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Abstract
Popular zero-shot models suffer due to artifacts
inherited from pretraining. One particularly detri-
mental issue, caused by unbalanced web-scale
pretraining data, is mismatched label distribution.
Existing approaches that seek to repair the label
distribution are not suitable in zero-shot settings,
as they have mismatching requirements, such as
needing access to labeled downstream task data
or knowledge of the true label balance in the pre-
training distribution. We sidestep these challenges
and introduce a simple and lightweight approach
to adjust pretrained model predictions via optimal
transport. Our technique requires only an estimate
of the label distribution of a downstream task.
Theoretically, we characterize the improvement
produced by our procedure under certain mild con-
ditions and provide bounds on the error caused
by misspecification. Empirically, we validate our
method in a wide array of zero-shot image and
text classification tasks, improving accuracy by
4.8% and 15.9% on average, and beating base-
lines like prior matching—often by significant
margins—in 17 out of 21 datasets.

1. Introduction
Zero-shot models are popular but struggle with biases in-
herited from their large pretraining datasets (Dixon et al.,
2018; Torralba & Efros, 2011; Agarwal et al., 2021). In
particular, zero-shot classification is strongly biased by the
label distribution of the pretraining task. When the label
distribution of the downstream task differs from pretrain-
ing, the performance of zero-shot classifiers suffers greatly.
For example, Figure 1 illustrates the effects of mismatched
distributions on a pet image classification task. Two CLIP
models (RN50, and ViT-B/16) produce biased predictions
on the Abyssinian and Persian classes. Furthermore,
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Figure 1. Label distribution mismatch example in zero-shot clas-
sification. In Oxford-IIIT-Pet dataset, the labels are uniformly
distributed, while the zero-shot models exhibit biased predictions
toward some clasess. This bias is influenced by the distribution of
labels in the pretraining task.

datasets with a large number of classes, such as ImageNet,
may contain both extremely common and very rare classes,
resulting in an outsized probability that a zero-shot model
will predict some classes over others. As a result, even large
models intended for use in zero-shot settings, such as CLIP
(Radford et al., 2021), naturally have a label distribution
mismatch between pretraining data and downstream tasks.

Existing methods that seek to address label distribution
make strong assumptions or have expensive requirements.
For example, to fine-tune a model, we must obtain a labeled
fine-tuning dataset of adequate size, then obtain the time and
compute to further train the model. To perform label shift
adaptation techniques, we must know the true label distribu-
tion of the pretraining distribution—difficult to impossible
for real-world tasks.

Can we deal with label distribution mismatch without addi-
tional training or access to ground-truth downstream task
information? While seemingly challenging, one cause for
optimism is the observation that zero-shot models still give
relatively high prediction probabilities for correct classes,
though classes common in pretraining tend to have relatively
inflated scores overall. Intuitively, the model has already
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learned to identify examples of its downstream classes (and
so does not require further training) and is already impacted
by the pretraining label distribution (and so does not need
access to the ground-truth pretraining label distribution).
Instead, the model’s prediction probabilities must be ad-
justed based on an estimated downstream label distribution
specification.

To perform this label distribution adjustment, we view zero-
shot learning through the lens of optimal transport (OT) and
develop a technique called OTTER (Optimal TransporT
adaptER). This OT-based approach offers a systematic way
to rebalance predicted labels: data points are transported to
optimal downstream classes, minimizing the overall cost in
accordance with the estimated the downstream label distri-
bution specifications.

Theoretically, we show that optimal transport given the true
label distribution of the downstream can recover the Bayes-
optimal classifier under mild conditions. Additionally, we
provide error bounds on our adaptation method for misspec-
ification. We provide synthetic experiments validating our
theoretical claims. In real-world data settings, we validate
our method on a wide variety of image and text classifica-
tion tasks, showing 4.8% and 15.5% accuracy improvement
on average in image and text zero-shot classification tasks,
respectively.

• OTTER, an algorithm to deal with label distribution
mismatch at inference time via optimal transport,

• Theoretical results showing the effectiveness of our
method, including the ability to recover the Bayes-
optimal classifier and a sensitivity analysis with respect
to the label distribution specification estimation,

• Extensive empirical results on zero-shot classification
for text and image datasets, showing accuracy improve-
ments of up to 25% and

• Experimental results demonstrating the applicability
of OTTER to few-shot settings, showing accuracy im-
provements of up to 15%, even with noisy label distri-
bution specification. (Appendix E.5)

2. Problem Formulation
Let X = {x1, x2, . . . , xn} be an inference dataset with
xi ∈ X . Furthermore, let Y = {y1, y2, . . . , yn} be the
true labels of the K-class classification dataset, such that
yi ∈ Y = [K], are sampled according to the downstream
label distribution ν = (p1, p2, . . . , pK).

Let sθ(x, j) := Pθ(Y = j|X = x) be a pretrained classi-
fication model constrained to the downstream label space.
During pretraining, sθ has been biased to the source label
distribution νs. We wish to offset such label distribution
bias with a label distribution specification ν̂ for the target
distribution. ν̂ is expected to be closer to the true label dis-

Algorithm 1 OTTER

1: Input: Input X = {x1, . . . , xn}, label distribution
specification (p1, . . . , pK), cost matrix C ∈ Rn×K

2: Define input marginal µ = 1 1
n , prediction marginal

ν = (p1, . . . , pK)
3: Run optimal transport and obtain transport plan π s.t.

π = argminγ∈Π(µ,ν)⟨γ,C⟩.
4: Get modified classification outputs ŷi =

argmaxj∈[K] πi,j .
Return {ŷi}i∈[n]

tribution of the downstream task. Given a label distribution
specification, our goal is to rebalance predictions so that
the predicted label distribution follows the label distribution
specification.

3. Proposed Framework
We propose OTTER (Optimal TransporT adaptER), an
optimal transport-based label distribution adaptation ap-
proach. Our goal is to have the n input data points allo-
cated to K classes match a given label distribution ν̂, where∑K

j=1 ν̂j = 1, ν̂j ≥ 0. Specifically, we want to classify nν̂1
points as the first class, nν̂2 points as the second, and so
on. However, there are many such allocations, and it is not
a priori clear which one should be selected. We propose
formulating an optimal transport problem that selects the
allocation minimizing a particular cost:

π = argmin
γ∈Π(µ,ν̂)

⟨γ,C⟩,

where Π(µ, ν̂) = {γ ∈ Rn×K
+ |γ1 = µ, γT1 = ν̂}, µ = 1

n1
and C is the cost (loss) matrix such that Cij represents a loss
when we classify xi as class j. This procedure is described
in Algorithm 1. Note that this procedure naturally matches
the given label distribution specification ν̂.

