k), i.e., τ(k) = s1 = s2. Then, we have

W1 −Wk = Ŵ1 − Ŵτ(k), (127)
which is equivalent to

Ŵτ(k) −Wk = Ŵ1 −W1 = γW . (128)
We also have

b̂τ(k) − bk = b̂1 − b1 = γb. (129)

Finally, since k ranges over {3, 4, . . . , ne}, the values τ(k) must be distinct. Indeed, suppose there
exist k ̸= k′ such that τ(k) = τ(k′). Then it would follow that

Wk −Wk′ = Ŵτ(k) − Ŵτ(k′) = 0, (130)

which contradicts Assumption 3. By applying a symmetric argument to the parameters of ŜMoE,
we conclude that ne = n̂e. Furthermore, up to a suitable permutation τ of the indices, we have:

Ŵ (G,i) = W (G,τ(i)) + γW , b̂(G,i) = b(G,τ(i)) + γb. (131)

Additionally, the above analysis implies the following: for any x ∈ Ω
({

W (G,i), b(G,i)
}ne

i=1

)
such

that τ(i) ∈ T (x)—that is, index i is selected by the Top-K mechanism in SMoE—we have

Ei(x) = Êi(x). (132)
This completes the proof of Theorem C.5.
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Remark C.8. Although Theorem C.5 is conceptually aligned with Theorem B.7, it is important to
emphasize that the case of SMoE is significantly more challenging to establish. The primary source
of this difficulty lies in the presence of the Top-K operator, which introduces discontinuities by
altering the set of contributing experts in a nontrivial and input-dependent manner. This behavior is
notably difficult to analyze and control within the theoretical framework.
Remark C.9 (Rationale behind the assumptions in Theorem C.5). We begin by recalling the four
assumptions stated in Theorem C.5:

1. ne experts
{

E
(
·;W (A,i), b(A,i),W (B,i), b(B,i)

)}ne

i=1
are ne pairwise strongly distinct func-

tions;

2. n̂e experts
{

E
(
·; Ŵ (A,i), b̂(A,i), Ŵ (B,i), b̂(B,i)

)}n̂e

i=1
are n̂e pairwise strongly distinct

functions;

3. {W (G,i−1) −W (G,i)}ne
i=2 is a linear independent subset of RD;

4. {Ŵ (G,i−1) − Ŵ (G,i)}n̂e
i=2 is a linear independent subset of RD;

The set of assumptions in Theorem C.5 is strictly stronger than that of Theorem B.7. We analyze
them as follows.

Assumptions 1 and 2. Assumptions 1 and 2 primarily arise due to the use of the Top-K operator,
which induces input-dependent expert selection. As a result, an expert’s behavior is unconstrained
in regions where it is not selected by the gating mechanism, allowing it to behave arbitrarily in
those domains. Therefore, if we only assume that the experts are pairwise distinct—rather than
pairwise strongly distinct—it is possible for different sets of expert functions, when restricted to
their respective activated regions, to yield the same overall function. This ambiguity underscores the
necessity of strong distinctness to ensure identifiability in the SMoE architecture.

Assumptions 3 and 4. In practical scenarios, the number of experts ne is typically much smaller
than the token dimension D. Consequently, the sets {W (G,i−1) − W (G,i)}ne

i=2 and {Ŵ (G,i−1) −
Ŵ (G,i)}n̂e

i=2 are generally linearly independent. However, when this condition fails, certain pairs of
experts may never be selected simultaneously by the gating mechanism for any input. This limita-
tion gives rise to singular symmetries, wherein different parameter configurations result in identical
functional outputs, yet cannot be transformed into one another via the equivalence described in
Theorem C.5.

To elucidate the implications of this behavior, we present a concrete example illustrating how such
symmetries can manifest within the SMoE architecture. Consider the case with ne = 4 and K = 2,
and let E1, E2, E3, E4 be arbitrary experts. Define two MoE functions f1 and f2 with gating logits
given by (−2x,−x, x, 2x) and (−3x,−2x, 2x, 3x), respectively. The explicit forms of f1 and f2
are:

f1(x) =

{
softmax1(−2x,−x) · E1(x) + softmax2(−2x,−x) · E2(x) if x < 0,

softmax1(x, 2x) · E3(x) + softmax2(x, 2x) · E4(x) if x > 0,
(133)

and,

f2(x) =

{
softmax1(−3x,−2x) · E1(x) + softmax2(−3x,−2x) · E2(x) if x < 0,

softmax1(2x, 3x) · E3(x) + softmax2(2x, 3x) · E4(x) if x > 0.
(134)

It is evident that f1(x) = f2(x) for all x ∈ R \ 0, where the gating scores are pairwise distinct
and the Top-K selection is stable. However, there exists no transformation of the form described in
Theorem C.5 that maps one function to the other, highlighting the presence of singular symmetries
in the SMoE architecture for some sets of parameters.
Remark C.10 (The case of K = 1). In the special case where K = 1, the SMoE function from
Equation 22 simplifies as follows:

SMoE
(
x;
{
W (G,i), b(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
= E

(
x;W (A,i), b(A,i),W (B,i), b(B,i)

)
, (135)
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where the index i is given by

i = argmax
i=1,...,ne

(
W (G,i)x+ b(G,i)

)
. (136)

Here, the Top-1 routing mechanism selects only the expert with the highest gating score, resulting in
a softmax distribution that collapses to a single entry equal to 1. In addition to the group G(ne) acting
on the expert parameters, the SMoE mapping with K = 1 also admits a nontrivial and nonsingular
symmetry under the action of the multiplicative group R>0. Specifically, for any a > 0, we have:

SMoE
(
x;
{
W (G,i), b(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
= SMoE

(
x;
{
aW (G,i), ab(G,i),W (A,i), b(A,i),W (B,i), b(B,i)

}ne

i=1

)
. (137)

This invariance holds because the argmax used for expert selection is unaffected by uniform positive
scaling:

argmax
i=1,...,ne

(
W (G,i)x+ b(G,i)

)
= argmax

i=1,...,ne

(
aW (G,i)x+ ab(G,i)

)
, (138)

for all x ∈ Ω
({

W (G,i), b(G,i)
}ne

i=1

)
. Moreover, since only one expert is activated per input, no

explicit interactions are formed among the expert components. This leads to a rich set of hidden
symmetries within the architecture. Due to the complexity introduced by these symmetries, we
choose to exclude the case K = 1 from our main analysis and leave its exploration to future work.

D WEIGHT SPACES OF MOE TRANSFORMER AND ITS GROUP ACTION

Since the weight space, symmetry, and group action are the same for both MoE and SMoE, we will
describe the equivariant metanetwork for the MoE Transformer in this section. The construction for
the SMoE Transformer is identical.

An MoE Transformer layer comprises a multihead attention module followed by an MoE module,
where each expert in the MoE module is realized as a single hidden-layer network. Formally, an
MoE Tranformer layer, which will be denoted by MoETransformer, transforms an input sequence
X ∈ RL×D to an output sequence MoETransformer(X) ∈ RL×D defined as follows:

MoETransformer(X) = LayerNorm
(
MoE

(
X̂;
{
[W ](G,i), [b](G,i), [W ](A,i), [b](A,i), [W ](B,i), [b](B,i)

}ne

i=1

))
,

X̂ = LayerNorm
(
MultiHead

(
X; {[W ](Q,i), [W ](K,i), [W ](V,i), [W ](O,i)}nh

i=1

))
,

where the MoE operator is a token-wise operator and is defined in Equation 2. While the MultiHead
is defined in (Tran et al., 2025) as

MultiHead

(
X;W (O),

{
W (Q,i),W (K,i),W (V,i)

}h

i=1

)
=

(
h⊕

i=1

Head
(
X;W (Q,i),W (K,i),W (V,i)

))
W (O)

=

h∑
i=1

Head
(
X;W (Q,i),W (K,i),W (V,i)

)
W (O,i)

=

h∑
i=1

softmax

(
X ·

(
W (Q,i) ·

(
W (K,i)

)⊤
√
Dk

)
·X⊤

)
·X ·

(
W (V,i) ·W (O,i)

)
,

where W (O) =
(
W (O,1), . . . ,W (O,h)

)
with each W (O,i) ∈ RDv×D. The positive integers nh and

ne represent the number of heads in the multihead attention module and the number of experts in
the MoE module, respectively.
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Accordingly, the weight space U of an MoE Transformer layer with ne experts is defined as the
vector space:

U =

(
RD×Dk × RD×Dk × RD×Dv × RDv×D

)nh

×
((

RD × R
)
×
(
RD×De × R1×De

)
×
(
RDe×D × R1×D

))ne

. (139)

An element U ∈ U takes the form:

U =

((
[W ](Q,i), [W ](K,i), [W ](V,i), [W ](O,i)

)
i=1,...,nh

,

((
[W ](G,i), [b](G,i)

)
,
(
[W ](A,i), [b](A,i)

)
,
(
[W ](B,i), [b](B,i)

))
i=1,...,ne

)
. (140)

Define the group

GU =

(
Snh

×
(
GLDk

(R)×GLDv
(R)
)nh

)
×
(
RD × R

)
×
(
Sne

×
(
PDe

)ne
)
. (141)

Each element g ∈ GU takes the form:

g =

((
τh,
{
M

(i)
k ,M (i)

v

}
i=1,...,nh

)
, {γW , γb},

(
τe ×

{
π(i)
e

}
i=1,...,ne

))
. (142)

The action of GU on U is defined to be GU × U ! U , which maps (g, U) ∈ GU × U to:

gU =

((
[gW ](Q,i), [gW ](K,i), [gW ](V,i), [gW ](O,i)

)
i=1,...,nh

,

((
[gW ](G,i), [gb](G,i)

)
,
(
[gW ](A,i), [gb](A,i)

)
,
(
[gW ](B,i), [gb](B,i)

))
i=1,...,ne

)
, (143)

where

[gW ]
(Q,i) := [W ](Q,τh(i)) ·

(
M

(τh(i))
k

)⊤
,

[gW ]
(K,i) := [W ](K,τh(i)) ·

(
M

(τh(i))
k

)−1

,

[gW ]
(V,i) := [W ](V,τh(i)) ·M (τh(i))

v ,

[gW ]
(O,i) :=

(
M (τh(i))

v

)−1

· [W ]
(O,τh(i)) ,

[gW ]
(QK,i) := [W ](QK,τh(i)),

[gW ]
(V O,i) := [W ](V O,τh(i)),

[gW ]
(G,i) := [W ]

(G,τe(i)) + γW ,

[gb]
(G,i) := [b]

(G,τe(i)) + γb,

[gW ]
(A,i) := [W ]

(A,τe(i)) · P
π
(τe(i))
e

,

[gb]
(A,i) := [b]

(A,τe(i)) · P
π
(τe(i))
e

,

[gW ]
(B,i) :=

(
P
π
(τe(i))
e

)−1

· [W ]
(B,τe(i)) ,

[gb]
(B,i) := [b]

(B,τe(i)) .

(144)

When express the set of Equations 144 in terms of individual entries, this takes the form:
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[gW ]
(Q,i)
j,k :=

[
[W ](Q,τh(i)) ·

(
M

(τh(i))
k

)⊤]
j,k

,

[gW ]
(K,i)
j,k :=

[
[W ](K,τh(i)) ·

(
M

(τh(i))
k

)−1
]
j,k

,

[gW ]
(V,i)
j,k :=

[
[W ](V,τh(i)) ·M (τh(i))

v

]
j,k

,

[gW ]
(O,i)
j,k :=

[(
M (τh(i))

v

)−1

· [W ]
(O,τh(i))

]
j,k

,

[gW ]
(QK,i)
j,k :=

[
[W ](QK,τh(i))

]
j,k

,

[gW ]
(V O,i)
j,k :=

[
[W ](V O,τh(i))

]
j,k

,

[gW ]
(G,i)
j := [W ]

(G,τe(i))
j + (γW )j ,

[gb]
(G,i) := [b]

(G,τe(i)) + γb,

[gW ]
(A,i)
j,k := [W ]

(A,τe(i))

j,π
(τe(i))
e (k)

,

[gb]
(A,i)
j := [b]

(A,τe(i))

π
(τe(i))
e (j)

,

[gW ]
(B,i)
j,k := [W ]

(B,τe(i))

π
(τe(i))
e (j),k

,

[gb]
(B,i)
j := [b]

(B,τe(i))
j .

(145)

E METANETWORK FOR MOE TRANSFORMERS: A POLYNOMIAL LAYER AND
NOTATIONS

Our objective is twofold:

1. to construct a network mapping from Ud to Ud′
that is GU -equivariant;

2. to construct a network mapping from Ud to Ud′
that is GU -invariant,

where d and d′ represent the input and output dimensions, respectively.

To this end, we design equivariant and invariant layers with respect to the group action induced
by GU . These layers adopt a quadratic polynomial in the input weights with unknown coefficients,
in line with recent developments of metanetworks for Transformers in Tran et al. (2025). Rather
than providing explicit functional expressions for each layer, we offer an illustrative and structured
description in Tables 4, 5, 6 and 7. Each table includes visual cues and concrete examples to facilitate
understanding.

1. Table 4 presents each layer as an affine transformation, with parameters denoted by ex-
pressions of the form Φ−

−. The superscript and subscript indices respectively indicate the
output and input positions of the parameters. Importantly, the index notation is constructed
so that one can unambiguously determine the dependency between inputs and outputs.
Throughout, the indices i, j, k refer to output components, while s, p, q correspond to input
components. With the exception of the symbol 1, which denotes the bias term, all other
components are defined in Appendix D.

2. Table 5 is a color-annotated version of Table 4. Elements related to the output are high-
lighted in blue, while those associated with the input are shown in red, including their
corresponding indices.

3. Table 6 provides a detailed breakdown of the parameter notation Φ−
−. Each parameter entry

corresponds to the output indicated by its column and the input indicated by its row. For
instance:
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• The term Φ
(G,i):j
(V,s):p,q denotes the parameter connecting [W ]

(V,s)
p,q ! [W ]

(G,i)
j .

• The term Φ
(B,i):j,k
(O,s):p,q denotes the parameter connecting [W ]

(O,s)
p,q ! [W ]

(B,i)
j,k .

• The term Φ
(G,i)
(A,s):p,q denotes the parameter connecting [W ]

(A,s)
p,q ! [b](G,i).

• The term Φ
(V,i):j,k
(A,s):p denotes the parameter connecting [b]

(A,s)
p ! [W ]

(V,i)
j,k .

4. The output is computed as follows. In Table 7, for each output entry, we take a ”dot
product” between the corresponding column indicating the output and the final column
representing the input. The summation is carried out over all indices that are compatible
according to the indexing scheme. For example:

• The output [W ]
(V,i)
j,k is computed as:

[W ]
(V,i)
j,k =

nh∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(V,i):j,k
(Q,s):p,q[W ](Q,s)

p,q +

nh∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(V,i):j,k
(K,s):p,q[W ](K,s)

p,q

+

nh∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(V,i):j,k
(V,s):p,q[W ](V,s)p,q +

nh∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(V,i):j,k
(O,s):p,q[W ](O,s)

p,q

+

nh∑
s=1

D∑
p=1

D∑
q=1

Φ
(V,i):j,k
(QK,s):p,q[W ](QK,s)

p,q +

nh∑
s=1

D∑
p=1

D∑
q=1

Φ
(V,i):j,k
(V O,s):p,q[W ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(V,i):j,k
(G,s):p [W ](G,s)

p +

ne∑
s=1

Φ
(V,i):j,k
(G,s) [b](G,s)

+

ne∑
s=1

D∑
p=1

De∑
q=1

Φ
(V,i):j,k
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

De∑
p=1

Φ
(V,i):j,k
(A,s):p [b](A,s)

p

+

ne∑
s=1

De∑
p=1

D∑
q=1

Φ
(V,i):j,k
(B,s):p,q[W ](B,s)

p,q +

ne∑
s=1

D∑
p=1

Φ
(V,i):j,k
(B,s):p [b](B,s)

p

+ Φ
(V,i):j,k
1 (146)

• The output [W ]
(A,i)
j,k is computed as:

[W ]
(A,i)
j,k =

nh∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(A,i):j,k
(Q,s):p,q[W ](Q,s)

p,q +

nh∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(A,i):j,k
(K,s):p,q[W ](K,s)

p,q

+

nh∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(A,i):j,k
(V,s):p,q[W ](V,s)p,q +

nh∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(A,i):j,k
(O,s):p,q[W ](O,s)

p,q

+

nh∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(QK,s):p,q[W ](QK,s)

p,q +

nh∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(V O,s):p,q[W ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j,k
(G,s):p [W ](G,s)

p +

ne∑
s=1

Φ
(A,i):j,k
(G,s) [b](G,s)

+

ne∑
s=1

D∑
p=1

De∑
q=1

Φ
(V,i):j,k
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

De∑
p=1

Φ
(A,i):j,k
(A,s):p [b](A,s)

p

+

ne∑
s=1

De∑
p=1

D∑
q=1

Φ
(A,i):j,k
(B,s):p,q[W ](B,s)

p,q +

ne∑
s=1

D∑
p=1

Φ
(A,i):j,k
(B,s):p [b](B,s)

p

+ Φ
(A,i):j,k
1 (147)
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Table 4: This table presents each layer as an affine transformation, with parameters denoted by
expressions of the form Φ−

−. The superscript and subscript indices respectively indicate the output
and input positions of the parameters. Importantly, the index notation is constructed so that one
can unambiguously determine the dependency between inputs and outputs. Throughout, the indices
i, j, k refer to output components, while s, p, q correspond to input components. With the exception
of the symbol 1, which denotes the bias term, all other components are defined in Appendix D.

[W ]
(Q,i)
j,k [W ]

(K,i)
j,k [W ]

(V,i)
j,k [W ]

(O,i)
j,k [W ]

(G,i)
j [b](G,i) [W ]

(A,i)
j,k [b]

(A,i)
j [W ]

(B,i)
j,k [b]

(B,i)
j

Φ(Q,s):p,q Φ
(Q,i):j,k
(Q,s):p,q Φ

(K,i):j,k
(Q,s):p,q Φ

(V,i):j,k
(Q,s):p,q Φ

(O,i):j,k
(Q,s):p,q Φ

(G,i):j
(Q,s):p,q Φ

(G,i)
(Q,s):p,q Φ

(A,i):j,k
(Q,s):p,q Φ

(A,i):j
(Q,s):p,q Φ

(B,i):j,k
(Q,s):p,q Φ

(B,i):j
(Q,s):p,q [W ]

(Q,s)
p,q

Φ(K,s):p,q Φ
(Q,i):j,k
(K,s):p,q Φ

(K,i):j,k
(K,s):p,q Φ

(V,i):j,k
(K,s):p,q Φ

(O,i):j,k
(K,s):p,q Φ

(G,i):j
(K,s):p,q Φ

(G,i)
(K,s):p,q Φ

(A,i):j,k
(K,s):p,q Φ

(A,i):j
(K,s):p,q Φ

(B,i):j,k
(K,s):p,q Φ

(B,i):j
(K,s):p,q [W ]

(K,s)
p,q

Φ(V,s):p,q Φ
(Q,i):j,k
(V,s):p,q Φ

(K,i):j,k
(V,s):p,q Φ

(V,i):j,k
(V,s):p,q Φ

(O,i):j,k
(V,s):p,q Φ

(G,i):j
(V,s):p,q Φ

(G,i)
(V,s):p,q Φ

(A,i):j,k
(V,s):p,q Φ

(A,i):j
(V,s):p,q Φ

(B,i):j,k
(V,s):p,q Φ

(B,i):j
(V,s):p,q [W ]

(V,s)
p,q

Φ(O,s):p,q Φ
(Q,i):j,k
(O,s):p,q Φ

(K,i):j,k
(O,s):p,q Φ

(V,i):j,k
(O,s):p,q Φ

(O,i):j,k
(O,s):p,q Φ

(G,i):j
(O,s):p,q Φ

(G,i)
(O,s):p,q Φ

(A,i):j,k
(O,s):p,q Φ

(A,i):j
(O,s):p,q Φ

(B,i):j,k
(O,s):p,q Φ

(B,i):j
(O,s):p,q [W ]

(O,s)
p,q

Φ(QK,s):p,q Φ
(Q,i):j,k
(QK,s):p,q Φ

(K,i):j,k
(QK,s):p,q Φ

(V,i):j,k
(QK,s):p,q Φ

(O,i):j,k
(QK,s):p,q Φ

(G,i):j
(QK,s):p,q Φ

(G,i)
(QK,s):p,q Φ

(A,i):j,k
(QK,s):p,q Φ

(A,i):j
(QK,s):p,q Φ

(B,i):j,k
(QK,s):p,q Φ

(B,i):j
(QK,s):p,q [W ]

(QK,s)
p,q

Φ(V O,s):p,q Φ
(Q,i):j,k
(V O,s):p,q Φ

(K,i):j,k
(V O,s):p,q Φ

(V,i):j,k
(V O,s):p,q Φ

(O,i):j,k
(V O,s):p,q Φ

(G,i):j
(V O,s):p,q Φ

(G,i)
(V O,s):p,q Φ

(A,i):j,k
(V O,s):p,q Φ

(A,i):j
(V O,s):p,q Φ

(B,i):j,k
(V O,s):p,q Φ

(B,i):j
(V O,s):p,q [W ]

