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ABSTRACT

In neural networks, the parameter space serves as a proxy for the function class
realized during training; however, the degree to which this parameterization pro-
vides a faithful and injective encoding of the underlying functional landscape re-
mains insufficiently understood. A central challenge in this regard is the phe-
nomenon of functional equivalence, wherein distinct parameter configurations
give rise to identical input—output mappings, thereby revealing the inherent non-
injectivity of the parameter-to-function correspondence. While this issue has been
extensively studied in classical architectures-such as fully connected and convo-
lutional neural networks with varying widths and activation functions—recent re-
search has increasingly extended to modern architectures, particularly those utiliz-
ing multihead attention mechanisms. Motivated by this line of inquiry, we under-
take a formal investigation of functional equivalence in Mixture-of-Experts-a class
of architectures widely recognized for their scalability and efficiency. We analyze
both dense and sparse gating regimes and demonstrate that functional equivalence
in the Mixture-of-Experts architecture is fully characterized by permutation sym-
metries acting on both the expert modules and the gating mechanism. These find-
ings have direct implications for the design of equivariant metanetworks-neural
architectures that operate on pretrained weights to perform downstream tasks-
where reasoning about functional identity is essential. Our results highlight the
importance of analyzing functional equivalence in uncovering model symmetries
and informing the development of more principled and robust metanetwork archi-
tectures.

1 INTRODUCTION

Despite the practical success of deep learning, many underlying mechanisms remain elusive. A par-
ticularly intriguing phenomenon is the ability of highly overparameterized neural networks-those
with more parameters than training samples-to generalize well to unseen data, rather than over-
fit (Cybenko, |1989; [Hornik et al.l |1989). This observation challenges conventional expectations.
While classical results suggest that shallow networks can approximate any function, empirical ev-
idence consistently shows that deeper, complex architectures perform better (Zhang et al.l 2017;
Allen-Zhu et al.,2019). These apparent contradictions have spurred growing interest in understand-
ing overparameterization and its broader implications for optimization, generalization, and model
expressivity (Du et al.; 2019; [Frankle & Carbin, 2019; Neyshabur et al., 2019; Novak et al., 2018).

An important feature of overparameterized neural networks is their functional equivalence-the fact
that multiple distinct parameter configurations can realize the same input-output function. This
redundancy raises fundamental questions about how neural networks encode, optimize, and gener-
alize learned representations (Allen-Zhu et al.l 2019} Belkin et al.,[2019; |Du et al., 2019} [Frankle &
Carbin| 2018} Novak et al.| [2018). The notion of functional equivalence has found many applica-
tions in different areas such as weight generation using diffusions (Soro et al.,|2024; |Saragih et al.,
2025; Wang et al., [2025} |Xie et al.,2024; Meynent et al., 2025 |Andreis et al.| [2024), model ensem-
bling (Wortsman et al.} 2022} |Ganaie et al., [2022; |Lakshminarayanan et al.| [2017; Mohammed &
Kora, [2023)), and exploring mode connectivity (Goodfellow et al.,[2014; [Keskar et al., 20165 [Sagun
et al.| 2017} [Venturi et al.| 2019} Neyshabur et al., | 2020; |Tatro et al.l 2020; |Yunis et al., [2022; Zhou
et al.l 2023). Functional equivalence has also recently been applied to the design of equivariant
metanetworks (Tran et al., [2024bga; Vo et al.l [2025; [Zhou et al., [2024c;bgda; Navon et al., [2023).
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These metanetworks operate on internal components such as weights or gradients—rather than raw
weights themselves—and have been used in a variety of tasks including learnable optimization (Ben-
gio et al., [2013} [Runarsson & Jonsson, |2000; |Andrychowicz et al., 2016; Metz et al.,|2022), feature
extraction from implicit representations (Miiller et al., 2023} Stanleyl [2007; Mildenhall et al.,|2021),
model editing (Sinitsin et al., 20205 |Cao et al., [2021; |[Mitchell et al., [2022), policy evaluation (Harb
et al.,[2020), and Bayesian inference (Sokota et al., 2021).

The problem of determining the functional equivalence of multilayer perceptrons (MLPs) was ini-
tially posed by Hecht-Nielsen (Hecht-Nielsen, |1990). It was observed that interchanging weights of
two units in a hidden layer of an MLP does not change the network’s input-output function, provided
corresponding weights in the subsequent layer are adjusted accordingly (Allen-Zhu et al., 2019 |Du
et al.} 2019; |Frankle & Carbin| 2018} Belkin et al.,|2019; [Neyshabur et al., 2018)). For the same class
of MLPs, Fefferman and Markel (Fefferman & Markel, |1993) proved a strong result, showing that
input-output mapping of an MLP with tanh activations determines both architecture and weights,
up to permutations and sign flips. Since then, a variety of results under different settings have been
established for MLPs (Albertini & Sontag) (1993bza; [Bui Thi Mai & Lampert, |2020; |Chen et al.,
1993} |[Kurkova & Kainen, [1994), and similarly for convolutional neural networks (CNNs) (Brea
et al.,[2019; [Novak et al., 2018} Bui Thi Mai & Lampert, 2020; Tran et al., [2024a; [Vo et al., [2024)).

While functional equivalence has been well studied in traditional architectures such as MLPs and
CNN:s, its characterization in modern architectures like Transformers (Vaswani et al., 2017; [Devlin
et al., 2018 Brown et al.} [2020) and Mixture-of-Experts (MoE) (Jacobs et al., [1991} |Shazeer et al.,
2017} |Lepikhin et al., 2020; [Fedus et al.| [2022) remains underexplored. For Transformers, recent
work (Tran et al., 2025} [Knyazev et al., |2024) has identified the maximal symmetry group of the
multihead attention and established necessary and sufficient conditions for functional equivalence.
In contrast, the functional characterization of MoE architectures remains an open problem.

Contributions. Inspired by this line of inquiry, we propose a comprehensive framework for con-
structing equivariant metanetworks for MoE architecture, based on the functional behavior. The
paper is organized as follows:

1. In Section 2] we introduce the notion of the weight space associated with an MoE model and
construct a group action that preserves its functional behavior. This formulation applies to
both dense and sparse gating scenarios.

2. In Section [3] we establish two key theoretical results demonstrating that the proposed group
action characterizes all universal symmetries inherent to the gating mechanism of MoE mod-
els. These results are supported by rigorous formal proofs.

3. In Section [d we apply these theoretical findings to the design of equivariant metanetworks
for MoE Transformer architectures. We introduce a metanetwork that is equivariant under
the group action induced by the structure of the multi-head attention and MoE modules. We
also release the MoE Transformer Zoos dataset, containing 179,000 MoE Transformer check-
points, to support future research on MoE weight spaces. Experimental results demonstrate
that our equivariant metanetwork consistently outperforms baseline models across datasets.

Additional materials—including a table of notation, theoretical derivations, detailed proofs, and
experimental configurations—are provided in the Appendix.

2  WEIGHT SPACE OF MIXTURE-OF-EXPERTS AND ITS GROUP ACTION

This section provides a concise overview of the MoE architecture. We define the associated weight
space and introduce a group action on this space that preserves the overall functionality. A compre-
hensive and formal treatment of these concepts is presented in Appendix

2.1 BACKGROUND ON MIXTURE-OF-EXPERTS

Throughout the paper, we denote by ¢ the ReLU activation function.

Mixture-of-Experts. Let D denote the token dimension and D, the hidden width. We consider
Expert maps implemented as single-hidden-layer ReLU networks, E: RP — RP, defined as:

E(z; W(A), b(A), W(B), b(B)) — O'(CCW(A) + b(A))W(B) + b(B)7 (1)
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with parameters (TW(4) p(4) W (B) p(B)) ¢ RP*DPe x RIXDPe 5 RPXD 5 RI*P Given n,
denoting the number of experts, an MoE is defined as a map MoE: RP — RP:

MoE (I; (WG p(G) A p(Ad) yy (B p(B.) }77_e1>

= softmax; ({WW);E + b<G»i>}j;1) E(a: WD p(AD (B b(B"")). )
i=1

Here, (W40 p(A0) (B0 p(Ba)y ¢ RPXDe o RIXDe 5 RPXD 5 RIXD are the parameters
of the i™ expert, while (W (&%) (1)) € RP x R are the corresponding gating parameters. The
vector softmax(W(G9)z + (G ) sets the contribution of each expert to the final MoE output.

Sparse Mixture-of-Experts. Given a positive integer K < n,, the Top-K map is defined by
Top-K(x) = {i1,...,ix} for x = (z1,...,2,) € R™, where iy, ...,ix are the indices corre-
sponding to the K largest components of x. In the event of ties, we select smaller indices first.
Using this, a Sparse Mixture-of-Experts (SMoE) is the map SMoE: RP — R? defined by:

SMoE (x; (WG p(Ci) A p(Ad) py(B.i) (B )

=1

= 3 softma; ({WEDz @0} Y B (a WA pA0 W ED yED) (3
€T (x)

where T'(x) = T'(x; {W (G p(ED e ) = Top-K (WG g 4 p(GD)re ),

2.2  WEIGHT SPACE OF MIXTURE-OF-EXPERTS

The map MoE is parameterized as MoE(x; §) where
0 — ((W<G’i>7 pED) (WAD pAD) (7B, b(&l’)))

1=1,..., Ne
€ O(n.) = ((RD x R) x (RP*Pe 5 R1PPe) x (RP*P x R“D))ne. 4

Here, ©(n.) is called the weight space of a Mixture-of-n.-experts. Varying the number of experts
leads to an MoE weight space that spans across expert sets of different sizes, denoted by

0= | 0m) = [] ((R? xR) x (RP*Pr x R*Pr) x (RP*P x R“D))nﬁ. )
ne=1 ne=1

Note that, the weight space of SMoE coincides with that of the standard MoE, since the map Top-K
does not introduce any new trainable parameters.

2.3  GROUP ACTION ON WEIGHT SPACE OF MIXTURE-OF-EXPERTS

We define the group G(n.) as the direct product G(n.) = R x R x S,,, of the groups R, R with
addition, and the permutation group S,,_. Each element g € G(n.) is of the form g = (yw, Vp, 7).
where vy € RP v, € Rand 7 € S,,, . The group G(n.) acts on the weight space O(n,) as follows.
For g € G(n.) and 6 € ©(n.) presented as in Equation 4] define:

90 = ((W@,T(i)) + oy, BETEO) ),
(W(Aﬁ(i)), b(Aaf(i)))7 (W(B,T(i))’ b(&f(%’)))) . (6)
i=1,...,n,
The result below establishes that this group action preserves the MoE map.
Proposition 2.1 (Weight space invariance of MoE). The MoE map is G(n.)-invariance under the

action of G(n.) on its weight space ©(n.), i.e. MoE(+; §) = MoE(+; ¢0).

A proof of Proposition [2.1]is presented in Proposition[A.4] An analogous invariance result holds in
the case of SMoE. However, since the Top-K selection map is generally discontinuous—primarily
due to tie cases in the gating scores—additional conditions are required to ensure the validity of
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the invariance result. To address this, we focus on a subset of R” where the Top-K scores are
unambiguously defined. Specifically, for {IW (%9, p(GD}7e € (RP x R)"™, we define:

QW @D p G Y =[x e RP « (W @Dy 4 pGD) % are pairwise distinct}.  (7)
The following result concerns the domain and the continuity properties of the SMoE map.
Proposition 2.2. If {W(G9 b(CDY are pairwise distinct for i = 1,...,n, then

QUWED GOV Y is an open and dense subset of RP. Moreover, the SMoE map, as defined in
Equation is continuous on Q({W (G p(G1)}7ne .

A proof of Proposition [2.2] is presented in Propositions [A.T| and [A.2] We now establish that the
invariance property of the SMoE map holds under restriction to this domain.

Proposition 2.3 (Weight space invariance of SMoE). Given the SMoE map, as defined in Equa-
tion Assume that {W(G*i),b(G’i)} are pairwise distinct for i = 1,...,n.. Then, the set
QUW G p(G Ve ) s invariant under the group action of G(n.), i.e. for g = (yw, Y, T) €
G(n.), we have Q({W (G0 p(G10e )y = QWG 4y p(ETO) 4417 ) Moreover; the
SMOoE map, restricted to Q({W (@9 p(GDV e ) s G(n,)-invariance under the action of G(n.) on
their weight space, i.e. SMoE(-; ) = SMoE(+; g#) on Q({W (G0 p(GD e ),

A proof of Proposition [2.3]is presented in Proposition

Remark 2.4. The invariance properties of both MoE and SMoE models in Proposition and
stem from two fundamental characteristics: permutation invariance of the summation operator and
translation invariance of the softmax function. Additionally, in the case of SMoE, these invariance
properties are further supported by the permutation and translation invariance of the Top-/ map.

3 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

This section is concerned with the correspondence between two sets of parameters that yield identi-
cal MoE maps. Our objective is to rigorously demonstrate that the group action induced by G(n.),
as defined in Equation [6] fully characterizes the symmetries inherent in the gating mechanism of
MoE architectures. The dense and sparse cases will be analyzed separately due to their fundamen-
tally distinct structural and analytical properties. Throughout the remainder of this section, we let

0 € O(n.) and fe ©(7¢) denote the parameters of two models under comparison.

0 — (<W<G,i>7 BN, (WAD pAD) (B0, b(B,z‘)))‘ 7 (8)

i=1,...,n,
0 — ((Wa,z')’g(ai))’ (WA jiy, (W(B,z‘)@(&i))) L 9)

3.1 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

The following result establishes a complete characterization of when 6 and 0, under certain assump-
tions, define the same MoE map, with particular emphasis on the behavior of the gating mechanism.

Theorem 3.1 (Functional equivalence in MoE). Suppose 9,,9\ define the same MoE map, i.e.
MOoE(-; 0) = MoE(+; ). If 0, 0 satisfy the following four assumptions:

1. n. experts {E(, WA (A p (B b(B’i))}?gl are pairwise distinct functions;
2. e experts {E(;; WA 540 (B 73(3,1‘))};7:21 are pairwise distinct functions;
3. W& WG gre pairwise distinct for all 1 < i, j < ne such that i # j;
4. WG WG gre pairwise distinct for all 1 < i, j < g such that i # j;

then, n. = 7., and there exist T € S, , Yw € RP, Y% € R such that for all
i = 1,...,ne we have WD = WG 4 ~p 0 pGD = pGTE) 4~ gnd
E(; WAT@) p(AT@) W (B.T0) b(BJ(i))) =E(; ﬁ/\(A,i)’Z(Ayi)’ W\(B»i)7g(37i)) on RD.
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A proof of Theorem [3.1]is presented in Appendix [B] The proof relies on two key components: a
result concerning the linear independence property of exponential functions, as stated in Lemma[B.2]
and an observation regarding the local affineness of ReLU networks, as discussed in Appendix

Remark 3.2. The four assumptions stated in Theorem|3.1|are introduced for technical reasons. At a
high level, the goal in symmetry analysis is fo identify universal symmetries that are independent of
specific parameter choices, while excluding singular symmetries that arise only under special con-
figurations of the weights. In particular, Assumptions 1 and 2 prevent degenerate cases in which two
experts implement the same function and receive identical gating scores, thereby rendering their
permutation inconsequential to the model’s output. Assumptions 3 and 4 address a more subtle
issue: they rule out configurations where linear dependencies among the gating weight vectors re-
sult in indistinguishable gating behavior across different experts. A complete justification of these
assumptions, accompanied by illustrative examples, is provided in Remark [B.§]

3.2 FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

In the context of the sparse case, we first introduce the notion of the strongly distinct property.
Specifically, two functions f and g defined on a topological space X are said to be strongly distinct
ifthe set {x € X : f(z) # g(x)} is dense in X.

Remark 3.3. For instance, distinct polynomials are strongly distinct, whereas distinct ReLU net-
works are not strongly distinct in general. A formal definition of this property, along with illustrative
examples, is provided in Definition [C.I|and Example[C.2]

We now present a result that serves as an analogue of Theorem in the context of SMoE for
K > 1, formulated under a set of assumptions that are stronger than those required in the former.

Theorem 3.4 (Functional equivalence in SMoE). Suppose 0, 0 define the same SMoE maps, i.e.
SMOoE(+; 8) = SMoE(+; ). If 0, 0 satisfy the following four assumptions:

1. n. experts {E(-; WA (A0 Ty (B p(BAONR  qre pairwise strongly distinct func-
tions,

2. N, experts {E(-;/W(A’i),g(""i),W\(B’i),g(&i))}gl are pairwise strongly distinct func-
tions,

3. (WG W& s a linear independent subset of R”;
4. {/W(G’i’l) — W(G*i)}EQ is a linear independent subset of R ;

then, n. = 7., and there exist T € S, , Yw € RP, 4, € R such that for all
i = 1,...,n, we have W& = WGETO) 1y pGED = pGT@) 4o and
E(z; WAT@) p(A7@) yy(B.7(D) p(B.r(0)) = E(I;W(Ayi)fg(A»i)?W(Bﬂ')’g(B-,i)), for all z €
QUWED pG Ve Y such that 7(i) € Top-K (W Gz 4 p(Gi))re ),

A proof of Theorem [3.4]is presented in Appendix [C] Although Theorem [3.4]is conceptually aligned
with Theorem [3.1] it is important to emphasize that the SMoE case is significantly more challenging
to establish. The primary source of this difficulty lies in the presence of Top-K operator, which in-
troduces discontinuities by altering the set of contributing experts in a nontrivial and input-dependent
manner. This behavior is notably difficult to analyze and control within the theoretical framework.

Remark 3.5. As previously stated, Theorem [3.4]is formulated under a stronger set of assumptions
than those required in Theorem Indeed, the assumptions of the latter directly imply those of
the former. The rationale for imposing these stronger conditions stems from the observation that
an expert’s behavior is unconstrained on regions where it is not selected by the gating mechanism,
thereby allowing arbitrary behavior in such domains. As a result, distinct collections of expert
functions may yield identical overall outputs when restricted to their respective regions of activation.
This ambiguity gives rise to singular symmetries, as discussed in Remark [3.2] A comprehensive
justification of these assumptions, along with illustrative examples, is provided in Remark [C.9]

The case of K = 1. In the special case where K = 1, the Top-1 gating mechanism in SMoE selects
only the expert with the highest gating score, resulting in a softmax distribution that collapses to a
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single entry equal to 1. Thus, the SMoE map with K = 1 also admits nontrivial symmetries under
the action of the multiplicative group R~ . Specifically, for any a > 0, we have

SMOE<x.{W(G,i) p(Goi) (A0 (A (B b(B,i)}”el)
’ 3 ’ ; ’ y =
— SMoE (:c; {aW(C) qb(Gi) Jy(Ad) p(AD 1 (Ba) p(Bii) }f;l) . (10)

This invariance holds because the argmax used for expert selection is unaffected by uniform positive

.....

r € QUWED p(GD}1e ) Moreover, since only one expert is activated per input, no explicit
interactions are formed among the expert components. This leads to a rich set of hidden symmetries
within the architecture. Due to the complexity introduced by these symmetries, we choose to exclude
the case K = 1 from our main analysis and leave its exploration to future work.

3.3 REMARKS ON FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS MODELS

Theorems [3.1]and [3.4] provide a formal characterization of functional equivalence in both dense and
sparse MoE architectures, with a primary focus on the role and structure of the gating mechanism.
Nonetheless, these results do not exhaustively account for all symmetries inherent in the MoE and
SMOoE architectures as defined in Equations [2] and [3| In particular, further symmetries may exist
within the internal structure of individual experts, especially when those experts are implemented as
ReLU networks, as mentioned in Section[I} Since this work centers on the architectural properties
of MoE, our analysis prioritizes the gating component, while abstracting expert networks by their
input-output behavior rather than their internal parameterizations.

4 EQUIVARIANT METANETWORKS FOR MOE TRANSFORMERS

Metanetworks are neural architectures that take internal components of other models (weights, gra-
dients, sparsity patterns, ...) as input to enable meta-level learning (Zhou et al.|[2024b)). A central de-
sign principle is that they operate on functions defined by parameters, not raw weights—motivating
equivariance: functionally equivalent parameters should yield consistent outputs. This has led to
permutation-equivariant metanetworks (Navon et al., 2023 Zhou et al.,|2024b; |Kofinas et al., [2024}
Zhou et all 2024c)), with extensions to symmetries like scaling, sign flipping via graph message
passing (Kalogeropoulos et al.||2024) and parameter sharing (Tran et al.,|2024a} |Vo et al., [2025).

While metanetworks have been studied in MLPs, CNNs, and Transformers, no prior work, to our
knowledge, has investigated equivariant metanetworks for MoE Transformers. Using the established
functional equivalence for MoE architecture, we provide a design for an equivariant metanetwork
for MoE Transformers. We also release a dataset containing 179k MoE Transformer checkpoints
spanning both language and vision tasks, enabling systematic analysis of their weight space.

4.1 EQUIVARIANT METANETWORKS FOR MOE TRANSFORMERS

Since the weight space, symmetry, and group action are the same for both MoE and SMoE, we
describe the equivariant metanetwork for the MoE Transformer in this section. The construction for
the SMoE Transformer is identical.

An MoE Transformer layer comprises a multihead attention module followed by an MoE module,
where each expert in the MoE module is realized as a single hidden-layer network. Formally, an
MoE Tranformer layer, denoted as MoETransformer, transforms an input sequence X € R*? to
an output sequence MoETransformer(X) € REXP s defined as follows:

MoETransformer(X) =
LayerNorm (X + MoE (j(; {[W](G’i), [b](G,i)’ [W](A,i), [b](A,i)’ [W](B,i)7 [b](B’i) }7:1)) 7
where X = LayerNorm (X + MultiHead (X; {[W](Q,i)’ [W](K’i), [W}(V,i)’ [W](O,i)};v,:hl)) .

Here, the MoE operator is a token-wise operator and is defined in Equation 2] and the MultiHead is
defined in (Tran et al.,[2025). The positive integers n;, and n. represent the number of heads in the
multihead attention module and the number of experts in the MoE module, respectively.
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The weight space of the MoE Transformer layer is a direct product of the weight space of the
multihead attention module (detailed description in|Tran et al.|(2025)) and the MoE module (refer
to Section[2)). In particular, the weight space U of the MoE Transformer layer above is defined as:

U — (RDka % RPXDx 5 RDXDu o RDUXD)M‘
Ne
x ((RP xR) x (RP*Pe x R™XPe) xx (RP>P x RP)) . (1)
An element U € U takes the form:

U= (([W] (Qy4) W] (K,7) W] (Vi) W] (o,i))

i=1,...,np"°
(W€D, ) E0), (W), [ A9), (W) ED, [E9)) ). )
i=1,...,n¢
Here, fori = 1,...,ny, the matrices [W](@%) ¢ RP*Dr [W]U0) ¢ RPXDw [177](V:1) ¢ RPXDo,

and [IW](©-9) € RP»*P are the query, key, value, and linear projection matrices, respectively, of the
i" head of the multihead attention. The rest of U includes the parameters of the MoE component.

The symmetry group of the weight space U, denoted Gy, is defined as the direct product of the
symmetry group of the multi-head attention module and that of the MoE module, i.e.,

Gu = (snh x (GLp, (R) x GLp, (R))”h) x (RP x R) x (sne X (PDC)"E) (13)

Each element g € G, takes the form:

o= (A MO) ) w50} ). (14)

..........

Here, the first component (73, { M ,Ei), Mu(i)}i=1,_..,nh) of g arises from the symmetry of the multi-
head attention module. The second component {~yw, s} corresponds to the symmetry of the gat-

ing score functions. The third component (7, {wéi)}izlw,ne) captures the permutation symmetry
among the n. experts as well as the permutation symmetries within the hidden layers of each expert.

The action of Gy on U is defined to be the map Gy x U — U, which maps (g,U) € Gy x U
to gU € U. Intuitively, gU is obtained by independently applying the first component of g to the
weights of the multi-head attention module, and then applying the remaining components of g to the
MoE module. As a consequence of Theorems [3.1] and [3.4] the MoE Transformer is invariant under
this group action. Equivalently, U and gU yield the same MoE Transformer maps for every U € U
and g € Gy. Detailed formulation for gU and its properties are given explicitly in Appendix [D]

Equvariant and invariant metanetwork layers are the essential components in the construction of our
equivariant metanetworks for MoE Transformer models. In particular, an equivariant metanetwork
layerisamap E: U — U suchthat E(gU) = gE(U) forallU € U and g € Gy. To construct E(U),
we follow the design of equivariant polynomial layers in [Tran et al.| (2025)), we adopt a quadratic
polynomial in the input weights U with unknown coefficients. In particular, each entry of E(U) is
designed to be a linear combination with unknown coefficients of the entries of

» the products [W](@K:5) = [W](Q"S)([W](K’s))—r, and [W]VO-) = [7](V>5) ([W](O’S))_l;
+ the matrices [IW](@%), (W] [W](V:5), and [W](©>%) inside the multihead attention module;

+ the matrices [IW](*) and the vector [¢](?>*) in the gating functions, as well as the matrices
[W](A4) [W](B#) and the vectors [b](4+*), [b](B-*) of the experts;

for every index s and a bias term. Following the parameter-sharing technique, we solve the system
of equations arising from the condition E(gU) = gE(U) with all U € U and g € Gy, to obtain the
necessary and sufficient constraints on the unknown coefficients that ensure E is equivariant. The
invariant layer is constructed using the same approach. The construction of both equivariant and
invariant layers are quite lengthy and it is discussed in detail in Appendices[Fand[G] A description
of how to implement the equivariant and invariant layers are presented in Appendix
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Table 1: Evaluation of model performance on the AgNews-MoEs dataset using Kendall’s 7 rank
correlation. Error bars denote the standard error over 5 independent runs.