We wish to use Algorithm 1 for zero-shot classification
given the pretrained model sθ. To do so, we must select
a cost function and produce Cij . An ideal choice of such
a function is Cij = − logt Pt(Y = j|X = i) such that
optimal transport minimizes the negative log posterior under
constraints. However, the target distribution Pt is unknown.
Instead, we replace the posterior with the classifier scores
sθ(xi, j). We highlight that this choice of cost matrix is
an natural extension of zero-shot classification under the
label distribution constraint. We prove this claim in the next
section.

4. Theoretical Results
In practical scenarios, label distribution specifications are
frequently subject to noise, and prediction probabilities may
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not be well-calibrated. To understand the impact of these
factors, we examine how errors in label distribution spec-
ification and calibration influence the transport plan. Our
theoretical analysis yields following findings: (a) classifica-
tion can be interpreted as an optimal transport, (b) OTTER
can recover the Bayes-optimal classifier in the label shift
setting, (c) for a noisy cost matrix with the noisy label distri-
bution specification setup, the suboptimality can be bounded
by the deviation of cost matrix and label distribution. We
state our main theorems. See Appendix D for the details.

Theorem 4.1 (Classification as optimal transport). Let
νZS
j = 1

n

∑n
i=1 1[ŷ

ZS
i = j], where ŷZS

i =
argmaxj′∈[K] Pθ(Y = j′|X = xi). Then, given
Cij = − logPθ(Y = j|X = xi), π =
argminγ∈Π(µ,νZS) ⟨γ,C⟩ , ŷOT

i = argmaxj∈[K] πij . As-
suming there are no ties in scores, i.e. Pθ(Y = j|X =
xi) ̸= Pθ(Y = j′|X = xi), for all j ̸= j′, the predictions
are equivalent, i.e. ŷOT

i = ŷZS
i for all i ∈ [n].

Theorem 4.2 (Label shift invariance). Suppose the pre-
trained model is well-calibrated for the source distribution,

Pθ(Y = j|X = xi) = Ps(Y = j|X = xi)

and there is no tie probability, for all j ̸= j′, i ∈ [n]

Pθ(Y = j|X = xi) ̸= Pθ(Y = j′|X = xi).

Denote the Bayes optimal predictions in the target distribu-
tion as ŷ∗i = argmaxj∈[K] logPt(Y = j|X = xi). Then
OTTER predictions OTTER(X, Pt(Y ), C) are the same
as Bayes optimal predictions ŷ∗.

Corollary 4.1 (Suboptimality bound). Let the primal linear
programming problem be defined as in equation (1), and
its dual problem be max{wT g|wTG ≤ vec(C)T , w ≥ 0}.
Suppose perturbed cost matrix is Ĉ = C + ∆C , the per-
turbed class distribution ν̂ = ν+∆ν , such that ĝ = g+∆g

where

∆g =


0

ν̂ − ν
0

−ν̂ + ν

 .

Assume that primal and dual problems are solvable. Denote
the original solutions as π,w and perturbed solutions as π̂
and ŵ. Define the classification rule determined by trans-
portation plan as fπ and fπ̂ . The prediction accuracy of the
perturbed transport plan can be lower bounded as:

Acc(fπ̂) =

n∑
i=1

1[fπ(xi) = fπ̂(xi)]/n ≥ 1− nϵ2n
2

,

where ϵn = κ(∥∆ν∥2 + ∥[vec(∆C)]+∥2 +
∥vec(C)T vec(π̂)− gT ŵ∥2).

5. Experiments
The primary objective of our experiments is to (1) validate
that OTTER improves zero-shot model performance when
given accurate label distribution estimates and (2) inves-
tigate its sensitivity to perturbations. In experiments on
real datasets (Section 5.1), we confirm that OTTER can
improve zero-shot classification significantly in a variety of
settings. In synthetic experiments (Section 5.2), we validate
our theoretical claims—label shift invariance and sensitivity
to perturbation in a fully controllable setting. Additionally,
we show that OTTER can be combined with label distri-
bution estimation methods in the few-shot learning setting
(Section E.4). Finally, we show that OTTER especially
benefits hierarchical classification (Section E.6).

5.1. Real Data Experiments

We hypothesize that the model performance can improve
significantly when the label distribution specification is ex-
act.

Setup and Procedure. We used 17 image classification
datasets and 4 text classification datasets. We employed
CLIP (Radford et al., 2021) for image zero-shot classifica-
tion, and BERT (Devlin et al., 2018). A comprehensive list
and details of experiments can be found in Appendix E.

Baseline. We adopt Prior Matching (PM) (Liusie et al.,
2023) as a baseline. It optimizes score weighting parameters
to align with the label distribution specification. A detailed
explanation of Prior Matching is given in Appendix C. It
is worth noting that the performance of Prior Matching is
highly sensitive to hyperparameters such as temperature and
learning rate. Optimal hyperparameters may vary across
different datasets. We selected hyperparameters through
grid search, by evaluating their performance on a validation
set, consisting of 10 labeled examples per class. In contrast,
we highlight that OTTER is tuning-free.

Results. Table 1 shows the image classification results
with CLIP (ViT-B/16) and the text classification results
with BERT. Notably, OTTER demonstrates a 4.8% and
15.5% enhancement on average in image and text zero-shot
classification, respectively. While Prior Matching shows
competitive performance when accurately tuned, it often
struggles. We found that hyperparameter tuning fails in the
class-imbalanced datasets such as Caltech256, SUN397,
ImageNet-r (Appendix E, Table 3). This suggests that
the hyperparameter selection process necessitates a valida-
tion set label distribution similar to the target distribution—
rendering it unusable in zero-shot scenarios. More details
and additional experiment results — including the sensitivity
study on the label distribution specification error, computa-
tion time, and combination with other prompting methods
— are provided in Appendix E.3.
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Zero-shot Prior Matching OTTER Zero-shot Prior Matching OTTER

CIFAR10 88.3 91.3 (±0.0) 91.7 Oxford-IIIT-Pet 83.8 82.0 (±0.3) 88.8
CIFAR100 63.8 64.1 (±2.7) 67.9 Stanford-Cars 55.7 39.8 (±2.6) 59.7
Caltech101 79.8 59.3 (±15.4) 88.7 STL10 98.0 98.4 (±0.0) 98.6
Caltech256 79.8 9.5 (±1.5) 87.0 SUN397 47.1 6.7 (±1.6) 54.1
Country211 19.8 19.0 (±0.1) 21.1 CUB 46.0 40.4 (±0.0) 50.4
DTD 39.0 42.1 (±0.1) 44.4 ImageNet 60.2 53.6 (±0.1) 62.9
EUROSAT 32.9 41.6 (±0.8) 42.0 ImageNet-r 68.9 16.7 (±3.5) 72.4
Flowers102 64.0 54.0 (±14.1) 70.8 ImageNet-Sketch 39.8 36.5 (±0.4) 44.5
Food101 85.6 86.8 (±3.1) 89.9

Amazon review 74.0 58.8 (±46.4) 91.7 GenderBias 84.1 41.4 (±39.6) 91.9
CivilComments 48.4 57.2 (±37.7) 81.4 HateXplain 30.9 31.3 (±3.3) 34.3

Table 1. Accuracy (%) in zero-shot image classification (ViT-B/16) and text classification (BERT). We use the true label distribution as the
label distribution specification. The numbers in parenthesis of Prior Matching represent the standard deviation of 10 different samplings of
the validation set. OTTER produces improvements nearly across-the-board, with an average lift 4.9% in image classification and 15.5%
in text classification, outperforming a powerful baseline, prior matching in almost all cases.