(V O,s)
p,q

Φ(G,s):p Φ
(Q,i):j,k
(G,s):p Φ

(K,i):j,k
(G,s):p Φ

(V,i):j,k
(G,s):p Φ

(O,i):j,k
(G,s):p Φ

(G,i):j
(G,s):p Φ

(G,i)
(G,s):p Φ

(A,i):j,k
(G,s):p Φ

(A,i):j
(G,s):p Φ

(B,i):j,k
(G,s):p Φ

(B,i):j
(G,s):p [W ]

(G,s)
p

Φ(G,s) Φ
(Q,i):j,k
(G,s) Φ

(K,i):j,k
(G,s) Φ

(V,i):j,k
(G,s) Φ

(O,i):j,k
(G,s) Φ

(G,i):j
(G,s) Φ

(G,i)
(G,s) Φ

(A,i):j,k
(G,s) Φ

(A,i):j
(G,s) Φ

(B,i):j,k
(G,s) Φ

(B,i):j
(G,s) [b](G,s)

Φ(A,s):p,q Φ
(Q,i):j,k
(A,s):p,q Φ

(K,i):j,k
(A,s):p,q Φ

(V,i):j,k
(A,s):p,q Φ

(O,i):j,k
(A,s):p,q Φ

(G,i):j
(A,s):p,q Φ

(G,i)
(A,s):p,q Φ

(A,i):j,k
(A,s):p,q Φ

(A,i):j
(A,s):p,q Φ

(B,i):j,k
(A,s):p,q Φ

(B,i):j
(A,s):p,q [W ]

(A,s)
p,q

Φ(A,s):p Φ
(Q,i):j,k
(A,s):p Φ

(K,i):j,k
(A,s):p Φ

(V,i):j,k
(A,s):p Φ

(O,i):j,k
(A,s):p Φ

(G,i):j
(A,s):p Φ

(G,i)
(A,s):p Φ

(A,i):j,k
(A,s):p Φ

(A,i):j
(A,s):p Φ

(B,i):j,k
(A,s):p Φ

(B,i):j
(A,s):p [b]

(A,s)
p

Φ(B,s):p,q Φ
(Q,i):j,k
(B,s):p,q Φ

(K,i):j,k
(B,s):p,q Φ

(V,i):j,k
(B,s):p,q Φ

(O,i):j,k
(B,s):p,q Φ

(G,i):j
(B,s):p,q Φ

(G,i)
(B,s):p,q Φ

(A,i):j,k
(B,s):p,q Φ

(A,i):j
(B,s):p,q Φ

(B,i):j,k
(B,s):p,q Φ

(B,i):j
(B,s):p,q [W ]

(B,s)
p,q

Φ(B,s):p Φ
(Q,i):j,k
(B,s):p Φ

(K,i):j,k
(B,s):p Φ

(V,i):j,k
(B,s):p Φ

(O,i):j,k
(B,s):p Φ

(G,i):j
(B,s):p Φ

(G,i)
(B,s):p Φ

(A,i):j,k
(B,s):p Φ

(A,i):j
(B,s):p Φ

(B,i):j,k
(B,s):p Φ

(B,i):j
(B,s):p [b]

(B,s)
p

Φ1 Φ
(Q,i):j,k
1 Φ

(K,i):j,k
1 Φ

(V,i):j,k
1 Φ

(O,i):j,k
1 Φ

(G,i):j
1 Φ

(G,i)
1 Φ

(A,i):j,k
1 Φ

(A,i):j
1 Φ

(B,i):j,k
1 Φ

(B,i):j
1 1

Φ(Q,i):j,k Φ(K,i):j,k Φ(V,i):j,k Φ(O,i):j,k Φ(G,i):j Φ(G,i) Φ(A,i):j,k Φ(A,i):j Φ(B,i):j,k Φ(B,i):j

Table 5: This table is a color-annotated version of Table 4. Elements related to the output are high-
lighted in blue, while those associated with the input are shown in red, including their corresponding
indices.

[W ]
(Q,i)
j,k [W ]

(K,i)
j,k [W ]

(V,i)
j,k [W ]

(O,i)
j,k [W ]

(G,i)
j [b](G,i) [W ]

(A,i)
j,k [b]

(A,i)
j [W ]

(B,i)
j,k [b]

(B,i)
j

Φ(Q,s):p,q Φ
(Q,i):j,k
(Q,s):p,q Φ

(K,i):j,k
(Q,s):p,q Φ

(V,i):j,k
(Q,s):p,q Φ

(O,i):j,k
(Q,s):p,q Φ

(G,i):j
(Q,s):p,q Φ

(G,i)
(Q,s):p,q Φ(A,i):j,k

(Q,s):p,q
Φ

(A,i):j
(Q,s):p,q Φ

(B,i):j,k
(Q,s):p,q Φ

(B,i):j
(Q,s):p,q [W ]

(Q,s)
p,q

Φ(K,s):p,q Φ
(Q,i):j,k
(K,s):p,q Φ

(K,i):j,k
(K,s):p,q Φ

(V,i):j,k
(K,s):p,q Φ

(O,i):j,k
(K,s):p,q Φ

(G,i):j
(K,s):p,q Φ

(G,i)
(K,s):p,q Φ

(A,i):j,k
(K,s):p,q Φ

(A,i):j
(K,s):p,q Φ

(B,i):j,k
(K,s):p,q Φ

(B,i):j
(K,s):p,q [W ]

(K,s)
p,q

Φ(V,s):p,q Φ
(Q,i):j,k
(V,s):p,q Φ

(K,i):j,k
(V,s):p,q Φ

(V,i):j,k
(V,s):p,q Φ

(O,i):j,k
(V,s):p,q Φ

(G,i):j
(V,s):p,q Φ

(G,i)
(V,s):p,q Φ

(A,i):j,k
(V,s):p,q Φ

(A,i):j
(V,s):p,q Φ

(B,i):j,k
(V,s):p,q Φ

(B,i):j
(V,s):p,q [W ]

(V,s)
p,q

Φ(O,s):p,q Φ
(Q,i):j,k
(O,s):p,q Φ

(K,i):j,k
(O,s):p,q Φ

(V,i):j,k
(O,s):p,q Φ

(O,i):j,k
(O,s):p,q Φ

(G,i):j
(O,s):p,q Φ

(G,i)
(O,s):p,q Φ

(A,i):j,k
(O,s):p,q Φ

(A,i):j
(O,s):p,q Φ

(B,i):j,k
(O,s):p,q Φ

(B,i):j
(O,s):p,q [W ]

(O,s)
p,q

Φ(QK,s):p,q Φ
(Q,i):j,k
(QK,s):p,q Φ

(K,i):j,k
(QK,s):p,q Φ

(V,i):j,k
(QK,s):p,q Φ

(O,i):j,k
(QK,s):p,q Φ

(G,i):j
(QK,s):p,q Φ

(G,i)
(QK,s):p,q Φ

(A,i):j,k
(QK,s):p,q Φ

(A,i):j
(QK,s):p,q Φ

(B,i):j,k
(QK,s):p,q Φ

(B,i):j
(QK,s):p,q [W ]

(QK,s)
p,q

Φ(V O,s):p,q Φ
(Q,i):j,k
(V O,s):p,q Φ

(K,i):j,k
(V O,s):p,q Φ

(V,i):j,k
(V O,s):p,q Φ

(O,i):j,k
(V O,s):p,q Φ

(G,i):j
(V O,s):p,q Φ

(G,i)
(V O,s):p,q Φ

(A,i):j,k
(V O,s):p,q Φ

(A,i):j
(V O,s):p,q Φ

(B,i):j,k
(V O,s):p,q Φ

(B,i):j
(V O,s):p,q [W ]

(V O,s)
p,q

Φ(G,s):p Φ
(Q,i):j,k
(G,s):p Φ

(K,i):j,k
(G,s):p Φ

(V,i):j,k
(G,s):p Φ

(O,i):j,k
(G,s):p Φ

(G,i):j
(G,s):p Φ

(G,i)
(G,s):p Φ

(A,i):j,k
(G,s):p Φ

(A,i):j
(G,s):p Φ

(B,i):j,k
(G,s):p Φ

(B,i):j
(G,s):p [W ]

(G,s)
p

Φ(G,s) Φ
(Q,i):j,k
(G,s) Φ

(K,i):j,k
(G,s) Φ

(V,i):j,k
(G,s) Φ

(O,i):j,k
(G,s) Φ

(G,i):j
(G,s) Φ

(G,i)
(G,s) Φ

(A,i):j,k
(G,s) Φ

(A,i):j
(G,s) Φ

(B,i):j,k
(G,s) Φ

(B,i):j
(G,s) [b](G,s)

Φ(A,s):p,q Φ
(Q,i):j,k
(A,s):p,q Φ

(K,i):j,k
(A,s):p,q Φ

(V,i):j,k
(A,s):p,q Φ

(O,i):j,k
(A,s):p,q Φ

(G,i):j
(A,s):p,q Φ

(G,i)
(A,s):p,q Φ

(A,i):j,k
(A,s):p,q Φ

(A,i):j
(A,s):p,q Φ

(B,i):j,k
(A,s):p,q Φ

(B,i):j
(A,s):p,q [W ]

(A,s)
p,q

Φ(A,s):p Φ
(Q,i):j,k
(A,s):p Φ

(K,i):j,k
(A,s):p Φ

(V,i):j,k
(A,s):p Φ

(O,i):j,k
(A,s):p Φ

(G,i):j
(A,s):p Φ

(G,i)
(A,s):p Φ

(A,i):j,k
(A,s):p Φ

(A,i):j
(A,s):p Φ

(B,i):j,k
(A,s):p Φ

(B,i):j
(A,s):p [b]

(A,s)
p

Φ(B,s):p,q Φ
(Q,i):j,k
(B,s):p,q Φ

(K,i):j,k
(B,s):p,q Φ

(V,i):j,k
(B,s):p,q Φ

(O,i):j,k
(B,s):p,q Φ

(G,i):j
(B,s):p,q Φ

(G,i)
(B,s):p,q Φ

(A,i):j,k
(B,s):p,q Φ

(A,i):j
(B,s):p,q Φ

(B,i):j,k
(B,s):p,q Φ

(B,i):j
(B,s):p,q [W ]

(B,s)
p,q

Φ(B,s):p Φ
(Q,i):j,k
(B,s):p Φ

(K,i):j,k
(B,s):p Φ

(V,i):j,k
(B,s):p Φ

(O,i):j,k
(B,s):p Φ

(G,i):j
(B,s):p Φ

(G,i)
(B,s):p Φ

(A,i):j,k
(B,s):p Φ

(A,i):j
(B,s):p Φ

(B,i):j,k
(B,s):p Φ

(B,i):j
(B,s):p [b]

(B,s)
p

Φ1 Φ
(Q,i):j,k
1 Φ

(K,i):j,k
1 Φ

(V,i):j,k
1 Φ

(O,i):j,k
1 Φ

(G,i):j
1 Φ

(G,i)
1 Φ

(A,i):j,k
1 Φ

(A,i):j
1 Φ

(B,i):j,k
1 Φ

(B,i):j
1 1

Φ(Q,i):j,k Φ(K,i):j,k Φ(V,i):j,k Φ(O,i):j,k Φ(G,i):j Φ(G,i) Φ(A,i):j,k Φ(A,i):j Φ(B,i):j,k Φ(B,i):j
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Table 6: This table provides a detailed breakdown of the parameter notation Φ−
−. Each parameter

entry corresponds to the output indicated by its column and the input indicated by its row.

[W ]
(Q,i)
j,k [W ]

(K,i)
j,k [W ]

(V,i)
j,k [W ]

(O,i)
j,k [W ]

(G,i)
j [b](G,i) [W ]

(A,i)
j,k [b]

(A,i)
j [W ]

(B,i)
j,k [b]

(B,i)
j

Φ(Q,s):p,q [W ]
(Q,s)
p,q

Φ(K,s):p,q [W ]
(K,s)
p,q

Φ(V,s):p,q Φ
(G,i):j
(V,s):p,q [W ]

(V,s)
p,q

Φ(O,s):p,q Φ
(B,i):j,k
(O,s):p,q [W ]

(O,s)
p,q

Φ(QK,s):p,q [W ]
(QK,s)
p,q

Φ(V O,s):p,q [W ]
(V O,s)
p,q

Φ(G,s):p [W ]
(G,s)
p

Φ(G,s) [b](G,s)

Φ(A,s):p,q Φ
(G,i)
(A,s):p,q [W ]

(A,s)
p,q

Φ(A,s):p Φ
(V,i):j,k
(A,s):p [b]

(A,s)
p

Φ(B,s):p,q [W ]
(B,s)
p,q

Φ(B,s):p [b]
(B,s)
p

Φ1 1

Φ(Q,i):j,k Φ(K,i):j,k Φ(V,i):j,k Φ(O,i):j,k Φ(G,i):j Φ(G,i) Φ(A,i):j,k Φ(A,i):j Φ(B,i):j,k Φ(B,i):j

Table 7: The output is computed as follows. For each output entry, we take a ”dot product” between
the corresponding column indicating the output and the final column representing the input. The
summation is carried out over all indices that are compatible according to the indexing scheme.

[W ]
(Q,i)
j,k [W ]

(K,i)
j,k [W ]

(V,i)
j,k [W ]

(O,i)
j,k [W ]

(G,i)
j [b](G,i) [W ]

(A,i)
j,k [b]

(A,i)
j [W ]

(B,i)
j,k [b]

(B,i)
j

Φ(Q,s):p,q Φ
(V,i):j,k
(Q,s):p,q Φ(A,i):j,k

(Q,s):p,q
[W ]

(Q,s)
p,q

Φ(K,s):p,q Φ
(V,i):j,k
(K,s):p,q Φ

(A,i):j,k
(K,s):p,q [W ]

(K,s)
p,q

Φ(V,s):p,q Φ
(V,i):j,k
(V,s):p,q Φ

(A,i):j,k
(V,s):p,q [W ]

(V,s)
p,q

Φ(O,s):p,q Φ
(V,i):j,k
(O,s):p,q Φ

(A,i):j,k
(O,s):p,q [W ]

(O,s)
p,q

Φ(QK,s):p,q Φ
(V,i):j,k
(QK,s):p,q Φ

(A,i):j,k
(QK,s):p,q [W ]

(QK,s)
p,q

Φ(V O,s):p,q Φ
(V,i):j,k
(V O,s):p,q Φ

(A,i):j,k
(V O,s):p,q [W ]

(V O,s)
p,q

Φ(G,s):p Φ
(V,i):j,k
(G,s):p Φ

(A,i):j,k
(G,s):p [W ]

(G,s)
p

Φ(G,s) Φ
(V,i):j,k
(G,s) Φ

(A,i):j,k
(G,s) [b](G,s)

Φ(A,s):p,q Φ
(V,i):j,k
(A,s):p,q Φ

(A,i):j,k
(A,s):p,q [W ]

(A,s)
p,q

Φ(A,s):p Φ
(V,i):j,k
(A,s):p Φ

(A,i):j,k
(A,s):p [b]

(A,s)
p

Φ(B,s):p,q Φ
(V,i):j,k
(B,s):p,q Φ

(A,i):j,k
(B,s):p,q [W ]

(B,s)
p,q

Φ(B,s):p Φ
(V,i):j,k
(B,s):p Φ

(A,i):j,k
(B,s):p [b]

(B,s)
p

Φ1 Φ
(V,i):j,k
1 Φ

(A,i):j,k
(B,s):p 1

Φ(Q,i):j,k Φ(K,i):j,k Φ(V,i):j,k Φ(O,i):j,k Φ(G,i):j Φ(G,i) Φ(A,i):j,k Φ(A,i):j Φ(B,i):j,k Φ(B,i):j
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F EQUIVARIANT LAYER

In this section, we provide a detailed computation of E(U). To construct E(U), following the design
of equivariant polynomial layers in Tran et al. (2025), we adopt a quadratic polynomial in the input
weights U with unknown coefficients, as described in the previous section, and use a parameter-
sharing technique to determine the constraints on these coefficients that ensure E is equivariant. We
begin with the formulation of E(U) below:

E(U) =

((
[E(W )](Q,i), [E(W )](K,i), [E(W )](V,i), [E(W )](O,i)

)
i=1,...,nh

,((
[E(W )](G,i), [E(b)](G,i)

)
,

(
[E(W )](AE,i), [E(b)](A,i)

)
,
(
[E(W )](B,i), [E(b)](B,i)

))
i=1,...,ne

)
.

(148)

F.1 COMPUTING E(gU)

We borrow the following lemmas from Tran et al. (2025).

Lemma F.1 (See (Tran et al., 2025, Section D.2)). Assume that E : U ! U is a function defined
as in Equation 148 for some coefficients Φ−

−. If E(U) = 0 for all U ∈ U , then all coefficients are
equal to zero.

Lemma F.2 (See (Tran et al., 2025, Section D.2)). Let h and D be positive integers. Let
f
(1)
s , f

(2)
s : RD×D ! R be R-linear functions for each s = 1, . . . , h. Assume that there exists

a constant λ ∈ R such that
h∑

s=1

f (1)
s

(
M (s)

)
+ f (2)

s

((
M (s)

)−1
)

= λ, (149)

for all
(
M (1), . . . ,M (h)

)
∈ GLD(R)h. Then

f (1)
s (M) = f (2)

s (M) = λ = 0

for all s = 1, . . . , h and M ∈ GLD(R).

We now return to the computation of E(U). A detailed explanation of the E(U) layer and its
associated computations is provided in Section E.

By Equation 143, we have:

E(gU) =

((
[E(gW )](Q,i), [E(gW )](K,i), [E(gW )](V,i), [E(gW )](O,i)

)
i=1,...,nh

,

((
[E(gW )](G,i), [E(gb)](G,i)

)
,
(
[E(gW )](A,i), [E(gb)](A,i)

)
,
(
[E(gW )](B,i), [E(gb)](B,i)

))
i=1,...,ne

)
,

(150)

where

[E(gW )]
(Q,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(QK,s):p,q[gWgW ](QK,s)

p,q
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+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,i):j,k
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,i):j,k
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(Q,i):j,k
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(Q,i):j,k
(G,s):p [gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(Q,i):j,k
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(Q,i):j,k
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(Q,i):j,k
(A,s):q [gb](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(Q,i):j,k
(B,s):q [gb](B,s)

q +Φ
(Q,i):j,k
1 ,

(151)

[E(gW )]
(K,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(K,i):j,k
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(K,i):j,k
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(K,i):j,k
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(K,i):j,k
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(K,i):j,k
(V,s):p,q [gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(K,i):j,k
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(K,i):j,k
(G,s):p [gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(K,i):j,k
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(K,i):j,k
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(K,i):j,k
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(K,i):j,k
(A,s):q [gb](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(K,i):j,k
(B,s):q [gb](B,s)

q +Φ
(K,i):j,k
1 ,

(152)

[E(gW )]
(V,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(V,i):j,k
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(V,i):j,k
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(V,i):j,k
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(V,i):j,k
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(V,i):j,k
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(V,i):j,k
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(V,i):j,k
(G,s):p [gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(V,i):j,k
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(V,i):j,k
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(V,i):j,k
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(V,i):j,k
(A,s):q [gb](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(V,i):j,k
(B,s):q [gb](B,s)

q +Φ
(V,i):j,k
1 ,

(153)
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[E(gW )]
(O,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(O,i):j,k
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(O,i):j,k
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(O,i):j,k
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(O,i):j,k
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(O,i):j,k
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(O,i):j,k
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(O,i):j,k
(G,s):p [gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(O,i):j,k
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(O,i):j,k
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(O,i):j,k
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(O,i):j,k
(A,s):q [gb](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(O,i):j,k
(B,s):q [gb](B,s)

q +Φ
(O,i):j,k
1 ,

(154)

[E(gW )]
(G,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(G,i):j
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(G,i):j
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(G,i):j
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(G,i):j
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p[gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i):j
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i):j
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(G,i):j
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(G,i):j
(A,s):q[gb]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(G,i):j
(B,s):q[gb]

(B,s)
q +Φ

(G,i):j
1 ,

(155)

[E(gW )]
(A,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(A,i):j,k
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(A,i):j,k
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(A,i):j,k
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(A,i):j,k
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j,k
(G,s):p [gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j,k
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j,k
(B,s):p,q[gW ](B,s)

p,q
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ne∑
s=1

Φ
(A,i):j,k
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(A,i):j,k
(A,s):q [gb](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(A,i):j,k
(B,s):q [gb](B,s)

q +Φ
(A,i):j,k
1 ,

(156)

[E(gW )]
(B,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(B,i):j,k
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(B,i):j,k
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(B,i):j,k
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(B,i):j,k
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j,k
(G,s):p [gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j,k
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j,k
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(B,i):j,k
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(B,i):j,k
(A,s):q [gb](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(B,i):j,k
(B,s):q [gb](B,s)

q +Φ
(B,i):j,k
1 ,

(157)

[E(gb)](G,i) =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(G,i)
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(G,i)
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(G,i)
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(G,i)
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i)
(G,s):p[gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i)
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i)
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(G,i)
(G,s)[gb]

(G,s) +

ne∑
s=1

DA∑
q=1

Φ
(G,i)
(A,s):q[gb]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(G,i)
(B,s):q[gb]

(B,s)
q +Φ

(G,i)
1 ,

(158)

[E(gb)]
(A,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(A,i):j
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(A,i):j
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(A,i):j
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(A,i):j
(O,s):p,q[gW ](O,s)

p,q
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+

ne∑
s=1

D∑
p=1

Φ
(A,i):j
(G,s):p[gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(A,i):j
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(A,i):j
(A,s):q[gb]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(A,i):j
(B,s):q[gb]

(B,s)
q +Φ

(A,i):j
1 ,

(159)

[E(gb)]
(B,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j
(QK,s):p,q[gWgW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j
(V O,s):p,q[gWgW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(B,i):j
(Q,s):p,q[gW ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(B,i):j
(K,s):p,q[gW ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(B,i):j
(V,s):p,q[gW ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(B,i):j
(O,s):p,q[gW ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j
(G,s):p[gW ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j
(A,s):p,q[gW ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j
(B,s):p,q[gW ](B,s)

p,q

ne∑
s=1

Φ
(B,i):j
(G,s) [gb](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(B,i):j
(A,s):q[gb]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(B,i):j
(B,s):q[gb]

(B,s)
q +Φ

(B,i):j
1 .