Accuracy threshold

No threshold 20% 40% 60% 80%
MLP 0.610 £0.007  0.610+0.001  0.595+0.021  0.538 £0.006  0.479 £+ 0.013
XGBoost (Chen & Guestrin[2016) 0.666 £0.002  0.665+0.001  0.626 £0.001  0.619+0.003  0.611 £ 0.001
LightGBM (Ke et al.[2017) 0.672+£0.003  0.6734+0.001  0.623£0.017  0.6214+0.004  0.590 £ 0.002
Random Forest (Breiman|[2001) 0.619£0.003  0.620+0.002  0.583 £0.002  0.5714+0.002  0.558 & 0.001
Support Vector Regression (Vapnik et al.||1996)  0.442 + 0.012 0.407 4+ 0.019 0.414 +0.003 0.374 + 0.009 0.268 4 0.012
Transformer-NFN (Tran et al.[[2025) 0.777 £ 0.001 0.7814£0.002  0.73240.002  0.726 + 0.001 0.712 + 0.002
MOoE-NFN (ours) 0.788+0.001 0.790+0.002 0.758+0.001 0.745+0.002 0.734 +0.001

4.2 DATASET: MOE TRANSFORMER MODEL Z00OS

Mixture of Experts (MoE) Transformers have been incorporated into several recent deep learning
architectures (DeepSeek-Al et al.l 2025} Riquelme et al.l 2021} Du et al.l 2022)). However, their
internal weight structures remain largely unexplored from the perspective of metanetworks—partly
due to the absence of suitable pretrained weight datasets. Existing datasets (Iran et al., 2024b) only
provide pretrained weights for standard Transformer architectures and do not include pretrained
MOoE Transformer models. To address this gap, we introduce the MoE Transformer Model Zoos,
which comprise two datasets: AGNews-MoEs and MNIST-MoEs. These contain small-scale MoE
Transformer weights trained on text classification task using the AG News dataset (Zhang et al.,
20135) and image classification task using the MNIST dataset (LeCun & Cortes, [2005), respectively.

The AGNews-MoEs dataset includes 79,220 model checkpoints, while MNIST-MoEs comprises of
100,024 checkpoints. each generated under diverse training conditions. For each checkpoint, both
training and test accuracy are recorded. These datasets provide a foundation for training metanet-
works aimed at predicting model generalization performance directly from its weight, without re-
quiring access to the original test data. Comprehensive details on the structure of the pretrained
weights are provided in Appendix [K] We release these datasets publicly to support further research
on modeling and understanding the weight space of MoE Transformer architectures.

4.3 EXPERIMENTAL RESULTS

To assess the effectiveness of our proposed MoE-NFN in modeling the weight space of MoE Trans-
formers, we conduct two generalization prediction experiments on AGNews-MoEs and MNIST-
MoEs. The goal is to test whether MOE-NFN can predict test accuracy directly from learned weights.
For Transformer-NFN (Tran et al., [2025)), which is not fully compatible with gated MoEs, we adapt
inputs by averaging expert weights and removing gating. Other baselines—including MLPs, tree-
based models (Chen & Guestrin, 2016} Ke et al., |2017; Breiman, |2001), and SVR (Vapnik et al.,
1996)—use flattened weight vectors as input. Performance is measured with Kendall’s 7 rank cor-
relation (Kendall, [1938). Full experiment details appear in Appendix [L] with an additional ablation
study of layer size and depth in Appendix [I}

4.3.1 GENERALIZATION PREDICTION FOR AGNEWS-MOES TRANSFORMER WEIGHTS

Experiment Setup. We evaluate the performance of MoE-NFN on the AGNews-MoEs dataset,
which consists of pretrained language model weights. As illustrated by the accuracy distribution
in Figure |1} the dataset is slightly skewed toward high-performing models. To enable a more bal-
anced and comprehensive evaluation, we partition the dataset into five subsets based on test accuracy
thresholds. The first subset includes all models without thresholding, while the remaining four con-
tain only models with test accuracy above 20%, 40%, 60%, and 80%, respectively. This setup allows
us to assess the generalization prediction performance of different models across a range of quality.

Results. Table[T]shows that our proposed MoE-NFN consistently achieves the highest performance
across all accuracy thresholds on the AGNews-MoEs dataset. Without any threshold, MoE-NFN
achieves a Kendall’s 7 of 0.788, compared to 0.777 for Transformer-NFN (Tran et al.| 2025)). This
trend persists across all thresholds, where MoE-NFN consistently outperforms other baselines, and
Transformer-NFN ranks second in every case. These results highlight the importance of align-
ing the functional network’s design with the structure of the underlying pretrained models. While
Transformer-NFN is tailored to standard Transformers, MoE-NFN generalizes this formulation by
explicitly modeling gating and expert modularity.
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Table 2: Evaluation of model performance on the MNIST-MoEs dataset using Kendall’s 7 rank
correlation. Error bars denote the standard error over 5 independent runs.

Accuracy threshold
No threshold 20% 40% 60% 80%
MLP 0.798 £0.002  0.767+£0.006 ~ 0.708 £0.001  0.6624+0.001  0.593 £ 0.013
XGBoost (Chen & Guestrin!|[2016) 0.7814+0.002  0.778 £0.004  0.746 £0.001  0.728+0.001  0.659 £ 0.002
LightGBM (Ke et al.[[2017) 0.8104+0.001  0.784+£0.002  0.765+0.001 0.7374+0.002 0.681 + 0.004
Random Forest (Breiman/|2001) 0.7474+0.001  0.7324+0.003  0.697£0.002  0.686 +0.004  0.624 £ 0.003
SVR (Vapnik et al.|/|1996) 0.4424+0.012  0.407+0.019  0.415£0.004  0.373+0.009  0.268 £ 0.012
Transformer-NFN (Tran et al.|[2025)  0.828 £0.002  0.786 +0.001  0.756 +0.001  0.686 £ 0.001 0.623 £ 0.003
MOoE-NFEN (ours) 0.833+0.001 0.790+0.001 0.770+0.001 0.7314+0.001  0.672 + 0.002

Table 3: Performance measured by Kendall’s 7 of all models on the original and augmented test sets
for MNIST-MoEs and AGNews-MoEs using the group action Gy,.

Dataset Split MoOE-NFN  Transformer-NFN MLP SVR  LightGBM Random Forest XGBoost
Original 0.788 0.769 0.608 0.445 0.671 0.621 0.665

AGNews-MoEs ~ Augmented 0.788 0.768 0.048  0.005 0.559 0.619 0.653
Gap 0 0.001 0.560  0.440 0.112 0.002 0.012
Original 0.833 0.828 0.798 0.451 0.811 0.747 0.781

MNIST-MoEs Augmented 0.833 0.826 0.223  0.019 0.797 0.744 0.776
Gap 0 0.002 0.575 0.432 0.014 0.003 0.005

4.3.2 GENERALIZATION PREDICTION FOR MNIST-MOES TRANSFORMER WEIGHTS

Experiment Setup. We split the MNIST-MoEs dataset into five subsets based on accuracy thresh-
olds, following the same procedure used in the AGNews-MoEs analysis. For each subset, we evalu-
ate the ability of each metanetwork to predict generalization performance from pretrained weights.
The alignment between predicted and true test accuracy is measured by Kendall’s 7 correlation.

Results. As shown in Table 2] our MoE-NFN achieves the highest Kendall’s 7 on most thresholds:
the full test set (0.833), the 20% threshold (0.790), and the 40% threshold (0.770), while ranking
second at the 60% and 80% thresholds. Interestingly, LightGBM performs well at higher thresholds,
likely due to capturing strong nonlinear correlations in these high-accuracy subsets. Despite this,
MOoE-NFN remains competitive and consistently strong, demonstrating robustness and adaptability.
It also outperforms Transformer-NFN (Tran et al [2025)) in all cases, highlighting the benefit of
modeling MoE-specific structures such as expert modularity and gating.

4.3.3 EFFECT OF G;; TRANSFORMATIONS ON GENERALIZATION PREDICTION

Experiment Setup. Under the group action g € Gy, different parameter values can represent the
same underlying function. To evaluate whether models trained on the training set are invariant to
such transformations, we construct an augmented test set by applying randomly sampled elements
from G, to the test set weights, producing functionally equivalent but parametrically distinct models.

Results. Table 3| empirically confirms that MoE-NFN is invariant under the group transformation
GU, showing zero performance drop across both datasets. Notably, Transformer-NFN also demon-
strates strong stability, with only minor gaps of 0.002 on MNIST-MoEs and 0.001 on AGNews-
MoEs. This robustness can be attributed to its design: Transformer-NFN is explicitly invariant to
the subgroup Sny, x (GLDy(R) x GLD,(R))™, and also (R” x R) due to removal of gating. In
contrast, other models except Random Forest show notable performance drop on augmented sets.

5 CONCLUSION

This paper defines a weight space for Mixture-of-Experts (MoE) models and introduces a group
action that preserves functionality across dense and sparse gating. We prove that it captures all
universal MoE symmetries, though the Top-1 sparse case remains open for future analysis. Build-
ing on this, we develop an equivariant metanetwork framework for pretrained MoE weights and
release two benchmarks—MNIST-MoE and AGNews-MoE. Experiments and ablations show that
symmetry-aware functional reasoning significantly improves metanetwork performance. These re-
sults highlight the importance of symmetry and functional equivalence for both theoretical under-
standing and practical model design. One limitation is the assumption of a fixed weight, leaving
dynamic-weight settings as a direction for future work.
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Ethics Statement. Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work.

Reproducibility Statement. Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings are given in Section ] and the Ap-
pendix [[] All datasets used in this paper are publicly available through an anonymous link provided
in the README file of the supplementary material.

LLM Usage. In this paper, large language models (LLMs) were used solely as a tool to assist
and refine the writing process. They helped with phrasing, clarity, and stylistic polishing, but all
conceptual work, analyses, and conclusions were developed independently by the authors. The LLM
served only to improve readability and presentation, without contributing to the research content
itself
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A WEIGHT SPACES OF MIXTURE-OF-EXPERTS AND THEIR GROUP ACTIONS

Denote the ReLLU activation as o.

A.1 WEIGHT SPACE OF MIXTURE-OF-EXPERTS

We recall the definition of the weight space for Mixture-of-Experts (MoE) where experts are imple-
mented as single-hidden-layer neural networks. Let D denote the input token dimension and D, the
hidden layer size. We focus on expert maps E : RP” — RP of the form:

E <x; WA p(A) B, b<B>) = o(aW@ + s AW B) 4 p(B), (15)

with learnable parameters
<(W(A)7b(A)) 7 (W(B),b(B))) c (RDXDS < RlxDe> % (RpexD % R1XD>. (16)

Given a positive integer n, denoting the number of experts, an MoE is the map MoE : R? — RP
defined by

MoE (x; {W«m), p(CD JAD p(AD) (B p(B.i) }” )

i=1
=3 softmax; ({W(G’i)x + p(G) }n ) ‘E (x; WA pAD (B, b(B’i)) .an
=1
=1

18
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The map MoE is parameterized as MoE(z; §) where

0 — ((W(G,i)7 b(G’i)), (W(A,i)’ b(A,i)) ’ (W(B,i)’ b(B,i)) >

i=1,...,n¢

Denote the weight space of an MoE with n.-experts as
O(n.) = ((RD X R) X (RDXDE X RlXDC) X (RDCXD X RlXD)> ) (19)

Varying the number of experts leads to an MoE weight space that spans across expert sets of different
sizes, denoted by

= n|;|1®(ne) — |_|:1 ((RD x IR) x (RDXDE x R“De> x (RDEXD x RlXD)) . (20)

A.2 WEIGHT SPACE OF SPARSE MIXTURE-OF-EXPERTS

Given a positive integer K < n., the Top-K map is defined by: for any vector z = (x1,...,2,) €
R"™,

TOP'K(:E) - {ila"'aiK}v (21)
where i1, ...,ix are the indices corresponding to the K largest components of x. In the event of

ties, we select smaller indices first. Using this, a Sparse Mixture-of-Experts (SMoE) is the map
SMoE: R” — RP defined by

SMOoE (x; {W«w), p(CA) (A p(AD) (B p(B.i) }” )
i=1
= 3 softmax, ({W<G’i>x+b(6‘v”} )E(x WD (A0, (B0 yBD) | (22)
T () 1€T(x)

where
T(x)=T (x; {W(G,i)7 p(G.D) }” ) _ Top-K((W(G’i)x + b(GJ))?‘%l). (23)

i=1 =

The weight space of SMoE coincides with that of the standard MoE, since the map Top-K does not
introduce any new trainable parameters.

Note on the sparse gating. The SMoE map is generally not continuous due to the presence of the
Top-K operator, particularly in cases where ties occur among the gating scores. To address this, we

focus on a subset of R” where the top K scores are unambiguously defined. Specifically, for
{W(G,l)7b(G7t)} ¢ c (RD x R)nE ; (24)
i=1

we define

(e o))
i=1

= {az eRP : (W(G’i)sc + b(G’i)) ’

i=1

are pairwise distinct} . 25)

We present two results concerning this domain and the behavior of the SMoE map when restricted
to it.

Proposition A.1. If {W(G’i), b(G’i)} are pairwise distinct for i = 1,...,n., then
Q ({V[/'(G’i)7 (G0 }:Zl) is an open and dense subset of RP .
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Proof. We have

a({wenpeni’)

= {ac e RP . W@z 4 pG0 g pairwise distinct forall: = 1,.. ., ne}

ﬂ {m eRP . w@ig 4 p(&d) L WGy 4 b(G,j)}
1<ij<n.

N (RP\{eeRP: WOIg 4 4GD WGy 4 yGNY). (26)
1<i j<n.

Note that, the set
{x eRP . WGy 4 p(G) = w(Gi)y b(GJ)}

_ {x cRD . (W<G,z'> _ W(G,J')) = p(Ga) _ b(G»i)} RGY))

is either a hyperplane (when W (%% £ W(G.9)) or the empty set (when (W(&9) = W(G9) and
b(G-3) = (G In both cases, its complement in R” is an open and dense subset of R”. By
Equation since the finite intersection of open and dense subsets of R” is also open and dense,

the set Q ( { WG9 p(GD) }T.Lﬂl) is open and dense. O

1=

Proposition A.2. If {W(G’i), b(G’i)} are pairwise distinct for 1 = 1,...,n., Then the map SMoE,
as defined in Equation is continuous on §2 ({W(G’i), (G0 }7:1)

Proof. Let x € Q ({W(G’i)7 b(G*i)}j;). By the definition of this domain, there exists an open

neighborhood U of z contained in ({W(G’i), b(G1) }ZJ such that

Top-K ( (W(G’i)aﬁ + b<G’“) ’ ) = Top-K<(W(G’i)y + b(Gv“) ’ ) (28)

i=1 i=1
holds for all y € U. This ensures the sparse gating mechanism in Equation [22] remains fixed within
U, and thus the SMoE map is continuous on this domain. O

Remark A.3. Propositions [A.T|and [A.2] will be key components in establishing the proof of Theo-
rem[CAl

A.3 GROUP ACTION ON WEIGHT SPACES

We define the group G = G(n.) by
G(ne) = (RP xR) x S, (29)

which is the direct product between the group R” with addition, the group R with addition, and the
permutation group S,,_. Each element of G(n.) is of the form

9= (yw,m,7), where v € RP, v, €R, and 1 € S,,,. (30)

The group G(n.) acts on the weight space ©(n.) as follows: For g € G(n.) and 8 € O(n.)
presented as in Equation[T8] define

0 = ((me(i)) 9 BOTO) 43,

(Ware) par) (W) (o) > . 6n
1=1,...,n¢
The action of G(n.) on the weight space of MoE and SMoE preserves these two maps. This invari-
ance is a consequence of two fundamental properties: the permutation invariance of the summation
operator and the translation invariance of the softmax function. We start with a result concerning the
invariance of MoE maps under this group action.
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Proposition A.4 (Weight space invariance of MoE). The MoE map is G(n.)-invariance under the
action of G(ne) on their weight space, i.e.,

MOoE(+; ) = MoE(-; gf). 32)

Proof. Given g = (yw,,7) € G(n.). For all z € RP, we have

MoE(z; g0) = Z softmax; ({ (W(G’T(i)) + ’yw) x+ (b(G’T(i)) + ’Yb) }::)
i=1 N
E (x; P Ar@D) pAr@) pBr) b(B:(i)))

= Z softmax; ({W(G’T(i))x + b(GvT(i))}ne )
i1

=1

E (I; AT pAT@) JBre), b(Bﬁ(i)))

= Z softmax; ({W(Gvi)m + b(G,i)}ne )
i=1
i=1

E (m; WA p(A0) (B b(B,z’))
= MoE(z; 0). (33)

Thus, the proposition is proven. O

The analysis of the SMoE architecture necessitates additional assumptions, owing to the inherent
discontinuity of the Top-K selection operator. We now demonstrate that the SMoE map, when
restricted to this region, remains invariant under the group action of G(n.).

Proposition A.5 (Weight space invariance of SMoE). Given the map SMoE, as defined in Equa-

tion Assume that {W(G*i)7b(G’i)} are pairwise distinct for © = 1,...,n.. Then, the set
0 ({]/V(G,i)7 p(G.i) }:’:J is invariant under the group action of G(n.), i.e.,
o ({wedpe™ ) o (g fw@o yeat™ ). (34)
i=1 i=1
Moreover, the SMoE map, restricted to
o ({weapenl™ . (35)
i=1
is G(n.)-invariance under the action of G(n.) on their weight space, i.e.,
SMOE(-; #) = SMoE(-; g8) on © ({WW), p(GD) } ’ 61) . (36)
1=

Proof. Given g = (Yw, Vs, 7) € G(n.). We first verify that the group action of G(n.) preserves this
set. Indeed:

o({wenpen’)

= {x e RP : WGz 4 pGD) g pairwise distinct forall+ =1, ... ,ne}

- {x cRP . (W(G,T(i)) + ’YW) x4 (b(G”(i)) + 7;,) is pairwise distinct forall: =1, ... ,ne}

-n(ofwene)”)
Now, denote
9T (z) = Top—K(( (WG gy ) & (HETO) 4 ,) ):) . (38)

Forall z € Q ({W(G7i)7 b(G’i)}:zel), we have gT'(x) = 7(T'(x)). The proposition now can be
proven in the same manner as in Proposition O
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Remark A.6. While the group action on the MoE architecture is defined as in Equation 23] it is
worth noting that additional symmetries exist within the MoE architecture. For instance, each ex-
pert admits internal neuron permutations that preserve the overall network function. However, our
primary focus is on the gating mechanism of MoE, and the symmetries internal to each expert are
regarded as standard neural network symmetries, which have been extensively studied in prior work.

B FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

In this section, we characterize when two elements of the weight space of MoE define the same MoE
map.

B.1 AN AUXILIARY RESULT RELATED TO HOLOMORPHIC FUNCTIONS ON C"

A function f: C" — C is called holomorphic on C" if it is complex differentiable at every point
of C™. A function is called meromorphic on C™ if it can be locally expressed as the quotient of two
holomorphic functions, where the denominator is not identically zero. The set of all holomorphic
functions on C™ forms an integral domain, denoted by D, and the set of all meromorphic functions
on C" forms a field, denoted by F. Note that F is the field of fractions of the integral domain D.
Let C[z] = Cl[z1,...,z,] denote the ring of polynomials in n variables with complex coefficients,
and let C(z) = C(x1,...,2,) denote the field of rational functions in n variables with complex
coefficients. Then C[z] C D is an integral domain, and C(z) C F is a field that is the field of
fractions of C|x].

Remark B.1. For p € C[z], one has e? € D. In other words, the exponential of a polynomial is
holomorphic on C™.

Since C(z) is a subfield of F, we can regard F as a vector space over C(z). The following result
concerns the linear independence of exponentials of polynomials within F.

Lemma B.2. Let p1,...,pn be polynomials in Clx] such that p; — p; is nonconstant for every
i # j. Then the functions eP* | ... ePN (considered as elements of F) are linearly independent over
the field C(zx).

Proof. We prove the lemma by induction on N. The case N = 1 is clear, since e? is nonzero for any
p € C[z]. Assume that N > 2 and that the lemma holds for all smaller values of N. Letry,...,7x
be polynomials in C[x] such that

PP Y =0, (39)

We aim to show that r; = --- = rny = 0. Suppose, for contradiction, that this is not the case. Then
at least one of the r; is nonzero. Without loss of generality, assume that - # 0. From Equation
it follows that

ILernmry g INEL vy g 2, (40)
Y N
Differentiating both sides with respect to x; for each7 = 1,...,n, we obtain
N-1
0 7§ ry 0 pi—
— — . P . i PN — 0 41
Observe that
3 Ty T 8
— — . P — C(x). 42
ox; <TN> + ry  Ox; (pj —pn) € C(2) (42)

For the N — 1 polynomials p; — py in C[z], where ¢ = 1,..., N — 1, and the difference (p; —
pn) — (pj — pn) = p; — p; is nonconstant for every ¢ # j. By the induction hypothesis, the

functions ePr PN ... ePN-17PN gre linearly independent over C(x). Therefore, from Equation
we conclude that forallj=1,..., N—1landi=1,...,n,
0 T Tj 0
L . ;- =0 43
ox; (TN> * ry  Ox; (pj = pn) ’ “43)
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which implies that

0 (Tj . e:l’j—pN) =0. (44)
Oox; \rn
Hence, forallj=1,...,N — 1,
L epimrn = ¢ e C, (45)
TN
is a constant function. If ¢; # 0, then r; # 0 and e?7~P¥ = 2N This holds only if both
J
ePi~PN and C’:N are constant functions. In particular, this would imply that p; — py is constant,
J .
contradicting the assumption. Therefore, we must have ¢; = 0. Thus, r; = Oforallj =1,..., N —
1. However, this contradicts Equation[40] The lemma is therefore proved. O

Remark B.3. This result is fundamental and will be invoked multiple times in the proofs of Theo-
rem and Theorem

B.2 LoOCAL AFFINENESS OF RELU NEURAL NETWORKS

A polytope is a geometric object defined by flat boundaries, which may be either bounded or un-
bounded. We define the notion of local affineness as follows.

Definition B.4 (Local affineness). A function f : R? — RP’ is said to be locally affine if there
exists a partition of R” into a collection of polytopes such that, on each polytope, f coincides with
an affine map from R” to R” "

Remark B.5. It is worth noting that the term local affineness may carry different meanings in other
contexts. However, the usage adopted in Definition is unambiguous within the scope of this
work.

We investigate the local affineness property of ReLU neural networks. Consider a neural network
f:R™ — R™L composed of affine transformations and ReLU activations, defined as

f=/frooofLq0---000 fi, (46)

where each f;: R™-1 — R™ is an affine map given by f;(z) = W;x + b;, and o is the ReLU
activation function applied elementwise. The composition of these affine transformations and ReLLU
activations partitions the input space R™ into a finite number of convex polytopes. Within each
polytope, the activation pattern of the ReLLU units—i.e., which units are active (passing their in-
put unchanged) and which are inactive (outputting zero)—remains constant. This fixed activation
pattern determines a subnetwork where each ReLU acts either as the identity map or as the zero
map. Because ReLU is piecewise linear and affine transformations are closed under composition,
the entire network behaves as an affine function within each region of fixed activation.

Thus, the network is locally affine:
flx)=Ax+b;, forx € Py, 47)

where P; is a polytope in the partition {P;}7, of the input space, and A;,b; define the affine
transformation in that region.

Remark B.6. Let OP; denote the boundary of the region P; in the partition {P;}/” ;. Then the set

R\ JoP (48)
i=1
is clearly open and dense in R™. In other words, the union of the interiors of the polytopes {P;}
forms a set that is both open and dense.

Now consider a finite collection of ReLU networks f(*), for k = 1, ..., n. Since the intersection of
finitely many open dense sets is again open and dense, there exists a set 2 C R™° that is open and
dense, such that for every € €, there exists a neighborhood of z on which all functions f*) are
affine.
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B.3 FUNCTIONAL EQUIVALENCE IN MIXTURE-OF-EXPERTS

The following result establishes the equivalence between two sets of weights that define the same
MoE map. Certain assumptions are introduced for technical reasons, and their justification is pro-
vided in Remark

Theorem B.7 (Functional equivalence in MoE). Let 6 € ©(n.) and 0 € ©(7;) be given by

0 — ((W(G,i)’ b(G’i)>, (W(A,i))b(A,z’)) ’ (W(B,i), b(B,i)) ) 7 (49)

1=1,...,n¢

§— ((/W(G@’g(cyi))’ (P, 540 , (i 6 ) 7 50)
and suppose they define the same MoE map, i.e.,
MOoE(z;6) = MoE(z;0) forall x € RP. (51)
If0 and 0 satisfy the four assumptions:

1. n. experts {E (-; WA (A p (B b(B’i)) }:;1 are n pairwise distinct functions;

e

2. T experts {E (~; WA ,Z(A’i), W(B’i),E(B’i)> } are N pairwise distinct functions;

i=1
3. W& — W G gre pairwise distinct for all 1 < i, j < ne such that i # j;
4. WG WG gre pairwise distinct for all 1 < i, j < ng such that i # j;
then, n. = N, and there exists T € S,,_, Yw € RP, ~, € R such thatforalli =1, ..., ne,
WG — w(Gr() 4 Y (G — p(Gr(@) 4 Vb, (52)
and

E ( WATE) HAT@) P (BT@) b(Bw(i))) —E ( WA B W(B,n,g(m)) . (53)

Proof. For better readability, we begin by providing a high-level outline of the upcoming proof:

1. Explicitly express the equation MoE(-; §) = MoE(+; 9) and introduce simplified notation
for clarity.
2. Observe that each expert can be locally identified as an affine function.

3. Show that n. = 7., and establish the existence of the desired permutation 7 and transfor-
mation ~yyy .

4. Demonstrate the equality between the two sets of experts.

5. Show that the desired transformation -y, exists.

We now present the derivations and proofs corresponding to each of the five steps.