5.2. Synthetic Experiments

We hypothesize OTTER is invariant to label shift under
the conditions in Theorem 4.2. We also investigate the
sensitivity to perturbations of the cost matrix and the label
distribution.

Setup and Procedure. We simulate label shift in logis-
tic regression on gaussian mixtures. We compare a naive
logistic regression model, OTTER, and a bayes classifier.
We separately investigate perturbed prediction score matrix
and perturbed label distribution’s impact on the prediction
accuracy. For perturbed prediction scores, we fix the label
distribution to be the true one, and add noise δ ∼ N (0, σ2)
of varying levels σ to the predicted score Pθ(Y = 1|X).
For label distribution, we fix the prediction score to be true
scores and add noise ϵ: ν̂ = νt + (ϵ,−ϵ). We use these
perturbed variants to obtain perturbed solutions and com-
pare with ground-truth solution. For the details of synthetic
dataset and classifiers, refer Appendix E.

Results. Figure 2 illustrates how accuracy changes with
label shift when the predicted score is perturbed and when
label distribution is perturbed. We observe that the naive
classifier deteriorates as the total variation distance between
source and target distributions increases. It indicates that
naive classifier is sensitive to label shift. However, with-
out perturbation, OTTER remains unaffected by the label
distribution shift, which validates our invariance result in
Section 4.

In the case of confidence score perturbation, both the naive
classifier and OTTER have accuracy decreasing as pertur-
bation level increases. For simplicity, we omitted the naive
classifier’s performances under different levels of noise as
adding zero-mean noise does not alter its accuracy signifi-
cantly. We observe that OTTER has better performance than
the naive method when significant label shift exists. Simi-
larly, for label distribution perturbation, we observe as the

noise level ϵ increases, OTTER’s accuracy downgrades—
but still yields better performance when label shift is severe.

Our experimental results suggest simply applying predicted
score for zero-shot classification leads to inaccurate predic-
tions under label shift, while OTTER is robust to label shift
when no perturbation existed. Perturbations in both pre-
dicted score and label distribution downgrades the predicted
accuracy, as expected, but OTTER still yields better results
than the naive baseline.

6. Conclusion
While zero-shot models have been successful, pretraining
using Internet-scale datasets yields artifacts that may harm
downstream tasks. In this paper, we identify the bias in class
balance, and provide a simple but powerful solution using
optimal transport. Theoretically, we describe how OT can
fix label distribution mismatch and its sensitivity to pertur-
bations. Empirically, we validated our approach’s ability to
improve zero-shot classification accuracy, mitigating label
distribution mismatch in zero-shot models. We believe our
method can expedite the deployment of zero-shot classifi-
cation, reducing the necessity of finetuning for downstream
tasks.
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(a) Prediction accuracy changes with perturbed confidence
score.

(b) Prediction accuracy changes with perturbed label distribu-
tion.

Figure 2. Synthetic experiment results. X-axis represents total variation distance between the source and the target distribution, describing
label shift severity. Y-axis represents prediction accuracy. Curves represent different methods and noise levels. Our approaches
dramatically outperform the baseline at higher mismatch levels.

Impact statement This paper presents work whose goal
is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which
we feel must be specifically highlighted here. As of now,
we are not aware of additional potential societal impacts
beyond the typical implications associated with zero-shot
models.
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Appendix
The appendix contains glossary, algorithm details, proofs, and detailed experimental results. The glossary contains a
convenient reminder of our terminology (Appendix A). Appendix B provides more related works and discussion about the
relationship between our work and related papers. Appendix C describes the relevant algorithms used in our experiments,
including Prior Matching (Liusie et al., 2023) and BBSE (Lipton et al., 2018b). Appendix D provides the proofs of theorems
that appeared in Section 4. Finally, we give more details and analysis of the experiments and provide additional experiment
results in Appendix E

A. Glossary
The glossary is given in Table 2 below.

Symbol Definition
n Number of points
K Number of classes
[K] The set of classes {1, 2, . . . ,K}
X Input feature space
Y Label space
X Input features
Y True labels
Ps Source (training) distribution of data
Pt Target (testing) distribution of data
sθ Prediction score function with parameter θ
C∗ Bayes optimal cost matrix for prediction
Ĉ Estimate of cost matrix for prediction
ν Class balance for true labels
νZS Class balance for predicted labels from the zeroshot model
∆C Additive perturbations to cost matrix
∆ν Additive perturbation to class balance
π Optimal transport plan
G, g Constraint matrix and vector for linear programming s.t. feasible set is {x ∈ X : Gx ≥ g}
w Dual solution for linear programming problem
κ Hoffman constant for the true optimal transport problem
[x]+ Take the positive parts of x, i.e. [x]+ := x1[x > 0]
[x]− Take the negative parts of x, i.e. [x]− := x1[x < 0]
vec(A) Vectorized A, vec(A) = [A11, . . . Am1, A12, . . . , Am2, . . . , A1n, . . . Amn]

T for A ∈m×n

Table 2. Glossary

B. Background and Extended Related Work
B.1. Background

We briefly describe zero-shot models, the technical tool we use (optimal transport), along with other techniques that seek to
address shifts.

Zero-shot Models. Zero-shot classification, popularized by models such as CLIP (Radford et al., 2021), is a powerful
paradigm that enables prediction on downstream tasks without additional fine-tuning. Image, language, and multimodal
models have been increasingly employed for zero-shot prediction (Wei et al., 2021; Liu et al., 2023). These models undergo
extensive pretraining on massive datasets with concept and label spaces that may be very different from those of downstream
applications.
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Optimal Transport. Optimal Transport (OT) is a framework for matching two probability distributions (Peyré et al., 2019;
Santambrogio, 2015). We predominantly consider optimal transport between empirical discrete measures. Suppose that we
are given points x1, x2, . . . , xn ∈ X and y1, . . . , yK ∈ Y , a source measure µ defined by µ =

∑n
i=1 wiδxi , and a target

measure given by ν =
∑K

j=1 pjδj , where wi, pj are positive values such that
∑n

i=1 wi = 1,
∑K

j=1 pj = 1. Suppose also
that δx is a Dirac delta function at x, i.e. δx(x′) = 1 if x = x′, and δx(x

′) = 0 otherwise. Given a cost matrix C ∈ Rn×K ,
the Monge-Kantorovich formulation of optimal transport is to find a minimal cost transport plan π such that

π = argmin
γ∈Π(µ,ν)

⟨γ,C⟩,

where Π(µ, ν) = {γ ∈ Rn×K
+ |γ1 = µ, γT1 = ν}.