(160)

Plugging the transformation for each index defined in Equation 145, we obtain:

[E(gW )]
(Q,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,i):j,k
(Q,s):p,q

[
[W ](Q,τh(s)) ·

(
M

(τh(s))
k

)⊤]
p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,i):j,k
(K,s):p,q

[
[W ](K,τh(s)) ·

(
M

(τh(s))
k

)−1
]
p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(Q,i):j,k
(V,s):p,q

[
[W ](V,τh(s)) ·M (τh(s))

v

]
p,q

+

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(O,s):p,q

[(
M (τh(s))

v

)−1

· [W ]
(O,τh(s))

]
p,q

+

ne∑
s=1

D∑
p=1

Φ
(Q,i):j,k
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(Q,i):j,k
(A,s):p,q

[
[W ]

(A,τe(s)) · P
π
(τe(s))
e

]
p,q
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+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(Q,i):j,k
(B,s):p,q

[(
P
π
(τe(s))
e

)−1

· [W ]
(B,τe(s))

]
p,q

+

ne∑
s=1

Φ
(Q,i):j,k
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(Q,i):j,k
(A,s):q

[
[b]

(A,τe(s)) · P
π
(τe(s))
e

]
q

+

ne∑
s=1

D∑
q=1

Φ
(Q,i):j,k
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(Q,i):j,k
1 . (161)

We observe that

[gE(W )]
(Q,i)
j,k =

[
[E(W )](Q,τh(i)) ·

(
M

(τh(i))
k

)⊤]
j,k

(162)

is an R-linear function of M (τh(i))
k . Therefore, by equating

[E(gW )]
(Q,i)
j,k = [gE(W )]

(Q,i)
j,k (163)

and applying Lemma F.2, we conclude that the only nonzero parameters Φ in the expression must
correspond to terms that are R-linear functions of M

(τh(i))
k . Consequently, only the coefficients

Φ
(Q,i):j,k
(Q,s):p,q can remain nonzero. Thus, we can rewrite the expression for Q component as:

[E(gW )]
(Q,i)
j,k =

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,i):j,k
(Q,s):p,q

[
W (Q,τh(s)) ·

(
M

(τh(s))
k

)⊤]
p,q

.

Combining the result for the Q component with analogous reasoning applied to K, V , and O, we
obtain the following expressions:

[E(gW )]
(Q,i)
j,k =

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,i):j,k
(Q,s):p,q

[
W (Q,τh(s)) ·

(
M

(τh(s))
k

)⊤]
p,q

,

[E(gW )]
(K,i)
j,k =

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(K,i):j,k
(K,s):p,q

[
[W ](K,τh(s)) ·

(
M

(τh(s))
k

)−1
]
p,q

,

[E(gW )]
(V,i)
j,k =

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(V,i):j,k
(V,s):p,q

[
[W ](V,τh(s)) ·M (τh(s))

v

]
p,q

,

[E(gW )]
(O,i)
j,k =

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(O,i):j,k
(O,s):p,q

[(
M (τh(s))

v

)−1

· [W ]
(O,τh(s))

]
p,q

.

Using symmetry of the indices, we obtain:

[E(gW )]
(Q,i)
j,k =

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,i):j,k

(Q,τ−1
h (s)):p,q

[
W (Q,s) ·

(
M

(s)
k

)⊤]
p,q

,

[E(gW )]
(K,i)
j,k =

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(K,i):j,k

(K,τ−1
h (s)):p,q

[
[W ](K,s) ·

(
M

(s)
k

)−1
]
p,q

,

[E(gW )]
(V,i)
j,k =

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(V,i):j,k

(V,τ−1
h (s)):p,q

[
[W ](V,s) ·M (s)

v

]
p,q

,
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[E(gW )]
(O,i)
j,k =

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(O,i):j,k

(O,τ−1
h (s)):p,q

[(
M (s)

v

)−1

· [W ]
(O,s)

]
p,q

.

Now consider the equivariant component corresponding to the gate component. By using the ex-
pression of the equivariant layer and plugging in Equation 145, we obtain:

[E(gW )]
(G,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(G,i):j
(Q,s):p,q

[
[W ](Q,τh(s)) ·

(
M

(τh(s))
k

)⊤]
p,q

+
h∑

s=1

D∑
p=1

Dk∑
q=1

Φ
(G,i):j
(K,s):p,q

[
[W ](K,τh(s)) ·

(
M

(τh(s))
k

)−1
]
p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φ
(G,i):j
(V,s):p,q

[
[W ](V,τh(s)) ·M (τh(s))

v

]
p,q

+

h∑
s=1

Dv∑
p=1

D∑
q=1

Φ
(G,i):j
(O,s):p,q

[(
M (τh(s))

v

)−1

· [W ]
(O,τh(s))

]
p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i):j
(A,s):p,q

[
[W ]

(A,τe(s)) · P
π
(τe(s))
e

]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i):j
(B,s):p,q

[(
P
π
(τe(s))
e

)−1

· [W ]
(B,τe(s))

]
p,q

+

ne∑
s=1

Φ
(G,i):j
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(G,i):j
(A,s):q

[
[b]

(A,τe(s)) · P
π
(τe(s))
e

]
q

+

ne∑
s=1

D∑
q=1

Φ
(G,i):j
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(G,i):j
1 . (164)

From Equation 145, we observe that:

[gE(W )]
(G,i)
j =

[
[E(W )]

(G,τe(i)) + γW

]
j
. (165)

When equating [gE(W )]
(G,i)
j = [E(gW )]

(G,i)
j , we notice that all components involving R-linear

functions of M (τh(s))
k , (M

(τh(s))
k )−1, M

(τh(s))
v , (M

(τh(s))
v )−1 appear exclusively in [E(gW )]

(G,i)
j

and not in [gE(W )]
(G,i)
j . Consequently, the corresponding Φ-parameters corresponding to the inputs

from Wq,Wk,Wv,Wo must vanish. This allows us to express the G component of the equivariant
layer as:

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

[E(gW )]
(G,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i):j
(A,s):p,q

[
[W ]

(A,τe(s)) · P
π
(τe(s))
e

]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i):j
(B,s):p,q

[(
P
π
(τe(s))
e

)−1

· [W ]
(B,τe(s))

]
p,q

+

ne∑
s=1

Φ
(G,i):j
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(G,i):j
(A,s):q

[
[b]

(A,τe(s)) · P
π
(τe(s))
e

]
q

+

ne∑
s=1

D∑
q=1

Φ
(G,i):j
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(G,i):j
1 . (166)

Applying the same reasoning to A and B components and combining them with the expression for
G, we obtain the set of equations:

[E(gW )]
(G,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i):j
(A,s):p,q

[
[W ]

(A,τe(s))
]
p,π

(τe(s))
e (q)

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i):j
(B,s):p,q

[
[W ]

(B,τe(s))
]
π
(τe(s))
e (p),q

+

ne∑
s=1

Φ
(G,i):j
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(G,i):j
(A,s):q

[
[b]

(A,τe(s))
]
π
(τe(s))
e (q)

+

ne∑
s=1

D∑
q=1

Φ
(G,i):j
(B,s):q

[
[b]

(B,τe(s))
]
q
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+Φ
(G,i):j
1 , (167)

[E(gW )]
(A,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j,k
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j,k
(A,s):p,q

[
[W ]

(A,τe(s))
]
p,π

(τe(s))
e (q)

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j,k
(B,s):p,q

[
[W ]

(B,τe(s))
]
π
(τe(s))
e (p),q

+

ne∑
s=1

Φ
(A,i):j,k
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(A,i):j,k
(A,s):q

[
[b]

(A,τe(s))
]
π
(τe(s))
e (q)

+

ne∑
s=1

D∑
q=1

Φ
(A,i):j,k
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(A,i):j,k
1 , (168)

[E(gW )]
(B,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j,k
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j,k
(A,s):p,q

[
[W ]

(A,τe(s))
]
p,π

(τe(s))
e (q)

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j,k
(B,s):p,q

[
[W ]

(B,τe(s))
]
π
(τe(s))
e (p),q

+

ne∑
s=1

Φ
(B,i):j,k
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(B,i):j,k
(A,s):q

[
[b]

(A,τe(s))
]
π
(τe(s))
e (q)

+

ne∑
s=1

D∑
q=1

Φ
(B,i):j,k
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(B,i):j,k
1 , (169)
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[E(gb)](G,i) =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i)
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i)
(A,s):p,q

[
[W ]

(A,τe(s))
]
p,π

(τe(s))
e (q)

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i)
(B,s):p,q

[
[W ]

(B,τe(s))
]
π
(τe(s))
e (p),q

+

ne∑
s=1

Φ
(G,i)
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(G,i)
(A,s):q

[
[b]

(A,τe(s))
]
π
(τe(s))
e (q)

+

ne∑
s=1

D∑
q=1

Φ
(G,i)
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(G,i)
1 , (170)

[E(gb)]
(A,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j
(QK,s):p,q[WW ](QK,τh(s))

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j
(A,s):p,q

[
[W ]

(A,τe(s))
]
p,π

(τe(s))
e (q)

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j
(B,s):p,q

[
[W ]

(B,τe(s))
]
π
(τe(s))
e (p),q

+

ne∑
s=1

Φ
(A,i):j
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(A,i):j
(A,s):q

[
[b]

(A,τe(s))
]
π
(τe(s))
e (q)

+

ne∑
s=1

D∑
q=1

Φ
(A,i):j
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(A,i):j
1 , (171)

[E(gb)]
(B,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j
(QK,s):p,q[WW ](QK,τh(s))

p,q
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+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j
(V O,s):p,q[WW ](V O,τh(s))

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j
(G,s):p

[
[W ]

(G,τe(s)) + γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j
(A,s):p,q

[
[W ]

(A,τe(s))
]
p,π

(τe(s))
e (q)

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j
(B,s):p,q

[
[W ]

(B,τe(s))
]
π
(τe(s))
e (p),q

+

ne∑
s=1

Φ
(B,i):j
(G,s)

(
[b]

(G,τe(s)) + γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(B,i):j
(A,s):q

[
[b]

(A,τe(s))
]
π
(τe(s))
e (q)

+

ne∑
s=1

D∑
q=1

Φ
(B,i):j
(B,s):q

[
[b]

(B,τe(s))
]
q

+Φ
(B,i):j
1 . (172)

By making use of index symmetry in the summation:

[E(gW )]
(G,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i):j

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(G,i):j

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(G,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q

+

ne∑
s=1

D∑
q=1

Φ
(G,i):j

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q

+Φ
(G,i):j
1 , (173)

[E(gW )]
(A,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q
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+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j,k

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j,k

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j,k

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(A,i):j,k

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(A,i):j,k

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q

+

ne∑
s=1

D∑
q=1

Φ
(A,i):j,k

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q

+Φ
(A,i):j,k
1 , (174)

[E(gW )]
(B,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j,k

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j,k

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j,k

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(B,i):j,k

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(B,i):j,k

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q

+

ne∑
s=1

D∑
q=1

Φ
(B,i):j,k

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q

+Φ
(B,i):j,k
1 , (175)

[E(gb)](G,i) =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

+

ne∑
s=1

D∑
p=1

Φ
(G,i)

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i)

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i)

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(G,i)

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(G,i)

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q

+

ne∑
s=1

D∑
q=1

Φ
(G,i)

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q

+Φ
(G,i)
1 , (176)

[E(gb)]
(A,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(A,i):j

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(A,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q

+

ne∑
s=1

D∑
q=1

Φ
(A,i):j

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q

+Φ
(A,i):j
1 , (177)

[E(gb)]
(B,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(B,i):j

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)
+

ne∑
s=1

DA∑
q=1

Φ
(B,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q

+

ne∑
s=1

D∑
q=1

Φ
(B,i):j

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q

+Φ
(B,i):j
1 . (178)

F.2 COMPUTING gE(U)

Using Equation 143:

gE(U) =

((
[gE(W )](Q,i), [gE(W )](K,i), [gE(W )](V,i), [gE(W )](O,i)

)
i=1,...,nh

,

((
[gE(W )](G,i), [gE(b)](G,i)

)
,
(
[gE(W )](A,i), [gE(b)](A,i)

)
,
(
[gE(W )](B,i), [gE(b)](B,i)

))
i=1,...,ne

)
.

(179)

Using Equation 145 to rewrite the group transformation in index-wise form, we obtain:

[gE(W )]
(Q,i)
j,k =

[
[E(W )](Q,τh(i)) ·

(
M

(τh(i))
k

)⊤]
j,k

=

Dk∑
l=1

[E(W )]
(Q,τ(i))
j,l ·

(
M (τ(i))

)⊤
l,k

=

Dk∑
l=1

M
(τ(i))
k,l ·

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(Q,τ(i)):j,l
(Q,s):p,q [W ](Q,s)

p,q , (180)

[gE(W )]
(K,i)
j,k =

[
[E(W )](K,τh(i)) ·

(
M

(τh(i))
k

)−1
]
j,k

=

Dk∑
l=1

[E(W )]
(K,τ(i))
j,l ·

(
M (τ(i))

)−1

l,k

=

Dk∑
l=1

(
M (τ(i))

)−1

l,k
·

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(K,τ(i)):j,l
(K,s):p,q [W ](K,s)

p,q , (181)

[gE(W )]
(V,i)
j,k =

[
[E(W )](V,τh(i)) ·M (τh(i))

v

]
j,k

=

Dv∑
l=1

[E(W )]
(V,τh(i))
j,l · (M (τh(i))

v )l,k
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=

Dv∑
l=1

(M (τh(i))
v )l,k ·

h∑
s=1

D∑
p=1

Dk∑
q=1

Φ
(V,τ(i)):j,l
(V,s):p,q [W ](V,s)p,q , (182)

[gE(W )]
(O,i)
j,k =

[(
M (τh(i))

v

)−1

· [E(W )]
(O,τh(i))

]
j,k

=

Dv∑
l=1

((
M (τh(i))

v

)−1
)

j,l

· [E(W )]
(O,τh(i))
l,k

=

Dv∑
l=1

((
M (τh(i))

v

)−1
)

j,l

·
h∑

s=1

Dv∑
p=1

D∑
q=1

Φ
(O,τ(i)):l,k
(O,s):p,q [W ](V,s)p,q , (183)

[gE(W )]
(G,i)
j = [E(W )]

(G,τe(i))
j + (γW )j

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i)):j
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i)):j
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,τe(i)):j
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,τe(i)):j
(A,s):p,q [W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,τe(i)):j
(B,s):p,q [W ](B,s)

p,q

+

ne∑
s=1

Φ
(G,τe(i)):j
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(G,τe(i)):j
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(G,τe(i)):j
(B,s):q [b](B,s)

q +Φ
(G,τe(i)):j
1 + (γW )j ,

(184)

[gE(W )]
(A,i)
j,k = [E(W )]

(A,τe(i))

j,π
(τe(i))
e (k)

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(QK,s):p,q [WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(V O,s):p,q [WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(G,s):p [W ](G,s)
p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(A,s):p,q [W ](A,s)
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(B,s):p,q [W ](B,s)
p,q +

ne∑
s=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(A,s):q [b](A,s)
q

+

ne∑
s=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(B,s):q [b](B,s)
q +Φ

(A,τe(i)):j,π
(τe(i))
e (k)

1 , (185)

[gE(W )]
(B,i)
j,k = [E(W )]

(B,τe(i))

π
(τe(i))
e (j),k

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(QK,s):p,q [WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(V O,s):p,q [WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(G,s):p [W ](G,s)
p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(A,s):p,q [W ](A,s)
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(B,s):p,q [W ](B,s)
p,q +

ne∑
s=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(A,s):q [b](A,s)
q

+

ne∑
s=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(B,s):q [b](B,s)
q +Φ

(B,τe(i)):π
(τe(i))
e (j),k

1 , (186)
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[gE(b)]
(G,i)

= [E(b)]
(G,τe(i)) + γb

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i))
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i))
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,τe(i))
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,τe(i))
(A,s):p,q [W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,τe(i))
(B,s):p,q[W ](B,s)

p,q

+

ne∑
s=1

Φ
(G,τe(i))
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(G,τe(i))
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(G,τe(i))
(B,s):q [b](B,s)

q +Φ
(G,τe(i))
1 + γb,

(187)

[gE(b)]
(A,i)
j = [E(b)]

(A,τe(i))

π
(τe(i))
e (j)

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(QK,s):p,q [WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(V O,s):p,q [WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(G,s):p [W ](G,s)
p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(A,s):p,q [W ](A,s)
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(B,s):p,q [W ](B,s)
p,q +

ne∑
s=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(G,s) [b](G,s)

+

ne∑
s=1

DA∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(A,s):q [b](A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(B,s):q [b](B,s)
q +Φ

(A,τe(i)):π
(τe(i))
e (j)

1 ,

(188)

[gE(b)]
(B,i)
j = [E(b)]

(B,τe(i))
j

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):j
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):j
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,τe(i)):j
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,τe(i)):j
(A,s):p,q [W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,τe(i)):j
(B,s):p,q [W ](B,s)

p,q

ne∑
s=1

Φ
(B,τe(i)):j
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(B,τe(i)):j
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(B,τe(i)):j
(B,s):q [b](B,s)

q +Φ
(B,τe(i)):j
1 .

(189)

F.3 COMPARE COEFFICIENTS FROM EQUATION E(gU) = gE(U)

To enforce equivariance property, we solve the following equalities to identify the constraints on the
parameters Φ:

[E(gW )]
(Q,i)
j,k = [gE(W )]

(Q,i)
j,k ,

[E(gW )]
(K,i)
j,k = [gE(W )]

(K,i)
j,k ,

[E(gW )]
(V,i)
j,k = [gE(W )]

(V,i)
j,k ,

[E(gW )]
(O,i)
j,k = [gE(W )]

(O,i)
j,k ,

[E(gW )]
(G,i)
j = [gE(W )]

(G,i)
j ,
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[E(gW )]
(A,i)
j,k = [gE(W )]

(A,i)
j,k ,

[E(gW )]
(B,i)
j,k = [gE(W )]

(B,i)
j,k ,

[E(gb)](G,i) = [gE(b)](A,i),

[E(gb)]
(A,i)
j = [gE(b)]

(A,i)
j ,

[E(gb)]
(B,i)
j = [gE(b)]

(B,i)
j .

We break the process into multiple steps to solve each constraint as follows.

Step 1. Solving [E(gW )]
(Q,i)
j,k = [gE(W )]

(Q,i)
j,k .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see
that

Φ
(Q,i):j,k
(Q,i):p,k = Φ

(Q,τ(i)):j,k′

(Q,τ(i)):p,k′ . (190)

Step 2. Solving [E(gW )]
(K,i)
j,k = [gE(W )]

(K,i)
j,k .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see
that

Φ
(K,i):j,k
(K,i):p,k = Φ

(K,τ(i)):j,k′

(K,τ(i)):p,k′ . (191)

Step 3. Solving [E(gW )]
(V,i)
j,k = [gE(W )]

(V,i)
j,k .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see
that

Φ
(V,i):j,k
(V,i):p,k = Φ

(V,τ(i)):j,k′

(V,τ(i)):p,k′ . (192)

Step 4. Solving [E(gW )]
(O,i)
j,k = [gE(W )]

(O,i)
j,k .

For this equality, by following the same argument in (Tran et al., 2025, Appendix D.3.3), we see
that

Φ
(O,i):j,k
(O,i):j,q = Φ

(O,τ(i)):j′,k
(O,τ(i)):j′,q . (193)

and all other indices equal to 0.

Step 5. Solving [E(gW )]
(G,i)
j = [gE(W )]

(G,i)
j .