~

Step 1. Since MoE(; §) = MoE(; §), we have

Z softmax; ({W(G’i)x + b(G,i)}
i=1

n

‘ ) E (x; WAD (A (B b(m))

i=1
= Z softmax; ({/W(G’i)x +E(G’i) }ne > -E (:17; W(A’i),Z(A’i), W\(B’i),i)\(B’i)) , 54)
i=1
i=1
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for all z € RP. Denote
Ei()=E ( WD p(A) p (B b(B,n) 7
Ei()=E ( W(A@)@(A,i>7W(B,i)’g(m)) , (55)

and simplify the notation by setting W (G = W@ p(Gd) = p WG = @) PG = pl),
Then, by writing out the explicit form of the softmax operator in Equation [54] we have

Ne ew('i)x_i_b(i) Te eW(’L’)xJ’_E(i)

, — . E;(z) = E — — - E;(x).
— § ;?31 eW D az+bl) 1(33) — ’.LeleW('””b('“ ’(m) (56)
i= = i= j=

This leads to

ne Ne
Z eﬁ?(i)IJrg(j) ) (Z eW“)xﬁLb("’) ‘E; (I))
j=1 i=1
Ne e
_ Zewmmﬂ,m . (Z BW(""H@“) El(z)> , (57)
j=1 i=1

or
i: Z (W) (0 (Ey(a) ~ By () = 0. (58)

i=1j=1

Step 2.  Since the functions E; and Ej are locally affine, it follows from the observation in Ap-
pendix that there exists an open set Q C RP, which is dense in RP, such that: for every point

a € (2, there exists an open neighborhood U C (2 of a on which all E; and Ej are affine. In par-
ticular, each of these functions coincides with a polynomial on U. In other words, there exists a
collection of open sets {Uy, }rer covering €, i.e.,

Q=] U, (59)
kel

such that for each U = Uy, in the collection, there exist polynomials py ;, pu,; € R[z] satisfying

Ei(z) = pui(z), and E;(z)=py,(z) forallz e U. (60)
From Equation 58] we have:
Z Z e(W(i)‘FW(j))’E"'(b(i)""’l;(j)) ) (pU,,'(m) _ ]A)U’j (I‘)) —0 forallz e U. 61)
i=1 j=1

Note that the function on the left-hand side of the equation above is holomorphic. By the Identity
Theorem for Holomorphic Functions (see |Ahlfors| (1979); IRudin| (1987); |Conway| (1978)); |Stein &
Shakarchi| (2003))), it follows that:

SN W)t (O] ) — (@) = 0 forallz e CP. (62)

i=1 j=1

Step 3.  From Assumptions 3 and 4, the sets {W (¥} and {W(j)};?;l consist of pairwise
distinct elements. Thus, there exists a direction

aecSPr={zecRP: |zl =1}, (63)

such that the projections {W (Ja}?<, and {ﬁ/\(j )04}?21 yield n. and n, distinct real numbers, re-
spectively. Without loss of generality, we may reorder the indices so that:

WOa<W@a<...<Wm)q and Wha < WPa < ... < WTq, (64)
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Moreover, note that the problem, along with all the equations above, remains invariant under the
addition of a constant vector to the set {T/'(/ )}?;1. Therefore, without loss of generality, we may

assume that W) = WD) Under this setting, we will show that n, = 7, and that W& = W for
alli =1,...,n.. To this end, we first prove that W = W for all i = 1,..., min{n,., ng} by
mathematical induction.

Base case. By assumption, we have W) = WO, so the base case holds trivially.

Auxiliary result for the inductive step. For all pairs (i, j) # (1,1), the following inequality holds:
WOa+Wha < Wha + WP, (65)

Thus, WO 4+ WO is distinct from W@ + W for all (4,7) such that (4,7) # (1,1). From
Equation [62]and LemmaB.2] it follows that

pU,1 = Pu,1- (66)
Inductive step. Suppose that () = W holds for all 1 <4 < n, where n is an integer satisfying

1 < n < min{ne,n.}. Assume, toward a contradiction, that W) £ W) We examine the two

quantities W) + W and W™ + WO, Given our assumption, these two expressions must be
distinct. Without loss of generality, we may assume that

wWa + W™ a <Wmq + WwWa, (67)

* For all (4, j) with ¢ > n, we have
WDa+ WMo < WMo+ Wha < Wha + Wa. (68)

Equality holds if and only if (4, j) = (n, 1). Moreover, since W)+ W™ and W (™ + (1)
are distinct, it follows that W) + 1 (") is distinct from W + W) for all (i, j) with
1> Mn.

* For all (4, j) with j > n, we have
WD + WM <WWa + W@, (69)
Equality holds if and only if (4,5) = (1,n). Therefore, W) + W™ is distinct from
W@ + WO forall (i, 5) # (1,n) with j > n.

« Forall (i, j) such that 4, j < n, we claim that W@ + W is distinct from W) + W),
Indeed, suppose for contradiction that
WO L0 — w6 L 0 (70)
for some (4, j) with 4, j < n. Then, by the induction hypothesis, it follows that
wO LW — e L ), (71)
Rearranging gives
wo _we — W _ W(n)7 (72)
which leads to a contradiction, since (1, j) # (¢,n) and the differences are assumed to be
pairwise distinct.
From the observations above, we conclude that (1) 4+ W (") is distinct from W& + W) for all
(i,7) # (1,n). Combining this with Equation[62]and Lemma [B.2] it follows that

PU1 = PUn- (73)

Moreover, from Equation [66] we also have

Du,1 = DU (74)
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Hence, E1 E on U. Since this holds for every open set U € {Uk}ke I, we conclude that E1 E
on (2. Because ) is dense in RP, by continuity, it follows that E1 = En on RP. This contradicts
the assumption that the E] are pairwise distinct. Therefore, our assumption must be false, and we
conclude that W) + W = ) + W(l), which implies W = o,

Conclusion. By mathematical induction, we have shown that W®) = W for all i =
1,...,min{n.,n.}. It remains to show that n, = 7n,. Assume, for contradiction, that n, < 7.

Consider the sum W) + W) We claim that this sum is distinct from all W® + W) for
(i,7) # (1,7ng). Indeed, suppose

wO L WwWE) — W@ L o) (75)
for some (i, 7) # (1,7;). Then, using the inductive result W (*) = W for i < n,, we obtain

WO LW — 70 4 ), (76)
which implies

wh _we — e @) (77)

This contradicts the assumption that all differences WO — WO are pairwise distinct. Hence,
W W) is distinct from all W +W ) with (i, j) # (1,7,). By Equationand Lemma
this implies

PU1 = Puas- (78)
From Equation [66] we also have

Pu, = Puas- (79
Therefore, E1 = EA on U. Since this holds for every open set U € {U & }ker, we conclude that
E1 EA on €. As Q is dense in RP, by continuity, it follows that E1 EA on RP, contradicting
the assumption that the experts E are pairwise distinct. Thus, our assumption must be false and
we conclude that n, = n.. Finally, the reindexing and the translation applied to the set {W }”e
throughout the proof establish the existence of a permutation 7 € S,,, and a shift vector vy € RD

Step 4. We now prove that E; = EZ on R? forall i = 1,...,n.. From Step 3, we know that
ne = ng and W& = W for every i = 1,...,n.. Consider any pair (3,7). If W® + W0 =
W) 4+ WG, then (i, j/) must equal either (i, ) or (4, ). In particular, W + W is distinct
from W) + W for all (4, k) # (). Applying Equationand Lemma we obtain
PU; = Pu,i- (80)

This mirrors the situation encountered in Step 3, and by a similar argument, it follows that E; = 1:22
on RP. Since this holds forall i = 1,.. ., n,, the claim is proven.
Step 5. We now show that there exists a constant 7, € R such that

bi=b;+v foralli=1,... ne. (81)
Recall from Step 4 that if W) + W@ = W) 4 WU, then (¢/,7’) must equal either (4, j) or

(j,1). Using this fact, along with Equation Lemma , and the result E; = Ei established in
Step 4, we obtain the following identity:

S(WOLTO )t (50 459)) (Bi(z) — Ej(z))
+ (WO D)at (b04) (B (1) — E(2)) = 0, (82)

for all pairs (i, 7). Since E; # E; for i # j, there exists some point zgp € R such that E;(zo) #
E;(zo). Substituting z = 1nto Equation E 82| and simplifying by canceling all common nonzero
factor we get:

() 45() () 45
VYT = A (83)
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which implies the equality
p(@) £ p0) = p) _~_E(i)7 (84)
or, equivalently,

p@ _ ) — p() _ ) (85)

This shows that the difference b — () is constant across all i. Letting v, := b — p() we
conclude that

o~

b, =0b;+ foralli=1,...,n. (86)
This completes the proof of Theorem [B.7 O

Remark B.8 (Rationale behind the assumptions in Theorem [B.7). For a model architecture, we
require the symmetry group to be intrinsic to the model as a whole, not to hinge on special choices of
individual weight vectors. In other words, the group of symmetries should act universally throughout
the weight space. Concretely, this leads to the following four conditions in Theorem B.7

1. n. experts {E (-; WA A (B0 p(B.) }:l:el are n. pairwise distinct functions;

2. T, experts {E <~; WA pAD), W(B’i),g(B*i)> } ° are 7, pairwise distinct functions;
i=1

3. WG — W (G.9) are pairwise distinct for all 1 < i, j < n, such that i # j;
4. W(G:i) _ W(G.9) are pairwise distinct for all 1 < 4, j < 7, such that i # j;

We examine the underlying nature of these assumptions.

Assumption I and 2. 1f Assumptions 1 and 2 are violated—specifically, when two experts compute
the same function and are assigned identical gating scores—the resulting model behavior remains
unchanged under permutations of those experts. This introduces additional, non-essential permu-
tations into the symmetry group, which we refer to as spurious symmetries. These symmetries
do not reflect fundamental structural invariances but arise only in degenerate parameter configura-
tions—singularities in the space of model parameters.

Assumption 3 and 4.  Assumptions 3 and 4 address a subtler issue: they exclude cases where
linear dependencies among the gating weight vectors might lead to indistinguishable gating behavior
across experts. While less immediately obvious than the consequences of violating Assumptions 1
and 2, such dependencies can also enlarge the symmetry group beyond its intended structure. To
illustrate this more concretely, we provide the following explicit example. Let D = D, = 1,

ne = ne = 3, and consider parameter settings 6, 6 such that:
e WG — WG = 1 W62 = (G2 = o WG3) = W63 =1,
o WAL (A2) pr(As) W(A’l), W(A*Q), and WA are arbitrary.
o HAD) p(A2) p(A3) PAD H(A2) and p(A3) are arbitrary.
e WBL — (B2 — (B3 — (B — (B2 — (B3 — (.

We now choose the bias parameters b(G+), p(B:0) p(G:i) B(B:) o that the model outputs satisfy

-~

MOoE(-; 0) = MoE(-; ), even though there exists no transformation of the form described in Theo-
rem that maps 6 to 6. For each ¢ = 1, 2, 3, the expert functions reduce to constant outputs:

E (x; WD p(AD (B b(Bn‘)) — p(B),

E (o P40, 540, T80, 80 5, 37)
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To simplify notation, we write b(G+) = b(®) and b(G+) = b Our goal is to ensure that MoE(+; §) =

~

MokE(+; #), which requires that

ez o (B,1)
6*I+b(1) + eb(2> + e:c+b(3) -b
2)
e’ . p(B2)
oo tb® | gb® | ozt b®
b3
et
+ 5D 0@ yar 0P
e—Ttbt 4 obt® 4 ezt
B
- © B
IPSEENES (2 +5(3)
e~ +bt) 4 o2 4 ex
72
¢’ p(B:2)
67m+’5<1> JreB(z) +€I+3(3)
ew-‘rg(s)

L p(B:3)
e,w+§(1) +63(2> +ez+3(3) b . (88)

Again, we simplify the notation by setting

Y =y, Y = ay,
L U
— V1, — U2,
p(G:3) 7(G.3)
= Cy, = (2,
~ (89)
B = Ay, B = A,
bB2 =B, HB2) =B,
p(B3) =y, bB3) = .
We can now rewrite Equation [88]as
e Tay by e*cq
A+ - B + :
e %ay + by + e%cy ! e %a; + by + e%cy ! e %ay + by + e*eq
—xT b xr
_ ¢ az Ayt 2 By + _— “Cy, (90)

e Tag + by + €%co 2 e Tag + by + €%co 2 e %ag + by + €%y
which is equivalent to
(efxalAl + blBl + 618101) (671(12 + b2 + BICQ)
= (e_xagAz + by By + 6960202) (e_’”al + b1 + e”cl) . ©n

By matching the coefficients of e 2%, =% 1, %, €2*, we obtain

e~ . ajasAq = aia04s,

e c102Cy = 1020y,

e’ : bicaB1 + c1b2Cy = bicaCy + c1b9Bo, (92)
e™® biag By + ai1bs Ay = biasAs + a1ba By,

1 : a1c2A1 +c1a2C1 +b1b2B1 = a1c2Cs + ciasAs + b1byBs.

By setting A; = Ay = A and C; = Oy = C, the equations corresponding to the terms e~2* and
e?* are automatically satisfied. Removing these, Equation simplifies to

e 1 bieaBi +c1bC = biceoC + c1b2 By,
e : brasBi +aib A = bragA + a1b2Bo, 93)
1 : a102A+cla2C’+blbgBl = a1020+61a2A+b1b232.
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From the equations associated with e™* and e*, and assuming c1by # bicy and a1by # biag, we
obtain

A = CL1b2B2 — b1a2B1

arby —braz (94)
C1b2B2 — bICQBl
C = —————.
Clbg — b102

The equation corresponding to the constant term in Equation[93]can be rewritten as

b1ba(B1 — B) = (C — A)(aice — c1a2). (95)
Next, we compute the difference A — C as follows:
a1baBy —biasB1  ¢1b2 By — bica By

a1b2 — b1a2 Clb2 — blcg
_ biba(By — Ba)(aica — cras)

A-C=

. 96)
(a1b2 — blag)(clbg — blcg) (
Substituting this expression for (A — C) into Equationyields
bi1ba(B1 — B —
biba(B1 — By) = — 2 2(B1 2)(a1ca 61a2)(a162 _ craa). ©7)

(a1b2 — b1a2)(01b2 - blc2)

Assuming that By # By and b1bs # 0, we can divide both sides of the equation by b1 ba(B; — Bs),
which leads to

(a1b2 — b1a2)(b102 — Clbz) = (alcg — Clag)g. (98)

Although this equation can be solved explicitly, for our purposes it suffices to exhibit a single solu-
tion. In this case, we choose

(a1,a2) = (1,2),
(b1,b2) = (3,5), 99)
(cr,e2) = (2,3).

With this choice, the values of B, and By can be selected arbitrarily. These parameter assignments
determine corresponding values for 6 and 6. It is straightforward to verify that no transformation of
the form described in Theoremm maps 6 to 6.

C FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

In this section, we characterize when two elements of the weight space of SMoE define the same
SMOoE map.

C.1 AUXILIARY RESULTS

The following definition formalizes the notion of the strongly distinct property, which is later be
used in Theorem|[C.3]

Definition C.1 (Strongly distinct). Two functions f and g from X to Y are called strongly distinct
if{r € X : f(z)# g(z)} is a dense subset of X.

Example C.2. Two distinct polynomials on R™ or C™ are strongly distinct. Two distinct holomorphic
functions are strongly distinct. Two distinct locally affine functions are not strongly distinct in
general. Indeed:

e Consider f1, fo: R — R as follows:

0 ifx <0,
fl(x):{m %izo’ folz) = 1. (100)

Then f; and f5 are strongly distinct.
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¢ Consider g1, g2: R — R as follows:

{O ifzx <0,

z ifa>0, g2(z) = 0. (101)

g1(x) =
Then g; and g- are distinct but not strongly distinct.

We define a class of subsets of R as follows: for

Ne

{W<G’i>,b<Gvi>}v e (RD x R) , (102)

define

o ({wenpen’)

= {:v eRP . WGz 4 p(GD) g pairwise distinct forall i =1, ... ,ne}
(103)

The following result establishes a sufficient condition on the gating parameters under which the Top-
K operator is capable of selecting every possible subset of K experts from the full set of experts.

Proposition C.3. Assume that {W (G} satisfies {W (=1 — W (@D 1e s g linear in-
dependent subset of RP. Then, for all subsets A of K elements of {1,...,n.}, there exists
x € ({W(G’”, b(G’i)}ZJ such that:

Top-K((WW)x + b(G’i)) ‘ 61) = A (104)
Proof. Without loss of generality, assume that A = {1,..., K}. To show that there exists x €
G,i G,i) e .
Q ({W( ), bl )}i:1> such that:
TOp-K((W(G7i)I + b(Gl)> v61> = {17 sy K}7 (105)
it is enough to show that there exists x € R? such that
WGy 4 pED S WlG2 g 4 (G2 5 s WGnely 4 pGne), (106)
We simplify it even more, we find z € R” such that
(WEDg 4 HOD) — (W(E2)g 4 p(G:2) _ o,
(W(G2) g 1 p(G2) — (WG 4 p(O) "
107)
(W(G,ne—l)x 4 b(G,ne—1)> _ (W(G’ne)l‘ + b(G,ne)) - 1.
This is equivalent to
(W(GJ) — W(G72)) x = 1- (b(G,l) — b(G72)) ,
(WED _ W(E3) 4 = 11— (b —p(G3))
(108)

(W(G,ne—l) _ W(G,ne)) r = 1— (b(G,ne—l) _ b(G,ne)) )

Since the set {W (@i~ — (D12 s linear independent, there exists x € RY satisfies Equa-
tion [108) ]

Remark C.4. Proposition[C.5|will be used in Theorem|C.3] A justification of the linear independence
assumption is provided in Remark [C.9]
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C.2 FUNCTIONAL EQUIVALENCE IN SPARSE MIXTURE-OF-EXPERTS

We present a functional equivalence result for the SMoE architecture, analogous to the one estab-
lished for MoE in Theorem @ However, our result is restricted to the case K > 1, as the setting
K = 1 introduces singularities that invalidate the general equivalence structure. A detailed justifi-
cation for the exclusion of the K = 1 case is provided in Remark [C.10}

Theorem C.5 (Functional equivalence in SMoE). Let 6 € ©(n.) and 8 € ©(7) be given by

9 — ((W(G,i)’ b(G,i))7 (W(A,i),b(A,i)) ’ (W(B,i), b(B,i)) > 7 (109)
i=1,...,n¢
5 ((W(G,n’g(ai))? (W0 549, (50 569) > ’ (110)
i=1,...,70
and suppose they define the same SMoE map, i.e.,
SMoE(z; 8) = SMoE(x; ) forall x € RP. (111)
Denote the two corresponding gating maps as follows
_ Aw@d @V Z op- Gy 4 pGD)"
T(x) T(x,{W b }izl) Top K((W x4 b )i_l), (112)
~ ~ o ) T e~ ~ o\ Te
T(x)=T (x; {W(G”), b(G’”} ) - Top-K((WW)x n b<Gﬂ>) 1). (113)
i=1 i=

If0 and 0 satisfy the four assumptions:

1. n. experts {E (~; WA pAd) (B b(B’i)) }”:e

,—, are ne pairwise strongly distinct func-

tions;
B U = .
2. N, experts {E (-;W(A”),b(A’Z),W(B"‘),b(B’Z))} are n. pairwise strongly distinct
i=1
functions; ’

3 (Wi W(G’i)}?ég is a linear independent subset of RP;
4. {I//V\(G’i_l) — W(G*i)}EQ is a linear independent subset of RP;
then, ne = n, and there exists T € S,,_, Yw € RP, Yy € R such that forallt = 1,... ne,
WG — w(GT() 4 i, BGD = pGT@) 4, (114)

and

E (x; WAT@) (A7) (B b(&f(%’))) ) (x; WA pad W(B,i)yg(B,n) 115
forall x € Q ({W(G’”, b(G’i)}zl) such that (i) € T(x).

Before we proceed to the proof of Theorem [C.5} we first make two remarks.

Remark C.6. Note that, if n, = T, and there exists 7 € S,,_, yw € RP, Y € R such that for all
t=1,...,n,

WD = WETO) 4y BED = p(CrO) 4y (116)

then the two sets € ({W(G’i), b(G’i)}j;J and ) ({W(G>i),g(g’i)}

any  in this set, it holds that 7(i) € T(z) if and only if i € T'(x).
Remark C.7. 1t is straightforward to verify that Assumptions 3 and 4 in Theorem [C.3]imply As-
sumptions 3 and 4 in Theorem [B.7]

Ne
_ ) are equal. Moreover, for

=1

Proof. For better readability, we begin by providing a high-level outline of the upcoming proof:
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~

1. Explicitly express the equation SMoE(+; #) = SMoE(-; #) and introduce simplified notation
for clarity.

2. Define a partition of the space into regions where the Top-K map selects the same indices,
and where each expert is affine.

3. Prove that the desired property holds for a fixed number of experts. The key idea is to apply
the result for MoE in Theorem [B.71

4. Extend the result to show that the desired property holds for all experts.

We now present the derivations and proofs corresponding to each of the four steps.

~

Step 1. Since SMoE(+; #) = SMoE(-; §), we have

Z SOftmaXZ‘ <{W(Gl)x + b(G’l)} ) -E (I, W(A’i), b(A’i), VV(BZ)7 b(B’Z))
ieT () €T ()
= 3 softmax; <{W<Gﬂ’>x +3<G’i>} R ) ‘E (x; WA D WB’Z‘)?Z(BJ')) . (117
ieT(x) e
for all z € RP. Denote

Ei(-)=E ( WA (A0 7 (Bi), b(B,i)) ,
Bi() = E (W0, 500, B0 350) (118)

and simplify the notation by setting W (%) = W@ p(G0) = p) WG = W(i),B(G’i) =50,
We rewrite Equation [T17]as follows:

Z softmax; ({W(i)x + b(i)}‘ET( )) -E;(x)

i€T(x)
= Z softmax; <{/V[7(i)x +B(i)}. 7 )) Ez(x) (119)
P €1 (x
€T (x)

Step 2. We make two key observations:

* Assumptions 3 and 4 ensure that the parameter pairs {W(“, b(“} are pairwise distinct for
t = 1,...,n,, and similarly, {W(i),/g(i)} are pairwise distinct for i = 1,...,7.. By
Proposition[A.T] the set

Q, =0 ({W@,i)’ b(G,w}"”’ ) no ({W<G,i>7g<a,i>}"ﬁ ) : (120)
i=1 i=1
is an open and dense subset of RP, such that for all z € €, the values W@z + b are
pairwise distinct fori = 1, ..., n., and W@z + b0 are pairwise distinct fori = 1, ..., 7,.
By construction, for every x € ()4, there exists a neighborhood of x in €2; on which the
functions 7'() and 7'(-) remain constant.

* From the analysis in Appendix there exists a set 2, C RP that is open and dense, such
that for every = € (2o, there exists a neighborhood of x in {22 on which all expert functions
E; and E; are affine.

By taking the intersection 2 = Q; N )5, we obtain a set {2 that is also open and dense. Moreover,

since T(-) and T'(-) remain constant, E; and E; are affine in small neighborhoods around each point
in ©, there exists a collection of open sets {Uy } ke covering €, i.e.,

Q=] U, (121)

kel
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such that within each set Uy in the collection, the expert functions E; and Ej are affine, and the
selection functions T'(+) and 7'(-) are constant.

Step 3. Consider an arbitrary set U from the cover in Equation[I21] Without loss of generaliti
119

we may reindex so that 7'(-) = f() = {1,...,K} on U. Under this reindexing, Equation
simplifies to

K A K
Z softmax; <{W(l)x + b(z)} ) -E;(x)
i=1 =t
K . K R
= softmax; ({W<% + b“)}} 1) ‘Bi(x) forallzeU. (122)
i=1 =

By Assumption 1, the expert functions E; are strongly distinct, which implies they remain distinct

over the open set U. The same conclusion applies to the E; by Assumption 2. Therefore, the first four
assumptions of Theorem together with Equation[122] reduce the setting to that of Theorem|B.7
As a result, up to a reindexing of the experts, there exist constants vy € R” and v, € R such that
foralli=1,..., K,

WO =W 4y 5D =0 4y, (123)
andEi :Ei onU.
Step4. Now, forany k = 3,4, ..., n., we apply Proposition|C.3|to choose a set V; from the cover
in Equation such that both indices 1 and k are included in T'(V;). Considering Equation

restricted to V7 and applying Theorem we conclude that there exist indices 1 < ¢1,s; < N,
such that

Wy — Wy, = W, — W,,. (124)
Applying the same reasoning for indices 2 and k&, we find 1 < t3, so < 7, satisfying
Wo — Wy, = Wy, — W,,. (125)
Subtracting Equations from[124] we obtain
Wy =Wy =Wy — W, = (W1 = W) = (W2 = Wy,) = (th - Wsl) - (Wtz - Wsz)' (126)

By Assumption 4, which guarantees linear independence, it follows thatt; = 1, ¢, = 2, and s; = s3.
Let us denote this common index as 7(k), i.e., 7(k) = s1 = s2. Then, we have

Wi = Wy = W1 = W, (127)
which is equivalent to
Wy — Wi = Wi — Wy = . (128)
We also have
brky — bk = b1 — b1 = . (129)
Finally, since k ranges over {3,4,...,n.}, the values 7(k) must be distinct. Indeed, suppose there
exist k # k' such that 7(k) = 7(k’). Then it would follow that
Wy — Wy = /Wr(k) - /W'r(k’) =0, (130)

which contradicts Assumption 3. By applying a symmetric argument to the parameters of SMoE,
we conclude that n, = n,. Furthermore, up to a suitable permutation 7 of the indices, we have:

WD = WGr@) oy PGA = p(Gr@) 4y, (131)

Additionally, the above analysis implies the following: for any x € {2 ({W(G’i), (D) }j:1> such
that 7(¢) € T'(z)—that is, index i is selected by the Top-K mechanism in SMoE—we have

E;(z) = Ei(z). (132)

This completes the proof of Theorem|[C.3] O
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Remark C.8. Although Theorem [C.5]is conceptually aligned with Theorem it is important to
emphasize that the case of SMoE is significantly more challenging to establish. The primary source
of this difficulty lies in the presence of the Top-K operator, which introduces discontinuities by
altering the set of contributing experts in a nontrivial and input-dependent manner. This behavior is
notably difficult to analyze and control within the theoretical framework.