Distribution and Label Shifts. Distribution shift refers to the discrepancy between a source distribution Ps on which
the model is trained, and a target distribution Pt on which the model is deployed. Distribution shift often degrades trained
model performance on target tasks. Label shift is a specific type of distribution shift such that Ps(Y ) ̸= Pt(Y ) and the data
generation process is fixed — in other words, the conditional distributions of the inputs are the same: Ps(X|Y ) = Pt(X|Y ).
Techniques such as importance sampling (Lipton et al., 2018b; Azizzadenesheli et al., 2019; Garg et al., 2020), recalibration
(Alexandari et al., 2020) and domain adaptation (Tachet des Combes et al., 2020) are commonly used to mitigate the
effects of label shift. Unfortunately, these methods assume access to source distribution data, whereas zero-shot models’
pretraining data is inaccessible (often proprietary or blocked for privacy reasons). Thus, adapting zero-shot models to new
label distributions poses challenges unmet by these pre-existing methods.

B.2. Extended Related Work

Improving Zero-shot Classification at Inference Time. As zero-shot classification has gained popularity, several works
have been developed to improve zero-shot classification at inference time. Chuang et al. (2023); Adila et al. (2023) use
vector projection methods to remove spurious correlations at inference time. Menon & Vondrick (2022); Novack et al.
(2023); An et al. (2023) augment prompts with language models and combine their classification output to improve zero-shot
performance. Roberts et al. (2023) uses additional information of label space geometry to extend model pre-trained on the
label subset to broader use-cases. While these works try to improve zero-shot classification at inference time in common,
the main difference is that our method tackles the inherent class prior of zero-shot models.

Label Shift Adaptation. Label shift adaptation methods are designed to address the negative impacts arising from changes
in the label distribution. These methods typically follow a two-step process (Lipton et al., 2018b; Azizzadenesheli et al.,
2019; Garg et al., 2020). The first step involves estimating the label distribution within the target dataset using labeled data
from the source distribution and unlabeled data from the target distribution. Next, the prediction scores are reweighted using
the estimated target label distribution and the source label distribution. However, the standard approach requires access to
the labeled source distribution data, which is usually not possible in zero-shot classification scenarios. OTTER provides a
solution decoupled from the source data distribution, overcoming this limitation.

Improving Zero-shot Classification using Prior. Several studies have explored leveraging prior information to enhance
zero-shot classification, even in the absence of access to source distributions. In the context of prompt-based zero-shot
models, prior matching (Liusie et al., 2023) employs word prior distribution to alleviate word bias inherent in pretraining
data. We adopted their adaptation method as a baseline. Similarly, Kahana et al. (2022) develop adaptation layers trained
using priors, aiming to maintain proximity to the original scores. However, both approaches entail training additional layers
and necessitate hyperparameter tuning, which may pose challenges in the context of zero-shot predictions. In contrast,
OTTER presents a straightforward and efficient adaptation method to new label distributions without the need for any
hyperparameter tuning, backed by theoretical guarantees.

Leveraging Optimal Transport for Enhanced Pseudo-labeling and Classification. A number of studies have explored
the enhancement of pseudo-labeling and classification tasks through optimal transport, using label distribution specifications,
in a similar spirit to our work, but within different contexts. Tai et al. (2021) uses optimal transport to allocate pseudo-labels
to unlabeled datasets based on the label distribution specification in the semi-supervised setup. Wang et al. (2022) deals
with long-tail distribution in the partial-label learning setup based on optimal transport. Zhang et al. (2024) uses partial
optimal transport as a pseudo-labeling based approach for deep imbalanced clustering, progressively expanding the labeled
sample proportion. Guo et al. (2022) reweights the training dataset to match the label distribution specification using
optimal transport. This work mainly deals with the class imbalance problem in the training step. Shi et al. (2024) studies
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classification from a matching perspective, revealing the connection between softmax loss and inverse optimal transport and
suggesting a new loss function to address long-tail distributions. Their analysis provides useful insights for OTTER — why
cost matrix induced by pre-trained models can be useful in the inference step. Xian et al. (2023) uses optimal transport
as a postprocessing method to guarantee demographic parity. While sharing aspects of the approach, our work addresses
class bias in zero-shot models. Peng et al. (2021) used optimal transport to handle long-tail recognition with a learned cost
matrix. Our study provides a theoretical basis for understanding their empirical results. Chang et al. (2022) employs optimal
transport to detect common and private classes between the source and the target domain, under the universal domain
adaptation setting, where knowledge is transferred from source to target domain without any constraints on the label sets.
In the context of zero-shot classification, there is no need to manage label space disparities between the source and target
domains. Instead, the main concern of zero-shot classification is dealing with the distribution shift between the pretraining
dataset and the downstream task. We tackle the label distribution shifts using optimal transport.

Class Imbalance. Class imbalance problems occur when the number of instances across different classes in a dataset is
disproportionately distributed. This imbalance can severely bias the traininig process of a machine learning model, leading
to poor generalization performance, especially for the minority classes. It has been extensively studied in the context of
traditional machine learning (Fernández et al., 2018). Oversampling (Chawla et al., 2002) and cost-sensitive learning
(Thai-Nghe et al., 2010) are well-known approaches to address class imbalance. Nonetheless, the inherent nature of class
imbalance in pretraining datasets introduces a distinct set of challenges, especially when attempting to rectify such biases
within the context of zero-shot classification scenarios.

C. Algorithm details
A toy example of label refinement by OTTER. To illustrate the benefits of OTTER, consider the following example
for binary classification. We have two datapoints, X = {x1, x2} with Y = {1, 2}, and true label distribution ν = ( 12 ,

1
2 ).

Suppose that the zero-shot model’s prediction scores are s1 = (0.4, 0.6) and s2 = (0.1, 0.9).

Traditional classification yields ŷ1 = 2, ŷ2 = 2, producing a 50% error rate. However, given the cost matrix C derived from
the prediction score matrix

S =

[
0.4 0.6
0.1 0.9

]
, C =

[
− log 0.4 − log 0.6
− log 0.1 − log 0.9

]
,

along with µ = (0.5, 0.5) and ν = (0.5, 0.5), the optimal transport procedure discovers the transport map π =

[
0.5 0.0
0.0 0.5

]
,

yielding ŷ1 = 1, ŷ2 = 2. This corrects the original zero-shot prediction error.