To solve the constraint for this equation, we expand both sides in full and apply the index-wise group
action defined in Equation 145, which yields:

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i):j

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p
+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(G,i):j

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)

+

ne∑
s=1

DA∑
q=1

Φ
(G,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q
+

ne∑
s=1

D∑
q=1

Φ
(G,i):j

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q
+Φ

(G,i):j
1

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i)):j
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i)):j
(V O,s):p,q[WW ](V O,s)

p,q
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+

ne∑
s=1

D∑
p=1

Φ
(G,τe(i)):j
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,τe(i)):j
(A,s):p,q [W ](A,s)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,τe(i)):j
(B,s):p,q [W ](B,s)

p,q +

ne∑
s=1

Φ
(G,τe(i)):j
(G,s) [b](G,s)

+

ne∑
s=1

DA∑
q=1

Φ
(G,τe(i)):j
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(G,τe(i)):j
(B,s):q [b](B,s)

q +Φ
(G,τe(i)):j
1 + (γW )j . (194)

Using lemma F.1, we obtain the constraints:

Φ
(G,i):j

(QK,τ−1
h (s)):p,q

= Φ
(G,τe(i)):j
(QK,s):p,q,

Φ
(G,i):j

(V O,τ−1
h (s)):p,q

= Φ
(G,τe(i)):j
(V O,s):p,q,

Φ
(G,i):j

(G,τ−1
e (s)):p

= Φ
(G,τe(i)):j
(G,s):p ,

Φ
(G,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

= Φ
(G,τe(i)):j
(A,s):p,q ,

Φ
(G,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

= Φ
(G,τe(i)):j
(B,s):p,q ,

Φ
(G,i):j

(G,τ−1
e (s))

= Φ
(G,τe(i)):j
(G,s) ,

Φ
(G,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

= Φ
(G,τe(i)):j
(A,s):q ,

Φ
(G,i):j

(B,τ−1
e (s)):q

= Φ
(G,τe(i)):j
(B,s):q ,

Φ
(G,i):j
1 = Φ

(G,τe(i)):j
1 ,

ne∑
s=1

D∑
p=1

Φ
(G,i):j

(G,τ−1
e (s)):p

[γW ]p = (γW )j ,

ne∑
s=1

Φ
(G,i):j
(G,s) = 0.

By a change of indexes, we obtain:

Φ
(G,i):j
(QK,s):p,q = Φ

(G,τe(i)):j
(QK,τh(s)):p,q

,

Φ
(G,i):j
(V O,s):p,q = Φ

(G,τe(i)):j
(V O,τh(s)):p,q

,

Φ
(G,i):j
(G,s):p = Φ

(G,τe(i)):j
(G,τe(s)):p

,

Φ
(G,i):j
(A,s):p,q = Φ

(G,τe(i)):j

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):p,q = Φ

(G,τe(i)):j

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(G,i):j
(G,s) = Φ

(G,τe(i)):j
(G,τe(s))

,

Φ
(G,i):j
(A,s):q = Φ

(G,τe(i)):j

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):q = Φ

(G,τe(i)):j
(B,τe(s)):q

,

Φ
(G,i):j
1 = Φ

(G,τe(i)):j
1 ,

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p [γW ]p = (γW )j ,

ne∑
s=1

Φ
(G,i):j
(G,s) = 0.
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As a consequence, we have:

Φ
(G,i):j
(QK,s):p,q = Φ

(G,τe(i)):j
(QK,τh(s)):p,q

,

Φ
(G,i):j
(V O,s):p,q = Φ

(G,τe(i)):j
(V O,τh(s)):p,q

,

Φ
(G,i):j
(G,s):p = Φ

(G,τe(i)):j
(G,τe(s)):p

,

Φ
(G,i):j
(A,s):p,q = Φ

(G,τe(i)):j

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):p,q = Φ

(G,τe(i)):j

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(G,i):j
(G,s) = Φ

(G,τe(i)):j
(G,τe(s))

,

Φ
(G,i):j
(A,s):q = Φ

(G,τe(i)):j

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):q = Φ

(G,τe(i)):j
(B,τe(s)):q

,

Φ
(G,i):j
1 = Φ

(G,τe(i)):j
1 ,

ne∑
s=1

Φ
(G,i):j
(G,s):p = 0 (p ̸= j),

ne∑
s=1

Φ
(G,i):j
(G,s):j = 1,

ne∑
s=1

Φ
(G,i):j
(G,s) = 0.

(195)

Step 6. Solving [E(gW )]
(A,i)
j,k = [gE(W )]

(A,i)
j,k .

For this equation, we proceed as follow:
h∑

s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j,k

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p
+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j,k

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j,k

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(A,i):j,k

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)

+

ne∑
s=1

DA∑
q=1

Φ
(A,i):j,k

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q
+

ne∑
s=1

D∑
q=1

Φ
(A,i):j,k

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q
+Φ

(A,i):j,k
1

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(QK,s):p,q [WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(V O,s):p,q [WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(G,s):p [W ](G,s)
p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(A,s):p,q [W ](A,s)
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(B,s):p,q [W ](B,s)
p,q +

ne∑
s=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(G,s) [b](G,s)

+

ne∑
s=1

DA∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(A,s):q [b](A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(B,s):q [b](B,s)
q +Φ

(A,τe(i)):j,π
(τe(i))
e (k)

1 .

(196)
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Using lemma F.1, we obtain the constraints:

Φ
(A,i):j,k

(QK,τ−1
h (s)):p,q

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(QK,s):p,q ,

Φ
(A,i):j,k

(V O,τ−1
h (s)):p,q

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(V O,s):p,q ,

Φ
(A,i):j,k

(G,τ−1
e (s)):p

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(G,s):p ,

Φ
(A,i):j,k

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(A,s):p,q ,

Φ
(A,i):j,k

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(B,s):p,q ,

Φ
(A,i):j,k

(G,τ−1
e (s))

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(G,s) ,

Φ
(A,i):j,k

(A,τ−1
e (s)):(π

(s)
e )−1(q)

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(A,s):q ,

Φ
(A,i):j,k

(B,τ−1
e (s)):q

= Φ
(A,τe(i)):j,π

(τe(i))
e (k)

(B,s):q ,

Φ
(A,i):j,k
1 = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

1 ,
ne∑
s=1

Φ
(A,i):j,k

(G,τ−1
e (s)):p

= 0,

ne∑
s=1

Φ
(A,i):j,k
(G,s) = 0.

Therefore,

Φ
(A,i):j,k
(QK,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(QK,τh(s)):p,q
,

Φ
(A,i):j,k
(V O,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(V O,τh(s)):p,q
,

Φ
(A,i):j,k
(G,s):p = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s)):p
,

Φ
(A,i):j,k
(A,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(A,i):j,k
(B,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(A,i):j,k
(G,s) = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s))
,

Φ
(A,i):j,k
(A,s):q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(A,i):j,k
(B,s):q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(B,τe(s)):q
,

Φ
(A,i):j,k
1 = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

1 ,
ne∑
s=1

Φ
(A,i):j,k
(G,s):p = 0,

ne∑
s=1

Φ
(A,i):j,k
(G,s) = 0.

(197)

Step 7. Solving [E(gW )]
(B,i)
j,k = [gE(W )]

(B,i)
j,k .
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For this equation, we proceed as follow:

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j,k

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p
+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j,k

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j,k

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(B,i):j,k

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)

+

ne∑
s=1

DA∑
q=1

Φ
(B,i):j,k

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q
+

ne∑
s=1

D∑
q=1

Φ
(B,i):j,k

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q
+Φ

(B,i):j,k
1

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(QK,s):p,q [WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(V O,s):p,q [WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(G,s):p [W ](G,s)
p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(A,s):p,q [W ](A,s)
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(B,s):p,q [W ](B,s)
p,q +

ne∑
s=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(G,s) [b](G,s)

+

ne∑
s=1

DA∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(A,s):q [b](A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(B,τe(i)):π

(τe(i))
e (j),k

(B,s):q [b](B,s)
q +Φ

(B,τe(i)):π
(τe(i))
e (j),k

1 .

(198)

Using lemma F.1, we obtain the constraints:

Φ
(B,i):j,k

(QK,τ−1
h (s)):p,q

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(QK,s):p,q ,

Φ
(B,i):j,k

(V O,τ−1
h (s)):p,q

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(V O,s):p,q ,

Φ
(B,i):j,k

(G,τ−1
e (s)):p

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(G,s):p ,

Φ
(B,i):j,k

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(A,s):p,q ,

Φ
(B,i):j,k

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(B,s):p,q ,

Φ
(B,i):j,k

(G,τ−1
e (s))

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(G,s) ,

Φ
(B,i):j,k

(A,τ−1
e (s)):(π

(s)
e )−1(q)

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(A,s):q ,

Φ
(B,i):j,k

(B,τ−1
e (s)):q

= Φ
(B,τe(i)):π

(τe(i))
e (j),k

(B,s):q ,

Φ
(B,i):j,k
1 = Φ

(B,τe(i)):π
(τe(i))
e (j),k

1 ,
ne∑
s=1

Φ
(B,i):j,k

(G,τ−1
e (s)):p

= 0,

ne∑
s=1

Φ
(B,i):j,k
(G,s) = 0.
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Therefore:

Φ
(B,i):j,k
(QK,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(QK,τh(s)):p,q
,

Φ
(B,i):j,k
(V O,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(V O,τh(s)):p,q
,

Φ
(B,i):j,k
(G,s):p = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(G,τe(s)):p
,

Φ
(B,i):j,k
(A,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(A,τe(s)):p,π
(τe(s)
e (q)

,

Φ
(B,i):j,k
(B,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(B,i):j,k
(G,s) = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(G,τe(s))
,

Φ
(B,i):j,k
(A,s):q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(B,i):j,k
(B,s):q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(B,τe(s)):q
,

Φ
(B,i):j,k
1 = Φ

(B,τe(i)):π
(τe(i))
e (j),k

1 ,
ne∑
s=1

Φ
(B,i):j,k
(G,s):p = 0,

ne∑
s=1

Φ
(B,i):j,k
(G,s) = 0.

(199)

Step 8. Solving [E(gb)](G,i) = [gE(b)](G,i).

For this equation, we proceed as follow:

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i)

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p
+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i)

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i)

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(G,i)

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)

+

ne∑
s=1

DA∑
q=1

Φ
(G,i)

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q
+

ne∑
s=1

D∑
q=1

Φ
(G,i)

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q
+Φ

(G,i)
1

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i))
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,τe(i))
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,τe(i))
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,τe(i))
(A,s):p,q [W ](A,s)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,τe(i))
(B,s):p,q[W ](B,s)

p,q +

ne∑
s=1

Φ
(G,τe(i))
(G,s) [b](G,s)

+

ne∑
s=1

DA∑
q=1

Φ
(G,τe(i))
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(G,τe(i))
(B,s):q [b](B,s)

q +Φ
(G,τe(i))
1 + γb. (200)

Using lemma F.1, we obtain the constraints:
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Φ
(G,i)

(QK,τ−1
h (s)):p,q

= Φ
(G,τe(i))
(QK,s):p,q,

Φ
(G,i)

(V O,τ−1
h (s)):p,q

= Φ
(G,τe(i))
(V O,s):p,q,

Φ
(G,i)

(G,τ−1
e (s)):p

= Φ
(G,τe(i))
(G,s):p ,

Φ
(G,i)

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

= Φ
(G,τe(i))
(A,s):p,q ,

Φ
(G,i)

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

= Φ
(G,τe(i))
(B,s):p,q,

Φ
(G,i)

(G,τ−1
e (s))

= Φ
(G,τe(i))
(G,s) ,

Φ
(G,i)

(A,τ−1
e (s)):(π

(s)
e )−1(q)

= Φ
(G,τe(i))
(A,s):q ,

Φ
(G,i)

(B,τ−1
e (s)):q

= Φ
(G,τe(i))
(B,s):q ,

Φ
(G,i)
1 = Φ

(G,τe(i))
1 ,

ne∑
s=1

Φ
(G,i)

(G,τ−1
e (s)):p

= 0,

ne∑
s=1

Φ
(G,i)
(G,s) = 1.

Therefore:
Φ

(G,i)
(QK,s):p,q = Φ

(G,τe(i))
(QK,τh(s)):p,q

,

Φ
(G,i)
(V O,s):p,q = Φ

(G,τe(i))
(V O,τh(s)):p,q

,

Φ
(G,i)
(G,s):p = Φ

(G,τe(i))
(G,τe(s)):p

,

Φ
(G,i)
(A,s):p,q = Φ

(G,τe(i))

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(G,i)
(B,s):p,q = Φ

(G,τe(i))

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(G,i)
(G,s) = Φ

(G,τe(i))
(G,τe(s))

,

Φ
(G,i)
(A,s):q = Φ

(G,τe(i))

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(G,i)
(B,s):q = Φ

(G,τe(i))
(B,τe(s)):q

,

Φ
(G,i)
1 = Φ

(G,τe(i))
1 ,

ne∑
s=1

Φ
(G,i)
(G,s):p = 0,

ne∑
s=1

Φ
(G,i)
(G,s) = 1.

(201)

Step 9. Solving [E(gb)]
(A,i)
j = [gE(b)]

(A,i)
j .

For this equation, we proceed as follow:
h∑

s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p
+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q
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+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(A,i):j

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)

+

ne∑
s=1

DA∑
q=1

Φ
(A,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q
+

ne∑
s=1

D∑
q=1

Φ
(A,i):j

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q
+Φ

(A,i):j
1 ,

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(QK,s):p,q [WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(V O,s):p,q [WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(G,s):p [W ](G,s)
p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(A,s):p,q [W ](A,s)
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(B,s):p,q [W ](B,s)
p,q +

ne∑
s=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(G,s) [b](G,s)

+

ne∑
s=1

DA∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(A,s):q [b](A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(A,τe(i)):π

(τe(i))
e (j)

(B,s):q [b](B,s)
q +Φ

(A,τe(i)):π
(τe(i))
e (j)

1 .

(202)

Using lemma F.1, we obtain the constraints:

Φ
(A,i):j

(QK,τ−1
h (s)):p,q

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(QK,s):p,q ,

Φ
(A,i):j

(V O,τ−1
h (s)):p,q

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(V O,s):p,q ,

Φ
(A,i):j

(G,τ−1
e (s)):p

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(G,s):p ,

Φ
(A,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(A,s):p,q ,

Φ
(A,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(B,s):p,q ,

Φ
(A,i):j

(G,τ−1
e (s))

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(G,s) ,

Φ
(A,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(A,s):q ,

Φ
(A,i):j

(B,τ−1
e (s)):q

= Φ
(A,τe(i)):π

(τe(i))
e (j)

(B,s):q ,

Φ
(A,i):j
1 = Φ

(A,τe(i)):π
(τe(i))
e (j)

1 ,
ne∑
s=1

Φ
(A,i):j

(G,τ−1
e (s)):p

= 0,

ne∑
s=1

Φ
(A,i):j
(G,s) = 0.
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Therefore:

Φ
(A,i):j
(QK,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(QK,τh(s)):p,q
,

Φ
(A,i):j
(V O,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(V O,τh(s)):p,q
,

Φ
(A,i):j
(G,s):p = Φ

(A,τe(i)):π
(τe(i))
e (j)

(G,τe(s)):p
,

Φ
(A,i):j
(A,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(A,i):j
(B,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(A,i):j
(G,s) = Φ

(A,τe(i)):π
(τe(i))
e (j)

(G,τe(s))
,

Φ
(A,i):j
(A,s):q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(A,i):j
(B,s):q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(B,τe(s)):q
,

Φ
(A,i):j
1 = Φ

(A,τe(i)):π
(τe(i))
e (j)

1 ,
ne∑
s=1

Φ
(A,i):j
(G,s):p = 0,

ne∑
s=1

Φ
(A,i):j
(G,s) = 0.

(203)

Step 10. Solving [E(gb)]
(B,i)
j = [gE(b)]

(B,i)
j .

For this equation, we proceed as follow:
h∑

s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j

(QK,τ−1
h (s)):p,q

[WW ](QK,s)
p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j

(V O,τ−1
h (s)):p,q

[WW ](V O,s)
p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j

(G,τ−1
e (s)):p

[
[W ]

(G,s)
+ γW

]
p
+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φ
(B,i):j

(G,τ−1
e (s))

(
[b]

(G,s)
+ γb

)

+

ne∑
s=1

DA∑
q=1

Φ
(B,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q
+

ne∑
s=1

D∑
q=1

Φ
(B,i):j

(B,τ−1
e (s)):q

[
[b]

(B,s)
]
q
+Φ

(B,i):j
1

=

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):j
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,τe(i)):j
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,τe(i)):j
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,τe(i)):j
(A,s):p,q [W ](A,s)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,τe(i)):j
(B,s):p,q [W ](B,s)

p,q +

ne∑
s=1

Φ
(B,τe(i)):j
(G,s) [b](G,s)

+

ne∑
s=1

DA∑
q=1

Φ
(B,τe(i)):j
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(B,τe(i)):j
(B,s):q [b](B,s)

q +Φ
(B,τe(i)):j
1 . (204)

Using Lemma F.1, we obtain the constraints:

Φ
(B,i):j

(QK,τ−1
h (s)):p,q

= Φ
(B,τe(i)):j
(QK,s):p,q,
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Φ
(B,i):j

(V O,τ−1
h (s)):p,q

= Φ
(B,τe(i)):j
(V O,s):p,q,

Φ
(B,i):j

(G,τ−1
e (s)):p

= Φ
(B,τe(i)):j
(G,s):p ,

Φ
(B,i):j

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

= Φ
(B,τe(i)):j
(A,s):p,q ,

Φ
(B,i):j

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

= Φ
(B,τe(i)):j
(B,s):p,q ,

Φ
(B,i):j

(G,τ−1
e (s))

= Φ
(B,τe(i)):j
(G,s) ,

Φ
(B,i):j

(A,τ−1
e (s)):(π

(s)
e )−1(q)

= Φ
(B,τe(i)):j
(A,s):q ,

Φ
(B,i):j

(B,τ−1
e (s)):q

= Φ
(B,τe(i)):j
(B,s):q ,

Φ
(B,i):j
1 = Φ

(B,τe(i)):j
1 ,

ne∑
s=1

Φ
(B,i):j

(G,τ−1
e (s)):p

= 0,

ne∑
s=1

Φ
(B,i):j
(G,s) = 0.

Therefore:

Φ
(B,i):j
(QK,s):p,q = Φ

(B,τe(i)):j
(QK,τh(s)):p,q

,

Φ
(B,i):j
(V O,s):p,q = Φ

(B,τe(i)):j
(V O,τh(s)):p,q

,

Φ
(B,i):j
(G,s):p = Φ

(B,τe(i)):j
(G,τe(s)):p

,

Φ
(B,i):j
(A,s):p,q = Φ

(B,τe(i)):j

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(B,i):j
(B,s):p,q = Φ

(B,τe(i)):j

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(B,i):j
(G,s) = Φ

(B,τe(i)):j
(G,τe(s))

,

Φ
(B,i):j
(A,s):q = Φ

(B,τe(i)):j

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(B,i):j
(B,s):q = Φ

(B,τe(i)):j
(B,τe(s)):q

,

Φ
(B,i):j
1 = Φ

(B,τe(i)):j
1 ,

ne∑
s=1

Φ
(B,i):j
(G,s):p = 0,

ne∑
s=1

Φ
(B,i):j
(G,s) = 0.

(205)

F.4 FINAL FORM OF THE EQUIVARIANT POLYNOMIAL LAYER

The final form of E(U) after solving all constraints are given below for each entries:

1. [E(W )]
(Q,i)
j,k is given by

[E(W )]
(Q,i)
j,k =

D∑
p=1

Φ
(Q,i):j,k
(Q,i):p,k[W ]

(Q,i)
p,k ,

with constraints

Φ
(Q,i):j,k
(Q,i):p,k = Φ

(Q,τ(i)):j,k′

(Q,τ(i)):p,k′ . (206)
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2. [E(W )]
(K,i)
j,k is given by

[E(W )]
(K,i)
j,k =

D∑
p=1

Φ
(K,i):j,k
(K,i):p,k[W ]

(K,i)
p,k ,

with constraints

Φ
(K,i):j,k
(K,i):p,k = Φ

(K,τ(i)):j,k′

(K,τ(i)):p,k′ . (207)

3. [E(W )]
(V,i)
j,k is given by

[E(W )]
(V,i)
j,k =

D∑
p=1

Φ
(V,i):j,k
(V,i):p,k[W ]

(V,i)
p,k ,

with constraints

Φ
(V,i):j,k
(V,i):p,k = Φ

(V,τ(i)):j,k′

(V,τ(i)):p,k′ . (208)

4. [E(W )]
(O,i)
j,k is given by

[E(W )]
(O,i)
j,k =

Dk∑
p=1

Φ
(O,i):j,k
(O,i):j,q [W ]

(O,i)
p,k ,

with constraints

Φ
(O,i):j′,k
(O,i):j′,q = Φ

(O,τ(i)):j,k
(O,τ(i)):j′,q. (209)

5. [E(W )]
(G,i)
j is given by

[E(W )]
(G,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i):j
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p[W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i):j
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i):j
(B,s):p,q[W ](B,s)

p,q

+

ne∑
s=1

Φ
(G,i):j
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(G,i):j
(A,s):q[b]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(G,i):j
(B,s):q[b]

(B,s)
q +Φ

(G,i):j
1
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with constraints

Φ
(G,i):j
(QK,s):p,q = Φ

(G,τe(i)):j
(QK,τh(s)):p,q

,

Φ
(G,i):j
(V O,s):p,q = Φ

(G,τe(i)):j
(V O,τh(s)):p,q

,

Φ
(G,i):j
(G,s):p = Φ

(G,τe(i)):j
(G,τe(s)):p

,

Φ
(G,i):j
(A,s):p,q = Φ

(G,τe(i)):j

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):p,q = Φ

(G,τe(i)):j

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(G,i):j
(G,s) = Φ

(G,τe(i)):j
(G,τe(s))

,

Φ
(G,i):j
(A,s):q = Φ

(G,τe(i)):j

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):q = Φ

(G,τe(i)):j
(B,τe(s)):q

,

Φ
(G,i):j
1 = Φ

(G,τe(i)):j
1 ,

ne∑
s=1

Φ
(G,i):j
(G,s):p = 0 (p ̸= j),

ne∑
s=1

Φ
(G,i):j
(G,s):j = 1,

ne∑
s=1

Φ
(G,i):j
(G,s) = 0.