Remark C.9 (Rationale behind the assumptions in Theorem [C.3). We begin by recalling the four
assumptions stated in Theorem [C.5}

1. n. experts {E (~; WA pAd) (B b<B>i)) }::1 are n. pairwise strongly distinct func-
tions;
2. N, experts {E <~;W(A’i),g(‘q’i),W(B’i),Z(B’i))} ° are @, pairwise strongly distinct

i=1

functions;
3. {W(Gi=h) _ W (Gi}e s alinear independent subset of R”;
4. {W(G’i’l) - W(G’i)}gg is a linear independent subset of R”;

The set of assumptions in Theorem is strictly stronger than that of Theorem We analyze
them as follows.

Assumptions 1 and 2. Assumptions 1 and 2 primarily arise due to the use of the Top-K operator,
which induces input-dependent expert selection. As a result, an expert’s behavior is unconstrained
in regions where it is not selected by the gating mechanism, allowing it to behave arbitrarily in
those domains. Therefore, if we only assume that the experts are pairwise distinct—rather than
pairwise strongly distinct—it is possible for different sets of expert functions, when restricted to
their respective activated regions, to yield the same overall function. This ambiguity underscores the
necessity of strong distinctness to ensure identifiability in the SMoE architecture.

Assumptions 3 and 4. In practical scenarios, the number of experts n. is typically much smaller
than the token dimension D. Consequently, the sets {W (&i=1) — W (G 7e  apd {W(Gi—1)

WG }ZE2 are generally linearly independent. However, when this condition fails, certain pairs of
experts may never be selected simultaneously by the gating mechanism for any input. This limita-
tion gives rise to singular symmetries, wherein different parameter configurations result in identical
functional outputs, yet cannot be transformed into one another via the equivalence described in
Theorem

To elucidate the implications of this behavior, we present a concrete example illustrating how such
symmetries can manifest within the SMoE architecture. Consider the case with n, = 4 and K = 2,
and let F, Fs, E'3, /4 be arbitrary experts. Define two MoE functions f and fo with gating logits
given by (—2x, —x, z,2x) and (—3z, —2x, 2x, 3x), respectively. The explicit forms of f; and fo
are:

softmax; (—2z, —x) - B4 (z) + softmaxs(—2x, —z) - Eo(x)  ifz <0,
filw) = { softmax; (z, 2z) - E5(z) + softmaxa(z, 2z) - E4(x) ifz >0, (133)
and,
softmax; (—3z, —2z) - By (z) + softmaxy(—3x, —2z) - Ea(x)  ifz <0,
falw) = { softmax; (2, 3z) - E3(x) + softmaxs(2z, 3z) - Eq(x) ifz>0. (134)

It is evident that fi(x) = fo(z) for all z € R\ 0, where the gating scores are pairwise distinct
and the Top-K selection is stable. However, there exists no transformation of the form described in
Theorem [C.5] that maps one function to the other, highlighting the presence of singular symmetries
in the SMoE architecture for some sets of parameters.
Remark C.10 (The case of K = 1). In the special case where K = 1, the SMoE function from
Equation [22] simplifies as follows:

SMOoE (x; {W«m’ B(CA) Ty (A (A 7 (B) 3(B) }" )

i=1

= B (ls WDy B0 pED) - (135)
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where the index ¢ is given by

7= argmax (W(G’i)m + b(G’i)) . (136)

i=1,...,n¢

Here, the Top-1 routing mechanism selects only the expert with the highest gating score, resulting in
a softmax distribution that collapses to a single entry equal to 1. In addition to the group G(n.) acting
on the expert parameters, the SMoE mapping with K = 1 also admits a nontrivial and nonsingular
symmetry under the action of the multiplicative group R~ (. Specifically, for any a > 0, we have:

SMoE (x; {W<G,z'>, B(GA) (A (A 7 (B) §(B.) }” )

=1
— SMoE (x; {aW(G’i),ab(G7i), W(A7i),b("‘7i),W(B’i),b(B’i)}7le ) BENGEY)
=1

1=

This invariance holds because the argmax used for expert selection is unaffected by uniform positive
scaling:

argmax (W(G’i)m + b(G’i)) = argmax (aW(G’i)x + ab(G’i)) , (138)
s

1=1,..., Ne 1=1,...,n¢

for all z € Q ({W(G>i), b(G’i)}:Zl). Moreover, since only one expert is activated per input, no

explicit interactions are formed among the expert components. This leads to a rich set of hidden
symmetries within the architecture. Due to the complexity introduced by these symmetries, we
choose to exclude the case K = 1 from our main analysis and leave its exploration to future work.

D WEIGHT SPACES OF MOE TRANSFORMER AND ITS GROUP ACTION

Since the weight space, symmetry, and group action are the same for both MoE and SMoE, we will
describe the equivariant metanetwork for the MoE Transformer in this section. The construction for
the SMoE Transformer is identical.

An MoE Transformer layer comprises a multihead attention module followed by an MoE module,
where each expert in the MoE module is realized as a single hidden-layer network. Formally, an
MOoE Tranformer layer, which will be denoted by MoETransformer, transforms an input sequence
X € RE*P to an output sequence MoE Transformer(X) € RY*P defined as follows:

MoETransformer(X) = LayerNorm (MOE (X, {W]@D [p)(G0 [0 [p]AD [ (B), [b](B,i)}?:el)) 7

X = LayerNorm (MultiHead (X; {w1@ (W)U (V) [W](O’i)}mll)) ;

1=

where the MoE operator is a token-wise operator and is defined in Equation[2} While the MultiHead
is defined in (Tran et al.| [2025)) as

. . Y h
MultiHead (X; w ), fw @ s v )
=1

- (é Head (X W(Q’i),W(K’i>7W(V’”)> W

=1
h
= 3 Head (X3 W@, WD,y ) (00

@) . (ED) " , ,
softmax (X- (W (;Z ) ) .XT> X (W(Vﬂ) . W(O,l)) .

where W(©) = (W(O’l), ce W(O’h)) with each (@) ¢ RP»*P The positive integers 7, and
n. represent the number of heads in the multihead attention module and the number of experts in
the MoE module, respectively.

S
Il
-

|
-MF

i=1
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Accordingly, the weight space U of an MoE Transformer layer with n. experts is defined as the

vector space:

Nh
u — (RDXDk X RDXDk X RDXD,, X ]RDUXD)

X ((RD X R) X (RDXDE X RlXDE) X (RDGXD X RlXD)>ne.

An element U € Uf takes the form:

i=1,...,np

o <<[W]‘Q’“a WO, VT, D)

<([W](G,i)7 [b](a,z)), ([W}(A»i), [b](A’i)> : ([W](B’“, [b]<B’i)> >_1n> :

Define the group

Gy = (snh x (GLDk (R) x GLp, (R))”h) x (RP x R) x <Sne x ('pD)”)

) ) {r)/Wv ’Yb}a <
:1,...,nh

Each element g € G;, takes the form:

(e,

The action of Gy, on U is defined to be Gy x U — U, which maps (g, U) € Gy x U to:

gU = (([gvv](@“, (W] 5D, (W] V), [gwro’“) ,

< ([gW](G’i), [gb](G’i)) 7 ([gW](Avi), [gb](Avi)> , ([gW](B’i), [gb](B,z')) ) . >’

where

[gw] @

[gW] ' =

[gw]

When express the set of Equations[I44]in terms of individual entries, this takes the form:

1=1,...,np

= Wj@m). ( M}gwn)ﬂ

1 Th (2 -1
(W] (@) . (Mzi n( ))) ,

— W]V ) L g,

T

i) (M(Th(i))>’1 ) [W](Om(i)) ,

W(@K (@)

=

[(VOm@),
= W) CD) |y
BEm |y

W](A’Te(i)) P e,

_ [b](A,Te(i)) 'PTrSje(“)?

)= (Pﬂ&(:em))i1 . [W](Bﬁe(i)) 7
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J

W)@ o [ry@mnn. (Mlgrhu))f} 7

J,k
) [ . ) —17
W] = | Em @) ( M}grw))) ,
L 1.k
Vi) o [ 1 (Ve @) L pp(mn ()
oWl = [ O @]
[gW]CD = ( Mw(i)))*l (W] ©
7, v ’
L 1.k

K,i . ,Th (2

vo,) . | (i
W] = [wyono]
L 7.k
G,i) . G,1e (i
W] = WSS 4 (),
98] = BT s,
[gW](A’i) — [W](Aﬂ—e(i))

7.k j,ngg(i))(k) ’
A) . (A,7e(3))
g = BT
B,i) . B,1e(1
Wi = WIS L

[gb](-B’i) — [b](.Bfre(i)) )

J J

E METANETWORK FOR MOE TRANSFORMERS: A POLYNOMIAL LAYER AND
NOTATIONS

Our objective is twofold:

1. to construct a network mapping from ¢ to U 4 that is Gu-equivariant;

2. to construct a network mapping from 2% to %" that is Gy-invariant,

where d and d’ represent the input and output dimensions, respectively.

To this end, we design equivariant and invariant layers with respect to the group action induced
by Gi. These layers adopt a quadratic polynomial in the input weights with unknown coefficients,
in line with recent developments of metanetworks for Transformers in Tran et al.| (2025)). Rather
than providing explicit functional expressions for each layer, we offer an illustrative and structured
description in Tables[] [} [6]and[7] Each table includes visual cues and concrete examples to facilitate
understanding.

1. Table [ presents each layer as an affine transformation, with parameters denoted by ex-
pressions of the form ®—. The superscript and subscript indices respectively indicate the
output and input positions of the parameters. Importantly, the index notation is constructed
so that one can unambiguously determine the dependency between inputs and outputs.
Throughout, the indices 4, j, k refer to output components, while s, p, ¢ correspond to input
components. With the exception of the symbol 1, which denotes the bias term, all other
components are defined in Appendix [D}]

2. Table[j]is a color-annotated version of Table ] Elements related to the output are high-
lighted in blue, while those associated with the input are shown in red, including their
corresponding indices.

3. Table@provides a detailed breakdown of the parameter notation ® . Each parameter entry
corresponds to the output indicated by its column and the input indicated by its row. For
instance:
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« The term ®'S” denotes the parameter connecting [V } p.q ) [W];Gl>

(Vis):p,q
* The term @Eg i)) ]p kq denotes the parameter connecting [11]\ " — [W]ﬁz)

e The term @Ecj )> denotes the parameter connecting [I/’VE){%[- ), [6](G0),

(Vi)

gk

4. The output is computed as follows. In Table [7} for each output entry, we take a “dot
product” between the corresponding column indicating the output and the final column
representing the input. The summation is carried out over all indices that are compatible
according to the indexing scheme. For example:

¢ The term @E‘(% denotes the parameter connecting [b] ;;4’5) — [W]

* The output [W](V D is computed as:

i nn D D
[W]XZ) iZZ@Egz Ik W)@ s>+izi@\]ﬁ)jk 7]9)

5= 1p 1‘1 1 s=1 p= 1q 1
nhp nn U

* ZZZ‘%V?)’,,’Z W) +ZZZ‘I’E(V)?>T(, W)
s=1p=1g=I s=1p=1g=1

+ izz@%;i"pq i) +§}L:ZZ<1>(“Z))Z" W)(V0-e)
5= 1” Lg=1 s=1p=1g=1

4 ZZ(I)EZ:)]IC Il Cs)+zq) Vz)jk:[b}(p s)
5= 1p 1 s=1
ne

35S S +ZZ@EZ%L’“ e
5= 1p 1q 1 5= 1p 1
s=1p=1qg= s=1p=

o (146)

* The output [W](/,‘C ") is computed as:

nh N h
USTSIND 55 ) 95 HUGTEES 35 ) ST Aual

s= 1p 1q 1 s=1p=1gq=1
nh (A k ny Dy, D (Aii)iih

- BT (W) + B w0
;;qzl V~)7)q 71 ;;qzl (0, 11
nh 2

n lelzlq) g;\) j)kpq <QA s) +2121§:1¢(;4(z) 3)12 }(,VQIO’S)
s p=14q s p=1lgq

- 3ES el + Sel e
s=1p=1

+ izz(b Vl)Jk W ;)4(18 +ZZ(I)(AZ)Jk (4 s)
S= 1p 1q 1 s= 1p 1

+ N (I)("“)ﬂ‘ W )’? ) 4 <I>(A L)Jk )B ,5)
;;; Bs)hq ZI ;; (Bs)p

+ @Ik (147)
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Table 4: This table presents each layer as an affine transformation, with parameters denoted by
expressions of the form ®_. The superscript and subscript indices respectively indicate the output
and input positions of the parameters. Importantly, the index notation is constructed so that one
can unambiguously determine the dependency between inputs and outputs. Throughout, the indices
i, j, k refer to output components, while s, p, ¢ correspond to input components. With the exception
of the symbol 1, which denotes the bias term, all other components are defined in Appendix
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L AT PRV AR VO 0O L S PO T WL A P o P O I L Y
Yakoma  PGising Pokma  UoRApa Ukma Vekoma PR LI PV U
209 (I)Egl?;):q E}\;é)sj)‘;}q (Dggl?!)‘;q (I)%/OGJ) x (Pzgg)@ . (I)Eégsj)kpq :635);4 q’ifé)sj) P W ;),qu'a)
deow NI SER W e@N WER el el el eln sER
®c.0 G et elgt et e@ly egh et el egt ey [
Paoma Goe  oU%5  oQ0%s  oln.  ell,., oQUN, e, oDk e, Y
L 0y eyt eyt ey el oS, elnt elin et el Ul
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@, @EQJ);J.IC 4)51(.1) gk q)gv,z)mk 4»5‘“) g.k <I)§G'l) J q)gil.z) (Pg/m):;‘.k (P(lﬂ.?).] (I>(15.7);;.k q)EB i):j 1
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Table 5: This table is a color-annotated version of TableEl Elements related to the output are high-
lighted in blue, while those associated with the input are shown in red, including their corresponding
indices.
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Table 6: This table provides a detailed breakdown of the parameter notation ®_. Each parameter
entry corresponds to the output indicated by its column and the input indicated by its row.

[I’V].g,(iflj [I,V]‘E‘I;;.t) [W];t;r) [W]ﬁ.z) (W]E b)) [W"]E,/zftj A [1"7]_5_?;” 55
D(Q,5)p.0 [“”1{577/“
D (K,5):pq [”«L{:j.w
Brma o2, i
o a5t Lt
T (W%
Witoloka m ;7\[‘[() s)
D(G,s)p [”":( )
@ ) [(,]nrl s)
Barma 55, Wi
D(B,5):pq (Wi
o Ol
D, 1

QD):Gk K )ik (Vi $(0.i):d.k $(G.i):d $(Gi) DAk B(Ai)id BBk B

Table 7: The output is computed as follows. For each output entry, we take a ’dot product” between
the corresponding column indicating the output and the final column representing the input. The
summation is carried out over all indices that are compatible according to the indexing scheme.
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F EQUIVARIANT LAYER

In this section, we provide a detailed computation of F(U). To construct E(U), following the design
of equivariant polynomial layers in|Tran et al.[(2025), we adopt a quadratic polynomial in the input
weights U with unknown coefficients, as described in the previous section, and use a parameter-
sharing technique to determine the constraints on these coefficients that ensure E is equivariant. We
begin with the formulation of E(U) below:

F.1 COMPUTING E(gU)

We borrow the following lemmas from Iran et al.| (2025]).

Lemma F.1 (See (Tran et al.l 2025, Section D.2)). Assume that E: U — U is a function defined
as in Equation for some coefficients ®_. If E(U) = 0 for all U € U, then all coefficients are
equal to zero.

Lemma F.2 (See (Tran et al) [2025, Section D.2)). Let h and D be positive integers. Let
S(l) fs(2): RDXD

— R be R-linear functions for each s = 1,..., h. Assume that there exists
a constant A € R such that

ifgw (M(S)> + 1@ ((M<S>)_l) = (149)

s=1

forall (MM, ... 7M(h)) € GLp(R)". Then

SO (M) = [ (M) = A =0
foralls=1,...,hand M € GLp(R).

We now return to the computation of E(U). A detailed explanation of the E(U) layer and its
associated computations is provided in Section[E]

By Equation[T43] we have:

Ho= <([E<9W>1‘Q’”, (B, B [E@O)

( (B WD, [B@n) D), (WA, [B(gh) 4D ), ([EW)) P, [B(gh) *?) ) » ) ,
(150)

where

h D D
Q i i):4,k ,8
E@WIEY = 32322 Gk laW aWIS

s=1p=1g=1
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(Q z) J, (QZ J, (O,s)
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D ) ne D Da ) ne Da D
)i Jk (G s) )i gk (A s) (Qz Jk (B,s)
1590 SLTH LG SERS 95 ) BLIAANIGT PR 99 9) LI AANIALS
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Ne Ne
( z)ak Gs z)yk (As) z)ak (Bs) (Q.1):j,k
3 0@ + 3 Y WO + 37 ol + 0{00
s=1 s=1qg=1 s=1qg=1
(151)
h D D
K,i K,i):5,k s
EGWRY = 3230 3 $(GipalaW gW I3
s=1p=1qg=1
h D D
K,i):j,k s
202D B palaW W
s=1p=1q=1
h D Dy h D Dy
K,i):j, s K,i):j, )8
202D QWG + D0 > Rl
s=1p=1q=1 s=1p=1¢q=1
h D D, (K):j h D, D
K,i (V s) (K,i)15, k (Ovs)
+z;z; 1(I)(VS) p,q +z;z;z;q)08)pq P#Z
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s=1 s=1qg=1 s=1g=1
(152)
h D D
V, V, k s
(W =323 D Bigicy laW oW
s=1p=1gqg=1
h D D
v, k s
335w oo
s=1p=1gq=1
h D Dk D Dk
V,i:',k: s Vii):3,k s
S DI IUIANGTEED 95 99 BTN To
s=1p=1q=1 s=1p=1q=1
D D, ) h D, D (
(Vyi):4, k (Vs) V,i):4, k (O,s)
DD 9 ITHEEATIIEED 9 9p S AL
s=1p=1gq= s=ip=iaq
ne D ( ) ne D Da Ne
Vi Jk (Gs) (Vi)Jk (As (VZ)Jk (B,s)
15 9) SVATTRGTES 35 3) S ATR RS 9 9) B AARTATS
s=1p=1 s=1p=1q=1 s=1p=1¢qg=1
- (Vi) 15 (Gos (Vi) o1 (4,9 (Vi) ) (B.s (Vi
®cls) )+ZZ(I>(A‘;)q blg WZZ‘P(BS)Z R
s=1 s=1q=1 s=1q=1
(153)

43



Under review as a conference paper at ICLR 2026

h D D
EWI" =323 > B laW oW
s=1p=1qg=1
h pD qD
20D DB LW
s=1p=1qg=1
h D k
1599 BIBETRIETERS 99 3p STB ARSI
s=1p=1g=1 s=1p=1gq=1
h D D, N h D, D Z
2D D UGG + 20D DG WG
s=1p=1qg=1 s=1p=1q=1
ne D N ne D Dp ; ne Da D ;
DRI B 9 ETHILTERD 9 B L Il
s=1p= s=1p=1gq

s=1p=1qg=1

Ne

i@EgZ)]k (G,s) _’_iZq}Oz)jk As)+ZZ(I)Oz)jk (B75)+¢:(lo,i):j7k7

s=1qg=1 s=1qg=1
(154)
h D D
G,i G,i):j s
E@W =330 (G laW W)
s=1p=1qg=1
h D D
(G,1) VO,s
+ZZZ®(VO sj)pq[gWgW]Z(hq )
s=1p=1q=1
h D Dy G h D Dy
G,i)1j (Q s (Gyi W1E:s)
+22 I(I)(Q,S):pq Ina +222¢(qu9 Jb.a
s=1p=1q= s=1p=1a9=
h D D, (@) h D, D
G,i):j v, (G,i 0,s
2D D ORI + 20D D @G WG
s=1p=1q9=1 s=1p=1q=1
ne D ne D Da TNe
1 9) B ARGEEND 3 9 BLETNAITERD 95 3 BLIAMAUTE
s=1p=1 s=1p=1qg=1 s=1p=1q9=1
S (Gz)J Gs) o (G, z)J (A s) (G, z)a (B,s) (Gyi):j
(I)( +ZZ®(AS)Q +ZZ(I)(Bs)q +q)1 )
s=1 s=1qg=1 s=1¢g=1
(155)
h D D
A A k s
WL =223 Qi aloW Wi
s=1p=1gqg=1
h D D
Ai):g,k s
+2 L0 i[9 W)
s=1p=1q=1
h D Dy o D Dy
D DWW TRGLLES 33 S ARA T
s=1p=1qg=1 s=1p=1q=1
h D D, h D, D
(4, l)Jk (Vs (4, z)yk (O,s)
+_EE:EE: é(VS)pq +_§£:EE:EE:QROS pq Pq
s=1p=1q9=1 s=1p=1q=1
ne D (A ) i ne D Da ( ) ne Da D
)24, (G,s) Ak WA (Ai):j,k W](E)
+ 12;@(@,5);;; [gW]P +ZZZ@(A75)1P7Q +ZZZ@(BS pq P:q
s=1p=

s=1p=1g=1 s=1p=1q=1

44



Under review as a conference paper at ICLR 2026

Z(I)Az Jkgb (Gs)+iz¢ggz (A 5)+ZZ‘1’§QZ>Z’“ (B,s)+(b§A,i):j,k’
s=1qg=1 s=1¢g=1 (156)
) h D D o
E(gW))5" =Z;z‘;z;égg}?,’j)’;q[gng]%Kvs)
s=1lp=lg=
h D D 5 .
+Z;Z;Z;@Evé)ﬁ)pq[gWgW]é‘,’qo’”
s=lp=lg=
h D Dy B D Dy 5
159 B IHTTRTETERD 99 9 WEAARTTS
s=1p=1gqg=1 s=1p=1¢qg=1
h D D, N h D, D y
202D Rl WG + 33D el WG
s=1p=1q=1 s=1p=1q=1
ne D B ne D Da 5 k ne Da D 5 k
YR WY £ DTS TS R e laWISEY + DY Y e WY
s=1p=1 s=1p=1qg=1 s=1p=1q=1
i@EB”J'If (Gs)+iz(1)(§2))z]k (As +ZZ¢E§;))Z]k Bs)_’_(I)(B,i):j,k’
s=1 s=1g=1 s=1qg=1
(157)
h D D
[E(gb)](Gﬂ) = Z Z Z (I) QK 8):p,q gWgW];’%K,S)
s=1p=1g=1
h D D
ZZZ@E‘G/é)S)pnggw] (VO,s)
h D Dy D Dy c.
+ZZZ(I)Q6)P;(1Q 1(7%9)+ZZZ¢EKZ)I)¢19 ]1(){278)
s=1p=1q=1 s=1p=1q=1
D D, h D, D
9 WA AGTENS 50 9) SETHCMITTAE
s=1p= lq 1 s=1p=1q=1
ne D D TNe
_,_ZZ@( gW GS)+ZZZA(I)( gW(AS)—'—ZZZ(P(G?) gw(Bs
s=1p=1 s=1p=1gqg=1 s=1p=1q=1
S oGl + 350G+ 35w o+ 00,
s=1 1 s=1 1
" " (158)
] h D D
=335
s=1p=1q=
h D D A
P3PS L0 29V WL
s=1p=1gq=
h D Dy (A D Dy A
+ZZ (I>(Q ;) P;q 1(96316) +ZZZ¢EKZS p,q 1(7{1(178)
s=1p=1qg=1 s=1p=1q=1
" O A g (Ad)id " QAR o (Ari)id W)
+ZZ CI)EVS pq +ZZZ(I)(OS pq Pq’
s=1p=1q=1 s=1p=1q=1

45



Under review as a conference paper at ICLR 2026

ne D Dpy

DRI

RS HH U

AZ)J

s=1p=1gqg=1
Ne

(A s) + ZZ@EE 1))](1

s=1g=1

(B;S)

(159)

(B i):j ](K,s)

(K,s): p7q Psq

(As)+zezz(b(31

s=1p=1q=1

BS)_|_q)(B7/)]

s=1p=1 s=1p=1qg=1
SSofaan o+ 55 afh i
s=1g=1
BB = 3303 Pgi s laW W
s=1p=1qg=1
h pD qD
DD WREMTFTIE
. }']L)_ D_D D Dy
ZZZcmm LIS BB
s=1 1g=1 s=1p=1q=1
h D D, (B.) h D, D (B.)
DO MTITEES 3 3 SN
s=1p=1gq=1 s=1lp=lg=
Ne ne D Da
+ZZ@(BZ)J Gs)+zzz@(31)]
s=1p=1 s=1p=1qg=1
B’l)]
Gs)

s=1 s=1qg=1

19+ 35 ol + 3 ol

s=1q=1
(160)

Plugging the transformation for each index defined in Equation[T43] we obtain:
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We observe that .
B = [V ()| 162
gk
is an R-linear function of M é”'(i)). Therefore, by equating
B = lgBW))SS" (163)

and applying Lemma [F.2] we conclude that the only nonzero parameters ® in the expression must
correspond to terms that are R-linear functions of M, ,iTh(z)). Consequently, only the coefficients
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@ég S)) K can remain nonzero. Thus, we can rewrite the expression for () component as:
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Combining the result for the () component with analogous reasoning applied to K, V, and O, we
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Now consider the equivariant component corresponding to the gate component. By using the ex-
pression of the equivariant layer and plugging in Equation[T43] we obtain:
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From Equation[I43] we observe that:
oW = [[BW)) 7O ] (165)

When equating [gE(W)]EGl) = [E(gW)E-G’i), we notice that all components involving R-linear
functions of M(T"(S)) (]\/[,57’1(5)))*17 M (A EON =1 appear exclusively in [E (gW)](G 4
and notin [gF (W)]( %) . Consequently, the corresponding ®-parameters corresponding to the inputs
from Wy, Wi, W,,, W must vanish. This allows us to express the G component of the equivariant
layer as:
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Applying the same reasoning to A and B components and combining them with the expression for
G, we obtain the set of equations:
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F.2 COMPUTING gE(U)

Using Equation[T43}
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_Z—Z1<M )lvk ;;q:1¢KS)p,q [W]p,q ) (181)

Il
5!
—~
=
=N
==
)
=
<
N
=z
—
=
Q)
>
—~
N
=
—
=
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h D
= (MigTh(i)))l’k . Z Z (I)E“i:;')(l;’)qjyl[VV]QQS)7 (182)