Prior matching (Liusie et al., 2023) proposed prior matching as a reweighting method for prompt-based classifiers to
mitigate word bias — the distribution shift between pretrained language models’ word prior and the class priors in the
downstream task. We use it as a zero-shot model adaptation method given a class balance estimation.

Define reweighted probability scores of Pθ with r as Pθ,r(Y = j|X = xi) =
rjPθ(Y = j|X = xi)∑K

j′=1 rj′Pθ(Y = j′|X = xi)
. Ideally, we

hope to estimate the weight vector r∗ ∈ Rn such that reweighted scores Pθ,r∗(Y = j|X = xi) maximizes the accuracy
in the target distribution. Since the labels are not given, this is impossible. Instead, prior matching matches the label
distribution of predicted classes with the class balance estimate ν̂, i.e.

r̂j = argmin
rj∈R

∣∣∣∣∣
n∑

i=1

Pθ,r(Y = j|X = xi)− νj

∣∣∣∣∣ .
Though this is a non-convex optimization problem, it can be solved using the standard optimization techniques — we used
(Loshchilov & Hutter, 2018). While this is equivalently effective with OTTER when properly optimized, we found that the
temperature parameter and learning rate crucially affect the final accuracy, making it less ideal for the zeroshot adaptation.
We used the grid search with the small validation set (10 samples per class) in each task to select hyperparameters. The
hyperparameter ranges are as follows.

• Temperature: [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]

• Learning rate: [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]
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Algorithm 2 Black Box Shift Estimator (BBSE)

Input: Source input data Xs = {xs
1, . . . , x

s
m}, Source labels Ys = {ys

1, . . . , y
s
m}, Target input data Xt = {xt

1, . . . , x
t
n}, model

prediction distribution Pθ

Estimate the source class balance νs such that νs
j =

∑n
i=1 Pθ(Y = j|X = xs

i )

m

Compute the naive target class balance ν̃t such that ν̃t
j =

∑n
i=1 Pθ(Y = j|X = xt

i)

n

Estimate confusion matrix V such that Ajk =
1

m

∑m
i=1 Pθ(Y = k|X = xs

i )

Estimate the refined target class balance ν̂t = Aν̃t

Return ν̂

Black Box Shift Estimation (BBSE) Label shift adaptation methods (Lipton et al., 2018b; Azizzadenesheli et al., 2019;
Garg et al., 2020) aims to estimate the class balance in the target distribution using the labeled source distribution data
and the unlabeled target distribution data. We use Black Box Shift Estimation (BBSE) to estimate the class balance in the
downstream task. Algorithm 2 describes the procedure. Note that the derivation of this algorithm depends on the label shift
assumptions, thus the class balance estimation with the reference data or the synthetic data can be heavily biased.

D. Theory details
D.1. Classification as optimal transport.

Prior to discussing the main theoretical results, we demonstrate that standard classification—expressed as ŷi =
argmaxj∈[K] Pθ(Y = j|X = xi)—can be interpreted as a (trivial) solution derived from optimal transport.

Theorem 4.1 (Classification as optimal transport). Let νZS
j = 1

n

∑n
i=1 1[ŷ

ZS
i = j], where ŷZS

i = argmaxj′∈[K] Pθ(Y =

j′|X = xi). Then, given Cij = − logPθ(Y = j|X = xi), π = argminγ∈Π(µ,νZS) ⟨γ,C⟩ , ŷOT
i = argmaxj∈[K] πij .

Assuming there are no ties in scores, i.e. Pθ(Y = j|X = xi) ̸= Pθ(Y = j′|X = xi), for all j ̸= j′, the predictions are
equivalent, i.e. ŷOT

i = ŷZS
i for all i ∈ [n].

Proof of Thoerem 4.1. Suppose ŷOT
i ̸= ŷZS

i for some i ∈ [n]. It implies
∑n

i=1 − logPθ(Y = ŷOT
i |X = xi) <∑n

i=1 − logPθ(Y = ŷZS
i |X = xi). However, this is a contradiction since, for any i ∈ [n], ŷZS

i = argmaxj∈[K] Pθ(Y =
j|X = xi), thus − logPθ(Y = ŷZS

i |X = xi) ≤ − logPθ(Y = j|X = xi) for all j ∈ [K].

This theorem has the following implications. First, it suggests that the predictions will remain unchanged if we set
ν̂ = νZS . Second, Bayes-optimal classifiers can be derived through optimal transport, using a (true) cost matrix defined as
C∗

ij = − logPt(Y = j|X = xi), coupled with the true label distribution ν∗.

Our analysis begins with the label shift setup, which is a commonly-studied type of distribution shift—as well as a prominent
issue when applying zero-shot models. We demonstrate that when the label distribution is correctly specified, optimal
transport preserves the Bayes-optimal classifier predictions under label shift. Next, we consider general perturbations in
label distribution and cost matrix as well as their impact on the resulting solutions.

D.2. Label Shift Invariance

In this setting, we assume features follow the same conditional distribution across source and target distributions, i.e.
Ps(X|Y ) = Pt(X|Y ). Furthermore, we suppose that the prediction scores are accurately calibrated in the training dataset,
such that sθ(x, j) = Ps(Y = j|X = x). For zero-shot models, we often lack access to Ps. This is a typical scenario in
zero-shot model applications: after training on large-scale corpora, we use the pretrained model without the source dataset.

For a given downstream task with the target label distribution ν∗ = Pt(Y ), one standard approach to achieve the Bayes-
optimal classifier for the target distribution is to reweight the score function outputs using the ratio Pt(Y=j)

Ps(Y=j) . This adjustment
leads to:

s̃θ(x, j) = sθ(x, j) ·
Pt(Y = j)

Ps(Y = j)
∝ Pt(X = x|Y = j) · Pt(Y = j) ∝ Pt(Y = j|X = x).
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This reweighted score function aligns with the target distribution, thus correcting label shift.

Although reweighting the score function is a popular solution, it faces an important obstacle when applied to zero-shot
models like CLIP, where the source distribution Ps(Y ) is typically unknown. We show that OTTER successfully induces
a Bayes classifier for the target distribution, represented as ft(x) = argmaxj∈[K] Pt(Y = j|X = x), without requiring
access to Ps(Y ). This capability is particularly significant for zero-shot models, enabling them to adapt to target distributions
effectively, even in the absence of explicit knowledge of the source distribution.

Now, we show that optimal transport can be an effective tool to correct label shift.

Theorem 4.2 (Label shift invariance). Suppose the pretrained model is well-calibrated for the source distribution,

Pθ(Y = j|X = xi) = Ps(Y = j|X = xi)

and there is no tie probability, for all j ̸= j′, i ∈ [n]

Pθ(Y = j|X = xi) ̸= Pθ(Y = j′|X = xi).

Denote the Bayes optimal predictions in the target distribution as ŷ∗i = argmaxj∈[K] logPt(Y = j|X = xi). Then
OTTER predictions OTTER(X, Pt(Y ), C) are the same as Bayes optimal predictions ŷ∗.