(210)

6. [E(W )]
(A,i)
j,k is given by

[E(W )]
(A,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j,k
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j,k
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j,k
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j,k
(B,s):p,q[W ](B,s)

p,q

ne∑
s=1

Φ
(A,i):j,k
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(A,i):j,k
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(A,i):j,k
(B,s):q [b](B,s)

q +Φ
(A,i):j,k
1
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with constraints

Φ
(A,i):j,k
(QK,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(QK,τh(s)):p,q
,

Φ
(A,i):j,k
(V O,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(V O,τh(s)):p,q
,

Φ
(A,i):j,k
(G,s):p = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s)):p
,

Φ
(A,i):j,k
(A,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(A,i):j,k
(B,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(A,i):j,k
(G,s) = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s))
,

Φ
(A,i):j,k
(A,s):q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(A,i):j,k
(B,s):q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(B,τe(s)):q
,

Φ
(A,i):j,k
1 = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

1 ,
ne∑
s=1

Φ
(A,i):j,k
(G,s):p = 0,

ne∑
s=1

Φ
(A,i):j,k
(G,s) = 0.

(211)

7. [E(W )]
(B,i)
j,k is given by

[E(W )]
(B,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j,k
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j,k
(G,s):p [W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j,k
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j,k
(B,s):p,q[W ](B,s)

p,q

ne∑
s=1

Φ
(B,i):j,k
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(B,i):j,k
(A,s):q [b](A,s)

q +

ne∑
s=1

D∑
q=1

Φ
(B,i):j,k
(B,s):q [b](B,s)

q +Φ
(B,i):j,k
1
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with constraints

Φ
(B,i):j,k
(QK,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(QK,τh(s)):p,q
,

Φ
(B,i):j,k
(V O,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(V O,τh(s)):p,q
,

Φ
(B,i):j,k
(G,s):p = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(G,τe(s)):p
,

Φ
(B,i):j,k
(A,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(A,τe(s)):p,π
(τe(s)
e (q)

,

Φ
(B,i):j,k
(B,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(B,i):j,k
(G,s) = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(G,s) ,

Φ
(B,i):j,k
(A,s):q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(B,i):j,k
(B,s):q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(B,τe(s)):q
,

Φ
(B,i):j,k
1 = Φ

(B,τe(i)):π
(τe(i))
e (j),k

1 ,
ne∑
s=1

Φ
(B,i):j,k
(G,s):p = 0,

ne∑
s=1

Φ
(B,i):j,k
(G,s) = 0.

(212)

8. [E(b)](G,i) is given by

[E(b)](G,i) =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,i)
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(G,i)
(G,s):p[W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,i)
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(G,i)
(B,s):p,q[W ](B,s)

p,q

ne∑
s=1

Φ
(G,i)
(G,s)[b]

(G,s) +

ne∑
s=1

DA∑
q=1

Φ
(G,i)
(A,s):q[b]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(G,i)
(B,s):q[b]

(B,s)
q +Φ

(G,i)
1

with constraints
Φ

(G,i)
(QK,s):p,q = Φ

(G,τe(i))
(QK,τh(s)):p,q

,

Φ
(G,i)
(V O,s):p,q = Φ

(G,τe(i))
(V O,τh(s)):p,q

,

Φ
(G,i)
(G,s):p = Φ

(G,τe(i))
(G,τe(s)):p

,

Φ
(G,i)
(A,s):p,q = Φ

(G,τe(i))

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(G,i)
(B,s):p,q = Φ

(G,τe(i))

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(G,i)
(G,s) = Φ

(G,τe(i))
(G,τe(s))

,

Φ
(G,i)
(A,s):q = Φ

(G,τe(i))

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(G,i)
(B,s):q = Φ

(G,τe(i))
(B,τe(s)):q

,

Φ
(G,i)
1 = Φ

(G,τe(i))
1 ,

ne∑
s=1

Φ
(G,i)
(G,s):p = 0,

ne∑
s=1

Φ
(G,i)
(G,s) = 1.

(213)
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9. [E(b)]
(A,i)
j is given by

[E(b)]
(A,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,i):j
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(A,i):j
(G,s):p[W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(A,i):j
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(A,i):j
(B,s):p,q[W ](B,s)

p,q

ne∑
s=1

Φ
(A,i):j
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(A,i):j
(A,s):q[b]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(A,i):j
(B,s):q[b]

(B,s)
q +Φ

(A,i):j
1

with constraints

Φ
(A,i):j
(QK,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(QK,τh(s)):p,q
,

Φ
(A,i):j
(V O,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(V O,τh(s)):p,q
,

Φ
(A,i):j
(G,s):p = Φ

(A,τe(i)):π
(τe(i))
e (j)

(G,τe(s)):p
,

Φ
(A,i):j
(A,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(A,i):j
(B,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(A,i):j
(G,s) = Φ

(A,τe(i)):π
(τe(i))
e (j)

(G,τe(s))
,

Φ
(A,i):j
(A,s):q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(A,i):j
(B,s):q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(B,τe(s)):q
,

Φ
(A,i):j
1 = Φ

(A,τe(i)):π
(τe(i))
e (j)

1 ,
ne∑
s=1

Φ
(A,i):j
(G,s):p = 0,

ne∑
s=1

Φ
(A,i):j
(G,s) = 0.

(214)

10. [E(b)]
(B,i)
j is given by

[E(b)]
(B,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,i):j
(V O,s):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φ
(B,i):j
(G,s):p[W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(B,i):j
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φ
(B,i):j
(B,s):p,q[W ](B,s)

p,q

ne∑
s=1

Φ
(B,i):j
(G,s) [b](G,s) +

ne∑
s=1

DA∑
q=1

Φ
(B,i):j
(A,s):q[b]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φ
(B,i):j
(B,s):q[b]

(B,s)
q +Φ

(B,i):j
1 ,
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with constraints
Φ

(B,i):j
(QK,s):p,q = Φ

(B,τe(i)):j
(QK,τh(s)):p,q

,

Φ
(B,i):j
(V O,s):p,q = Φ

(B,τe(i)):j
(V O,τh(s)):p,q

,

Φ
(B,i):j
(G,s):p = Φ

(B,τe(i)):j
(G,τe(s)):p

,

Φ
(B,i):j
(A,s):p,q = Φ

(B,τe(i)):j

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(B,i):j
(B,s):p,q = Φ

(B,τe(i)):j

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(B,i):j
(G,s) = Φ

(B,τe(i)):j
(G,τe(s))

,

Φ
(B,i):j
(A,s):q = Φ

(B,τe(i)):j

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(B,i):j
(B,s):q = Φ

(B,τe(i)):j
(B,τe(s)):q

,

Φ
(B,i):j
1 = Φ

(B,τe(i)):j
1 ,

ne∑
s=1

Φ
(B,i):j
(G,s):p = 0,

ne∑
s=1

Φ
(B,i):j
(G,s) = 0.

(215)

G INVARIANT LAYER

In this section, we provide a detailed computation of the invariant layer I(U) following the
parameter-sharing technique as the computation of equivariant layer above. We begin with the
formulation of I(U) below:

I(U)i =

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(QK,s):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(V O,s):p,q[WW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(Q,s):p,q[W ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(K,s):p,q[W ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φi
(V,s):p,q[W ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φi
(O,s):p,q[W ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φi
(G,s):p[W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φi
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φi
(B,s):p,q[W ](B,s)

p,q

ne∑
s=1

Φi
(G,s)[b]

(G,s) +

ne∑
s=1

DA∑
q=1

Φi
(A,s):q[b]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φi
(B,s):q[b]

(B,s)
q +Φi

1.

(216)

G.1 COMPUTING I(gU)

Plugging entry-wise group action 145 into Equation 216, we obtain the following expression:

I(gU)i =

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(QK,τ−1

h (s)):p,q
[WW ](QK,s)

p,q
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+

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(V O,τ−1

h (s)):p,q
[WW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(Q,τ−1

h (s)):p,q

[
[W ](Q,s) ·

(
M

(s)
k

)⊤]
p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(K,τ−1

h (s)):p,q

[
[W ](K,s) ·

(
M

(s)
k

)−1
]
p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φi
(V,τ−1

h (s)):p,q

[
[W ](V,s) ·M (s)

v

]
p,q

+

h∑
s=1

Dv∑
p=1

D∑
q=1

Φi
(O,s):p,q

[(
M (τh(s))

v

)−1

· [W ]
(O,τh(s))

]
p,q

+

ne∑
s=1

D∑
p=1

Φi
(G,τ−1

e (s)):p

[
[W ]

(G,s)
+ γW

]
p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φi

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φi

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φi
(G,τ−1

e (s))

(
[b]

(G,s)
+ γb

)
+

ne∑
s=1

DA∑
q=1

Φi

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q

+

ne∑
s=1

D∑
q=1

Φi
(B,τ−1

e (s)):q

[
[b]

(B,s)
]
q

+Φi
1. (217)

(218)

G.2 COMPARE COEFFICIENTS FROM EQUATION I(gU) = I(U)

In the following, we solve the equation I(gU) = I(U) for all U ∈ U and g ∈ GU to determine the
constraints for the unknown coefficients Φ.

Solving for I(U)i = I(gU)i.

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(QK,s):p,q[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(V O,s):p,q[WW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(Q,s):p,q[W ](Q,s)

p,q +

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(K,s):p,q[W ](K,s)

p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φi
(V,s):p,q[W ](V,s)p,q +

h∑
s=1

Dv∑
p=1

D∑
q=1

Φi
(O,s):p,q[W ](O,s)

p,q

+

ne∑
s=1

D∑
p=1

Φi
(G,s):p[W ](G,s)

p +

ne∑
s=1

D∑
p=1

DA∑
q=1

Φi
(A,s):p,q[W ](A,s)

p,q +

ne∑
s=1

DA∑
p=1

D∑
q=1

Φi
(B,s):p,q[W ](B,s)

p,q
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ne∑
s=1

Φi
(G,s)[b]

(G,s) +

ne∑
s=1

DA∑
q=1

Φi
(A,s):q[b]

(A,s)
q +

ne∑
s=1

D∑
q=1

Φi
(B,s):q[b]

(B,s)
q +Φi

1,

=

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(QK,τ−1

h (s)):p,q
[WW ](QK,s)

p,q +

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(V O,τ−1

h (s)):p,q
[WW ](V O,s)

p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(Q,τ−1

h (s)):p,q

[
[W ](Q,s) ·

(
M

(s)
k

)⊤]
p,q

+

h∑
s=1

D∑
p=1

Dk∑
q=1

Φi
(K,τ−1

h (s)):p,q

[
[W ](K,s) ·

(
M

(s)
k

)−1
]
p,q

+

h∑
s=1

D∑
p=1

Dv∑
q=1

Φi
(V,τ−1

h (s)):p,q

[
[W ](V,s) ·M (s)

v

]
p,q

+

h∑
s=1

Dv∑
p=1

D∑
q=1

Φi
(O,s):p,q

[(
M (τh(s))

v

)−1

· [W ]
(O,τh(s))

]
p,q

+

ne∑
s=1

D∑
p=1

Φi
(G,τ−1

e (s)):p

[
[W ]

(G,s)
+ γW

]
p
+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φi

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

[
[W ]

(A,s)
]
p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φi

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

[
[W ]

(B,s)
]
p,q

+

ne∑
s=1

Φi
(G,τ−1

e (s))

(
[b]

(G,s)
+ γb

)

+

ne∑
s=1

DA∑
q=1

Φi

(A,τ−1
e (s)):(π

(s)
e )−1(q)

[
[b]

(A,s)
]
q
+

ne∑
s=1

D∑
q=1

Φi
(B,τ−1

e (s)):q

[
[b]

(B,s)
]
q
+Φi

1.

Using lemma F.1, we obtain the constraints:

Φi
(QK,s):p,q = Φi

(QK,τ−1
h (s)):p,q

,

Φi
(V O,s):p,q = Φi

(V O,τ−1
h (s)):p,q

,

Φi
(Q,τ−1

h (s)):p,q
= 0,

Φi
(K,τ−1

h (s)):p,q
= 0,

Φi
(V,τ−1

h (s)):p,q
= 0,

Φi
(O,τ−1

h (s)):p,q
= 0,

Φi
(G,s):p = Φi

(G,τ−1
e (s)):p

,

Φi
(A,s):p,q = Φi

(A,τ−1
e (s)):p,(π

(s)
e )−1(q)

,

Φi
(B,s):p,q = Φi

(B,τ−1
e (s)):(π

(s)
e )−1(p),q

,

Φi
(G,s) = Φi

(G,τ−1
e (s))

,

Φi
(A,s):q = Φi

(A,τ−1
e (s)):(π

(s)
e )−1(q)

,

Φi
(B,s):q = Φi

(B,τ−1
e (s)):q

,

Φi
1 = Φi

1,
ne∑
s=1

Φi
(G,τ−1

e (s)):p
= 0,

ne∑
s=1

Φi
(G,τ−1

e (s))
= 0.

Therefore:
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Φi
(QK,s):p,q = Φi

(QK,τh(s)):p,q
,

Φi
(V O,s):p,q = Φi

(V O,τh(s)):p,q
,

Φi
(Q,s):p,q = 0,

Φi
(K,s):p,q = 0,

Φi
(V,s):p,q = 0,

Φi
(O,s):p,q = 0,

Φi
(G,s):p = Φi

(G,τe(s)):p
,

Φi
(A,s):p,q = Φi

(A,τe(s)):p,π
(s)
e (q)

,

Φi
(B,s):p,q = Φi

(B,τe(s)):π
(s)
e (p),q

,

Φi
(G,s) = Φi

(G,τe(s))
,

Φi
(A,s):q = Φi

(A,τe(s)):π
(s)
e (q)

,

Φi
(B,s):q = Φi

(B,τe(s)):q
,

ne∑
s=1

Φi
(G,s):p = 0,

ne∑
s=1

Φi
(G,s) = 0.

(219)

H IMPLEMENTATION DETAILS OF THE EQUIVARIANT AND INVARIANT
LAYER

In this section, we provide implementation details for the equivariant and invariant layers described
in the previous sections. The bullet notation • is used to indicate index-wise equality. For example,
xi,• denotes that all values along the second index are equal, i.e., xi,j = xi,j′ for all pairs (j, j′).

Based on the constraints derived in Section F.4, we express all formulations using bullet notation,
which provides a more practical and concise format for implementation. This notation not only
streamlines the empirical realization of the constraints but also clearly highlights the underlying
parameter-sharing structure. Each summation written in bullet notation is implemented using Py-
Torch’s einsum, as detailed in Section H.4. For certain parameterization constraints that are not
straightforward, we rely on Propositions H.1, H.4, and Corollaries H.3, H.5 from Section H.1 to
present them in bullet notation.

H.1 EQUIVARIANT CONSTRAINT REDUCTION TO BULLET FORM

Proposition H.1. Under the parameter sharing constraint:
Φ

(G,i):j
(G,s):p = Φ

(G,τe(i)):j
(G,τe(s)):p

,∑ne

s=1 Φ
(G,i):j
(G,s):j = 1,∑ne

s=1 Φ
(G,i):j
(G,s):p = 0, for p ̸= j,

we can write the summation
ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p[W ](G,s)

p

= [W ]
(G,i)
j +

ne∑
s=1

D∑
p=1

(
Φ

(G,•):j
(G,•):p

)
1
[W ](G,s)

p − ne

D∑
p=1

(
Φ

(G,•):j
(G,•):p

)
1
[W ](G,i)

p .
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Proof. From the constraint Φ(G,i):j
(G,s):p = Φ

(G,τe(i)):j
(G,τe(s)):p

, we obtain:

Φ
(G,i):j
(G,s):p =

{
(φ1)

j
p if i ̸= s,

(φ2)
j
p if i = s.

To determine the constraints on (φ1)
j
p and (φ2)

j
p, we examine two cases:

Case 1: p = j

From the constraint
ne∑
s=1

Φ
(G,i):j
(G,s):j = 1,

we substitute the expression for Φ and obtain:

(φ2)
j
j + (ne − 1)(φ1)

j
j = 1, ⇒ (φ2)

j
j = 1− (ne − 1)(φ1)

j
j .

Case 2: p ̸= j

From the constraint
ne∑
s=1

Φ
(G,i):j
(G,s):p = 0,

we similarly obtain:

(φ2)
j
p + (ne − 1)(φ1)

j
p = 0, ⇒ (φ2)

j
p = −(ne − 1)(φ1)

j
p.

Combining both cases, we conclude with the following expressions (i ̸= s, p ̸= j):

Φ
(G,i):j
(G,i):j = 1− (ne − 1)(φ1)

j
j ,

Φ
(G,i):j
(G,s):j = (φ1)

j
j ,

Φ
(G,i):j
(G,i):p = −(ne − 1)(φ1)

j
p,

Φ
(G,i):j
(G,s):p = (φ1)

j
p.

(220)

We have the following chain of reduction:

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p[W ](G,s)

p

=

ne∑
s=1

∑
p̸=j

Φ
(G,i):j
(G,s):p[W ](G,s)

p +Φ
(G,i):j
(G,s):j [W ]

(G,s)
j


=
∑
s̸=i

∑
p̸=j

Φ
(G,i):j
(G,s):p[W ](G,s)

p +
∑
p̸=j

Φ
(G,i):j
(G,i):p[W ](G,i)

p +
∑
s̸=i

Φ
(G,i):j
(G,s):j [W ]

(G,s)
j +Φ

(G,i):j
(G,i):j [W ]

(G,i)
j .

Plugging Equation 220 into the expression, we obtain:

ne∑
s=1

D∑
p=1

Φ
(G,i):j
(G,s):p[W ](G,s)

p

=
∑
s̸=i

∑
p̸=j

(φ1)
j
p − (ne − 1)

∑
p̸=j

(φ1)
j
p[W ](G,i)

p + (φ1)
j
j

∑
s̸=i

[W ]
(G,s)
j + (1− (ne − 1)(φ1)

j
j)[W ]

(G,i)
j

= [W ]
(G,i)
j − (ne − 1)

∑
p̸=j

(φ1)
j
p[W ](G,i)

p + (φ1)
j
j [W ]

(G,i)
j

+
∑
s̸=i

∑
p̸=j

(φ1)
j
p[W ](G,s)

p + (φ1)
j
j

∑
s̸=i

[W ]
(G,s)
j
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= [W ]
(G,i)
j − ne

D∑
p=1

(φ1)
j
p[W ](G,i)

p +

 D∑
p=1

(φ1)
j
p[W ](G,i)

p +
∑
s̸=i

∑
p̸=j

(φ1)
j
p[W ](G,s)

p + (φ1)
j
j

∑
s̸=i

[W ]
(G,s)
j


= [W ]

(G,i)
j − ne

D∑
p=1

(φ1)
j
p[W ](G,i)

p +

∑
s̸=i

D∑
p=1

(φ1)
j
p[W ](G,s)

p + (φ1)
j
j

∑
s̸=i

[W ]
(G,s)
j


= [W ]

(G,i)
j − ne

D∑
p=1

(φ1)
j
p[W ](G,i)

p +

ne∑
s=1

D∑
p=1

(φ1)
j
p[W ](G,s)

p .

Define (φi)
j
p =

(
Φ

(G,•):j
(G,•):p

)
1
. This concludes the proof of the proposition.

Remark H.2. As shown in Proposition H.1, the equivariant layer for the WG component naturally
introduces a skip connection [W ]

(G,i)
j . This behavior is absent in equivariant layers defined under the

symmetry group of standard Transformers and arises specifically from the group structure associated
with MoE Transformers. Thus, it highlights a distinctive feature of the MoE-specific equivariant
formulation.

Corollary H.3. Under the parameter sharing constraint:Φ
(G,i)
(G,s) = Φ

(G,τe(i))
(G,τe(s))

,
ne∑
s=1

Φ
(G,i)
(G,s) = 1,

we can write the summation
ne∑
s=1

Φ
(G,i)
(G,s)[W ](G,s) = [W ](G,i) +

ne∑
s=1

(
Φ

(G,•)
(G,•)

)
1
[W ](G,s) − ne

(
Φ

(G,•)
(G,•)

)
1
[W ](G,i).

Proof. Applying Proposition H.1 with D = 1 and renaming the index, we obtain the desired result
and thus conclude the proof of Corollary H.3.

Proposition H.4. Under the parameter sharing constraint:
Φ

(A,i):j,k
(G,s):p = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s)):p
,

ne∑
s=1

Φ
(A,i):j,k
(G,s):p = 0,

we can write the summation
ne∑
s=1

D∑
p=1

Φ
(A,i):j,k
(G,s):p [W ](G,s)

p =

ne∑
s=1

D∑
p=1

(
Φ

(A,•):j,•
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(A,•):j,•
(G,•):p

)
1
[W ](G,i)

p .

Proof. From the constraint Φ(A,i):j,k
(G,s):p = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s)):p
, we obtain:

Φ
(A,i):j,k
(G,s):p =

{
(φ1)

j
p if i ̸= s,

(φ2)
j
p if i = s.

From the constraint
ne∑
s=1

Φ
(A,i):j,k
(G,s):p = 0,

we substitute the expression for Φ to obtain:

(ne − 1)(φ1)
j
p + (φ2)

j
p = 0 ⇒ (φ2)

j
p = −(ne − 1)(φ1)

j
p.
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We conclude the following expressions (i ̸= s):

Φ
(A,i):j,k
(G,s):p = (φ1)

j
p,

Φ
(A,i):j,k
(G,i):p = −(ne − 1)(φ1)

j
p.