Jik

_ D, D
ED I I 95 9) B Tt Ll a3

Jl o s=1 p=1qg=1

[gEW)SD = (BT 4 (),
h D D
_ (Gore ()i (@K.3) (Gore(i)):d (VO,s)
=D 2D Pk VWIS +ZZZ<I>VOS>MWW1
s=1p=1gqg=1 s=1p=1gq=1
A g (Gore(0): S (Gre(3) A
iTe (4 7 (G s G,re(i A ,8) (G,7e()): 7 W1(B:s)
DD P +ZZZ‘I’<A ST + 30 S e G T
s=1p=1 s=1p=1q=1 s=1p=1q=1

Ne

G,7e (1)) G,s (G, (i A, GTE z)) B, Goro (i)
+Z(I)(G) ]( )+ZZ¢(As)q ( S)J'_ZZ(I) J ( s)-‘r‘bg ())]—f—(ny

s=1q=1 s=1q=1

(184)
(A A, e (2
B3 = (BT

h D D
(A, 7e(1)):d,m {70 (k) K,s) (A, 7e(1)):5,m {7 (k) VO,s
Z Z Z (I)(QK 5):p,q [WW Q + Z Z Z (I)(VO s) piz [WW]z(z,q )

p=1 s=1p=1qg=1
e - (e (@) e . 2 (re@)
+ZZ@(A e(Z))J (k) Gs +ZZZ@A e(z))J (k)[WL(jg,S)
s= 1p 1 s=1p=1gqg=1
AT ))aw§*e<”><k> (Are ))M*“”(k) b](G) (A7e(8):,m e (k) 11 (A,
+ZZZ (Bypa +Z%e> +ZZ¢’<AQ>q g™
s=1p=1¢g=1 s=1g=1
e D (re () (re (D)
A,7e(i)):g,meTet ) (k s A,re(i)):g,meTet (k
s=1g=1
B,i B, (1
WEW)IEY = BT
h 2.2 ( ())(())() (re (i)
_ B,7e(i))mee ™ (4) k K,s (B,7e(i)):meTe (1) k VO,s
=220 20Ky Ualghy >+ZZZ¢’(vo gma WG
s=1p=1q=1 s=1p=1q=1
ne D Ne
(B,7e(3)):m e () k G,s (B,7e(3)):m e () k A,
+ZZ¢(GS) ( )+ZZZ¢AS)P»4 [W];E),qS)
s=1p=1 s=1p=1g=1
ne Da D (Byro (i)):m e ) () (6))m (e ) (1)) (e @)
B, (i Tett Jk BTel Tett J)k Gs B,7e e (G) k(A s
222 ®5 +Z<I> WZZ@ASM )
G—lp—l q=1 s=1qg=1
e (8))em (e (D) ) ()i (Te (D) (4
+ZZ@B e(1)): (49).k [b]‘(IB,s)_HI,gB, (i) (J)JC’ (186)
s=1qg=1
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[gE b)](G,Z) — [E(b)](G,Te(Z)) +7b

h D D
— (G7e(3)) [(QK.s) (G7e(1)) (vo 5)
533 WTEUNILT ISR 95 9p 9 UGS
s=1p=1qg=1 s=1p=1q9=1
ne D ne D Da Ne
(G, Te(z)) G ,8) (G n( )) (A s (@, re(z)) (B,s)
2.0 Py VRSV +D.D > 9l IS Dl
s=1p=1 s=1p=1gqg=1 s=1p=1gqg=1
(Gi7e(4) G s (G7e l)) (A s (Gre(i )) (B,s) (Gy7e(4))
+Z%s> Y BT+ 3SR + 0l
s=1qg=1 s=1qg=1
(187)
A,i) (A, e (7))
GBI = [EOLTS)
h D D
oA re< ))imlTe @ (5) QK 5) (Ay7e(3)):m e () (VO,s)
Z Z Z (QK,s):p,q [WW + Zl Zl Zl Q(VO,S):p,q [WW}p,q
s=1p=1q=1 s p=1lgq
(A7 ()):mTe (D) ( O WG (A7e () (T (5) 71 (A,s)
ZZ (G +ZZZ¢)(A5)IJQ Wira
s=1 s=1p=1qg=1

Ne

T (i)):m{Te () e (i)):m(Te () o (6)) i (Te (D) (4
(4, e()) (]) (A S)‘LZZ@(A e( (J)[b}gB,s)+(I)§A7 e (i) (3)7

t2 DZ i By O e 4 Z o O e
Z >
=1qg=1

(B,s)
s=1g=1
(188)
E®)? = B
h D D ( @) h D D i)
B,7e (1 QK s) (B,7e( ] (VO,s)
= DD D PR WWISST + 303D g W
s=1p=1q=1 s=1p=1q=1
ne D Ne Ne
(B,7e()): G,s (B,7e (1)) A,s (B Te (1)) B,s
DI IL A Igh LYY (Aiina 19 +3Y Y e Wy
s=1p=1 s=1p=1g=1 s=1p=1qg=1
Ne ne Da
(B,7e(1)):3 117(G,s) (Bﬁe(i))J (As (B, Te(z))] (B,s) (B,7e(1)):3
D e T+ 0, +ZZ‘I’<B oy +® :
s=1 s=1g=1 s=1qg=1
(189)

F.3 COMPARE COEFFICIENTS FROM EQUATION E(gU) = gE(U)

To enforce equivariance property, we solve the following equalities to identify the constraints on the
parameters :

[B(gW)]\%) = [gEW)SSY,
[E(W)SY = lgBV)IEY,
(B = [gEW) %Y,
[E(gW))$" = [gBW) 57,
[B(gW))\* = [gB(W))\Y,



Under review as a conference paper at ICLR 2026

We break the process into multiple steps to solve each constraint as follows.

Step 1. Solving [E(gW))\3" = [gE(W)]'D7.
For this equality, by followmg the same argument in (Tran et al., |2025, Appendix D.3.3), we see
that

(Qs3):4,k (Q.7(1)):4,k
(I)(Q i)p,k T (I)(Q 7(i ))pk/ (190)

Step 2. Solving [E (gW)](K % = [QE(W)EIZZ)

For this equality, by f0110w1ng the same argument in (Tran et al., 2025, Appendix D.3.3), we see
that

(K,1):5,k (K,7(3)):5,k"
DKk = Plrir (i) (191)

Step 3. Solving [E(gW)]\";" = [gE(W)] ",

For this equality, by followmg the same argument in (Tran et al.| 2025, Appendix D.3.3), we see
that

(Vii):5,k (V7 (4)):5,K"
CI)(VZ) pk T (I)(V'r(z)) p, k" (192)
0 O, 0,i
Step 4. Solving [E(gW))\0" = [gE(W))\07.

For this equality, by followmg the same argument in (Tran et al., |2025, Appendix D.3.3), we see
that

(0,i):4,k (O,T(i)):j',k
C0liyiig = 20 ita (193)

and all other indices equal to 0.

Step 5. Solving [E(gW)]\"" = [gE(W))\"?.
To solve the constraint for this equation, we expand both sides in full and apply the index-wise group
action defined in Equation [T45] which yields:

h D D
Z Z Z @Eg}?,ﬁgl(s)):p q[WW QK )+ Z Z Z E‘G/g:rj{l(s)):nq[WW]?(”"/‘;O7S)

s=1p=1q9=1 s=1p=1qg=1
SN\ (G ( SN N2 (G (A.0)
G,i ] G,s) G,i):j A,s
+ZZ¢(G e (s)p |:[W] +’YW1| +ZZZ (A, 75 (s)) p(ﬂ'( )) 1(q) |:[W] :|pq
s=1p=1 s=1p=1q=1 ’
ne Da D
(G,i):g (B s) (G,i (G,s)
+222 (Byr(s)):(nl") - 1<p)q[[ } +Z¢<Gr;1<s <] +7”>
s=1p=1q=1 s=1
ne Da
(G,i):5 { (As} Gl)j [ (B,s)} (G,i):5
+ZZ@<A,751<5>>:(w£S>>—1< +ZZ (B, (s)):a 1 q‘“l’l
s=1q=1 s= 1q_
h
(Gy7e(4)):5 (QKs) (G,7e(4)) (vo s)
- Z Z Z(I)(QK s): p,q (wwi + ZZ Z (P(VO 5):p,q WW]
s=1p=1qg=1 s=1p=1qg=1
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+ZZ@8:§§3

s=1p=1 s=1p=1q=1
ne Da D

+ZZZ (GTe( ))J (BS)+ZCI)EES(I))J
s=1p=1gq=1
ne Da

DR THETEES ol
s=1q=1 s=1qg=1

Using lemma[F 1] we obtain the constraints:

W+ 35S Sl

G,s)

G,7e(1)):]
B) 4 (O

+ (yw);-

(Gi):g — §(Gme():
(QK,m, ' (s):pq (QK,s):p.q’
(G,i):5 _ 5 (Ge()):g
(I)(VO ™ (8)ma Vo)
(G,i):j _ xw(Ge(4)):g
(Gr M (s)p (I)( s)p
((eX] — PG e(D)):
(A7 M (8):p, (7)1 (q) (A,s):p,q
(Gi):5 — PG e()):
(B, ()):(x8) =1 (p)g (B.s)p,q
(Gi):g _ §(Gre(i)): J
(Grat(s) q;( s)
(G,i):j — §(GTe():
(A7 (9):(wE) =2 (q) (Ass):q 2
(G,i):j (G,7e(4)):]
gt g = BB
<I>(G i) _ (G Te (i ))J
ZZ(I)(GT L(s)):p PVW] ('YW)]’7
s=1p=1
= (G _
> b’ =0.
s=1
By a change of indexes, we obtain:
(G _ $(Gre(i)):
(QK,S):p,q (QK Th( )) p,q’
(G,i):5 _ 5(Gire(i):d
w05 pa = PVOm()mar
(G,i):5 (Gn())y
PG = PG (s)p
(Gyi)i  _ g(Gime(i)):g
(A,s):p,q (A,Te(s)):p,ﬂffe(s))(qy
PG _ §(Gre(i))d
(B,s):p,q (B,7e(s)): (Te(s))( )q
(Gi):j (G,7e(1)):5
i) = 2Gms)
(G):j _ §(Gme(i))g
(A,s):q (A,7e(s)): ﬂ_(ﬂ'e(S))(q)7
((eX] (G,7e (1)) J
(550 = PBir(s)ia
@(G i) _ <I’§G iTe(4)):7
(G,
S5 0G0 bl = G
s=1p=1

Zq’(g?J:
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As a consequence, we have:

(I)(G 1):j (G,7e(2)):7
(QK.s)p,q — —(QK,mh(s))p.q’
(G _ g(Gi7e(9)):d
(VO,s):p,q (VO,m(8)):p,q
(G,1):§ _ &(Gi7e(4)):5
Lo = 2Gmis)p
(X (G,7e ()]
(As)pa = 7 (A, (5))ip,m ) (g)
(Gii):d _ g(Gime(i)):d
(Bs)p:a = 7 (B,7e ()™ ) (p),g
(G,i):5 (G,7e(4)):d
ey = 2emis)
(G _ (Gime(i)):d
(Ass)ia ™ 7 (Are(8): 7D () (195)
(Gii)j _ &(G7e(d)): J
(500 = 2B ()
G,i):g G,Te
‘I>(1 i) _ <I>§ (U)J,
<= (Gai) .
Z(I)(G,s)i; =0 (p #* ])a
s=1
= (G
2 PGy =h
s=1
= 5 (G)
G,i)j
2Py’ =0
s=1
Step 6. Solving [E(gW))" ") = [gE(W)]\}".
For this equation we proceed as follow:

(Ayi):5,k QK s) (Ayi):5,k (VO,s)
ZZZ @k oma VWG +ZZZ RS TN |
s=1p=1q9=1 s=1p=1g¢=1

(A,0): ( O\ A (A (4,9)
% jk G,s) ,4):5,k A,s
+ ZZ(I) (G, (s):p |:[W} +7W:| + ZZZ (Aﬂ-gl(5)):177(77‘(:5))—1((1) |:[W} :|p,q
s=1p=1 s=1p=1q=1
S A R g () A 51(G9)
i ]k Bs i):5,k G,s
LR, ]+ 3 olas, (w0 )
s p=1qg=1
(A 1):4,k (A s) (A,i):g,k (B,s) (Ayi):g,k
+ZZ (A7e ()i >*1(q>[ ] +ZZ‘I’(BTF s))q{[b] L“Dl
s= lq 1 s=1g=1
(A (i)):4,m e ) (k) SRR (Ay7e(8)):d,m{Te @D (k)
Te J,meTe (QKS Te()):5,me T (VO,S)
= ZZZ(I)(QKS o WWLEE+ 2.2 2 ®Woma Wl
s=1p=1¢g=1 s=1p=1¢qg=1
TN s (A () ) gy QA (A (i) ) (k)
Te (1)):g,mgTe Gs JTe(9)):4,mTe As
+2.D G +ZZZ (Ama Wi
s:lp:l s=1p=1q¢=1
(Ao (i)):4,m e @) (1 Aro( (e () (1 s
S (Bswz%s e
s= lp 1g=1
ATe W(Te(i)) k ATe 71,('re(l)) k 8 ATe ﬂ.(‘fe(b)) k
s=1g=1 s=1g=1

60

(196)



Under review as a conference paper at ICLR 2026

Using lemma[F.I] we obtain the constraints:

oA k _ (AT ()im e (k)
(QK, ;' (5)):pq (QK,s):p,q )
A7 k (Ao (i)),m e ) ()
Vo, (s)wa  (VOs)pig )
(Ayi):jk (A, 7o (i)):j,m el ))(k)
®Grtsne ~ PG
(A.D:5.k _ (AT (k)
(Ao (), () —1(q) —  (Ass)ipaa )
(Asi):j,k _ (AT ()im e (k)
(B,Tgl(s)):(wés))*l(p)’q (B,s):p,q ’
(A,i):5,k _ (A,Te(i));j,ﬂ—((je(i))(k)
(Gyret(s) (G,s) )
(A,i):j,k _ (A,Tg(i)):j,ﬂgﬂ-e(i))(k)
(AaTe_l(S)):(wgs))*l(q) (A,s):q )
(Ai):j,k (A,Te(i)):j,frg'e(i))(k:)
(B,rgl(s));q — T (B,s)q )
(I)(A,i):j,k _ (bg.A,Tc(i));j_’ﬂ—gTe(i))(k)
(A,i): J k _
Z (I)(G T (5 - 07

Z q)(é ? 9,k

Therefore,
(Ad)gk 5 (ATe(4)):4, w(re () (k)
@(QK 8):p,q (I)(QK 71 (8)):p,q ’
@(A Z) g,k (AaTe(l))J,TFgTE( >)(/€)
(VO,s):pa — = (VO,m(s)):pyg '
(A,l).j,k (A, 7 (4)):5, W(TE(L))(k)
(G,8):p (G,7e(8)):p
(A,i):j,k _ (A, 7e(3)):4,m(Te ) (k)
(A,5):p,q (A, .,-e(s))pﬂ(‘re( D(q)’
Q(A,i):],k: (A, 7e(4)):7, Tr(Te( ) (k)
(B,s):p,q (B,7e(s)): (n:(b))(p) q
(Ad)g k. x(A7e(i ))JJS—E(”)(k)
(I)(G,s) - (I’(G,TE(S)) ) (197)
(P(Aai):j7k (P(AaTe(i)):j,ﬂ'éTE(i))(k)
(A,S):q (A Te( )) 7‘.(76(5))( ) ’
(Ayi):igk = (A,7e(4)):, Tr(fe( ))(k)
(I)(B,S)Iq q)(B Te(8)):q )
Ai):gk A,Te . 77.r§7e(i)) k
ANk _ p(AT@)m ),
(™ g (Ad)ii
> Py =0
s=1
N (A _
Z (I)(G,s) =0.
s=1
0 B,i B.i
Step 7. Solving [E(gW)}E,C ) — [gE(W)]( t )
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For this equation, we proceed as follow:

h D D
Z Z Z @(g;() j;kl (s)):p, q[ QK g + Z Z Z Q)E\E/}g),:;:l(‘s))p,q[WW]gy{IO’S)

s=1p=1gqg=1 s=1p= 1q 1
ne D MNe
(B,i):4,k |: (G,s) i| (B i):5,k |: (A,s):|
+Z_;Z:(I)(G,T§1(s)):p [W} +w +ZZZ (A7 (s ))p(ﬁ< >) 1(q) [W} g
s=1p=1 s=1p=1g=1
ne Da D (
P B.,i):j,k [ B 3)} (B,i):4,k (G,s) )
+ZZZ (B,7e (5):(xE) "1 (p)a W Z:‘I)(GT’I(S (b} %
s=1p=1¢g=1
ne Da (
B,i):j,k { (A s)] (B,i):4,k [ (B,s):| (B,i):4,k
+;;@m,r;l(s)):(wﬁ”)*(q +;;®(376 (a1 q+‘1)1

_ Z Z Z (I)Eglzs( );,Z(TEWU) k[WW QK ) 4 Z Z Z o 5;5))})}’2”6(”)0 [Ww](VO ,8)

s= 1p 1g9=1 s=1p=1g=1
(57 9 w06 k(G S (Byre (1)) () k pr (Aus
£y 0l 159 9 3L Uhr
s= 1p 1 s=1p=1¢q=1
(B,7e(i (Tp( ))(J B s (B,7(3)) (Te(ﬂ)(j))k G,s
+ZZZ‘I’(Bs>m W, +Z‘I’(Gs) (B}
s= lp 1g9=1

(B,e (i)l (5) ke 1(A, (B,e():ml™e D (5) k(B s (B,e(i)):m{me ) (5) k
+ZZ¢As)q by shfZZ(D(Bs [0]%) + @) .

s=1¢g=1 s=1g¢=1

(198)

Using lemma[F.I] we obtain the constraints:

Bk (B,7e(1)):m{me ) (), k
(QK, 77 (s)):pg (RK.s):pq )
(B,i):4,k (B,e (i) (e (j), k.
(VO,T;?l(s)):p,q (VO,s):p,q
(I>(B,z'):j,k (B,7e(i)):m{Te (D) () k
(G,rgl(s));p (G,s):p 5
(B,i):j.k _ pBre(@)m{Te () k
(A (), (8~ (q) (A,8):p,9 '
(B.i):j,k (B,7e (i) (e (4), k
(B H(s):(nl) =1 (p)g (Bs)pg
(B,i):5,k (B,7e () {Te ) () k
@(G e t(s) T =2 ’
(B,i):5,k _ B (), k.
(A7 (8)):(nE) =1 (q) (A,s):q
Bk _ g (Bore(@)m{Te ) (5).k
(Byr(s)):q (B,s):q ’

BTk _ (B m D (0) K

- (B,i):4,k
X;(PGTS (8)):p O’

S (Bi)gk
;¢(G) =
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Therefore:
(Byi)ij.k (Byre(i)):m(me ) (5 k
QK. Dpa = PQK (g
Bk (B, (8))m™ ) ()
(VO,s):ip,g — = (VO, Th(S)) ,q ’
(Byi)igk o (Byre(i)im{me ) (5) k
Cp = PGir(s))w )

(B):jk _ q(BTe(d)): w{Te ) () k

(As)ipa " (A (s)ipml ) (g)
(Byi)ugk _ g (B,re(i)ml™ (4),k
(B.)pa = P (B, (5)m ) ()
(B,i):j (B,7e (1)) {me ) (), k
e = et ’ (199)
BTk _ g (Bre(@)m{™ ) (j) k
(4,9):q (Are ()T q)
(B,i):jk _ g,(Byre(d):m{e) () k
‘I)<B7s>< = ®(Br.(s)q )
B,i B,7e(3)):w{Te ) (5) k
<I>§ ):d <I>( (i)):m ), 7
= o (Bi)ik _
Z (I)(G, -
Z (I) (B z) 7 k
Step 8. Solving [E(gb)]()) = [¢E(b)](¢).
For this equation, we proceed as follow:
(G 1) QK s) (G.3) (VO,s)
Z Z Z (QK, 7, (s)):p [WW Pq T Z Z Z ® (VO,m;,  (s)): p,q[WW]p7q
s=1p=1q=1 s=1p=1g=1
(Gsi) @ O\ O (G (4,5)
7 i A,s
+le (G"'e;l( ))p|:[W] Tow :| +ZZZ (A.,-c (s)) p(ﬂ'( )) 1(q) |:[W] i|p,q
s p=1 s=1p=1q=1
N A R () G.) 51(G:9)
(G,i B s G,i .8
+ Z Z Z (B,7e H(s):(n8) "1 (p) g [[ L,q + Z G (0)) ( bl * 71’)
s=1p=1g=1
% 3G b4 s):| 3G [ (B,s):| (Gi)
+ ; qz (A7 ()~ 1(q) [ " ; qZ (B,7e ! (s)):4 1 q T
(G,7e QK s (G,7e (7)) (VO,s)
—ZZZ%Ke)quW +ZZZ¢><vo§>quW1p,q
s=1p=1q=1 s=1p=1g=1
(G,7e (1)) (G s) - (G Te (A,s)
+ZZ‘%5>I) +ZZZ
s=1p=1 s=1p=1g¢=1
A o (@r (Gre(@)
Te B,s 7'<= G,s
LI IDIL 1 é,q>+2<1> [5G
s=1p=1g=1 s=1
ne Da .
+ Z Z (I)E,C::S(;)) (A,s) + Z Z (I)(G Te(i)) (B’}s) + (D(lGﬂ'e(l)) + . (200)
s=1g=1 s=1qg=1

Using lemma[F.1] we obtain the constraints:
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(G0 — (GTe(®)
(QK,m;, ' (s)):pa (RK,s):p,q’
(G.1) _ & (Gre(i)
(I)(VO T};l(s)):p,q - q>(VO,s):p,q7
(G.3) (G,7e())
(I)(G TN (s))ip (G,s):p
(G) _ (G (@)
(A, () (r8) =2 (g) (4,5):p,07
(G,i) _ Gme(®)
(B, (9)):(n8) "1 (p).a (B.s):pq’
(G.1) _ & (Gre(i)
(I)(G,Tgl(s)) - <I)(G s)
(G.9) — $(Gre(®)
(A7 M (s)):(wE) 1 (q) (A,s):q
(G.9) — p(GTe(®)
(B,7 " (s)):q (B,s):q
<I>§G’i) _ <I>(G n(z))
= o (Ghi) _
Z(I)(G M (s))p =0,
s=1
(Gi) _
Z Qg =
Therefore:
(G,i) (G, ()
QK 5)pa = RQK () ma’
(G,i) (Gy7e (i)
V0,5 ‘b(vo,rh(s)):p,q’
p(G1) (G,7e (i)
(G,s):p (G, 7e(s)):p?
(@D (Gyre()
(As)pa = (Are()parl ™ (q)”
H(G1) _ o(Ge(i)
(Bo):poa = 7 (B.re(8))w T (p).g”
(Gyi) _ &(G7e(3)
(P(G s) q)(G Te(s))? 201
3(G) (Gyre (i) (201)
(A,s):q (A,7e(s)): (T (s ))( )’
G _ @)
(B,s):q (B,7e(s)):q?
(1)(6',1) _ (I,(G,Tc(i))7
(Gi)  _
Z Gl =0
(Gi) _
Z QG =
. (Aj) (A,i)
Step 9. Solving [E(gb)];"" = [gE(b)];.
For this equation we proceed as follow:

(A QK,s (A)i):j VO,
ZZZ @ et oypa VI )+ZZZ¢> Voat sy W W
s=1p=1q=1 s=1p=1q=1

A ) ( Ne D DA )

i ] G,s (Az J (A,s)

" 212% oo V1974w 42575002 o [
S p=1 s=1lp=1lqg=
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ne Da D
(I)(A,i):j [ Bs)] (A,i):5 ( (G7s) )
+ZZZ (B,7e (s)):(x8) "1 () a W P Z(I)(Gn 1(s)) bl T
s=1p=1qg=1
ne Da
(A,i):j A ,8) (A,i): j (B,s) (Ayi):g
+ZZ@(A,Tgl(s)):(wés))*l(q) [ } +ZZ®(B 1 (s))a {[b] L + ’
s=1qg=1 s= 1q 1
h 2 & (A,7e () (Te (D) (5) (e (4))
B 7o) (D) (5 (@K (e (8))im e () (VO,s
3 I LTI RS 5 W) DL A AT
s:lp:lq:l s=1p=1gq=1
(Ao (i))im e D) ( J) G,s (A,7e () (Te D) () As
15 9 et TSRS 3 3 B
s=1p=1 s=1p=1g=1
ne Do D (Ao (i)):mTe (D) (Ao (3))im (e @) ()
Te(1)):my™e B, Te 7 e G,s
LD IPIP L Wl S+Z‘1> MCRS
s= 1p 1g=1
AT(’ ﬂue(z)) s A, 1e(i (Te(l)) s A, 7o (i :ﬂgTe(i)) i
+ZZ‘I’ OO s )+ZZ‘DEBS( D) 4 AT 0)
s=1qg=1 s=1q=1

(202)

Using lemma[F.1] we obtain the constraints:

(Asi):g (A,re(i)):m{e ) ()
(I)(QK T{l(s)) CI)(QK 8):p,q ’
(Ayi):j _ AT ()
(VO,T;I(S)):p,q (VO,s):p,q ’
(A _ ATe@)m e ()
(G,Tgl(s)):p (G,s):p ’
(Ayi):g _ A (@) ()
(A M)y (a1 gy (As)pa ’
(Asi):j _ AT ()
(B, H(8)):(wE) =1 (p) g (B.s):p,q ’
(A,i):j — pAT(D): w‘*ﬂ“”(a)
(Grt(s) —  (Ghs)
(Ayi):j — AT @)l ”(a)
(A7 M (9):(x )1 (g) (A.s):q
(A,i):j (A, 7e(i)):m (e D) (5)
(B,me M(s)):q —  (Bys)g )

(A _ ATl ()