That is, OTTER recovers a Bayes classifier in the target distribution without access to the source distribution, given the
target distribution and a well-calibrated model for the source dataset.

To prove Theorem 4.2, we show a specific form of invariance property of optimal transport first.

Theorem D.1. Suppose π∗ = argminγ∈Π(µ,ν) ⟨γ,C⟩ and E is a columnwise perturbation, i.e.,

E =
[
ϵ11 ϵ21 · · · ϵK1

]
,

where 1 denotes n dimensional vectors and ϵ1, . . . , ϵK are constants. Then the perturbed cost matrix C̃ = C + E, then π∗

is also an optimal transport map with respect to the cost matrix C̃.

Proof. By the optimality condition, we have ∑
i,j

π∗
ijCij ≤

∑
i,j

πijCij

for any π ∈ Π(µ, ν). Then, ∑
i,j

π∗
ijCij +

K∑
j=1

νjϵj ≤
∑
i,j

πijCij +

K∑
j=1

νjϵj ,

which is ∑
i,j

π∗
ijCij +

K∑
j=1

n∑
i=1

π∗
ijϵj ≤

∑
i,j

πijCij +

K∑
j=1

n∑
i=1

πijϵj .

Thus, ∑
i,j

π∗
ijC̃ij ≤

∑
i,j

πijC̃ij .

This theorem is also valid for row-wise perturbations as well with a similar proof. Consequently, a straightforward
implication is that

Corollary D.2. Suppose π∗ = argminγ∈Π(µ,ν) ⟨γ,C⟩, E is a columnwise perturbation and F is a row-wise perturbation,
such that

E =
[
ϵ11 ϵ21 · · · ϵK1

]
,
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F =


η11

T

η21
T

· · ·
ηK1T

 ,

where 1 denotes n dimensional vectors with 1s, and ϵ1, . . . , ϵK , η1, . . . , ηK are constants. Suppose the perturbed cost
matrix is defined as C̃ = C +E + F , then π∗ is also an optimal transport map with respect to the perturbed cost matrix C̃.

Now we provide the proof of Thoerem 4.2.

Proof of Theorem 4.2. Given

Cij = − logPθ(Y = j|X = xi) = − logPs(Y = j|X = xi),

the posteriors in the target distribution can be defined as C∗
ij = − logPt(Y = j|X = xi). From

Pt(Y = j|X = xi) = Ps(Y = j|X = xi)
Ps(X = xi)Pt(Y = j)

Pt(X = xi)Ps(Y = j)
,

we can see that

C∗
ij = − logPt(Y = j|X = xi)

= − logPs(Y = j|X = xi)
Ps(X = xi)Pt(Y = j)

Pt(X = xi)Ps(Y = j)

= − logPs(Y = j|X = xi) + logPs(Y = j)

− logPt(Y = j)− logPs(X = xi) + logPt(X = xi)

= Cij + E·j + Fi·

where E·j = logPs(Y = j) − logPt(Y = j), Fi· = − logPs(X = xi) + logPt(X = xi). And, assuming νj =
1
n

∑n
i=1 1[ŷ

∗
i = j], where ŷ∗ is the Bayes classifier prediction such that

ŷ∗i = arg max
j∈[K]

Pt(Y = j|X = xi)

= arg min
j∈[K]

− logPt(Y = j|X = xi),

optimal transport solution
π∗ = arg min

γ∈Π(µ,ν)
⟨γ,C∗⟩

gives Bayes classifier predictions by Theorem 4.1.

Finally, by Corollary D.2, we have

π∗ = arg min
γ∈Π(µ,ν)

⟨γ,C⟩ = arg min
γ∈Π(µ,ν)

〈
γ, C̃

〉
.

D.3. General Perturbation Sensitivity

In practical applications, calibration error could extend beyond noise in the elements of the cost matrix. A key source of
error is label distribution estimation error. Hence, we address a more general setting, examining the impact of simultaneous
perturbations in the label distribution and cost matrix of the transport plan. Our result applies techniques from perturbation
theory for linear programming .

We rewrite our optimal transport problem minπ∈Π(µ,ν) ⟨π,C⟩ as a linear programming problem. Let π and C be the
transport plan and cost matrix respectively. Matrix G and vector g are used to denote the row and column constraints on π to

13



OTTER: Effortless Label Distribution Adaptation of Zero-shot Models

form a feasible plan which transports distribution from µ to ν.

H :=

[
1T
n ⊗ IK

In ⊗ 1T
K

]
, G =

[
H
−H

]
, g =


µ
ν
−µ
−ν

 .

Then, we have the equivalent linear programming problem,

min

∑
i,j

Ci,jπi,j |G · vec(π) ≥ g, π ≥ 0

 . (1)

We adapt a theorem from Robinson (1973) with our optimal transport problem notation.

Theorem D.3. Let the primal linear programming problem be defined as in equation (1), and its dual problem be
max{wT g|wTG ≤ vec(C)T , w ≥ 0}. Suppose perturbed cost matrix is Ĉ = C +∆C , the perturbed class distribution
ν̂ = ν +∆ν , such that ĝ = g +∆g where

∆g =


0

ν̂ − ν
0

−ν̂ + ν

 .

Assume that primal and dual problems are solvable. Denote the original solutions as π,w and perturbed solutions as π̂ and
ŵ. Then, ∥∥∥∥(vec(π)

w

)
−
(

vec(π̂)
ŵ

)∥∥∥∥
2

≤ κ(∥∆ν∥2 + ∥[vec(∆C)]+∥2 + ∥vec(C)T vec(π̂)− gT ŵ∥2),

where 1 ≤ p ≤ ∞ and κ is a Hoffman constant that only relates to the original problem (Hoffman, 1952).

Ignoring the constant, the upper bound can be decomposed into three components,

• ∆ν : noise (or the estimation error) of the target balance,

• [vec(∆C)]+: noise (or the calibration error) of the cost matrix,

• vec(C)T vec(π̂)− gT ŵ: the suboptimality of perturbed solutions ŵ, vec(π̂) in the original problem.

Theorem D.3 implies that the deviation from perturbed solution to true solution is bounded by the magnitude of perturbations
and suboptimality of the perturbed solution. From this result, we can infer the following corollary and expect the prediction
accuracy deteriorates given the perturbations of the label distribution and the calibration.

The proof of Theorem D.3 relies on the following result of (Robinson, 1973).

Lemma D.4 ((Robinson, 1973), Corollary 3.1.). Let the primal linear programming problem be

min
z

{pT z|Gz ⩾ g, z ⩾ 0}

and its dual be
max
w

{wT g|wTG ⩽ pT , w ⩾ 0}.