We consider the following chain of reduction:
ne∑
s=1

D∑
p=1

Φ
(A,i):j,k
(G,s):p [W ](G,s)

p =
∑
s̸=i

D∑
p=1

Φ
(A,i):j,k
(G,s):p [W ](G,s)

p +

D∑
p=1

Φ
(A,i):j,k
(G,i):p [W ](G,i)

p

=
∑
s̸=i

D∑
p=1

(φ1)
j
p[W ](G,s)

p − (ne − 1)

D∑
p=1

(φ1)
j
p[W ](G,i)

p

=

∑
s̸=i

D∑
p=1

(φ1)
j
p[W ](G,s)

p +

D∑
p=1

(φ1)
j
p[W ](G,i)

p

− ne

D∑
p=1

(φ1)
j
p[W ](G,i)

p

=

ne∑
s=1

D∑
p=1

(φ1)
j
p[W ](G,s)

p − ne

D∑
p=1

(φ1)
j
p[W ](G,i)

p .

Define (φ1)
j
p =

(
Φ

(A,•):j,•
(G,•):p

)
1
, this concludes the proof of the proposition.

Corollary H.5. Under the parameter sharing constraint:
ne∑
s=1

Φ
(G,i):j
(G,s) = 0,

Φ
(G,i):j
(G,s) = Φ

(G,τe(i)):j
(G,τe(s))

,

we can write the summation
ne∑
s=1

Φ
(G,i):j
(G,s) [b](G,s) =

ne∑
s=1

(
Φ

(G,•):j
(G,•)

)
1
[b](G,s) − ne

(
Φ

(G,•):j
(G,•)

)
1
[b](G,i).

Proof. Applying Proposition H.4 with D = 1 and renaming the index, we conclude the proof of the
Corollary.

H.2 EQUIVARIANT LAYERS WITH BULLET NOTATION

1. Weight sharing form for [E(W )]
(Q,i)
j,k .

From Equation 206:

Φ
(Q,i):j,k
(Q,i):p,k = Φ

(Q,τ(i)):j,k′

(Q,τ(i)):p,k′ . (221)

Since the constraint is satisfied with any τ , we obtain the following weight sharing form:

[E(W )]
(Q,i)
j,k =

D∑
p=1

Φ
(Q,•):j,•
(Q,•):p,•[W ]

(Q,i)
p,k .

2. Weight sharing form for [E(W )]
(K,i)
j,k .

From Equation 207:

Φ
(K,i):j,k
(K,i):p,k = Φ

(K,τ(i)):j,k′

(K,τ(i)):p,k′ . (222)

Similarly, we obtain the weight sharing form:

[E(W )]
(K,i)
j,k =

D∑
p=1

Φ
(K,•):j,•
(K,•):p,•[W ]

(K,i)
p,k .
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3. Weight sharing form for [E(W )]
(V,i)
j,k .

From Equation 208:

Φ
(V,i):j,k
(V,i):p,k = Φ

(V,τ(i)):j,k′

(V,τ(i)):p,k′ . (223)

We obtain the weight sharing form:

[E(W )]
(V,i)
j,k =

D∑
p=1

Φ
(V,•):j,•
(V,•):p,•[W ]

(V,i)
p,k .

4. Weight sharing form for [E(W )]
(O,i)
j,k .

From Equation 209:

Φ
(O,i):j′,k
(O,i):j′,q = Φ

(O,τ(i)):j,k
(O,τ(i)):j′,q. (224)

We obtain the weight sharing form:

[E(W )]
(O,i)
j,k =

D∑
q=1

Φ
(O,•):•,k
(O,•):•,q [W ]

(O,i)
j,k .

5. Weight sharing form for [E(W )]
(G,i)
j .

From Equation 210:

Φ
(G,i):j
(QK,s):p,q = Φ

(G,τe(i)):j
(QK,τh(s)):p,q

,

Φ
(G,i):j
(V O,s):p,q = Φ

(G,τe(i)):j
(V O,τh(s)):p,q

,

Φ
(G,i):j
(A,s):p,q = Φ

(G,τe(i)):j

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):p,q = Φ

(G,τe(i)):j

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(G,i):j
(A,s):q = Φ

(G,τe(i)):j

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(G,i):j
(B,s):q = Φ

(G,τe(i)):j
(B,τe(s)):q

,

Φ
(G,i):j
1 = Φ

(G,τe(i)):j
1 ,

Φ
(G,i):j
(G,s):p = Φ

(G,τe(i)):j
(G,τe(s)):p

,
ne∑
s=1

Φ
(G,i):j
(G,s):p = 0 (p ̸= j),

ne∑
s=1

Φ
(G,i):j
(G,s):j = 1,

ne∑
s=1

Φ
(G,i):j
(G,s) = 0,

Φ
(G,i):j
(G,s) = Φ

(G,τe(i)):j
(G,τe(s))

.

Using Proposition H.1 and Corollary H.5, we obtain the weight sharing form:

[E(W )]
(G,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,•):j
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,•):j
(V O,•):p,q[WW ](V O,s)

p,q

+ [W ]
(G,i)
j +

ne∑
s=1

D∑
p=1

(
Φ

(G,•):j
(G,•):p

)
1
[W ](G,s)

p − ne

D∑
p=1

(
Φ

(G,•):j
(G,•):p

)
1
[W ](G,i)

p
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+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(G,•):j
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(G,•):j
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(G,•):j
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(G,•):j
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

(
Φ

(G,•):j
(G,•)

)
1
[b](G,s) − ne

(
Φ

(G,•):j
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(G,•):j
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(G,•):j
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

D∑
q=1

(
Φ

(G,•):j
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(G,•):j
(B,•):q

)
1
[b](B,i)

q

+Φ
(G,•):j
1 .

6. Weight sharing form for [E(W )]
(A,i)
j,k .

From Equation 211:

Φ
(A,i):j,k
(QK,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(QK,τh(s)):p,q
,

Φ
(A,i):j,k
(V O,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(V O,τh(s)):p,q
,

Φ
(A,i):j,k
(A,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(A,i):j,k
(B,s):p,q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(A,i):j,k
(A,s):q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(A,i):j,k
(B,s):q = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(B,τe(s)):q
,

Φ
(A,i):j,k
1 = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

1 ,
Φ

(A,i):j,k
(G,s):p = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s)):p
,

ne∑
s=1

Φ
(A,i):j,k
(G,s):p = 0,

Φ
(A,i):j,k
(G,s) = Φ

(A,τe(i)):j,π
(τe(i))
e (k)

(G,τe(s))
,

ne∑
s=1

Φ
(A,i):j,k
(G,s) = 0.

Using Proposition H.4 and Corollary H.5, we obtain the weight sharing form:

[E(W )]
(A,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,•):j,•
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,•):j,•
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):j,•
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(A,•):j,•
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):p,•

)
2
[W ](A,i)

p,q
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+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):j,•
(A,•):p,•

)
3
[W ]

(A,s)
p,k +

D∑
p=1

(
Φ

(A,•):j,•
(A,•):p,•

)
4
[W ]

(A,i)
p,k

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
3
[W ]

(B,s)
k,q +

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
4
[W ]

(B,i)
k,q

+

ne∑
s=1

(
Φ

(A,•):j,•
(G,•)

)
1
[b](G,s) − ne

(
Φ

(A,•):j,•
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

(
Φ

(A,•):j,•
(A,•):•

)
3
[b]

(A,s)
k +

(
Φ

(A,•):j,•
(A,•):•

)
4
[b]

(A,i)
k

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(A,•):j,•
(B,•):q

)
2
[b](B,i)

q

+Φ
(A,•):j,•
1 .

7. Weight sharing form for [E(W )]
(B,i)
j,k .

From Equation 212:

Φ
(B,i):j,k
(QK,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(QK,τh(s)):p,q
,

Φ
(B,i):j,k
(V O,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(V O,τh(s)):p,q
,

Φ
(B,i):j,k
(A,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(A,τe(s)):p,π
(τe(s)
e (q)

,

Φ
(B,i):j,k
(B,s):p,q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(B,i):j,k
(A,s):q = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(B,i):j,k
1 = Φ

(B,τe(i)):π
(τe(i))
e (j),k

1 ,
Φ

(B,i):j,k
(G,s):p = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(G,τe(s)):p
,

ne∑
s=1

Φ
(B,i):j,k
(G,s):p = 0,

Φ
(B,i):j,k
(G,s) = Φ

(B,τe(i)):π
(τe(i))
e (j),k

(G,τe(s))
,

ne∑
s=1

Φ
(B,i):j,k
(G,s) = 0.

Using Corollary H.5, we obtain the weight sharing form:

[E(W )]
(B,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):•,k
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):•,k
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(B,•):•,k
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(B,•):•,k
(G,•):p

)
1
[W ](G,i)

p
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+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(B,•):•,k
(A,•):p,•

)
3
[W ]

(A,s)
p,j +

D∑
p=1

(
Φ

(B,•):•,k
(A,•):p,•

)
4
[W ]

(A,i)
p,j

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
3
[W ]

(B,s)
j,q +

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
4
[W ]

(B,i)
j,q

+

ne∑
s=1

(
Φ

(B,•):•,k
(G,•)

)
1
[b](G,s) − ne

(
Φ

(B,•):•,k
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

(
Φ

(B,•):•,k
(A,•):•

)
3
[b]

(A,s)
j +

(
Φ

(B,•):•,k
(A,•):•

)
4
[b]

(A,j)
j

+

ne∑
s=1

D∑
q=1

(Φ
(B,•):•,k
(B,•):q )1[b]

(B,s)
q +

D∑
q=1

(Φ
(B,•):•,k
(B,•):q )2[b]

(B,i)
q

+Φ
(B,•):•,k
1 .

8. Weight sharing form for [E(b)](G,i).
From Equation 213:

Φ
(G,i)
(QK,s):p,q = Φ

(G,τe(i))
(QK,τh(s)):p,q

,

Φ
(G,i)
(V O,s):p,q = Φ

(G,τe(i))
(V O,τh(s)):p,q

,

Φ
(G,i)
(A,s):p,q = Φ

(G,τe(i))

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(G,i)
(B,s):p,q = Φ

(G,τe(i))

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(G,i)
(A,s):q = Φ

(G,τe(i))

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(G,i)
(B,s):q = Φ

(G,τe(i))
(B,τe(s)):q

,

Φ
(G,i)
1 = Φ

(G,τe(i))
1 ,Φ

(G,i)
(G,s):p = Φ

(G,τe(i))
(G,τe(s)):p

,
ne∑
s=1

Φ
(G,i)
(G,s):p = 0,Φ

(G,i)
(G,s) = Φ

(G,τe(i))
(G,τe(s))

,
ne∑
s=1

Φ
(G,i)
(G,s) = 1.

Using Proposition H.4 and Corollary H.3, we obtain the weight sharing form:

[E(b)](G,i) =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,•)
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,•)
(V O,•):p,q[WW ](V O,s)

p,q
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+

ne∑
s=1

D∑
p=1

(
Φ

(G,•)
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(G,•)
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,•)
(A,•):p,•[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

Φ
(G,•)
(A,•):p,•[W ](A,i)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(G,•)
(B,•):•,q

)
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(G,•)
(B,•):•,q

)
[W ](B,i)

p,q

+ [b](G,i) +

ne∑
s=1

(
Φ

(G,•)
(G,•)

)
1
[b](G,s) − ne

(
Φ

(G,•)
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(G,•)
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(G,•)
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

D∑
q=1

(
Φ

(G,•)
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(G,•)
(B,•):q

)
2
[b](B,i)

q

+Φ
(G,•)
1 .

9. Weight sharing form for [E(b)]
(A,i)
j .

From Equation 214:

Φ
(A,i):j
(QK,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(QK,τh(s)):p,q
,

Φ
(A,i):j
(V O,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(V O,τh(s)):p,q
,

Φ
(A,i):j
(A,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(A,i):j
(B,s):p,q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(A,i):j
(A,s):q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(A,i):j
(B,s):q = Φ

(A,τe(i)):π
(τe(i))
e (j)

(B,τe(s)):q
,

Φ
(A,i):j
1 = Φ

(A,τe(i)):π
(τe(i))
e (j)

1 ,
Φ

(A,i):j
(G,s):p = Φ

(A,τe(i)):π
(τe(i))
e (j)

(G,τe(s)):p
,

ne∑
s=1

Φ
(A,i):j
(G,s):p = 0,

Φ
(A,i):j
(G,s) = Φ

(A,τe(i)):π
(τe(i))
e (j)

(G,τe(s))
,

ne∑
s=1

Φ
(A,i):j
(G,s) = 0.

Using Corollary H.5, we obtain the weight sharing form:

[E(b)]
(A,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,•):•
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,•):•
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):•
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(A,•):•
(G,•):p

)
1
[W ](G,i)

p
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+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(A,•):•
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(A,•):•
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):•
(A,•):p,•

)
3
[W ]

(A,s)
p,j +

D∑
p=1

(
Φ

(A,•):•
(A,•):p,•

)
4
[W ]

(A,i)
p,j

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
3
[W ]

(B,s)
j,q +

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
4
[W ]

(B,i)
j,q

+

ne∑
s=1

(
Φ

(A•):•
(G,•)

)
1
[b](G,s) − ne

(
Φ

(A,•):•
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(A,•):•
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(A,•):•
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

(
Φ

(A,•):•
(A,•):•

)
3
[b]

(A,s)
j +

(
Φ

(A,•):•
(A,•):•

)
4
[b]

(A,i)
j

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):•
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(A,•):•
(B,•):q

)
2
[b](B,i)

q

+Φ
(A,•):•
1 .

10. Weight sharing form for [E(b)]
(B,i)
j .

From Equation 215:

Φ
(B,i):j
(QK,s):p,q = Φ

(B,τe(i)):j
(QK,τh(s)):p,q

,

Φ
(B,i):j
(V O,s):p,q = Φ

(B,τe(i)):j
(V O,τh(s)):p,q

,

Φ
(B,i):j
(A,s):p,q = Φ

(B,τe(i)):j

(A,τe(s)):p,π
(τe(s))
e (q)

,

Φ
(B,i):j
(B,s):p,q = Φ

(B,τe(i)):j

(B,τe(s)):π
(τe(s))
e (p),q

,

Φ
(B,i):j
(A,s):q = Φ

(B,τe(i)):j

(A,τe(s)):π
(τe(s))
e (q)

,

Φ
(B,i):j
(B,s):q = Φ

(B,τe(i)):j
(B,τe(s)):q

,

Φ
(B,i):j
1 = Φ

(B,τe(i)):j
1 ,Φ

(B,i):j
(G,s):p = Φ

(B,τe(i)):j
(G,τe(s)):p

,
ne∑
s=1

Φ
(B,i):j
(G,s):p = 0,Φ

(B,i):j
(G,s) = Φ

(B,τe(i)):j
(G,τe(s))

,
ne∑
s=1

Φ
(B,i):j
(G,s) = 0.

Using Corrolary H.5, we obtain the weight sharing form:

[E(b)]
(B,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):j
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):j
(V O,•):p,q[WW ](V O,s)

p,q
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+

ne∑
s=1

D∑
p=1

(
Φ

(B,•):j
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(B,•):j
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(B,•):j
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(B,•):j
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(B,•):j
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(B,•):j
(B,•):•,q

)
2
[W ](B,i)

p,q

+
(
Φ

(B,•):j
(G,•)

)
1
[b](G,s) − ne

(
Φ

(B,•):j
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(B,•):j
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(B,•):j
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

D∑
q=1

(
Φ

(B,•):j
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(B,•):j
(B,•):q

)
2
[b](B,i)

q

+Φ
(B,•):j
1 .

H.3 INVARIANT LAYERS WITH BULLET NOTATION

From Equation 219:

Φi
(QK,s):p,q = Φi

(QK,τh(s)):p,q
,

Φi
(V O,s):p,q = Φi

(V O,τh(s)):p,q
,

Φi
(Q,s):p,q = 0,

Φi
(K,s):p,q = 0,

Φi
(V,s):p,q = 0,

Φi
(O,s):p,q = 0,

Φi
(A,s):p,q = Φi

(A,τe(s)):π
(s)
e (p),π

(s)
e (q)

,

Φi
(B,s):p,q = Φi

(B,τe(s)):π
(s)
e (p),q

,

Φi
(A,s):q = Φi

(A,τe(s)):π
(s)
e (q)

,

Φi
(B,s):q = Φi

(B,τe(s)):q
,Φi

(G,s):p = Φi
(G,τe(s)):p

,
ne∑
s=1

Φi
(G,s):p = 0,Φi

(G,s) = Φi
(G,τe(s))

,
ne∑
s=1

Φi
(G,s) = 0.

Which results in the weight sharing form:

I(U)i =

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φi
(V O,•):p,q[WW ](V O,s)

p,q
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Table 8: Summary of key dimensions involved in the implementation

Symbol Description
d Number of input channels for the equivariant and invariant layer
e Number of output channels for the equivariant and invariant layer
D Embedding dimension of the input and output sequences of the transformer block
Dk = Dq Embedding dimension for key and query vectors in the transformer block
Dv Embedding dimension for value vectors in the transformer block
De MoE hidden dimension
h Number of attention heads in the transformer block
b Batch size
ne Number of experts in MoE layer
D′ Embedding dimension of the invariant layer’s output

Table 9: Shapes of input terms used in the implementation

Term Shape

[W ]
(Q,i)
p,q [b, d, h,D,Dq]

[W ]
(K,i)
p,q [b, d, h,D,Dk]

[W ]
(V,i)
p,q [b, d, h,D,Dv]

[W ]
(O,i)
p,q [b, d, h,Dv, D]

[W ]
(G,s)
p [b, d, ne, D]

[b](G,s) [b, d, ne]

[WW ]
(QK,i)
p,q [b, d, h,D,D]

[WW ]
(V O,i)
p,q [b, d, h,D,D]

[W ]
(A,s)
p,q [b, d, ne, D,De]

[b]
(A,s)
q [b, d, ne, De]

[W ]
(B,s)
p,q [b, d, ne, De, D]

[b]
(B,s)
q [b, d, ne, D]

+

ne∑
s=1

D∑
p=1

(
Φi

(G,•):p −
1

ne

ne∑
s=1

Φi
(G,•):p

)
[W ](G,s)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φi
(A,•):p,•[W ](A,s)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

Φi
(B,•):•,q[W ](B,s)

p,q

+

ne∑
s=1

(
Φi

(G,•) −
1

ne

ne∑
s=1

Φi
(G,•)

)
[b](G,s)

+

ne∑
s=1

DA∑
q=1

Φi
(A,•):•[b]

(A,s)
q

+

ne∑
s=1

D∑
q=1

Φi
(B,•):q[b]

(B,s)
q

+Φi
1.
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H.4 EQUIVARIANT LAYERS PSEUDOCODE

H.4.1 [E(W )]
(Q,i)
j,k PSEUDOCODE

[E(W )]
(Q,i)
j,k =

D∑
p=1

Φ
(Q,•):j,•
(Q,•):p,•[W ]

(Q,i)
p,k .

• Φ
(Q,•):j,•
(Q,•):p,•[W ]

(Q,i)
p,k

Shapes:

[W ]
(Q,i)
p,k : [b, d, h,D,D]

Φ
(Q,•):j,•
(Q,•):p,• : [e, d,D,D].

Pseudocode: einsum(bdhpk, edjp ! behjk)

H.4.2 [E(W )]
(K,i)
j,k PSEUDOCODE

[E(W )]
(K,i)
j,k =

D∑
p=1

Φ
(K,•):j,•
(K,•):p,•[W ]

(K,i)
p,k .

• Φ
(K,•):j,•
(K,•):p,•[W ]

(K,i)
p,k

Shapes:

[W ]
(K,i)
p,k : [b, d, h,D,D]

Φ
(K,•):j,•
(K,•):p,• : [e, d,D,D]

Pseudocode: einsum(bdhpk, edjp ! behjk)

H.4.3 [E(W )]
(V,i)
j,k PSEUDOCODE

[E(W )]
(V,i)
j,k =

D∑
p=1

Φ
(V,•):j,•
(V,•):p,•[W ]

(V,i)
p,k .

• Φ
(V,•):j,•
(V,•):p,•[W ]

(V,i)
p,k

Shapes:

[W ]
(V,i)
p,k : [b, d, h,D,D]

Φ
(V,•):j,•
(V,•):p,• : [e, d,D,D]

Pseudocode: einsum(bdhpk, edjp ! behjk)

H.4.4 [E(W )]
(O:i)
j,k PSEUDOCODE

[E(W )]
(O,i)
j,k =

D∑
q=1

Φ
(O,•):•,k
(O,•):•,q [W ]

(O,i)
j,k .

• Φ
(O,•):j,•
(O,•):p,•[W ]

(O,i)
j,k

Shapes:

[W ]
(O,i)
j,k : [b, d, h,Dv, D]

Φ
(O,•):•,k
(O,•):•,q : [e, d,D,D].