(A

; Gty — O
O~ o (Ai)
DGy’ =0
s=1
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Therefore:
(Ad)g g (ATe(@)m{Te® ()
QK. pa = PQK () pa
(A0 _ g (Are(@)m{e@) ()
Coma = VO
(Ay):j _(I)(A,Te(i)):ﬂf‘i“))(j)
(G,8)p — T (G,me(s)):p ’
(Ai)d _ g(Are@)me ()
(A,s):p,q (A,7e(8)):p, ,n.(‘fe(é))( )’
(A _ gAme(D)ml™ ()
(Bo)pa = T (Bore()im ™ (p).d”
(Ai)j _ g (Are(i):mlTe @) ()
Ce) = G ) (203)
NY. e (Te () (5
AT _ g Are(@)mi™e D) ()
(Ass)ia = 7 (A (s))emTe ) (g)
(Ai)j _ g (Are(d)):m{Te®) ()
(I)(B7s):q - q)(B;re(s)):q ’
q)gA,i):j _ q)gA,Te(i)):wgfeW(j)
o (A
> PG, =0,
s=1

(A,i):g
Z o (G, s)j -
Step 10. Solving [E(gb)](B ) _ [gE(b)]§.B’i),

For this equation we proceed as follow:

Z Z Z Egl? T];Zl(s [WW QK )+ Z Z Z E‘B/g),;"j};l(s)):p7q[WW]1(7‘7/‘vIO’S)

s=1 p= lq 1 s=1p=1q=1
( ne D Dax ( )
(G,s) B,i):j (A,s)
D) SUCLENNN (ISR IS 95 9) ST/ AN LG
s=1p=1 s=1p=1q=1
ne Da D
Bs (B,i):j p|(G>s)
+ZZZ (BTil(S (g))_l(p),q |:[ :|p,q+zq)(G‘r;1(s ( ] +7b>
s= 1p 1g=1
Ne
(B % (A s (B,i):j (B,s) (B,i):j
£33 RN Gl § +ZZ¢><BTE e [BE7] 24
s=1qg=1 s= 1q_
Sty ( (@) : ( (@)
— B,Te J QKS B,Te ] (VO S)
=22 2 2Qkermal VWG +ZZZ%OS>MWW1
s=1p=1 qg=1 s=1p=1gq=1
(B,7e()): J (G s S (B,7e()): J W1(As)
+ZZ©(G~;>;» +ZZZ®(A9)PQ Wlpg
s=1p=1 s=1p=1gqg=1
ne Da D
(B,7e( ))J (B s) Bfe ))J (G,s)
202D OB G +Z‘1>
s= lp 1g9=1
(Bs7e( ))a (A s) (B;7e ))J (B,s) (B,7e (i)
+ZZ<I>AS)q +ZZ®<BS + @) : (204)
s=1qg=1 s=1qg=1

Using Lemma[F.I] we obtain the constraints:
(B,i):j _ (Boe(i))id
(QK, 7, ' (s)):p,q (QK,s):p,q’
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(B,i):j
(VO,7;,7 1 (s))pq
(Bi):j
qD(G,r;l(s)):p

(B,i):3

(At (s)):p,

(Bi):j
(Bt

(B1):j
(A (9)):

(B,i):j
(I)(B oM (s)qg

Ne

d o

s=1

(s)):(m
(I)(B,i):j

(B,i):j
(Gyre ' (s)p

(B,7e(1)):5
(VO,s)wp,q’
(B,7e(4)):5
(Gys)p
B,7e(i)):j
A,s)ip,q

(

(
(B,7e(i)):j
(Bs)wp,q
(

(G

(

eeeee

() =1(q)

N 1(p).a
B,7e(4)):]
) 9
B,7c(1)):5
(A8):q
(B,7e(1)):4
(B,s):q

B,1e()):5
_ (B

(Gt (s)

=
(&)1 (q)

B,i
(I)g ):d

:O7

Ne

> o

s=

Therefore:
@(Bai) :j

(QK.8)pq —

(B,i):j
(I)(VO $)pg

(Byi):g _
(I)(QS):;D -

(Bi):j

(A,s):p,q —

(B,i):j
CI)( 8)pa

(I)(B i):j —

(Gs)

(I)(B i)y _

(A,8):q
(I)(Bﬂ)ﬂ

(B,s):q —
B,i):j
(I)(l ):J —

Ne

> o
s=1

Ne

>

s=1

(B,i):j
(G,s):p

(B,i):4
2l

(Byi):j _
. s =0

(B,7e(i)):
(QK,7h(s)):p,a’
(By7e(i)):d
(VO,mn(s)):p,q°
(B,7e(4)):j
(Gy7e(s)):p
(B,7e(i)):j
(A,7e(8)):p,me ) (g)
(By7e(i)):d

(B,7e ()l (p),q”

(B,Te(1)):d
gl
(B,7e(1)):3
(A,7e(s)):mTe () (g)’
_ g (B,e(i)):d
(gm0
B,71e(1)):3
(BT

(205)

:0’

=0.

F.4 FINAL FORM OF THE EQUIVARIANT POLYNOMIAL LAYER

The final form of E(U) after solving all constraints are given below for each entries:

1. [E(W)](Q ) is given by

with constraints

(Qyi):5
(I)(Q i): p,

D
1)

WIEY = >0

p=1

z)gk
(Q:2):p,k

(Q,i)
p,k ?

_ p@r@)k

(@7 (i) ok (206)
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2. [E(W))" is given by

D
K,i K,i):j.k K,i
[E(W)]Ek )= Z‘I)EK@;:;J@[ ];,k )’
p=1
with constraints
(K ,3):4, (K,7(4)):3,
Bl = B 207
3. [E(W)]( ) is given by
D
Vi V,i)ij.k Vi
B =S el )i,
p=1
with constraints
(Vyi):5.k (V,7(3)):4,%
Pyt = P (208)
4. [E(W)]( ) is given by
Dy,
0,i 0,4):5,k 0,i
EWY =S o)t mG0,
p=1
with constraints
(0 i’k (0,7(2)):3,k (209)

(0i):5'a —

5. [B(W)]{%" is given by

ne D
JrZZ(I)GS)p

s=1p=1

+Z¢(ggﬂ

68

ne D Da

IS D B

slplql

TR » ol

s=1q=1

(0,7(4):4">q"

=222 Plaima WIS LYY Y el e

s=1p=1q=1

(G%)J
(AS)pq

(G,i):g
(Bg)Pq

TEED 3 3 3t

s=1p=1q=1

ARES o

s=1q=1

(B s) + (I>(G ©):j

B,s)
p,q
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with constraints

(Gi):g _
(I)(QK 8):p,q

(G,i):5
(I)(VO $)pa

H(G):d
(G s):p
(G,i):5
(As)pg —
(G,i):j
(I)(B $)pa
(G’Z) J
L)
(Gyi)y _
Clasyg =
(G77’)-J
(59 =
G,i):7
(I)g )J

Ne (
G,i):j

DK s

s=1

= 4 (G

Z:‘I%G,s):j =

(G,i):j
> ey

s=1

6. [E(W)]( ) is given by

CUTAES 3 3) SUCEMUITES 9 9 S MUEE

ne D
+ZZ(I)AZ)]7

s=1p=1

ne Da
(A k G,s (A,7): k: A s (A,i): k B.,s (A,i):g,k
Z‘I’(st IR BB Sl )+qu’(36>]q b7 + @y

(G7e(d)):5
(QK,7h(5)):p,q°
(Gy7e ()5
(VO,m(s)):p,q’

(Crre (@)
= PG (s)p

(s
(G,7e(9)):d
(A,re(8)):p,wle D ()
(G,7e(9)):d
(B,7e():wl ) (p) g’

(Crre(i)):s
= PGir(s))

(i
(

(Gyre(@)):d

(Asre(s):mlTe @ (g) (210)

_ p(Gorei))id

(B,7e(s)):q’

G,1e(1)):g
_ (@@

=0 (»#J)

L,

=0.

s=1p=1¢q=1
ne D Da

S D SCH TSR I

s=1p=1q=1

s=1p=1q=1

s=1qg=1 s=1g=1

69

B,s)
p,q



Under review as a conference paper at ICLR 2026

with constraints

AT g (Ae()sm {7 (k)
(QK,s):p,q (QK,h(s)):p,q ’
(A,i):5,k (A,Te(i));jﬂ-réfc(i))(k)
é(vo 5):p,q Q)(VO 7h(8)):p,q )
(Ai)ig ik < (ATe(d ))jﬂ-(Te('i))(k)
Ceop = PGl )
(A):g,k q)(A,TE( i)):5,w e (D) (k)
(A,s)p.q (A,7e(8)):p, nlrels ))( y?
DIk _ g (ATe(i )):d,mtme ) (k)
(B,s):p,a (B,7e(s )):‘n’éT‘z(s))(p),q’
(A,i):g,k (A,7e(2)): jméTe('i))(k)
(I)(G s) (I)(G Te(8)) ) (21 1)
(I)(A,z).],k _ (A,7e(i)):4,m e (k)
(A,8):q (A,7e(s)): Tr("e( ))(q)
(Ajg):g,k (A7 (i)):4,m{Te @) (k)
(I)(B s):q (I’(B Te(8)):q ’

(I)(lA,Z)AJ,k _ ¢§A7Te(z))'j’ﬂéTe(i))(k),
Q= g (Ai) ik
Z (I)(G syp =0,
s=1

(Ai):4,k
> PGy =0

s=1

7. [E(W)]( ) s given by

B = ZZZ‘I’E&??MWW QKS)+ZZZ@E533>’pqWW]é,VqO’S’

s=1p= lq 1 s=1p=1q9=1
ne D D Ne
+ZZ¢E§3T PR IP Ik v B (5oymalV]
s=1p=1 s=1p=1q=1 s=1p=1q=1

Z(I)(szk (Ga)_i_zz(bgi:i)):j]k (A5)+Zz¢ggi))qu Ba)+(I)(Bz)jk

s=1g=1 s=1g=1
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with constraints

(B,i):,k
(I)(QK s)pa

(B,i):4,k
0.5 =

(B,i):5,k
2G)p

(I)(BJ)AJ;

(As)pa

(Byi):gk _

(B,s):p,q

(B,i):,k
25s)

(B,i):4,k
D (als)q

(B,i):5,k _
(55

(I)(B,z).j,k
s (B,i):j,k
> %G
s=1

Sazs

8. [E(b)]@ is given by

(B,7e(0)):m{me ) (5)
(QK,Th(s)):p,q )

(Bora()m e ()
= Qo (Npa

(Bore ()o@ ()
= QG (s)) )

(B,7e (1)) {me ) () k
(Are(s)pmle ) (q)
(B,7e(i)):m{me @) (), 3
(B,7e():ml™ ) (p) g

(B ()n7e D) () k.
=2cs)

(B,7e(i)):m{me ) (), k
(A7e(8):mTe N (g) 7

(Bora(i))m e ()
=B (s)q )

= (BT m @)k

212)

)

=0,

(G i) (G,i) QK s) (G,3) (VO,s)
Z Z Z PG WWIE + Z Z Z Py os)pg WG
s=1p=1gq=1 s=1p=1gq=1

(G o e oA RED S (G
% (G s @ (A s %
+ZZ%s>p EDIPIPIL Ll +ZZZ I L
s=1p=1 s=1p=1q=1 s=1p=1q=1
(Gz (Gs (G,3) (As (G,3) (Bs) (G,3)
Z‘b(o‘s) +ZZ‘I’<A5>q +ZZ‘I’<Bs>q +
s=1 s=1qg=1 s=1qg=1
with constraints
(G.i) _ & (Gre(®)
(I)(QK 5):p,q (I)(QK Th(8)):0,q’
(Gi) _ 5(Gre(d)
QW0.s)pa = PVOT ()
(Gi)  _ g(Gme(d)
LGy = P(Gire(s))p
@(G i) (G Te( ))
(A)a ~ 7 (A ()prl) (q)
(Gi)  _ (Gme(@)
(Bs)ipsa 7 (Byre(s):m ) (),
(G.i) (G,7e(2))
Cia) = PGim(s))
p(G)  _ Gl (@13)
(A (A () (@)
(G.i) (G,me(3))
(5.9 = P(Brra(s)a
G,Te
(I,g 4 _ (I,g (@),
= (Goi)
2 2sp =0,

Z‘b(g 9=
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9. [E(1))\" is given by

h D D
(A i) _ ZZZ(I)ESIZ(S)ZHJ WW] (QKS _’_ZZZCI)E‘I‘}QSJ)F(I WW]](D\:IO,S)

s=lp=lg=1 s=1p=1q=1
ne D ne D D ne
DWRTAATEES O WTRALTEES ST
s=1p=1¢g=1 s=1p=1g=1
YIUTETUEERS pwL I ILTRED W o LTSRN AL
s=1 s=1g=1 s=1g¢=1

with constraints

(Ad)j g (ATe()): w“e”))m
oKspa = LQK () pa
(A (Are(i >>.7r£fe<”><j>

(VO,8)pq — ~(VO,m(s)):p.q ’

(Ad)g g (Ae(i):m{Te@ ()
sy = PGr () ;
(A _ gAme(@):ml@ ()
(A,5):p.q (A7e(8)):p,ale D ()
(Ai): (Are(i)):m (e @ (5)

(I)(B ):p,q (I)(B Te(s)) (re(s ”( ).q

s ,Te(s ?
: e _ (214)
AT _ g(Ame()m e ()

(A T (Are()m (@)

(Ai): (A,re(i)):m(Te@ ()
(5.0 = (Bir(s))a )

Ai): A, Te .7r£""’(i)) j
(DE )i _ <I>§ (1)) (4)

9

N (A
)
Y PG, =0,
s=1
= o (A
> PGy’ =0
s=1

10. [E(b)]E-B’i) is given by

h D D D D
BT =2 33 Raima WIS + ZZZ@%&J W

s=1p=1q=1 =1q=1
Ne Dq B, ne D Da . ! ne Da D
+ZZ‘I’EGi>p ISR DBPIL LU IRES BB BE S L
—1 e s=1p=1gq=1 s=1p=1q=1
3 ofE o + 55 ol + 353 a{E e +
s=1 s=1qg=1 s=1qg=1
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with constraints

(B,i):j (B,7e(i)):3
(I)(QK 8):p,q (I)(QK Th(8)):p,q’
(B, Z) _ (B Te(z))
1 omma = VO (o) ma
o2 - oz
s):p Te(8)):p’
(p(B i):j (B,7e(i)):d
(A9)2a —  (Ayre(s))ipyrle ) (g)
(B,i):j (B,7e(4)):3
P (B.5)pa (D(B,Te(s))ZWéTE(S))(p)vq’
q)gg,z)).] _ (I)Eg,‘regi)))):j
@(B D (B:Te(i)):j (213)
(A9):0 7 7 (Ao ()l (q)
$BAI _ (Bire(d):d
(B s):q (B,7e(s)):q?
<I>(B i)y _ q)(B,Te(i)):j
(Byi)g
Z CGp =0

(B _
Zq’ws)j =

G INVARIANT LAYER
In this section, we provide a detailed computation of the invariant layer I(U) following the

parameter-sharing technique as the computation of equivariant layer above. We begin with the
formulation of I(U) below:

>y

D D
i K,s
Z Z (I)(QKS):WJ WW]I(?C?q )
=1p=1g=1
1

p=

VO,s
Z (I)(VO s): p’q WW]I(W )
p=

+
s= 1g=1
h D Dy ‘ D Dy
+ZZZ®EQ,S):p,q ’S JrZZZ(I)(K 9)pq gg’S)
s—lp—lq—l s=1p= 1q 1
h D, h
+ZZ ®vsyp.alV +ZZZ‘I’(Os>m e
s=1p=1q=1 s=1p=1q=1
ne D 4 ne D Day . ne Da D
222 PleanWET + 222 awa W + 233 Psmdl
s=1p=1 s=1p=1q=1 s=1p=1q=1
MNe Ne
Z(I)éGaS) (G Y + quﬂA s): q (A ) + quﬂg s) (B’S) + (le
s=1 s=1qg=1 s=1qg=1

(216)

G.1 COMPUTING I(gU)

Plugging entry-wise group action@into Equation[216] we obtain the following expression:

Z Z Z (QK,m, H(5)): p7q[WW](?K K

s=1p=1qg=1
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+ Z Z Z q)(vo M (s)):ps q[WW]z(XzO’S)

s=1p=1qg=1
D Dy

1535 3 S NSIN CERCVN

s= 1p 1g=1 p,q

D Dy

+ ZZZ@(K () [[W](KS) ' (M’?))l]

s=1p=1qg=1

+ ZZZ(I)(VTh . {[W](v,s) _Mv(s)]

s=1p=1qg=1

p,q

p,q

h D, D

+ Z Z Z q)éO,s);p,q |:<M’L()Th(5))) - . [W](Oy"'h(s))]

s=1 p—l q=1

+ Z Z (I)(G 7o s))p [[W](G’S) + ’YWL

s=1p=1
ne D Day

22 P ) ) {[W](AVS)}

s=1p=1qg=1
ne Da D

+ZZZ@(3 e (5)):(n)) =1 (p)g [[W](Bﬁ)}pq

s=1p=1q=1 ’

+ Z Py (15 )

' Z Z (I)EA"Tf;l(S)):(Wé”)—l(q) [[b](A’S)} )

s=1 q*l

+ Z Z g g |1

s=1qg=1

p.q

p,q

q

+ ®°. (217)
(218)

G.2 COMPARE COEFFICIENTS FROM EQUATION I(gU) = I(U)

In the following, we solve the equation I(gU) = I(U) forall U € U and g € Gy to determine the
constraints for the unknown coefficients ®.

Solving for I(U); = I(gU);.

h D D h D D
ZZZ(DQKS quW(QKS ZZZ (VOS quW}(VOS)
s=1p=1qg=1 s=1p=1qg=1
’ hq D Dy h I; Dq
+2_2. 2 oW + 2.0 Vscoywa Wiy
s=1p=1gqg=1 s=1p=1g=1
D D, h D, D 4
+ ZZZ‘I)(VS p,q 1(7‘/;;) + ZZZ(I)(QS)%q[W]z(%S)
s=1p=1q=1 s=1p=1gq=1
Ne D Da Ne
159 SARNIGTEEES 39 3) STNTGTENS 3) 99 e TG 18
s=1p=1 s=1p=1gqg=1 s=1p=1gqg=1
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i@iG (Gb)_i_iZq)zAs)q (Ab)+nZ€Zq)zBs (B’S)J’_qﬂL

s=1 s=1qg=1 s= 1q 1
h D D .

= ZZZ(I)Z(QK,T}?I(S))W q[WW (QK g + ZZZ (VO,T,?I(s)):p,q[WW}Zg"/qO78)

s=1p=1q=1 s=1p=1q=1
h D D, . h D Dy 1

2.2 qﬂ(m1<s))~pq{[W}(Q’s)'(M’58)) ] D DD Pl pq[[W](K’S)'(MIES)) }
s=1p=1q=1 T - p,q s=1p=1q=1 "

h D D, h D, D .

1525 UM (G LETRVE IS v v oL G R
s=1p=1q=1 h - Lok — 1p=1qg=1 p,q
Ne (G ) ne D Dy (A )

+;;¢(Gn (s))p[[W] ot } +;;;¢ZAT (8)):p,(w$) =1 (q) [[W] ’ ]p’q

+ZZZ‘I’(3 e 1(9):(n)) " (p)a {[ 1 S)} Zq’lc ! s>>< ](G’su%)
s=1p=1q=1 s=
ne Dap

LD D) DL TR . (AS)} +ZZ@ZB@ (&) [V’](BS)L“L(F
s=1q=1 s=1q=1

Using lemma[F.I] we obtain the constraints:

2@K,s):p,q = (I)zQK,T;l(S))tp’q’
(I)zVO,S):p q (I)zVO ()
Pt o)ma = 0
Qi r ())pig = O
® Wt (5)mg = O
0,7 () = O
®lesp = V6t ()
®la,5)pg = q’EA,T;l(s)):p,(wé'*))*l(q)’

®B.5)p.0 = q’(B,r;l(s)):(wé”)fl<p>,q’

@) = i)
4,59 = @( At ()i () =1 (g)
PB5)a = P oo
Pl = i,
2 QG = O

Z(I)(G o1 (s)) =0.

Therefore:
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(I)EQK,S)zp,q = é’EQKﬂ'h(S)):p»Q’

(PZVO,S):p,q: éVO,T;L(S)):p7q7
%Q,S):p,q =0,
fK,S):p,q =0,
Z(“/78):17711 =0,
(©)pa =0,

(a0 = (G re ()
im0 = Y ()iprt @)
(Bypa = ‘PEB,Ms)):wS’(m,q’
(.9 = P(ar(o))
Plrsrs = a0

EB,S):q = (b(B,Te(s)):q’

Ne
Z (I)EG,S):p =0,
Z Qg ) =

H IMPLEMENTATION DETAILS OF THE EQUIVARIANT AND INVARIANT
LAYER

(219)

In this section, we provide implementation details for the equivariant and invariant layers described
in the previous sections. The bullet notation e is used to indicate index-wise equality. For example,
2;,e denotes that all values along the second index are equal, i.e., z; ; = x; j» for all pairs (4, 71)-

Based on the constraints derived in Section we express all formulations using bullet notation,
which provides a more practical and concise format for implementation. This notation not only
streamlines the empirical realization of the constraints but also clearly highlights the underlying
parameter-sharing structure. Each summation written in bullet notation is implemented using Py-
Torch’s einsum, as detailed in Section For certain parameterization constraints that are not
straightforward, we rely on Propositions and Corollaries from Section [H.1] to

present them in bullet notation.

H.1 EQUIVARIANT CONSTRAINT REDUCTION TO BULLET FORM

Proposition H.1. Under the parameter sharing constraint:

H(G-)d — (G ()
G,s G,Te ’
(n,_, )51;(@704 ., ( (s)):p

Iyt EG,s):j =5

e G,i):g .
pR @(G,S);p =0, forp#j,
we can write the summation

Sy

s=1p=1

@\ - (4 (Cood WG — - (G0 [p1(Gi)
wl; +ZZ(®(G,O):1)> 22:(‘1) ) Wi,

s=1p=1
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(@7 _ G

Proof. From the constraint ® Goyp = LCir(s)p WE obtain:

p(Ci)id _{(wl)ﬁ; if i # s,

G,s I if s —
( ):p (@2)% if7 =s.

To determine the constraints on (¢1)7 and ()7, we examine two cases:

Casel: p=j
From the constraint .
~ (G _
> Py =L
s=1
we substitute the expression for ® and obtain:
(p2)] + (e = D(p)] =1, = (p2)] =1—(ne = 1)(21)}.
Case2: p#j
From the constraint .
~ (G _
> Py =0
s=1

we similarly obtain:

(p2)y + (ne = D(e1)) =0, = (2)) = —(ne = (1)

Combining both cases, we conclude with the following expressions (i # s,p # j):

G,i):j 1
OO =1 (ne — 1)(¢1),

G,i):j j
EG s))J‘ = (o1

(220)
G, )
Ble i = —(ne — V(@13
(Gyi)g _ j
‘I’(G,s):jp = (p1)y-
We have the following chain of reduction:
Z Z (G i): J (G s)
(G,s): p
s=1p=1
G,s (G,i):4 (G,s)
= Z DG WIS + (G ) W
s=1 \p#j
H(G1) G,s (G.9) Gi (G.9) G,s) (Gi):g (G9)
_ZZ (Gs] ( )+Z(I)(sz ( )+Z(I)(Gs] +(I)(G,i):j'[W]j .
s#L p£] P#£] s#£i

Plugging Equation 220]into the expression, we obtain:

Ne

33 siamie

s=1p=1

=33 0l — (e = 1) Y (@OIWIED + (01)) SIS 4 (1 (ne — 1) (@)} W)

s#1 p#£] p#J sFi

=W — (e = 1) | (021D + ()W |+ 33 (0B WIS + (o)) > WS

p#i s#i p#j
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D D
= W9 —ne S (@0 WIED + [ S (WD + 3 S (@ WIS + (p1)] Y W)
p=1 p=1 s#i p#j s#i
D D
G, 7 s G,s
= WS —ne S ()W + [ 3T T W + (01)] Y w4
p=1 s#i p=1 s#1
D ne D
G, 7 s
= WS —ne S (I WIS + 303 (1)d [W] (6
p=1 s=1p=1

Define (p;)7 = (@Eg")fj ) - This concludes the proof of the proposition.

,9):p
O

Remark H.2. As shown in Proposition the equivariant layer for the W component naturally

introduces a skip connection [W}EG’I) . This behavior is absent in equivariant layers defined under the
symmetry group of standard Transformers and arises specifically from the group structure associated
with MoE Transformers. Thus, it highlights a distinctive feature of the MoE-specific equivariant
formulation.

Corollary H.3. Under the parameter sharing constraint:

oG _ &(Gie(3))
G = QG r.(s))"
(Gii)
;1 <I>(G 5 = 1,
we can write the summation
(G 2) (GVS) (G i) W(Gss) _ (Ge) (G,i)
Z‘b oW ' +Z( @ -)) Wi Me (‘I’(G,-))l (W=

Proof. Applying Proposition with D = 1 and renaming the index, we obtain the desired result
and thus conclude the proof of Corollary O

Proposition H.4. Under the parameter sharing constraint:

(A,8):5,k _ g (ATe(0),m (e (k)
n(G s)p (Gie(8)):p ’
S 2 (Ad)gk
2 %@ o =0,

we can write the summation

D
S ot =SS (wa), e - Yo (ofd),

s=1p=1 s=1p=1 p=1

Te(4)):,m{Te (@) .
Proof. From the constraint <I>EA Z))ka @Eé’;gs))))fp’ <) we obtain:

ek _ [ (p1)y ifi#s,
(G.5)p (a)) ifi=s.