Let z̄, w̄ be the primal, dual solution. And, let the perturbed primal linear programming problem be

min
z

{p̂T z|Ĝz ⩾ ĝ, z ⩾ 0}

and its dual be
max
w

{wT ĝ|wT Ĝ ⩽ p̂T , w ⩾ 0}.

Let ẑ, ŵ be the corresponding primal, dual solution.
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Suppose that the primal and dual problems are solvable. Then,

∥∥∥∥( z̄
w̄

)
−
(
ẑ
ŵ

)∥∥∥∥
2

≤ κ

∥∥∥∥∥∥
[(G− Ĝ)ẑ − (g − ĝ)]−

[(G− Ĝ)T ŵ − (p− p̂)]+

(p− p̂)ẑ − (g − ĝ)ŵ

∥∥∥∥∥∥
p

,

where 1 ≤ p ≤ ∞ and κ is the Hoffmann constant determined by p,G, g. (Hoffman, 1952).

This Lemma provides a bound for error in the solution of the perturbed linear program. Since discrete optimal transport can
be translated to standard linear program, we obtain Theorem D.3 by plugging in the definitions.

Proof of Theorem D.3 A discrete optimal transport problem

min

∑
i,j

Ci,jπi,j |π1 = µ, πT1 = ν, πij ≥ 0


can be written as a linear program

min{pT z|Gz ⩾ g, z ⩾ 0},

where p = vec(C), z = vec(π), H =

[
1T
n ⊗ IK

In ⊗ 1T
K

]
, G =

[
H
−H

]
, g =


µ
ν
−µ
−ν

. Note that the equality constraints are

converted to stacked inequalities. We have noisy cost matrix and label distribution in our setting, which leads to the
perturbation on cost matrix C and ν such that the perturbed cost matrix is Ĉ = C +∆C , the perturbed label distribution

ν̂ = ν +∆ν , such that ĝ = g +∆g where ∆g =


0

ν̂ − ν
0

−ν̂ + ν

. Since we don’t have perturbation on the constraint matrix G,

Ĝ = G. By plugging in these terms to Lemma D.4.

∥∥∥∥( z̄
w̄

)
−
(
ẑ
ŵ

)∥∥∥∥
2

≤ κ

∥∥∥∥∥∥
[(G− Ĝ)ẑ − (g − ĝ)]−
[(G− Ĝ)T ŵ − (p− p̂)]+
(p− p̂)ẑ − (g − ĝ)ŵ

∥∥∥∥∥∥
2

= κ

∥∥∥∥∥∥
[g − ĝ]−
[p− p̂]+

(p− p̂)ẑ − (g − ĝ)ŵ

∥∥∥∥∥∥
2

= κ

∥∥∥∥∥∥∥∥∥∥∥∥

0
[ν̂ − ν]−

0
[ν − ν̂]−
[p− p̂]+
pẑ − gŵ

∥∥∥∥∥∥∥∥∥∥∥∥
2

∵ Optimality of ẑ, ŵ in the perturbed problem.

= κ

∥∥∥∥∥∥
[ν̂ − ν]
[p− p̂]+
pẑ − gŵ

∥∥∥∥∥∥
2

≤ κ
(
||(∆ν)||2 + ||[vec(∆C)]+||2 +

∣∣∣∣vec(C)T vec(π̂)− gT ŵ
∣∣∣∣
2

)
.

We adapt the definition for the Hoffman constant from (Robinson, 1973). Computing Hoffman constant or even bounding it
has been a long-standing problem (Azé & Corvellec, 2002; Pena et al., 2021; Peña, 2024). However, it has been shown that
the Hoffman constant is a finite real number (Robinson, 1973), and specifically under our problem setup, it is independent
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from perturbations and only related to original optimization problem. This suggests the possibility to regularize the
parameters C,G, g in the original problem such that κ does not depend on the dimensionality of cost matrix or target
distribution.

We first show a lemma to connect optimal transport plan with prediction accuracy. Let π and π̂ be ground-truth and perturbed
transport plan separately. Both transport plans are non-negative matrices of size n ×K, each row i contains one 1/n at
column j and all other entries are zero, implying assigning the data point i to class j. Denote such classification rule as fπ
and fπ̂ . By bounding L2 error between the ground-truth and perturbed transport plan, we can infer the prediction accuracy
of the perturbed transport plan as follows:

Corollary 4.1 (Suboptimality bound). Let the primal linear programming problem be defined as in equation (1), and its
dual problem be max{wT g|wTG ≤ vec(C)T , w ≥ 0}. Suppose perturbed cost matrix is Ĉ = C + ∆C , the perturbed
class distribution ν̂ = ν +∆ν , such that ĝ = g +∆g where

∆g =


0

ν̂ − ν
0

−ν̂ + ν

 .

Assume that primal and dual problems are solvable. Denote the original solutions as π,w and perturbed solutions as π̂ and
ŵ. Define the classification rule determined by transportation plan as fπ and fπ̂ . The prediction accuracy of the perturbed
transport plan can be lower bounded as:

Acc(fπ̂) =

n∑
i=1

1[fπ(xi) = fπ̂(xi)]/n ≥ 1− nϵ2n
2

,

where ϵn = κ(∥∆ν∥2 + ∥[vec(∆C)]+∥2 + ∥vec(C)T vec(π̂)− gT ŵ∥2).

Proof of Corollary 4.1. Since one wrong prediction in π̂ induces
√
2/n2 L2 error between vec(π) and vec(π̂), an error

bounded by ϵ suggests at most ϵ2n2/2 wrong predictions.

Acc(fπ̂) =

n∑
i=1

1[fπ(xi) = fπ̂(xi)]/n

= (n−
n∑

i=1

1[fπ(xi) ̸= fπ̂(xi)])/n

≥ 1− nϵ2

2
.

Plugging in the transport plan error obtained from Theorem D.3 as ϵ, we can obtain the final prediction accuracy lower
bound.

D.4. Bounding label distribution estimation errors in few-shot learning

In few-shot learning, we assume that a few labeled samples per class are given. They can be used for estimating label
distribution in the target distribution using label shift estimation methods (Lipton et al., 2018b; Azizzadenesheli et al., 2019;
Garg et al., 2020). They comes with the sample complexity analysis under the label shift assumptions, which can be used to
obtain bound the label distribution estimation errors.

Lemma D.5. Let m and n denote the number of few-shot learning data and test datapoints, wi = νi/ν
s
i and ŵi = ν̂i/ν

s
i .

Also let σmin be the smallest eigenvalue of the covariance matrix Vŷ,y where [Vŷ,y]i,j = Ps(f(x) = i, y = j). For
m > 80 log(m)σ−2

min and constant c > 0, the perturbation ∆ν may be bounded as

||∆ν ||2 ≤ ||νs||2 c

σ2
min

(
||w||2 logm

m
+K

log n

n

)
,

with probability at least 1− 3Km−10 − 2Kn−10.
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The proof of Lemma D.5 relies on the following result of (Lipton et al., 2018a).