Pseudocode: einsum(bdhpk, edkq ! behkq)
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H.4.5 [E(W )]
(G,i)
j PSEUDOCODE

[E(W )]
(G,i)
j =

D∑
p=1

D∑
q=1

h∑
s=1

Φ
(G,•):j
(QK,•):p,q[WW ](QK,s)

p,q

+

D∑
p=1

D∑
q=1

h∑
s=1

Φ
(G,•):j
(V O,•):p,q[WW ](V O,s)

p,q

+ [W ]
(G,i)
j +

ne∑
s=1

D∑
p=1

(
Φ

(G,•):j
(G,•):p

)
1
[W ](G,s)

p − ne

D∑
p=1

(
Φ

(G,•):j
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(G,•):j
(A,•):•,q

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(G,•):j
(A,•):•,q

)
2
[W ](A,i)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(G,•):j
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(G,•):j
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

(
Φ

(G,•):j
(G,•)

)
1
[b](G,s) − ne

(
Φ

(G,•):j
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(G,•):j
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(G,•):j
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

D∑
q=1

(
Φ

(G,•):j
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(G,•):j
(B,•):q

)
1
[b](B,i)

q

+Φ
(G,•):j
1 .

Shapes and pseudocode: See Table 10.

H.4.6 [E(W )]
(A,i)
j,k PSEUDOCODE

[E(W )]
(A,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,•):j,•
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,•):j,•
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):j,•
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(A,•):j,•
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):j,•
(A,•):p,•

)
3
[W ]

(A,s)
p,k +

D∑
p=1

(
Φ

(A,•):j,•
(A,•):p,•

)
4
[W ]

(A,i)
p,k

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
3
[W ]

(B,s)
k,q +

D∑
q=1

(
Φ

(A,•):j,•
(B,•):•,q

)
4
[W ]

(B,i)
k,q
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4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

Under review as a conference paper at ICLR 2026

Input Input shape Weight Weight shape Einsum

[WW ]
(QK,s)
p,q [b, d, h,D,D] Φ

(G,•):j
(QK,•):p,q [e, d,D,D,D] (bdhpq, edjpq ! bej).usq(−2)

[WW ]
(V O,s)
p,q [b, d, h,D,D] Φ

(G,•):j
(V O,•):p,q [e, d,D,D,D] (bdhpq, edjpq ! bej).usq(−2)

[W ]
(G,s)
p [b, d, ne, D]

(
Φ

(G,•):j
(G,•):p

)
1

[e, d,D,D] (bdnp, edpq ! beq).usq(−2)

[W ]
(G,s)
p [b, d, ne, D] ne

(
Φ

(G,•):j
(G,•):p

)
1

[e, d,D,D] (bdnp, edpq ! benq)

[W ]
(A,s)
p,q [b, d, ne, D,De]

(
Φ

(G,•):j
(A,•):•,q

)
1

[e, d,D,De] (bdnpq, edjq ! bej).usq(−2)

[W ]
(A,i)
p,q [b, d, ne, D,De]

(
Φ

(G,•):j
(A,•):•,q

)
2

[e, d,D,De] (bdnpq, edjq ! benj)

[W ]
(B,s)
p,q [b, d, ne, De, D]

(
Φ

(G,•):j
(B,•):•,q

)
1

[e, d,D,D] (bdnpq, edjq ! bej).usq(−2)

[W ]
(B,i)
p,q [b, d, ne, De, D]

(
Φ

(G,•):j
(B,•):•,q

)
2

[e, d,D,D] (bdnpq, edjq ! benj)

[b](G,s) [b, d, ne]
(
Φ

(G,•):j
(G,•)

)
1

[e, d,D] (bdn, edj ! bej).usq(−2)

[b](G,s) [b, d, ne] ne

(
Φ

(G,•):j
(G,•)

)
1

[e, d,D] (bdn, edj ! benj)

[b]
(A,s)
q [b, d, ne, De]

(
Φ

(G,•):j
(A,•):•

)
1

[e, d,D] (bdnq, edj ! bej).usq(−2)

[b]
(A,i)
q [b, d, ne, De]

(
Φ

(G,•):j
(A,•):•

)
2

[e, d,D] (bdnq, edj ! benj)

[b]
(B,s)
q [b, d, ne, D]

(
Φ

(G,•):j
(B,•):q

)
1

[e, d,D,D] (bdnq, edjq ! bej).usq(−2)

[b]
(B,i)
q [b, d, ne, D]

(
Φ

(G,•):j
(B,•):q

)
1

[e, d,D,D] (bdnq, edjq ! benj)

Φ
(G,•):j
1 [e,D] (ej ! ej).usq(0).usq(−2)

Table 10: Pseudocode for [E(W )]
(G,i)
j .
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4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2026

Input Input shape Weight Weight shape Einsum

[WW ]
(QK,s)
p,q [b, d, h,D,D] Φ

(A,•):j,•
(QK,•):p,q [e, d,D,D,D] (bdhpq, edjpq ! bej).usq(−2).usq(−1)

[WW ]
(V O,s)
p,q [b, d, h,D,D] Φ

(A,•):j,•
(V O,•):p,q [e, d,D,D,D] (bdhpq, edjpq ! bej).usq(−2).usq(−1)

[W ]
(G,s)
p [b, d, ne, D]

(
Φ

(A,•):j,•
(G,•):p

)
1

[e, d,D,D] (bdnp, edjp ! bej).usq(−2).usq(−1)

[W ]
(G,i)
p [b, d, ne, D] ne

(
Φ

(A,•):j,•
(G,•):p

)
1

[e, d,D,D] (bdnp, edjp ! benj).usq(−1)

[W ]
(A,s)
p,q [b, d, ne, D,De]

(
Φ

(A,•):j,•
(A,•):p,•

)
1

[e, d,D,D] (bdnpq, edjp ! bej).usq(−2).usq(−1)

[W ]
(A,i)
p,q [b, d, ne, D,De]

(
Φ

(A,•):j,•
(A,•):p,•

)
2

[e, d,D,D] (bdnpq, edjp ! benj).usq(−1)

[W ]
(A,s)
p,k [b, d, ne, D,De]

(
Φ

(A,•):j,•
(A,•):p,•

)
3

[e, d,D,D] (bdnpk, edjp ! bejk).usq(−3)

[W ]
(A,i)
p,k [b, d, ne, D,De]

(
Φ

(A,•):j,•
(A,•):p,•

)
4

[e, d,D,D] (bdnpk, edjp ! benjk)

[W ]
(B,s)
p,q [b, d, ne, De, D]

(
Φ

(A,•):j,•
(B,•):•,q

)
1

[e, d,D,D] (bdnpq, edjq ! bej).usq(−2).usq(−1)

[W ]
(B,i)
p,q [b, d, ne, De, D]

(
Φ

(A,•):j,•
(B,•):•,q

)
2

[e, d,D,D] (bdnpq, edjq ! benj).usq(−1)

[W ]
(B,s)
k,q [b, d, ne, De, D]

(
Φ

(A,•):j,•
(B,•):•,q

)
3

[e, d,D,D] (bdnkq, edjq ! bejk).usq(−3)

[W ]
(B,i)
k,q [b, d, ne, De, D]

(
Φ

(A,•):j,•
(B,•):•,q

)
4

[e, d,D,D] (bdnkq, edjq ! benjk)

[b](G,s) [b, d, ne] Φ
(A,•):j,•
(G,•) [e, d,D] (bdn, edj ! bej).usq(−2).usq(−1)

[b](G,s) [b, d, ne] neΦ
(A,•):j,•
(G,•) [e, d,D] (bdn, edj ! benj).usq(−1)

[b]
(A,s)
q [b, d, ne, De]

(
Φ

(A,•):j,•
(A,•):•

)
1

[e, d,D] (bdnq, edj ! bej).usq(−2).usq(−1)

[b]
(A,i)
q [b, d, ne, De]

(
Φ

(A,•):j,•
(A,•):•

)
2

[e, d,D] (bdnq, edj ! benj).usq(−1)

[b]
(A,s)
k [b, d, ne, De]

(
Φ

(A,•):j,•
(A,•):•

)
3

[e, d,D] (bdnk, edj ! bejk).usq(−3)

[b]
(A,i)
k [b, d, ne, De]

(
Φ

(A,•):j,•
(A,•):•

)
4

[e, d,D] (bdnk, edj ! benjk)

[b]
(B,s)
q [b, d, ne, D]

(
Φ

(A,•):j,•
(B,•):q

)
1

[e, d,D,D] (bdnq, edjq ! bej).usq(−2).usq(−1)

[b]
(B,i)
q [b, d, ne, D]

(
Φ

(A,•):j,•
(B,•):q

)
2

[e, d,D,D] (bdnq, edjq ! benj).usq(−1)

Φ
(A,•):j,•
1 [e,D] (ej ! ej).usq(0).usq(−2).usq(−1)

Table 11: Pseudocode for [E(W )]
(A,i)
j,k .
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4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967

Under review as a conference paper at ICLR 2026

+

ne∑
s=1

(
Φ

(A,•):j,•
(G,•)

)
1
[b](G,s) − ne

(
Φ

(A,•):j,•
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(A,•):j,•
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

(
Φ

(A,•):j,•
(A,•):•

)
3
[b]

(A,s)
k +

(
Φ

(A,•):j,•
(A,•):•

)
4
[b]

(A,i)
k

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):j,•
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(A,•):j,•
(B,•):q

)
2
[b](B,i)

q

+Φ
(A,•):j,•
1 .

Shapes and pseudocode: See Table 11.

H.4.7 [E(W )]
(B,i)
j,k PSEUDOCODE

[E(W )]
(B,i)
j,k =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):•,k
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):•,k
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(B,•):•,k
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(B,•):•,k
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(B,•):•,k
(A,•):p,•

)
3
[W ]

(A,s)
p,j +

D∑
p=1

(
Φ

(B,•):•,k
(A,•):p,•

)
4
[W ]

(A,i)
p,j

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
3
[W ]

(B,s)
j,q +

D∑
q=1

(
Φ

(B,•):•,k
(B,•):•,q

)
4
[W ]

(B,i)
j,q

+

ne∑
s=1

(
Φ

(B,•):•,k
(G,•)

)
1
[b](G,s) − ne

(
Φ

(B,•):•,k
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(B,•):•,k
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

(
Φ

(B,•):•,k
(A,•):•

)
3
[b]

(A,s)
j +

(
Φ

(B,•):•,k
(A,•):•

)
4
[b]

(A,j)
j

+

ne∑
s=1

D∑
q=1

(Φ
(B,•):•,k
(B,•):q )1[b]

(B,s)
q +

D∑
q=1

(Φ
(B,•):•,k
(B,•):q )2[b]

(B,i)
q

+Φ
(B,•):•,k
1 .

Shapes and pseudocode: See Table 12.
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4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021

Under review as a conference paper at ICLR 2026

Input Input shape Weight Weight shape Einsum

[WW ]
(QK,s)
p,q [b, d, h,D,D] Φ

(B,•):•,k
(QK,•):p,q [e, d,D,D,D] (bdhpq, edkpq ! bek).usq(−2).usq(−2)

[WW ]
(V O,s)
p,q [b, d, h,D,D] Φ

(B,•):•,k
(V O,•):p,q [e, d,D,D,D] (bdhpq, edkpq ! bek).usq(−2).usq(−2)

[W ]
(G,s)
p [b, d, ne, D]

(
Φ

(B,•):•,k
(G,•):p

)
1

[e, d,D,D] (bdnp, edkp ! bek).usq(−2).usq(−2)

[W ]
(G,i)
p [b, d, ne, D] ne

(
Φ

(B,•):•,k
(G,•):p

)
1

[e, d,D,D] (bdnp, edkp ! benk).usq(−2)

[W ]
(A,s)
p,q [b, d, ne, D,DA]

(
Φ

(B,•):•,k
(A,•):p,•

)
1

[e, d,D,D] (bdnpq, edkp ! bek).usq(−2).usq(−2)

[W ]
(A,i)
p,q [b, d, ne, D,DA]

(
Φ

(B,•):•,k
(A,•):p,•

)
2

[e, d,D,D] (bdnpq, edkp ! benk).usq(−2)

[W ]
(A,s)
p,j [b, d, ne, D,DA]

(
Φ

(B,•):•,k
(A,•):p,•

)
3

[e, d,D,D] (bdnpj, edkp ! bejk).usq(−3)

[W ]
(A,i)
p,j [b, d, ne, D,DA]

(
Φ

(B,•):•,k
(A,•):p,•

)
4

[e, d,D,D] (bdnpj, edkp ! benjk)

[W ]
(B,s)
p,q [b, d, ne, DA, D]

(
Φ

(B,•):•,k
(B,•):•,q

)
[e, d,D,D] (bdnpq, edkq ! bek).usq(−2).usq(−2)

[W ]
(B,i)
p,q [b, d, ne, DA, D]

(
Φ

(B,•):•,k
(B,•):•,q

)
[e, d,D,D] (bdnpq, edkq ! benk).usq(−2)

[W ]
(B,s)
j,q [b, d, ne, DA, D]

(
Φ

(B,•):•,k
(B,•):•,q

)
[e, d,D,D] (bdnjq, edkq ! bejk).usq(−3)

[W ]
(B,i)
j,q [b, d, ne, DA, D]

(
Φ

(B,•):•,k
(B,•):•,q

)
[e, d,D,D] (bdnjq, edkq ! benjk)

[b](G,s) [b, d, ne]
(
Φ

(B,•):•,k
(G,•)

)
1

[e, d,D] (bdn, edk ! bek).usq(−2).usq(−2)

[b](G,s) [b, d, ne] ne

(
Φ

(B,•):•,k
(G,•)

)
1

[e, d,D] (bdn, edk ! benk).usq(−2)

[b]
(A,s)
q [b, d, ne, DA]

(
Φ

(B,•):•,k
(A,•):•

)
1

[e, d,D] (bdnq, edk ! bek).usq(−2).usq(−2)

[b]
(A,i)
q [b, d, ne, DA]

(
Φ

(B,•):•,k
(A,•):•

)
2

[e, d,D] (bdnq, edk ! benk).usq(−2)

[b]
(A,s)
j [b, d, ne, DA]

(
Φ

(B,•):•,k
(A,•):•

)
3

[e, d,D] (bdnj, edk ! bejk).usq(−3)

[b]
(A,j)
j [b, d, ne, DA]

(
Φ

(B,•):•,k
(A,•):•

)
4

[e, d,D] (bdnj, edk ! benjk)

[b]
(B,s)
q [b, d, ne, D]

(
Φ

(B,•):•,k
(B,•):q

)
1

[e, d,D,D] (bdnq, edkq ! bek).usq(−2).usq(−2)

[b]
(B,i)
q [b, d, ne, D]

(
Φ

(B,•):•,k
(B,•):q

)
2

[e, d,D,D] (bdnq, edkq ! benk).usq(−2)

Φ
(B,•):•,k
1 [e,D] (ek ! ek).usq(0).usq(−2).usq(−2)

Table 12: Pseudocode for [E(W )]
(B,i)
j,k .
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5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
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Input Input shape Weight Weight shape Einsum

[WW ]
(QK,s)
p,q [b, d, h,D,D] Φ

(G,•)
(QK,•):p,q [e, d,D,D] (bdhpq, edpq ! be).usq(−1)

[WW ]
(V O,s)
p,q [b, d, h,D,D] Φ

(G,•)
(V O,•):p,q [e, d,D,D] (bdhpq, edpq ! be).usq(−1)

[W ]
(G,s)
p [b, d, ne, D]

(
Φ

(G,•)
(G,•):p

)
1

[e, d,D] (bdnp, edp ! be).usq(−1)

[W ]
(G,i)
p [b, d, ne, D] ne

(
Φ

(G,•)
(G,•):p

)
1

[e, d,D] (bdnp, edp ! ben)

[W ]
(A,s)
p,q [b, d, ne, D,DA] Φ

(G,•)
(A,•):p,• [e, d,D] (bdnpq, edp ! be).usq(−1)

[W ]
(A,i)
p,q [b, d, ne, D,DA] Φ

(G,•)
(A,•):p,• [e, d,D] (bdnpq, edp ! ben)

[W ]
(B,s)
p,q [b, d, ne, DA, D]

(
Φ

(G,•)
(B,•):•,q

)
[e, d,D] (bdnpq, edq ! be).usq(−1)

[W ]
(B,i)
p,q [b, d, ne, DA, D]

(
Φ

(G,•)
(B,•):•,q

)
[e, d,D] (bdnpq, edq ! ben)

[b](G,s) [b, d, ne]
(
Φ

(G,•)
(G,•)

)
1

[e, d] (bdn, ed ! be).usq(−1)

[b](G,i) [b, d, ne] ne

(
Φ

(G,•)
(G,•)

)
1

[e, d] (bdn, ed ! ben)

[b]
(A,s)
q [b, d, ne, DA]

(
Φ

(G,•)
(A,•):•

)
1

[e, d] (bdnq, ed ! be).usq(−1)

[b]
(A,i)
q [b, d, ne, DA]

(
Φ

(G,•)
(A,•):•

)
2

[e, d] (bdnq, ed ! ben)

[b]
(B,s)
q [b, d, ne, D]

(
Φ

(G,•)
(B,•):q

)
1

[e, d,D] (bdnq, edq ! be).usq(−1)

[b]
(B,i)
q [b, d, ne, D]

(
Φ

(G,•)
(B,•):q

)
2

[e, d,D] (bdnq, edq ! ben)

Φ
(G,•)
1 [e] (e ! e).usq(0).usq(−1)

Table 13: Pseudocode for [E(b)](G,i).

H.4.8 [E(b)](G,i) PSEUDOCODE

[E(b)](G,i) =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,•)
(QK,•):p,q[WW ](QK,s)

p,q

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(G,•)
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(G,•)
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(G,•)
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

Φ
(G,•)
(A,•):p,•[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

Φ
(G,•)
(A,•):p,•[W ](A,i)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(G,•)
(B,•):•,q

)
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(G,•)
(B,•):•,q

)
[W ](B,i)

p,q

+ [b](G,i) +

ne∑
s=1

(
Φ

(G,•)
(G,•)

)
1
[b](G,s) − ne

(
Φ

(G,•)
(G,•)

)
1
[b](G,i)

94



5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
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+

ne∑
s=1

DA∑
q=1

(
Φ

(G,•)
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(G,•)
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

D∑
q=1

(
Φ

(G,•)
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(G,•)
(B,•):q

)
2
[b](B,i)

q

+Φ
(G,•)
1 .

Shapes and pseudocode: See Table 13.

H.4.9 [E(b)]
(A,i)
j PSEUDOCODE

[E(b)]
(A,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(A,•):•
(QK,•):p,q[WW ](QK,s)

p,q

+
h∑

s=1

D∑
p=1

D∑
q=1

Φ
(A,•):•
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):•
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(A,•):•
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(A,•):•
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(A,•):•
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(A,•):•
(A,•):p,•

)
3
[W ]

(A,s)
p,j +

D∑
p=1

(
Φ

(A,•):•
(A,•):p,•

)
4
[W ]

(A,i)
p,j

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
2
[W ](B,i)

p,q

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
3
[W ]

(B,s)
j,q +

D∑
q=1

(
Φ

(A,•):•
(B,•):•,q

)
4
[W ]

(B,i)
j,q

+

ne∑
s=1

(
Φ

(A•):•
(G,•)

)
1
[b](G,s) − ne

(
Φ

(A,•):•
(G,•)

)
1
[b](G,i)

+

ne∑
s=1

DA∑
q=1

(
Φ

(A,•):•
(A,•):•

)
1
[b](A,s)

q +

DA∑
q=1

(
Φ

(A,•):•
(A,•):•

)
2
[b](A,i)

q

+

ne∑
s=1

(
Φ

(A,•):•
(A,•):•

)
3
[b]

(A,s)
j +

(
Φ

(A,•):•
(A,•):•

)
4
[b]

(A,i)
j

+

ne∑
s=1

D∑
q=1

(
Φ

(A,•):•
(B,•):q

)
1
[b](B,s)

q +

D∑
q=1

(
Φ

(A,•):•
(B,•):q

)
2
[b](B,i)

q

+Φ
(A,•):•
1 .

Shapes and pseudocode: See Table 14.