From the constraint

Ne

(Ai):5,k
> PGy =0
s=1
we substitute the expression for ® to obtain:

(ne = 1)(p1)j + (92)] = 0= (p2)] = —(ne — 1) (1)}
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We conclude the following expressions (i # s):

Ai):g,k
(I)EG s))jp ((pl)P’

Ai):g,k i
A" = —(ne = (1)),

We consider the following chain of reduction:

YDPILITHILULCEES 3) BRIl ‘GS’+Z¢§2%2‘“ W

s=1p=1 s#i p=1
D
= 3 VI - (- DY W
s#i p=1 p=1
D . .
P2 SEVITFEES SV B SIS
s#i p=1 p=1
ne D ) D
=22 (WIS —ne Yy (e WIS
s=1p=1 p=1
Define ((pl)é = (@Eé:g;') v’ this concludes the proof of the proposition. O
Corollary H.5. Under the parameter sharing constraint:
(Gi):d
Z (I)(G s) 0,
(Gl) _ (G7e(i)):g
@(G 9 = PGir(s)
we can write the summation
(G.) LN (@0 p(Gus (G.0) G
Z%S] D=3 (G07) B —ne (2(G0)7) 1.

s=1

Proof. Applying Proposition[H.4| with D = 1 and renaming the index, we conclude the proof of the
Corollary. O

H.2 EQUIVARIANT LAYERS WITH BULLET NOTATION

1. Weight sharing form for [E(W)];%l)
From Equation 206}

Qi) k _ 5(Q,7(1)):4,k
(I)(Q i):p,k (I)(Q,T(i)):p,k:’ : (221)

Since the constraint is satisfied with any 7, we obtain the following weight sharing form:

D

Qi Q.i

[B( Ek)=Z@ z(nk)'
p=1

2. Weight sharing form for [E(W)];Izl)

From Equation 207}
(Kl)ﬂf _ K T(@)5.k
q)(K i):p,k (I)(K 7(3)):p,k’ (222)
Similarly, we obtain the weight sharing form:
D
(K,3) _ (K,0):5,0 (K,i)
B = onco i wiy".
p=1
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3. Weight sharing form for [E(W)]%Z)
From Equation 208}
(Vi)gk & (Vi (9):4,k
(I)( Vii):pk (I)(V'r(z)) p k! (223)

We obtain the weight sharing form:

D
Vi V,e):j,@ Vi
BWLE = v
p=1
4. Weight sharing form for [E(W)];iz)
From Equation 209
(0,i):5',k (0,7(3)):5,k
0.7 = POr)ina (224)
We obtain the weight sharing form:
(O,0):0 O,z)
[E( Z P00 Wi
5. Weight sharing form for [E(W)]EGZ)
From Equation 210}
(G,i):j _ &(Gite(4)):
(I)(QK s)pq CI)(QKaTh(S)):Pv‘I’
(G,i):j (G,7e()):g
W 6ma = BWOm)ma
(G,i):5 (Gy7e(4)):g
(I)(A 8)p,q q)(A,Te(s)):p77r£Te(S))(q)’
(Gi):g (Gi7e ()5
(I)(B s)ip,q (I)(B'r (8)):m ('fe( ))( ).q
(G,i):j (G,7e(4)):5
Pas)q ¢)<A 7e(s))miTe ) (q)
(G,i):5 (G,7e()): J
C(B.sya = P(Blir(9)a
O _ G
(Gi):d _ (Gy're(i))ij
Paow T Ui

Ne

G,i .
) PG =0 (p# 7).
(Gyi):g
SZ ey =1L
Z o7 =0,
=Gy _ (G (i)
(Gos) =L

Using Proposition and Corollary [H.3] we obtain the weight sharing form:

[E( (Gl) ZZZ@ ')] WW]QKS)

s= 1p 1q 1
+ZZZ@(G')J WW](VOS
s=1p=1q=1
D
(Gl +ZZ(®(G ) ](G,s)_neZ(q)Eg::;E;>l[W]l()G,i)
s=1p=1 p=1
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ne D D
1593 SCETIRUGTEES 39 i (e W RUAE
s*lp*lq*l p=1gq=1
Ne D D
+ZZZ<¢)(G:)J ) (Bs +iz(¢(c ) [W}Z()i,i)
s=1p=1gq=1 p=1qg=1

+ Z ((I)(G J0): J) b(Gs) — ((I)gg ; )1 b))

#3030 (olG), B + 3 (w50, b
q=1

s=1qg=1
ne D D
(G,0):j (B s ,0):j (B,i)
+ZZ(<I>(B.)q) +Z(q> .)q) (
s=1g=1 q=1
+ @gG’.):j.
6. Weight sharing form for [E(I/V)];fllC 1)
From Equation 211}
(Ad)g,k (A, 7e(i)):5,m (7@ (k)
q)(QK,s):p,q - qj)(Qf(ﬂ'h(s)):p,q ’
(I)(A,i):j,k _ (A,7e(i))1j,m e (D) (k)
(VO,s):p,q (VO,m1(s)):p,q ’
(Ai)igk  x (Are(d):d,m e (k)
(A8)P,0 — 7 (A7 (s)):prlTe D (q)’
(Ai):g,k _ (I)(Aﬁrﬁ(i));jﬁﬂgfe(i))(k)
(B,s):p,q (B,Te(s)):frgTE(S»(p)’q’
BTk _ g(Ame()gm e (k)
(A, S):q (A, Te(é)) 7.‘.(7'9(5))( ) )

(A,i):5,k (A,7e(4)):5,m (e ) (k)
CBs)q = P(Bir(s)a :
(I)gA’Z)']’k _ (bgA,Te(z)),mee(i))(k)

)

(Ai):g,k (A, 7e(1)):4,m (e () (k)

n(G,s):p = <I)(G,‘re(s)):p ’
S HAa)ak
sgl q)(G ) P o O,
(Ai):g,k _ (I)( e (1)):g,m (e ) (k)
(G,s) (G,7e(s)) )
=0.

S (Ao
PR N
Using Proposition[H.4]and Corollary [H:3] we obtain the weight sharing form:

CUEE D9 S I

s= 1p 1q 1
h
FY Y el e
s=1p=1q=1
D
+2;Z:1(¢Eé -)p ) (G ¥~ 2”6( (G:;Z)’) [W]ZSGJ)
s=1p p=
ne D Da D Dgy 4
D HIC T [WL%Z’SWZZ( (ee), Y
s=1p=1qg=1 p=1g=1
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33 (ofa2

s=1p=1

SN (elh) )

slplql

+ ZZ (‘I’Eg o)

s=1qg=1

+ Z (efa)?

+ZZ(<I>(A )

slql

+ Z (o223

Ne

+ZZ(¢EE-)Q )

s=1qg=1

+ q)gA,o):j,o.

7. Weight sharing form for [E(W)]\7".

B,s (A,0):5,0
) Wl ’+Z(%->J

°), B+ (o5

%), W + Z( o), W
é?’;”+ZZ( Baa), W)

p=1g¢=1

), w1

) b](G,s) (q)EA :;] )1 [b](G,i)
(A ) 4 Z (<I>(A ) b]((IA,i)

), 1t

(Bs +Z(

.) s ) bL(IB,i)

From Equation 212}

B DI _ g(Bre(@)m{e) (5)
(QK,s):p,q (QK,Th(s)):p,q )
(B.i):j.k (B,7e(1)):m{me ) (5),k

20,50 = 2O () ma
(Byi)ijk _ g (B,7e():mlTe @ (5) k
(As)ipsd (Ao (s))p,wl™ P (g) |

Bk _ p(Bre@)me® () k
(Bo)2d— (Byre(s))m ™ (0),0”
(B _ o (Byre(i)im{7e™ (j),k
(A,s):q (A,7e(s)): (Te(*))( ) )

Ved (7)) (Te ()
(I)gBﬂ)'Jvk — ‘I)ng e( )) e ( )7k,
(B,i):5.k _ a(Bire(d)m e () k
‘I’( )7 =P (o) :
(Byi):g,k
82 e =0
(B,i):5.k _ a(Bire(d)m e () k
‘I’( ) = QG (s)) )
(Byi):g,k
S; o)t =0,

Using Corollary @, we obtain the weight sharing form:

B3 =
s= 1p 1q 1
h
DN RRCHE
s=1p=1q9=1
+ZZ(‘I’ i
s=1p=1

) e - S (o

DD I BRI

WW](VO )8

°)p

82

), wies

(B,1i)
P.q
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Ne D DA

DU CHRRIN éﬁﬁ+Z;( NLY

slplql p=1

+ Z Z ( (Ao ) Wi +

s=1p=1

Mo

(B,e):0,k (A7)
(‘I)(.A,o):p7o>4 [W]p,J

1

=
Il

+§jZZ(, 1), éiwiqf;(@w 5, W]

slplql

+ZZ( (B k) (BS)JFXD:( 3 ) W

slql

£ 32 (0(), B0 - (3357, 1
. )
#3080, b+ S (ol ), gt
s=1qg=1 ]

Ne |
-5 (o), o+ (o),

S Sl - el e

s=1g=1
B,e):e k
+ o7
8. Weight sharing form for [E(b)](¢).
From Equation 213}
(G,i) (Gy7e(4))
CaK.sma = P@QK () pa
(Gyi) (G7e(4))
CWo.sypa = QWO
(G,i) (G,7e(3))
(I)(A 5)p,q (I)(A,Te(s)):p,ﬂ'ye(sn(q)’
(G,) (Gi7e(4))
(I)(B s)ip,q (I)(B Te(8))em (Tc( ))( %.q
(G)  _ 4(Gme(d)
Cais)g (I)(A Te(s)):mTe () (q)
(G,))  _ 5(Gi7e(i))
C(B.s)a = P(Blir(9)a
gG i) (I)(G Te(l))’
(G,i) _ §(Gire(3)
Yaor T amenw
S (G _
2 % =0
(G,i) _ (G7e(4))
P TPemey
> (G7/L') —
> <I>(G’S) =1
s=1

Using Propositioanjl and Corollary [H.3] we obtain the weight sharing form:

(G V= Z Z Z (I)(QK °): p,q WW]:E?%K )

s= 1p 1q 1
h
(VO,s)
+ZZZQ)V00)quW]p7q
s=1p=1g=1

&3

(A7)
P.q

(Bi)
P.q
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D
30N (#E2,) VS - > (902, VS
s=1p=1 p=1
ne D Da D Da 4
EDIDIPIL i BRLLVREDDPIL 2w Ly hrs
s=1p=1q=1 p=1qg=1
ne Da D o Dy D '
FI DD (#(50) WIS+ 30D (050 IV
s=1p=1g=1 p=1qg=1

HOD + Z (®(G), 01 = ne (2(G3), b1
£33 (05, <AS>+§A:<«D8:3)

s=1g=1 q=1
CNNA (o) N (G
G,e Ge B,
+2200 (2(5,), B + 37 (2(5,), b
s=1g=1 q=1
+ ®§G7.)

9. Weight sharing form for [E(b)]gA,i)_

From Equation 214}

P(Ai) (A,7e(0))im {7 ) (5)
(QK,s)p,q — * (QK,m(s)):p,q )
(i) _ g(Are@):m e (j)
0 9pa = PO a0
(Ad) _ Ame(@)m e ()
(A)pa (A ()pmt™ ) (0)
oA (Are(@)im 7D ()
(Bis)pd — ~ (Byre()nl™ ) (p).g”
(Ad) _ g(Ame@)ml™ ) ()

(A,s):q (A,7e(s)): Tr("e(s))( )7
(Ai)j _ g (Ae ()i ()

50 = B )

q)gA,i):j _ q)gA,-re(i)):wéTE(m(j)
(Asi):j _ (AT ()i ()
Gy = 2@ !
LA _
L 2G, =0
(Asi): _ AT (@) ()
(Gs) (G7e(s)) ’
Z¢AW =0.

Using Corollary [H:3] we obtain the weight sharing form:

(Aji) (A, K,s
[E(b)]J Z Z Z (I)(QK ®):p,q WW]I(’% :

s= 1p 1(1 1
h
22 Zl Zl A ormrpa VWIS
s=1lp=lgq
D
F 503w, Wi - S (ofd), e
s=1p=1 p=1
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ne D Da D Dy
FYSS (R ) WA 0 (ales. ) wI
s*lp*l qg=1 p=1gqg=1
D
+ZZ( -)p ) Wy +Z( (A.)p,) WY
s=1p=1 p=1
SIS (e, W+ S5 (ofg,),
s=1p=1g=1 p=1q=1
ne D D
#3030 (o), Y + X (o), s
S=1qg= q=
+Z( e USSR C A NOES
F 355 (wiA21), it + 35 (04433,
s=1g=1 q=1

Z<(I)(A ,0): ) (A,s)+ (CI)E:?; ; )4[b]§A,i)

£35S (afh) e +z (afee),

s=1g=1
Ae):e
+ iAo,
10. Weight sharing form for [E(b)];B’i).
From Equation 215}
(Bvi):j — (BaTe(i)):j
(QK,s):p,q — ~(QK,mh(s)):p,q’
H(BDJ (B,7e(1)):5
(VO,s): p,q (VO,m(8)):p,q°
(B,i):j (B,7e(2)):5
(I)(A 5):p,q (I)(A,Te(s)):p,ﬂéTE(S))(q)’
(B,i):j (B,7e(2)):]
(I)(B 5):p,q (I)(B,Tg(s)):‘lréTC(s))(p),q’
(Bsi):j _ & (B,7e(i)):d
®(as)q (I)(A Te(s)): w“ﬁ“”(q)’
(B,i):j (B,7e(i)):3
C(55)a = P(Birels)ia
B,i B,Te
g ,)J:q)g ) ())J
(B,i):j o (Bﬂ'e(i))lj
(E(G,s):p - (I)(G,'rc(s)):pV
S FBa)y
52:21 (D(G,s):p - 0’
(B,i):j _ 5 Bime()):d
L) = (s

& 5B
Sy =o

Using Corrolary [H.5] we obtain the weight sharing form:

Z Z Z PG ic oyl W WIS

s= 1p 1q 1
:J (VO,s
+ Z Z Z q)(VO ®):p.q WW]P#I )
s=1p=1qg=1
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SR ACEHN

s=1p=1

Y3 (ofi),

s=1p=1q=1
ne Da D

DR HACEERE

s=1p=1qg=1

+ (@E?Ii”‘)l B — g

+ZZ(‘I’§§-) )
s=1qg=1
ne D

DM CEARC

D
G ,8) Z e ((I)(B ) ]) [W]

p=1

W+ 303 (o)

p=1g¢=1

Pﬁ]é)—FZZ(

p=1gqg=1
(B,e):j (G,i)
((I)(G °) )1 U

As) +Z< (2. .) ) (A,i)

D
B ) (B,®):j (B,i)
+ Z (‘D(B °): q) q

H.3 INVARIANT LAYERS WITH BULLET NOTATION

From Equation 219

PoK,s):

pq (P’EQKyTh(S)):P#p

(I)EVO’S):p,q = (I)EVO,Th(S)):p,q’

(I)zQS):p,q =0,

b

zKﬁs)rp,q =0
¢2V7x9):p7q =0,

i _

(0,8):p,q — 0,
7 _
(A,8)pg —

P(p,5)pg = (I)zB o

(b(A:e(s)):wS’ ()78 (q)

()78 (p).a’

(I)(A,s):q = (I)(A Te(8)):m ()’
(PEB,S)Z(] = CI)(B,TC(S)):‘I’
?}G,s):p = (I)EGJe(S)):p’

2 Pasp =0

)

<G 9 = PG ()

Z <I>1G 5= =0.
Which results in the weight sharing form:

1), =

M;“
WE
WE

(I)zQK,o):
1

V)
Il
-
]
I
-
Q
Il

I
M?‘
WE
Mc

1

»
Il
-
s
Il
-
=)
Il

86

p,q

QK,
b [WW]( s)

q)EVO ®):p, q[WW](VO »9)

N, W]

i), W]

(A7)

p,q

(B,i)
P.q
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Table 8: Summary of key dimensions involved in the implementation

Symbol Description

d Number of input channels for the equivariant and invariant layer

e Number of output channels for the equivariant and invariant layer

D Embedding dimension of the input and output sequences of the transformer block
Dy =D, Embedding dimension for key and query vectors in the transformer block
D, Embedding dimension for value vectors in the transformer block

D, MOoE hidden dimension

h Number of attention heads in the transformer block

b Batch size

Ne Number of experts in MoE layer

D’ Embedding dimension of the invariant layer’s output

Table 9: Shapes of input terms used in the implementation

Term Shape
[W},&Zf”? [b,d,h, D, D,
Wire™ [b,d, h, D, Dy]
[W}%,’f) [b,d, h, D, D,
Wy [b,d, h, Dy, D]
W) [b,d,ne, D]
[b] () b, d, n]
WWSD [b,d, h, D, D]
Wwle’?  [b,d,h,D, D]
[W}Z(ﬁiﬂ [b7 da nm Da DC]
(b)) [b,d, ne, De]
W) [b,d, ne, D, D]
(b)) [b,d,ne, D]
Ne 1 Ne ) G
£353 (e - 3o, ) W
s=1p=1 Te s=1
ne D Da
1D 9) 9) SULIRIGE
s=1p=1g=1
ne Da D )
D DD Pnaped WL
s=1p=1q9=1

Ne ) 1 Ne )
i = i (G,s)
) (%,.) L3 0t ) 1
B 1

+ZZ‘P<A-> ol
s= lq 1

+ZZQ)(BOM )
s=1g=1

+ @,

&7
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H.4 EQUIVARIANT LAYERS PSEUDOCODE

H.4.1 [E(W)](Q ) PSEUDOCODE

[E( Z‘b@ AW,

.« H(Q:0)
(I)( °):p,e
Shapes:

LV
[W](Q Y b,d,h, D, D]
(Q,®):5,0 |
(I)(Q,O):p,o : [e>d> D, D]
Pseudocode: einsum(bdhpk, edjp — behjk)

H.4.2 [E(W)]EK ) PSEUDOCODE

. &0)e
(I)( °):p,e
Shapes:

K.,
[W]i),k )
WISS? < [b,d,h, D, D]
(K,0):j,0
(I)(K,O):i),o : [e,d, D, D]
Pseudocode: einsum(bdhpk, edjp — behjk)

H.4.3 [E(W)]SV” PSEUDOCODE
(Vz) Z(I)(Vo) 25, o (Vl).

V,e):j,e Vi
* (I)E g;o[W]](),k)

Shapes:
W% [b,d, h, D, D]

V,e °
B2 < [e,d, D, D]

Pseudocode: einsum(bdhpk, edjp — behjk)

H.4.4 [E(W)]\%" psEUDOCODE
(0,9) - (O,9) (0,4)
O,i O,e):0 k O,i
[EW);" = Zq’(o,-):mq[m]‘,k :

o G000 (0,1)
(I)(O,o):;),c [W]j,k:

Shapes:
(09) .
[W]Jk : [b,d, h, D,, D]

(0,0):0
®g ek [e,d, D, D).

Pseudocode: einsum(bdhpk, edkq — behkq)
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H.4.5 [E(W)]*" psEubOCODE

D D h
[E(W)]EG ) _ Z Z Z (G ') J WW] QK s)
p=1qg=1 s=1
D D h
+ Z Z Z (I)E\C/:O.) g WW](VO ,5)
p=1qg=1s=1
Ne D ] ‘
G %) + Z Z ((I)(G ) ](G,s) —n Z (@Eg::gz)l [W]éG,l)
s=1p=1 p=1
+ EZZ( oL, WIS (ol5E,), gt
s=1p=1 q=1 ' p=1q=1
+ZZZ( (5o ) §i3>+22( R ) Wi
s=1p=1q=1 p=1q=1
+Z(¢§2. N B e (@(G07) e
Ne Da
+ q)(G ')J (A,s)+ @(G’:)ff [b](A,i)
8 e o),
D
#303 (of5ap), b+ 3 (), e
s=1¢g=1 q=1
+ (e,
Shapes and pseudocode: See Table[10]
H.4.6 [E(W)]EA ) PSEUDOCODE
A h D D
BV =323 egnd s VWIS
s= 1p 1q 1
h
PSS el e
s=1p=1qg=1
ne D D
300 (#E"), WL - one (2E057), W
s=1p=1 =1
Ne pD Da e ’ A .
LI Clowied Wil 55 (2ae), g
s=1p=1gqg=1 p=1q=1
ne D
#2230 (#(h05r), WL + Z (el3352), W7
s=1p=1
3 (o), W + 3 (o), s
s= 1p 1qg=1 p=1qg=1
D
3 (o), IS - (o),
s=1¢g=1 qg=1
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Input Input shape Weight Weight shape  Einsum
Ww]SeE) [b,d, h,D,D] cpggK{) - le,d,D,D,D] (bdhpq, edjpqg — bej).usq(—2)
WWi>* [b,d,h,D,D] @SS le.d, D, D, D] (bdhpq, edjpg — bej).usq(—2)
[W],(,G’S) [b,d, ne, D] (@Eg.;p) ) le,d, D, D] (bdnp, edpq — beq).usq(—2)
[W]](DG’S) [b,d,ne, D] Ne (@Eg:;;) le,d, D, D] (bdnp, edpqg — benq)
W] [b,d, ne, D, D,] (@‘G 0)id ) le.d, D,D.]  (bdnpg, edjq — bej).usq(—2)
[W]I%ii) [b,d,ne, D, D] ( Ae ) le,d, D, D.] (bdnpq, edjq — benyj)
[W]}ff,’s) [b,d, e, De, D] (@Eg e ) le,d, D, D] (bdnpg, edjq — bej).usq(—2)
Wi e D] (2 :i 5.), led DDl (hnpg,edjq — benj)
(b)) b, d, n.] (e€27),  led.D) (bdn, edj — bej).usq(~2)
1] (C-2) (b, d, ] e (@gg;;gv ) . [ed.D] (bdn, edj — benj)
b)) [b, d, ne, De] (¢Eij3f3> o ledD] (bdng, edj — bej).usq(—2)
R [b, d, e, D] (@Eﬁ;:;{ )2 le. d, D] (bdng, edj — benj)
b)) [b,d, ne, D] (2593) . led.D,D] (bdng,edjq — bej)-usq(~2)
B F) [b,d, n., D] (2523) _ led.D,D] (bdng,edjq — benj)

oy e, D] (e = ej)-usq(0).usq(~2)

Table 10: Pseudocode for [E(W)];
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Input Input shape Weight Weight shape  Einsum
WWISE [b.d,h,D.D] oI le,d,D,D,D] (bdhpq,edjpq — bej).usq(—2).usq(—1)
(QKe)
O,s ,0):7,@ . .
[WW]S,/,; ) [b,d, h,D, D] (I)E(/"O?oj):p,q le,d,D,D,D] (bdhpq,edjpg — bej).usq(—2).usq(—1)

(G,s) (A,e):5,0 . .

[W1p [b,d, ne, D] (‘I)(G,.):p )1 le,d, D, D] (bdnp, edjp — bej).usq(—2).usq(—1)
W] b D) ne (SGU0)  [ed,D,D] (bdnp,edjp — benj).usq(~1)

(A,s) (A,e):5,0 . . . .
(Wlp.q [b,d,ne, D, D] Dyl ) le,d, D, D] (bdnpq, edjp — bej).usq(—2).usq(—1)
WA b.dne, D.D] (2(4737) le,;d,D,D]  (bdnpq, edjp — beng).usq(~1

p,q g Wy ey ) e (Av'):il%. 9 y Wy ) an7e jp - enj)USQ( )
(W) [b,d, ne, D, D,] (cb“"”") le,d,D,D]  (bdnpk,edjp — bejk).usq(—3)

.k y Wy lbey sy e (A,0):p,e 3 s Wy ’ PR, eajp EJR).usq
LI [b,d, ne, D, D,] (@Eﬁ;jgggf, )4 le,d,D,D]  (bdnpk,edjp — benjk)

W] [b,d, ne, D, D] (q»“v'”") le,d,D,D]  (bdnpg, edjq — bej).usq(—2).usq(—1)

p,q 9 Wy ey € (37.);.,(1 1 y Wy ) p(Le jq 6] 'LLSq US(]
Wik [b,d,ne, De, D] (®(52)5% le.d. D, D] (bdnpa, edjq — benj).usq(—1)

(Bo)ea),
Wi DD (F5) led, DD (bdnkq.edjg — bejk).usq(~3)
B,i ,0):5,@ . .
Wi bdne DDl (FU0), e d DD (bdnkg,edjq — benjk)
(b)) b, d,n] oG le,d, D] (bdn, edj — bej).usq(—2).usq(—1)
[6](Ge) b,d, n.] ne® i " le,d, D] (bdn, edj — beng).usq(—1)
Ui bdneDd  (eGaT) led.D) (bdng, edj — bej).usq(—2).usq(~1)
b5 ™" [b,d, ne, D.] oD le,d, D] (bdng, edj — benj).usq(—1)
(Ao ),
Urs bdne. D] (eA7I%) led. D) (bdnk, edj — bejk).usq(—3)
Uik bdneD]  (eeaT), led.D) (bdnk, edj — benjk)
i bdne, D] (Ft) led. DDl (bdng,edjg — bej)-usq(~2).usq(~1)
Bl bdne, D] (SF9%) led.D.D] (bdng,edjq — benj).usq(~1)
L e, D] (ej = ej)-usq(0)-usq(—2).usq(~1)
(Asi)
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+ Z (®E2)7) B —ne (2{F277) 1

35 (a0, w3 (a00), i

s=1qg=1

+Z( o) B+ (efa), bt

+ Z Z (Q)(A °):de ) (B $) 4 Z ((I)(A 3 zz ) b]gBﬂ')

s=1qg=1
Ae):j,e
+o{he,

Shapes and pseudocode: See Table [IT]

H.4.7 [E(W)]SB ") PSEUDOCODE

') [WW]Z()%K"S)

)p,q

(I)(B ’) ok WW] (VO,s)

Mb i Mo

(VO,e
s=1p=1q=1
ne D
+ZZ(¢'E2.§.]€) (GS) Zne( (Go)p )1[W]§JG,Z)
s=1p=1
Ne D D
P (38 i + 303 (#Ea), ivigs
s=1p=1¢qg=1 p=1q=1 B 2
D
+ZZ(‘I)(B o)ok) +Z( (2. .)1,, ) [Wléfi-’”
s=1p=1 p=1
1593 LT RUGTEES 39 LI KA
s=1p=1qg=1 p=1q=1
+ZIZ(<I>E§:§:’;) BS>+Z( Ko NUGTA
s g=1

# 32 (0(8), 160 - (3357, 1

353 (a5, + 3 (a1,

s=1qg=1

D ) [b]é“w(@Ei:ris:”“)gblé""”

RIS yE e
s=1gqg=

+ q)gB,o):o,k.

Shapes and pseudocode: See Table
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Input Input shape Weight Weight shape  Einsum

WWISS [b,d,h, D, D] DGk le,d,D,D, D]  (bdhpg, edkpq — bek).usq(—2).usq(—2)

[WW]S;O s [b,d,h, D, D] (I)Evo.)o) b le,d,D,D,D] (bdhpq,edkpq — bek).usq(—2).usq(—2)

[W]]S,G ) [b,d,ne, D] ( Eg ; > k) . le,d, D, D] (bdnp, edkp — bek).usq(—2).usq(—2)

W]ee b, d, n, D] ne (@(g0s") le.d, DD (bdnp,edkp — benk).usq(~2)

(W54 b.dne,D.Dal (@XI5Y) [ d.D.D] (bdnpg.edkp — bek).usq(~2).usq(~2)

[W]g},z) [b,d,ne, D, D 4] (@E}j pe )2 le,d, D, D] (bdnpq, edkp — benk).usq(—2)

W) b.d.ne, D, DAl (@525 )3 le,;d,D,D]  (bdnpj,edkp — bejk).usq(—3)

W) [b,d,ne, D, D.4] (@Eﬁ X p’k)4 le,d, D, D] (bdnpj, edkp — benjk)

[W]](f s) [b,d,ne, Da, D] ( (B, .) ) le,d, D, D] (bdnpg, edkq — bek).usq(—2).usq(—2)

w]sE) [b,d, ne, D4, D] ( BlEeY k) le,d,D,D]  (bdnpq, edkq — benk).usq(—2)

[W]ﬁ’s) [b,d,ne, Da, D] (@Eg e ) le,d, D, D] (bdnjq, edkq — bejk).usq(—3)

w)SED [b,d, ne, DA, D] ((IJ(B oo ) le,d,D,D]  (bdnjq,edkq — benjk)

[b](G) [b, d, ] (cp(B ) le, d, D] (bdn, edk — bek).usq(—2).usq(—2)

[b](G9) [b,d, ne] (@Eg :g )1 le, d, D] (bdn, edk — benk).usq(—2)

b)) [b, d, ne, Dal (@Ef;;jjk) o led.D] (bdng, edk — bek).usq(—2).usq(—2)

[b]L(IA’z) [b,d,ne, DAl (@Eﬁ:;:kL [e,d, D] (bdngq, edk — benk).usq(—2)

Ui (b, d, ne, Dal (cpgﬁﬁ :’k)B le, d, D] (bdnj, edk — bejk).usq(—3)

b [b,d, ne, D] (<I>§§j:§’:’k)4 le, d, D] (bdnj, edk — benjk)

[b]((IB’S) [b,d, ne, D] (@Eg:;;k) . le,d, D, D] (bdngq, edkq — bek).usq(—2).usq(—2)

[B]$% [b, d, n, D] (2(Zea"),  led: DDl (bdng,edkq — benk).usq(~2)
p{Be)iek le, D] (ek — ek).usq(0).usq(—2).usq(—2)

Table 12: Pseudocode for [E ()]
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Input Input shape Weight Weight shape Einsum
WWw]SeE=) [b,d,h,D,D] @Eg,p_) - le,d,D,D]  (bdhpg, edpq — be).usq(—1)
WWi> [b,d,h,D, D] @S, le,d,D,D]  (bdhpq,edpq — be).usq(—1)
We [b,d. e, D] (2(2),),  led.D] (bdnp, edp — be).usq(—1)
[W]](DG 9 [b,d,ne, D] (‘I’Eg .g p) le,d, D] (bdnp, edp — ben)
w54 [b,d,ne, D, DAl ®(F3 le,d, D] (bdnpq, edp — be).usq(—1)
w1s%" [b,d,ne, D, Dal @Y. e, d, D] (bdnpq, edp — ben)
W b.dne, D D] (0G0, ) [ed, D] (bdnpg, edg — be).usg(—1)
w]sE) [b,d, ne, D4, D] (@ECB’;:;W) le, d, D] (bdnpq, edq — ben)
[B](G-) b, d,n] (o), le, d] (bdn, ed — be).usg(—1)
[B](G+0) b, d, n.] ne (o), led (bdn, ed — ben)
B bdneDa (2G0.), led (bdng, ed — be).usq(—1)
[b]((IA 2 [b,d,ne, D4l (@Ei’:;:.)z le, d] (bdng, ed — ben)
)5 [b, d, e, D] (‘DECB’:;;q) o ledD] (bdng, edq — be).usq(—1)
[b]L(IB’Z) [b,d, ne, D] (@Eg::;:q)Q le,d, D] (bdngq, edq — ben)
<I>§G") [e] (e — e).usq(0).usq(—1)
Table 13: Pseudocode for [E(b)](C9).
H.4.8 [E(b)](©") PSEUDOCODE

h D D
BE)ED =SSN "aige, WK
s=1p=1gqg=1
h D D
SDIDIPIL ALy
s=1p=1q=1
+ZZ(®(G :;p) Zne (@(G ) ) [W}](?G’i)
1 1
s’rLE pD D . D Da e
+ZZZ‘I)EA::;% (AS +ZZ¢’( pql)
s=1p=1q=1 p=1g=1
ne Da D 4
DD (@) VI “ZZ( Do) VI
s=1p=1q=1 p=1g=1
G0 | N (5G9 G _p (9C)) G
+[p)@ >+Z(¢(G.)) B —ne (0G2) 11©
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+ HZZ (<I> ) ) bl 4+ Z (<I>(G ) [B](A)

s=1qg=1

+ZZ( (B°)Q) (B 9)+Z(q) Be): ‘1) ‘(JBJ)

s=1q=1
+ol9),
Shapes and pseudocode: See Table

H.4.9 [E(b))"" psEubocoDE

h D D
EO =33 DGR, WS

s=1p=1qg=1

h D D
DD WITAMLIE

s=1p=1q=1

ne D D .
> (&), e Z ne (@(Ges) WIS

s=1p=1 —

ne D Dgy
Dbl (CEERNTIEEED 9 o RN NILES

s=1p=1q=1 p=1q=1

ne D D )
£33 (olan.), Y + 30 (2., W

s=1p=1 p=1
+ZZZ(@“‘?.q) W+ 30 (o, L

s= 1p 1g9=1 p=1q=1

D
s=1q=1 q=1

n Z ( (A. .) b(Gs) _ (q)gé .; )1 [](G+)
+ZZ( (A, >> bl +Z (‘I’Eﬁ e ) [bI§*

slql

+ Z (‘I)Eﬁ :g ) §A7s) + (@E :g ) [b](A )

+ZZ( <B->:;> b7 +Z( (B-)q) [B)§0

s=1q=1
Ae):e
+ ol

Shapes and pseudocode: See Table
H.4.10 [E(b)]\"" psEubOCODE
h

(B i) _ Z Z Z (I)gglz)oj) - WW]](DCEIK,S)

s=1p=1q=1
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Input Input shape Weight Weight shape Einsum

[WW]](D%K’S) [b,d, h, D, D] (I)Eg’;(),::):p,q le,d, D, D] (bdhpq, edpq — be).usq(—1).usq(—1)
WWi* [b,d,h, D, D] S le.d, D, D] (bdhpq,edpq — be).usq(—1).usq(—1)
[W]ISG’S) [b,d,ne, D] (@Eg:g;) ) le,d, D] (bdnp, edp — be).usq(—1).usq(—1)
[W]éG’i) [b,d, ne, D] Ne (‘I’Eé:;;) ) le, d, D] (bdnp, edp — ben).usq(—1)

[W];ﬁl’s) [b,d,ne, D, D4 (@Eﬁ:g;.) ) le, d, D] (bdnpg, edp — be).usq(—1).usq(—1)
[W]l(,ﬁ]’i) [b,d,ne, D, D 4] (@Eﬁ:i;.)z le,d, D] (bdnpq, edp — ben).usq(—1)
[W]X}’S) [b,d,ne, D, D 4] (@E’::g;.)g le,d, D] (bdnpj, edp — bej).usq(—2)
A [b,d, ne, D, D] (@E;‘;:;;,.)LL le,d, D] (bdnpj, edp — beny)

[W],(;%s) [b,d,ne, Da, D] (@Eg:g:q) ) [e,d, D] (bdnpq, edq — be).usq(—1).usq(—1)
[W]é,B)i) [b,d,ne, D, D] ((I’Eg::g::vq)Q le,d, D] (bdnpq, edq — ben).usq(—1)
w)SE [b,d, ne, Da, D] @gg;g;ﬂ)s le,d, D] (bdnjq, edq — bej).usq(—2)
wss b.d.ne, Das D) (@F000,),  led.D) (bdnjg, edq — beny)

[b](G*S) [b,d, ne] (@Eé::g:')l le, d] (bdn,ed — be).usq(—1).usq(—1)
[b](G0) (b, d, ne] e (@Eé:;') ) e, d] (bdn, ed — ben).usq(—1)

[b]gA’S) [b,d,ne, D4l (@E’::;:)l e, d] (bdng, ed — be).usq(—1).usq(—1)
(b4 [b,d,ne, D4l (@Eﬁ:g:)Z e, d] (bdng, ed — ben).usq(—1)

[b]gA’s) [b,d,ne, D4l (@Eﬁ:g:)?) [e, d] (bdnj, ed — bej).usq(—2)

B bdne,Dal  (e4T7) [ed (bdnj, ed — benj)

[b]gB’s) [b,d, ne, D] (@Eg:g;) ) le,d, D] (bdngq, edq — be).usq(—1).usq(—1)
[b]gB’i) [b,d, ne, D] (@Eg:g;) le,d, D] (bdng, edg — ben).unsq(—1)

[e]

(e — e).usq(0).usq(—1).usq(—1)

Table 14: Pseudocode for [E(b)]g.A’i)_
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Input Input shape Weight Weight shape  Einsum
Ww]SeE) [b,d, h,D,D] @EQ I;)_J) - le,d,D,D,D] (bdhpg, edjpg — bej).usq(—2)
WWi* [b,d,h,D, D] S le,d,D,D,D] (bdhpq,edjpq — bej).usq(—2)
W)ee) b, d, n., D] (2(gey),  led.D.D] (bdnp,edjp — bej).usq(~2)
WY pdne Dl e (0{G037) e d. DD (bdnp,edjp — benj)
WL b.d,ne, DD (0 3; ) le,d,D,D]  (bdnpq, edjp — bej).usq(—2)
Wi bdine DD ($(R35.), le.d.D.D] (bdnpa, edjp — benj)
Wiis? DDl (eF1,) led:D.D) (bdnp.edjq — bej)-usq(~2)
(w15 [b,d, e, D, D) ( pLrd ) le,;d,D,D]  (bdnpg,edjq — beny)
[B](G-2) b, d, ] (e&?),  led.D) (bdn, edj — bej).usq(~2)
[B](G+0) b, d, n] (q>gg 07, led. D] (bdn, edj — benj)
b)) [b,d, ne, Da) (@Ef’:}”) le, d, D] (bdng, edj — bej).usq(—2)
[b]l(lA’i) [b,d,ne, D4l (@E]j oo )2 le,d, D] (bdnq, edj — benj)
b)) [b,d, ne, D] (25 :g ) _ led.D.D] (bdng.edjq — bej).usq(~2)
b)) [b,d, ne, D] ( )2 le,d,D,D]  (bdng,edjq — beny)

@SB")'J [e. D) (e — ej)-usq(0)-usq(~2)
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Input Input shape Weight Weight shape Einsum
WWIE™  [b.d,h,D, D] iy [e,d,D',D,D] (bdhpq,edipq — bei)
Wwi.2=) [b,d, h,D,D] O 0 aypg 164 D', D, D] (bdhpg, edipq — bei)
Wi b, d, ne, D] Biguyy  led.DD] (bdnp,edip — bei)
(W] b,d,ne, D, D] ¥ty o, led, D' D] (bdnpq, edip — bei)
[W];{Bq’s) [b,d,ne, D¢, D] @fB’.)mq le,d, D', D] (bdnpg, ediq — bei)
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Table 16: Pseudocode for Invariant Layer.
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Shapes and pseudocode: See Table[T3]

H.5 INVARIANT LAYERS PSEUDOCODE
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Table 17: Ablation study on network components for generalization prediction. Kendall’s 7 is
reported for models using only the MoE Transformer blocks, only the classifier hear, and both.

Component Used MoE Transformer blocks  Classifier head MOoE Transformer blocks + Classifier head
Kendall’s 7 0.775 0.597 0.788
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Shapes and pseudocode: See Table

I ABLATION STUDY ON IMPORTANCE OF MOE TRANSFORMER BLOCKS IN
PREDICTING MODEL PERFORMANCE

Experiment Setup. It is natural to ask whether the MoE Transformer blocks or the classification
head contribute more to predicting a model’s generalization performance. To investigate this, we
conduct an ablation study on the AGNews-MoE dataset by restricting the input to the neural func-
tional model. Specifically, we evaluate its performance when given access to: (1) both the MoE
Transformer blocks and classification head weights, (2) only the MoE Transformer block weights,
and (3) only the classification head weights. This allows us to assess which component is most
predictive of model generalization.

Results. Table from demonstrates that using only the MoE Transformer blocks results in a
Kendall’s 7 of 0.775, while using only the classifier head yields 0.597. When both components are
included, performance improves to 0.788. This suggests that the MoE blocks contribute most to
generalization prediction, while the classifier head provides complementary information.

J ABLATION STUDY ON THE EFFECT OF LAYER SIZE AND DEPTH

Experiment Setup. In this section, we examine how the number of layers and the hidden dimension
of each MoE-NFN layer affect the model’s ability to predict generalization on the AGNews-MoEs.
We do so by varying the hidden dimensions in {2, 4,6, 10} and the number of layers in {1, 2}.

Results. Table[I9]from Appendix [[Jshows that MoE-NFN achieves consistently strong performance
across a range of model sizes. Notably, even the smallest configuration, with a single layer and hid-
den size of 2, reaches a Kendall’s 7 of 0.784. In contrast, the best performance is obtained with two
layers of hidden size 10, achieving a Kendall’s 7 of 0.806. This demonstrates that while increased ca-
pacity can improve performance, MoE-NFN remains highly effective even under constrained model
sizes.
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Figure 1: Histogram of test accuracy distribution in the MNIST-MoEs and AGNews-MoEs datasets.

K ADDITIONAL DATASET DETAILS

To explore a rich landscape of Transformer-MoE architectures, we systematically vary eight core
hyperparameters in our study: top-K, activation function, training data fraction, optimizer (selected
from SGD, SGDm, Adam, or RMSprop), learning rate, L2 regularization coefficient, initialization
standard deviation, and dropout probability. Each plays a distinct role - train fraction dictates how
much of the dataset is fed into training, while the optimizer governs the learning dynamics. Learn-
ing rate, regularization, and initialization standard deviation modulate convergence behavior, and
dropout serves as a defense against overfitting. For top-K, we test values 1, 2, and 4 - representing
how many expert modules process a given token. As for activation, models flip between ReLLU and
GeLU.

We treat each hyperparameter dimension independently, selecting representative values before ex-
haustively combining them into a sweeping configuration grid. Early experiments highlighted that
the ideal hyperparameter landscape diverges drastically depending on optimizer type. Thus, we sep-
arate our configurations into two distinct families: one for Adam and RMSprop, and another for
SGD and SGDm. Table [I§]lays out the full matrix. These setups remain consistent across tasks to
ensure apples-to-apples comparisons. All models undergo 100 training epochs, with performance
snapshots at epochs 50, 75, 100, and the epoch of peak accuracy. Crashed runs are promptly dis-
carded.

Table 18: Hyperparameter configurations of the MoE Transformer Model Zoos dataset

Hyperparameter SGD-SGDm Adam-RMSprop

Top-K [1,2,4] [1,2,4]

Activation [ReLU, GeLU] [ReLU, GeLU]

Train Fraction [1.0, 0.9, 0.8] [1.0, 0.9, 0.8]

Dropout [0.2,0.15, 0.1, 0.05, 0] [0.2,0.15, 0.1, 0.05, 0]
Learning Rate - MNIST [1e-3, 3e-3, 5e-3, 1le-2, 3e-2] [3e-4, Se-4, 1e-3, 5e-3, 3e-2]
Learning Rate - AGNews [1e-3, 3e-3, 1e-2, S5e-2, 7e-2] [3e-4, 1e-3, 5e-3, 3e-2, Se-2]
Weight Init Standard Deviation  [0.1, 0.15, 0.2, 0.25] [0.1,0.2,0.3,0.4]

L2 Regularization - MNIST [le-6, le-4, 1e-2] [le-6, 1e-4, 1e-2]

L2 Regularization - AGNews [1e-8, 1e-6, 1e-4] [1e-8, 1e-6, 1e-4]

MNIST-MoE. The MNIST dataset (LeCun & Cortes}, [2005)), a staple in the vision benchmark
canon, presents 28 x 28 grayscale images of handwritten digits ranging from 0 to 9. The goal: clas-
sify the digit shown. Our model begins with a 2D convolutional embedding that carves the image
into patches, overlayed with fixed positional encodings to anchor spatial information. These em-
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Table 19: Effect of MoE-NFN architecture (width and depth) on generalization prediction.

Encoder Term [2] [2,2] [4] [4,4] [6] [6,6] [10]  [10,10]

Kendall’s 7 0.784 0.794 0.788 0.797 0.775 0.799 0.781  0.806
Params I5SM 39M 29M 127M 4.6M 265M 84M  69.2M

beddings pass through two Transformer-MoE blocks, which weave global dependencies across the
image. In the MoE block, there are 4 experts, each is a two-layer feedforward network. The re-
sulting representations are globally averaged and routed through a two-layer feedforward classifier,
separated by RelLU, culminating in a ten-class probability distribution. Using our hyperparameter
schema, we generate a massive 100,024 model samples for MNIST - 25,006 of which are check-
points from selected epochs. Figure [T|shows the accuracy histogram, with the accuracy distributed
across [0,1].

AGNews-MoE. The AG’s News dataset (Zhang et al., 2015)) offers a text classification challenge
across four broad domains: World, Sports, Business, and Sci/Tech. For each article, the model
predicts its corresponding topic based on its description. Our Transformer-MoE variant kicks off
with token embeddings sourced from a pre-trained Word2Vec model, fused with fixed positional
encodings to maintain sequence order. These flow into a dual-layer Transformer-MoE encoder that
captures semantic interrelations across the input. In the MoE block, there are 4 experts, each is a
two-layer feedforward network. The encoder output undergoes global average pooling, then feeds
into a two-layer MLP with a ReL.U bridge, concluding with a four-class softmax. Across this task,
we generate 79,220 checkpoints derived from 19,805 unique configurations, capturing performance
at epochs 50, 75, 100, and each model’s best epoch. The accuracy distribution (Figure [T)) reveals a
pronounced peak between 50% and 90%, with a sharp mode around 80%, and a modest secondary
cluster hovering near 25%.

Computing Resources The whole dataset is trained on a cluster of 4x NVIDIA A100 SXM4 80GB
GPUs. We run 5 settings at a time on one GPU. The running time for a MNIST-MoE setting is
20 to 25 minutes, depending on the fraction of training data being set. The running time for an
AGNews-MoE setting is 30 to 35 minutes.

L ADDITIONAL EXPERIMENT DETAILS

L.1 GENERAL DETAILS

Training details All models underwent training over 100 epochs with a batch size set to 16. Opti-
mization was carried out using Adam, capped at a peak learning rate of 10~2 (In the case of MLP
the learning rate is 10~%). To ease the model into learning, we implemented a linear learning rate
warmup during the first 10 epochs. The loss was computed using the Binary Cross Entropy criterion.

Computing resource All experiments were conducted on a workstation equipped with an AMD
Ryzen Threadripper PRO 5945WX processor (24 cores) and four NVIDIA GeForce RTX 3090
GPUs (24GB VRAM each). GPU driver version 570.86.15 and CUDA 12.8 were used. Each exper-
iment was completed in under 12 hours using this hardware configuration.

Number of parameters An overview of parameter counts for each model is presented in Table [20]
Complete architectural specifications and hyperparameter settings can be found in Appendices[L.2]
and For the baseline models, hyperparameters were carefully tuned to their optimal configura-
tions; any further increase in parameter size likely leads to overfitting rather than improved perfor-
mance.

L.2 ARCHIECTURE AND HYPERPARAMETERS OF MOE-NFN

The MoE-NFN architecture is structured around three core modules, each tailored to manage the
weight processing in a Transformer MoE system. The embedding and classification components
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are both implemented using standard multi-layer perceptrons (MLPs) with ReLLU activation, each
independently handling a distinct part of the input.

At the heart of the model lies the Transformer MoE block, which is governed by an invariant archi-
tecture featuring multiple MoE-NFN equivariant polynomial layers. These layers specifically target
the two MLP segments within the Transformer block and are activated using ReLU. Once processed,
their output is funneled into an invariant polynomial layer of MoE-NFN, which further distills the
representation. All intermediate outputs - vectorized by design - are concatenated and fed into a
terminal MLP head equipped with a Sigmoid activation function to generate the prediction.

For our experiments, the embedding component consists of a single-layer MLP with 100 hidden
units. The classification module is slightly deeper, comprising two MLP layers, each also with
100 hidden units. Within the invariant MoE-NFN core, a single equivariant polynomial layer with
4 hidden channels is used to process the Transformer weights, followed by an invariant polyno-
mial layer that yields a 5-dimensional vector per input layer. These outputs are then combined and
passed through another MLP, which expands them into a 100-dimensional vector space. Ultimately,
the concatenated outputs from all three branches are directed through a final classification layer to
produce the model’s prediction.

L.3 ARCHITECTURE AND HYPERPARAMETERS FOR OTHER BASELINES
Here we describe the architecture of all baselines:

* Transformer-NFN (Tran et al., 2025) This model comprises three primary modules re-
sponsible for processing the input weights. The embedding is processed by a single layer
MLP, while classifier component utilizes two-layer MLPs, each with 100 hidden units. The
Transformer core is modeled using an invariant architecture that integrates 2 Transformer-
NFN equivariant polynomial layers, with 12 hidden channels. These are followed by an
invariant polynomial layer to finalize the transformation. Outputs from each module are
encoded as vectors, concatenated, and passed through a concluding MLP head (100 hid-
den units, Sigmoid activation) for prediction. To make this architecture compatible with
Transformer-MoE inputs, we omit gating weights and average the expert-specific weights
to form a unified feed-forward layer, suitable for Transformer-NFN. However, this adap-
tation breaks the model’s original equivariance under the new group action introduced by
Transformer-MoE.

* MLP In this baseline, all model component weights are flattened and processed individu-
ally through dedicated MLPs. The embedding and Transformer-MoE components are each
fed into a single-layer MLP with 64 hidden neurons. The classifier component, by contrast,
is modeled with a two-layer MLP containing 256 neurons per layer. Outputs from all three
branches are concatenated and passed through a final prediction head: a two-layer MLP
with 100 hidden neurons in each layer.

* XGBoost (Chen & Guestrin, [2016), LightGBM (Ke et al., 2017), Random Forest
(Breiman, [2001): For these tree-based models, we flatten the weights from all components
and input them directly into the respective regressors. We used consistent hyperparameter
settings across the three models: maximum tree depth of 10, minimum child weight of 50,
and a cap of 256 leaves per tree.

* SVR (Vapnik et al.,|1996): All input weights are first flattened and then reduced to 1000 di-
mensions via Principal Component Analysis (PCA)(Pearson, |1901; [Hotelling, |1933)). The
resulting feature set is processed by a linear Support Vector Regression (SVR) model using
a linear kernel. We adopt the default configuration provided by the scikit-learn library.

L.4 Gy TRANSFORMATION EXPERIMENT
In this experiment, we keep all training settings the same as the AGNews-MoE performance pre-
diction experiment. We retrain each of the baseline metanetwork and evaluate the trained model

on both the original test set and an augmented version of the original test set. Then we record the
Kendall’s 7 metric for both test sets and compute the gap between them.
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Table 20: Number of parameters for all models

Model MNIST  AGNews
MoE-NFN 3.088M 2.984M
Transformer-NFN  2.511M 2.406M
MLP 11.359M 11.255M

The augmented version of the test set of AGNews-MoE dataset is produced by applying randomly
selected transformations from the group Gy, to the original model weights. These transformations
yield new models that are functionally identical but differ in parameterization. We uniformly sam-
ple the permutations 77,, 7., and wé“, sample the scalars vy and ~, from the interval [0, 1], and
sampling each entry of the transformation matrices M lgl) and ngl) from a uniform distribution over
[—100, 100].

M BROADER IMPACTS

This work contributes to the foundational understanding of functional equivalence in neural net-
work architectures, particularly Mixture-of-Experts (MoE), with implications that extend to the de-
sign and interpretation of modern Al systems. By rigorously characterizing the symmetry-induced
redundancies in MoE models, our analysis enables the development of more parameter - efficient,
interpretable, and robust architectures. These insights are especially relevant for metanetworks -
neural systems that reason over other networks - where ensuring functional identity is critical for
tasks like model editing, transfer learning, and interpretability.

The societal benefits of this research stem from its potential to reduce computational waste by el-
liviate the computational need to evaluate language model. In domains such as healthcare and envi-
ronmental science, where large-scale models are increasingly deployed for predictive diagnostics or
climate modeling, such efficiency gains can reduce energy consumption, and make cutting-edge Al
more accessible to under-resourced settings. Moreover, by deepening the theoretical understanding
of neural network symmetries, this work contributes to safer and more transparent Al development,
helping mitigate risks associated with model redundancy, overparameterization, and brittleness.

Overall, the theoretical advancements presented in this paper support the broader movement to-
ward efficient, reliable, and responsible Al - enhancing both the scalability of current models and
the interpretability of their inner workings, which are crucial for high-stakes and mission-critical
applications.
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