H.4.10 [E(b)]
(B,i)
j PSEUDOCODE

[E(b)]
(B,i)
j =

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):j
(QK,•):p,q[WW ](QK,s)

p,q
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5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
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Input Input shape Weight Weight shape Einsum

[WW ]
(QK,s)
p,q [b, d, h,D,D] Φ

(A,•):•
(QK,•):p,q [e, d,D,D] (bdhpq, edpq ! be).usq(−1).usq(−1)

[WW ]
(V O,s)
p,q [b, d, h,D,D] Φ

(A,•):•
(V O,•):p,q [e, d,D,D] (bdhpq, edpq ! be).usq(−1).usq(−1)

[W ]
(G,s)
p [b, d, ne, D]

(
Φ

(A,•):•
(G,•):p

)
1

[e, d,D] (bdnp, edp ! be).usq(−1).usq(−1)

[W ]
(G,i)
p [b, d, ne, D] ne

(
Φ

(A,•):•
(G,•):p

)
1

[e, d,D] (bdnp, edp ! ben).usq(−1)

[W ]
(A,s)
p,q [b, d, ne, D,DA]

(
Φ

(A,•):•
(A,•):p,•

)
1

[e, d,D] (bdnpq, edp ! be).usq(−1).usq(−1)

[W ]
(A,i)
p,q [b, d, ne, D,DA]

(
Φ

(A,•):•
(A,•):p,•

)
2

[e, d,D] (bdnpq, edp ! ben).usq(−1)

[W ]
(A,s)
p,j [b, d, ne, D,DA]

(
Φ

(A,•):•
(A,•):p,•

)
3

[e, d,D] (bdnpj, edp ! bej).usq(−2)

[W ]
(A,i)
p,j [b, d, ne, D,DA]

(
Φ

(A,•):•
(A,•):p,•

)
4

[e, d,D] (bdnpj, edp ! benj)

[W ]
(B,s)
p,q [b, d, ne, DA, D]

(
Φ

(A,•):•
(B,•):•,q

)
1

[e, d,D] (bdnpq, edq ! be).usq(−1).usq(−1)

[W ]
(B,i)
p,q [b, d, ne, DA, D]

(
Φ

(A,•):•
(B,•):•,q

)
2

[e, d,D] (bdnpq, edq ! ben).usq(−1)

[W ]
(B,s)
j,q [b, d, ne, DA, D]

(
Φ

(A,•):•
(B,•):•,q

)
3

[e, d,D] (bdnjq, edq ! bej).usq(−2)

[W ]
(B,i)
j,q [b, d, ne, DA, D]

(
Φ

(A,•):•
(B,•):•,q

)
4

[e, d,D] (bdnjq, edq ! benj)

[b](G,s) [b, d, ne]
(
Φ

(A,•):•
(G,•)

)
1

[e, d] (bdn, ed ! be).usq(−1).usq(−1)

[b](G,i) [b, d, ne] ne

(
Φ

(A,•):•
(G,•)

)
1

[e, d] (bdn, ed ! ben).usq(−1)

[b]
(A,s)
q [b, d, ne, DA]

(
Φ

(A,•):•
(A,•):•

)
1

[e, d] (bdnq, ed ! be).usq(−1).usq(−1)

[b]
(A,i)
q [b, d, ne, DA]

(
Φ

(A,•):•
(A,•):•

)
2

[e, d] (bdnq, ed ! ben).usq(−1)

[b]
(A,s)
j [b, d, ne, DA]

(
Φ

(A,•):•
(A,•):•

)
3

[e, d] (bdnj, ed ! bej).usq(−2)

[b]
(A,i)
j [b, d, ne, DA]

(
Φ

(A,•):•
(A,•):•

)
4

[e, d] (bdnj, ed ! benj)

[b]
(B,s)
q [b, d, ne, D]

(
Φ

(A,•):•
(B,•):q

)
1

[e, d,D] (bdnq, edq ! be).usq(−1).usq(−1)

[b]
(B,i)
q [b, d, ne, D]

(
Φ

(A,•):•
(B,•):q

)
2

[e, d,D] (bdnq, edq ! ben).unsq(−1)

Φ
(A,•):•
1 [e] (e ! e).usq(0).usq(−1).usq(−1)

Table 14: Pseudocode for [E(b)]
(A,i)
j .
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5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
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Input Input shape Weight Weight shape Einsum

[WW ]
(QK,s)
p,q [b, d, h,D,D] Φ

(B,•):j
(QK,•):p,q [e, d,D,D,D] (bdhpq, edjpq ! bej).usq(−2)

[WW ]
(V O,s)
p,q [b, d, h,D,D] Φ

(B,•):j
(V O,•):p,q [e, d,D,D,D] (bdhpq, edjpq ! bej).usq(−2)

[W ]
(G,s)
p [b, d, ne, D]

(
Φ

(B,•):j
(G,•):p

)
1

[e, d,D,D] (bdnp, edjp ! bej).usq(−2)

[W ]
(G,i)
p [b, d, ne, D] ne

(
Φ

(B,•):j
(G,•):p

)
1

[e, d,D,D] (bdnp, edjp ! benj)

[W ]
(A,s)
p,q [b, d, ne, D,De]

(
Φ

(B,•):j
(A,•):p,•

)
1

[e, d,D,D] (bdnpq, edjp ! bej).usq(−2)

[W ]
(A,i)
p,q [b, d, ne, D,De]

(
Φ

(B,•):j
(A,•):p,•

)
2

[e, d,D,D] (bdnpq, edjp ! benj)

[W ]
(B,s)
p,q [b, d, ne, De, D]

(
Φ

(B,•):j
(B,•):•,q

)
1

[e, d,D,D] (bdnpq, edjq ! bej).usq(−2)

[W ]
(B,i)
p,q [b, d, ne, DA, D]

(
Φ

(B,•):j
(B,•):•,q

)
2

[e, d,D,D] (bdnpq, edjq ! benj)

[b](G,s) [b, d, ne]
(
Φ

(B,•):j
(G,•)

)
1

[e, d,D] (bdn, edj ! bej).usq(−2)

[b](G,i) [b, d, ne] ne

(
Φ

(B,•):j
(G,•)

)
1

[e, d,D] (bdn, edj ! benj)

[b]
(A,s)
q [b, d, ne, DA]

(
Φ

(B,•):j
(A,•):•

)
1

[e, d,D] (bdnq, edj ! bej).usq(−2)

[b]
(A,i)
q [b, d, ne, DA]

(
Φ

(B,•):j
(A,•):•

)
2

[e, d,D] (bdnq, edj ! benj)

[b]
(B,s)
q [b, d, ne, D]

(
Φ

(B,•):j
(B,•):q

)
1

[e, d,D,D] (bdnq, edjq ! bej).usq(−2)

[b]
(B,i)
q [b, d, ne, D]

(
Φ

(B,•):j
(B,•):q

)
2

[e, d,D,D] (bdnq, edjq ! benj)

Φ
(B,•):j
1 [e,D] (ej ! ej).usq(0).usq(−2)

Table 15: Pseudocode for [E(b)]
(B,i)
j .
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5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
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Input Input shape Weight Weight shape Einsum

[WW ]
(QK,s)
p,q [b, d, h,D,D] Φi

(QK,•):p,q [e, d,D′, D,D] (bdhpq, edipq ! bei)

[WW ]
(V O,s)
p,q [b, d, h,D,D] Φi

(V O,•):p,q [e, d,D′, D,D] (bdhpq, edipq ! bei)

[W ]
(G,s)
p [b, d, ne, D] Φ̄i

(G,•):p [e, d,D′, D] (bdnp, edip ! bei)

[W ]
(A,s)
p,q [b, d, ne, D,De] Φi

(A,•):p,• [e, d,D′, D] (bdnpq, edip ! bei)

[W ]
(B,s)
p,q [b, d, ne, De, D] Φi

(B,•):•,q [e, d,D′, D] (bdnpq, ediq ! bei)

[b](G,s) [b, d, ne] Φ̄i
(G,•) [e, d,D′] (bdn, edi ! bei)

[b]
(A,s)
q [b, d, ne, De] Φi

(A,•):• [e, d,D′] (bdnq, edi ! bei)

[b]
(B,s)
q [b, d, ne, D] Φi

(B,•):q [e, d,D′, D] (bdnq, ediq ! bei)

Φi
1 [e,D′] (ei ! ei).usq(0)

Table 16: Pseudocode for Invariant Layer.

+

h∑
s=1

D∑
p=1

D∑
q=1

Φ
(B,•):j
(V O,•):p,q[WW ](V O,s)

p,q

+

ne∑
s=1

D∑
p=1

(
Φ

(B,•):j
(G,•):p

)
1
[W ](G,s)

p −
D∑

p=1

ne

(
Φ

(B,•):j
(G,•):p

)
1
[W ](G,i)

p

+

ne∑
s=1

D∑
p=1

DA∑
q=1

(
Φ

(B,•):j
(A,•):p,•

)
1
[W ](A,s)

p,q +

D∑
p=1

DA∑
q=1

(
Φ

(B,•):j
(A,•):p,•

)
2
[W ](A,i)

p,q

+

ne∑
s=1

DA∑
p=1

D∑
q=1

(
Φ

(B,•):j
(B,•):•,q

)
1
[W ](B,s)

p,q +

DA∑
p=1

D∑
q=1

(
Φ

(B,•):j
(B,•):•,q

)
2
[W ](B,i)

p,q

+
(
Φ
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Shapes and pseudocode: See Table 15.

H.5 INVARIANT LAYERS PSEUDOCODE
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Table 17: Ablation study on network components for generalization prediction. Kendall’s τ is
reported for models using only the MoE Transformer blocks, only the classifier hear, and both.

Component Used MoE Transformer blocks Classifier head MoE Transformer blocks + Classifier head

Kendall’s τ 0.775 0.597 0.788
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Shapes and pseudocode: See Table 16.

I ABLATION STUDY ON IMPORTANCE OF MOE TRANSFORMER BLOCKS IN
PREDICTING MODEL PERFORMANCE

Experiment Setup. It is natural to ask whether the MoE Transformer blocks or the classification
head contribute more to predicting a model’s generalization performance. To investigate this, we
conduct an ablation study on the AGNews-MoE dataset by restricting the input to the neural func-
tional model. Specifically, we evaluate its performance when given access to: (1) both the MoE
Transformer blocks and classification head weights, (2) only the MoE Transformer block weights,
and (3) only the classification head weights. This allows us to assess which component is most
predictive of model generalization.

Results. Table 17 from demonstrates that using only the MoE Transformer blocks results in a
Kendall’s τ of 0.775, while using only the classifier head yields 0.597. When both components are
included, performance improves to 0.788. This suggests that the MoE blocks contribute most to
generalization prediction, while the classifier head provides complementary information.

J ABLATION STUDY ON THE EFFECT OF LAYER SIZE AND DEPTH

Experiment Setup. In this section, we examine how the number of layers and the hidden dimension
of each MoE-NFN layer affect the model’s ability to predict generalization on the AGNews-MoEs.
We do so by varying the hidden dimensions in {2, 4, 6, 10} and the number of layers in {1, 2}.

Results. Table 19 from Appendix L shows that MoE-NFN achieves consistently strong performance
across a range of model sizes. Notably, even the smallest configuration, with a single layer and hid-
den size of 2, reaches a Kendall’s τ of 0.784. In contrast, the best performance is obtained with two
layers of hidden size 10, achieving a Kendall’s τ of 0.806. This demonstrates that while increased ca-
pacity can improve performance, MoE-NFN remains highly effective even under constrained model
sizes.
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Figure 1: Histogram of test accuracy distribution in the MNIST-MoEs and AGNews-MoEs datasets.

K ADDITIONAL DATASET DETAILS

To explore a rich landscape of Transformer-MoE architectures, we systematically vary eight core
hyperparameters in our study: top-K, activation function, training data fraction, optimizer (selected
from SGD, SGDm, Adam, or RMSprop), learning rate, L2 regularization coefficient, initialization
standard deviation, and dropout probability. Each plays a distinct role - train fraction dictates how
much of the dataset is fed into training, while the optimizer governs the learning dynamics. Learn-
ing rate, regularization, and initialization standard deviation modulate convergence behavior, and
dropout serves as a defense against overfitting. For top-K, we test values 1, 2, and 4 - representing
how many expert modules process a given token. As for activation, models flip between ReLU and
GeLU.

We treat each hyperparameter dimension independently, selecting representative values before ex-
haustively combining them into a sweeping configuration grid. Early experiments highlighted that
the ideal hyperparameter landscape diverges drastically depending on optimizer type. Thus, we sep-
arate our configurations into two distinct families: one for Adam and RMSprop, and another for
SGD and SGDm. Table 18 lays out the full matrix. These setups remain consistent across tasks to
ensure apples-to-apples comparisons. All models undergo 100 training epochs, with performance
snapshots at epochs 50, 75, 100, and the epoch of peak accuracy. Crashed runs are promptly dis-
carded.

Table 18: Hyperparameter configurations of the MoE Transformer Model Zoos dataset

Hyperparameter SGD-SGDm Adam-RMSprop

Top-K [1,2,4] [1,2,4]
Activation [ReLU, GeLU] [ReLU, GeLU]
Train Fraction [1.0, 0.9, 0.8] [1.0, 0.9, 0.8]
Dropout [0.2, 0.15, 0.1, 0.05, 0] [0.2, 0.15, 0.1, 0.05, 0]
Learning Rate - MNIST [1e-3, 3e-3, 5e-3, 1e-2, 3e-2] [3e-4, 5e-4, 1e-3, 5e-3, 3e-2]
Learning Rate - AGNews [1e-3, 3e-3, 1e-2, 5e-2, 7e-2] [3e-4, 1e-3, 5e-3, 3e-2, 5e-2]
Weight Init Standard Deviation [0.1, 0.15, 0.2, 0.25] [0.1, 0.2, 0.3, 0.4]
L2 Regularization - MNIST [1e-6, 1e-4, 1e-2] [1e-6, 1e-4, 1e-2]
L2 Regularization - AGNews [1e-8, 1e-6, 1e-4] [1e-8, 1e-6, 1e-4]

MNIST-MoE. The MNIST dataset (LeCun & Cortes, 2005), a staple in the vision benchmark
canon, presents 28× 28 grayscale images of handwritten digits ranging from 0 to 9. The goal: clas-
sify the digit shown. Our model begins with a 2D convolutional embedding that carves the image
into patches, overlayed with fixed positional encodings to anchor spatial information. These em-
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Table 19: Effect of MoE-NFN architecture (width and depth) on generalization prediction.

Encoder Term [2] [2,2] [4] [4,4] [6] [6,6] [10] [10,10]

Kendall’s τ 0.784 0.794 0.788 0.797 0.775 0.799 0.781 0.806
Params 1.5M 3.9M 2.9M 12.7M 4.6M 26.5M 8.4M 69.2M

beddings pass through two Transformer-MoE blocks, which weave global dependencies across the
image. In the MoE block, there are 4 experts, each is a two-layer feedforward network. The re-
sulting representations are globally averaged and routed through a two-layer feedforward classifier,
separated by ReLU, culminating in a ten-class probability distribution. Using our hyperparameter
schema, we generate a massive 100,024 model samples for MNIST - 25,006 of which are check-
points from selected epochs. Figure 1 shows the accuracy histogram, with the accuracy distributed
across [0,1].

AGNews-MoE. The AG’s News dataset (Zhang et al., 2015) offers a text classification challenge
across four broad domains: World, Sports, Business, and Sci/Tech. For each article, the model
predicts its corresponding topic based on its description. Our Transformer-MoE variant kicks off
with token embeddings sourced from a pre-trained Word2Vec model, fused with fixed positional
encodings to maintain sequence order. These flow into a dual-layer Transformer-MoE encoder that
captures semantic interrelations across the input. In the MoE block, there are 4 experts, each is a
two-layer feedforward network. The encoder output undergoes global average pooling, then feeds
into a two-layer MLP with a ReLU bridge, concluding with a four-class softmax. Across this task,
we generate 79,220 checkpoints derived from 19,805 unique configurations, capturing performance
at epochs 50, 75, 100, and each model’s best epoch. The accuracy distribution (Figure 1) reveals a
pronounced peak between 50% and 90%, with a sharp mode around 80%, and a modest secondary
cluster hovering near 25%.

Computing Resources The whole dataset is trained on a cluster of 4x NVIDIA A100 SXM4 80GB
GPUs. We run 5 settings at a time on one GPU. The running time for a MNIST-MoE setting is
20 to 25 minutes, depending on the fraction of training data being set. The running time for an
AGNews-MoE setting is 30 to 35 minutes.

L ADDITIONAL EXPERIMENT DETAILS

L.1 GENERAL DETAILS

Training details All models underwent training over 100 epochs with a batch size set to 16. Opti-
mization was carried out using Adam, capped at a peak learning rate of 10−3 (In the case of MLP
the learning rate is 10−4). To ease the model into learning, we implemented a linear learning rate
warmup during the first 10 epochs. The loss was computed using the Binary Cross Entropy criterion.

Computing resource All experiments were conducted on a workstation equipped with an AMD
Ryzen Threadripper PRO 5945WX processor (24 cores) and four NVIDIA GeForce RTX 3090
GPUs (24GB VRAM each). GPU driver version 570.86.15 and CUDA 12.8 were used. Each exper-
iment was completed in under 12 hours using this hardware configuration.

Number of parameters An overview of parameter counts for each model is presented in Table 20.
Complete architectural specifications and hyperparameter settings can be found in Appendices L.2
and L.3. For the baseline models, hyperparameters were carefully tuned to their optimal configura-
tions; any further increase in parameter size likely leads to overfitting rather than improved perfor-
mance.

L.2 ARCHIECTURE AND HYPERPARAMETERS OF MOE-NFN

The MoE-NFN architecture is structured around three core modules, each tailored to manage the
weight processing in a Transformer MoE system. The embedding and classification components
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are both implemented using standard multi-layer perceptrons (MLPs) with ReLU activation, each
independently handling a distinct part of the input.

At the heart of the model lies the Transformer MoE block, which is governed by an invariant archi-
tecture featuring multiple MoE-NFN equivariant polynomial layers. These layers specifically target
the two MLP segments within the Transformer block and are activated using ReLU. Once processed,
their output is funneled into an invariant polynomial layer of MoE-NFN, which further distills the
representation. All intermediate outputs - vectorized by design - are concatenated and fed into a
terminal MLP head equipped with a Sigmoid activation function to generate the prediction.

For our experiments, the embedding component consists of a single-layer MLP with 100 hidden
units. The classification module is slightly deeper, comprising two MLP layers, each also with
100 hidden units. Within the invariant MoE-NFN core, a single equivariant polynomial layer with
4 hidden channels is used to process the Transformer weights, followed by an invariant polyno-
mial layer that yields a 5-dimensional vector per input layer. These outputs are then combined and
passed through another MLP, which expands them into a 100-dimensional vector space. Ultimately,
the concatenated outputs from all three branches are directed through a final classification layer to
produce the model’s prediction.

L.3 ARCHITECTURE AND HYPERPARAMETERS FOR OTHER BASELINES

Here we describe the architecture of all baselines:

• Transformer-NFN (Tran et al., 2025) This model comprises three primary modules re-
sponsible for processing the input weights. The embedding is processed by a single layer
MLP, while classifier component utilizes two-layer MLPs, each with 100 hidden units. The
Transformer core is modeled using an invariant architecture that integrates 2 Transformer-
NFN equivariant polynomial layers, with 12 hidden channels. These are followed by an
invariant polynomial layer to finalize the transformation. Outputs from each module are
encoded as vectors, concatenated, and passed through a concluding MLP head (100 hid-
den units, Sigmoid activation) for prediction. To make this architecture compatible with
Transformer-MoE inputs, we omit gating weights and average the expert-specific weights
to form a unified feed-forward layer, suitable for Transformer-NFN. However, this adap-
tation breaks the model’s original equivariance under the new group action introduced by
Transformer-MoE.

• MLP In this baseline, all model component weights are flattened and processed individu-
ally through dedicated MLPs. The embedding and Transformer-MoE components are each
fed into a single-layer MLP with 64 hidden neurons. The classifier component, by contrast,
is modeled with a two-layer MLP containing 256 neurons per layer. Outputs from all three
branches are concatenated and passed through a final prediction head: a two-layer MLP
with 100 hidden neurons in each layer.

• XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), Random Forest
(Breiman, 2001): For these tree-based models, we flatten the weights from all components
and input them directly into the respective regressors. We used consistent hyperparameter
settings across the three models: maximum tree depth of 10, minimum child weight of 50,
and a cap of 256 leaves per tree.

• SVR (Vapnik et al., 1996): All input weights are first flattened and then reduced to 1000 di-
mensions via Principal Component Analysis (PCA)(Pearson, 1901; Hotelling, 1933). The
resulting feature set is processed by a linear Support Vector Regression (SVR) model using
a linear kernel. We adopt the default configuration provided by the scikit-learn library.

L.4 GU TRANSFORMATION EXPERIMENT

In this experiment, we keep all training settings the same as the AGNews-MoE performance pre-
diction experiment. We retrain each of the baseline metanetwork and evaluate the trained model
on both the original test set and an augmented version of the original test set. Then we record the
Kendall’s τ metric for both test sets and compute the gap between them.
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Table 20: Number of parameters for all models

Model MNIST AGNews

MoE-NFN 3.088M 2.984M
Transformer-NFN 2.511M 2.406M
MLP 11.359M 11.255M

The augmented version of the test set of AGNews-MoE dataset is produced by applying randomly
selected transformations from the group GU to the original model weights. These transformations
yield new models that are functionally identical but differ in parameterization. We uniformly sam-
ple the permutations τh, τe, and π

(i)
e , sample the scalars γW and γb from the interval [0, 1], and

sampling each entry of the transformation matrices M (i)
k and M

(i)
v from a uniform distribution over

[−100, 100].

M BROADER IMPACTS

This work contributes to the foundational understanding of functional equivalence in neural net-
work architectures, particularly Mixture-of-Experts (MoE), with implications that extend to the de-
sign and interpretation of modern AI systems. By rigorously characterizing the symmetry-induced
redundancies in MoE models, our analysis enables the development of more parameter - efficient,
interpretable, and robust architectures. These insights are especially relevant for metanetworks -
neural systems that reason over other networks - where ensuring functional identity is critical for
tasks like model editing, transfer learning, and interpretability.

The societal benefits of this research stem from its potential to reduce computational waste by el-
liviate the computational need to evaluate language model. In domains such as healthcare and envi-
ronmental science, where large-scale models are increasingly deployed for predictive diagnostics or
climate modeling, such efficiency gains can reduce energy consumption, and make cutting-edge AI
more accessible to under-resourced settings. Moreover, by deepening the theoretical understanding
of neural network symmetries, this work contributes to safer and more transparent AI development,
helping mitigate risks associated with model redundancy, overparameterization, and brittleness.

Overall, the theoretical advancements presented in this paper support the broader movement to-
ward efficient, reliable, and responsible AI - enhancing both the scalability of current models and
the interpretability of their inner workings, which are crucial for high-stakes and mission-critical
applications.
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