Lemma D.6. Assume that

1. ∀x ∈ X and ∀y ∈ Y , Ps(x|y) = Pt(x|y),

2. if Pt(y) > 0 then Ps(y) > 0 ∀y ∈ Y , and

3. the expected confusion matrix Cs(f) = Ps(f(x), y) ∈ RK×K for classifier f is invertible.

Then, there exists a constant c > 0 such that for all m > 80 log(m)σ−2
min, with probability at least 1− 3Km−10 − 2Kn−10,

||ŵ − w||2 ≤ c

σ2
min

(
||w||2 logm

m
+K

log n

n

)
.

Proof of Lemma D.5. Where all norms are Euclidean unless otherwise denoted, we have that

||∆ν ||2 = ||ν̂ − ν||2

= ||νs ⊗ (ŵ − w)||2

for element-wise multiplication operation ⊗. Further,

||νs ⊗ (ŵ − w)||2 ≤ ||νs(ŵ − w)||2F
≤ ||νs||22||ŵ − w||2

≤ ||νs||2 c

σ2
min

(
||w||2 logm

m
+K

log n

n

)
,

where the last line follows from Lemma D.6 with probability at least 1− 3Km−10 − 2Kn−10.

D.5. Bounding the perturbation on cost matrix

Further, we can bound [vec(∆C)]+ by the Total Variation Distance (TVD) between Ps and Pθ as follows.

Lemma D.7. Let τ = 1
2 ||Ps−Pθ||1 denote the Total Variation Distance between Ps and Pθ and define min(C) = mini,j Cij .

Then,

||[vec(∆C)]+|| ≤
√
m(K − 1) log

(
τ

min(C)
+ 1

)
.

Proof of Lemma D.7. For each element ∆(ij)
C of ∆C , we have that

∆
(ij)
C = logPθ(Y = j|X = xi)− logPs(Y = j|X = xi)

= log
Pθ(Y = j|X = xi)

Ps(Y = j|X = xi)
.

For i, j such that Pθ(Y = j|X = xi) ≤ Ps(Y = j|X = xi), clearly ∆
(ij)
C ≤ 0 and so [vec(∆

(ij)
C )]+ = 0.

Otherwise, for i, j such that Pθ(Y = j|X = xi) > Ps(Y = j|X = xi), it follows that ∆(ij)
C > 0 and

∆
(ij)
C = log

Pθ(Y = j|X = xi)− Ps(Y = j|X = xi) + Ps(Y = j|X = xi)

Ps(Y = j|X = xi)

≤ log

(
τ

Ps(Y = j|X = xi)
+ 1

)
≤ log

(
τ

min(C)
+ 1

)
.
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For each i ∈ [m], there are at most K − 1 possible j such that Pθ(Y = j|X = xi) > Ps(Y = j|X = xi), because∑
j∈[K] Pθ(Y = j|X = xi) =

∑
j∈K Ps(Y = j|X = xi). Therefore, there are at most m(K− 1) pairs (i, j) ∈ [m]× [K]

such that 0 < ∆
(ij)
C ≤ log

(
τ

min(C) + 1
)

. Thus,

||[vec(∆C)]+|| ≤
√
m(K − 1) log

(
τ

min(C)
+ 1

)
.
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CIFAR10 CIFAR100 Caltech101 Caltech256 Food101 STL10
n 10,000 10,000 7,162 22,897 25,250 8,000
K 10 100 101 256 101 10

Imbalance 1.00 1.00 49.06 15.94 1.00 1.00

SUN397 Flowers102 EuroSAT Oxford-IIIT-Pet STANFORD-Cars Country211
n 87,004 6,149 22,000 3,669 8,041 211,00
K 397 102 10 37 196 211

Imbalance 25.43 11.90 1.67 1.14 2.83 1.00

DTD CUB ImageNet ImageNet-r ImageNet-Sketch
n 1,880 5,794 40,000 26,000 40,889
K 47 200 1,000 200 1,000

Imbalance 1.00 2.73 1.00 13.23 1.03

Amazon Gender CivilComments HateXplain
n 89,078 21,750 131,782 1,621
K 2 2 2 3

Imbalance 19.45 6.03 8.26 1.52

Table 3. Statistics of the test dataset in each task. Class imbalance is measured by
maxj∈[K] Pt(Y = j)

minj∈[K] Pt(Y = j)
.

E. Experiment details
E.1. Datasets

Zeroshot image classification datasets We use CIFAR10, CIFAR100 (Krizhevsky et al., 2009), Caltech101 (Fei-Fei
et al., 2006), Caltech256 (Griffin et al., 2007), Food101 (Bossard et al., 2014), STL10 (Coates et al., 2011), SUN397 (Xiao
et al., 2010), Flower102 (Nilsback & Zisserman, 2008), EuroSAT (Helber et al., 2019), Oxford-IIIT Pet (Parkhi et al., 2012),
Stanford Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), CUB (Wah et al., 2011), ImageNet (Deng et al., 2009),
ImageNet-r (Hendrycks et al., 2021), and ImageNet-Sketch (Wang et al., 2019).

Zeroshot text classification datasets We use Amazon (Ni et al., 2019), Gender (Dinan et al., 2020), CivilComments
(Borkan et al., 2019), and HateXplain (Mathew et al., 2021).

Synthetic datasets Suppose X|Y = 0 ∼ N (−1, 1) and X|Y = 1 ∼ N (1, 1). Training data is sampled from a mixture of
Gaussians Xs ∼ νs0N (−1, 1)+νs1N (1, 1) such that Ps(Y = 0) = νs0 , Ps(Y = 1) = νs1 , νs0+νs1 = 1. Similarly, we sample
the test data from Xt ∼ νt0N (−1, 1) + νt1N (1, 1). We fix the training set label distribution as νs0 = 0.1, νs1 = 0.9 and vary
test set label distribution νt to simulate label shift. We train a logistic regression model with 10,000 samples from the source
distribution, and test the model with 10,000 samples from the target distribution. A Bayes-optimal classifier in the target
distribution is given by fBayes(x) = 1[x ≥ 1

2 (log
νt
0

νt
1
+1)]. The naive classifier is defined as the maximizer of the predicted

score. The OTTER predictions are produced with Algorithm 1, with the cost matrix Cij = − logPθ(Y = j|X = xi) and
the label distribution specification νt, where Pθ(Y |X) represents the logistic regression model scores.
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RN50
Zero-shot 66.5 38.70 74.7 74.1 76.3 93.1 57.8 57.3

Prior Matching 76.4(±0) 41.1(±2.5) 44.3(±9.7) 9.8(±1.6) 77.5(±1.4) 94.7(±0) 12.3(±3.9) 50.0(±2.8)

OTTER(Ours) 76.8 44.6 83.6 80.2 81.1 95.5 63.8 64.3

RN101
Zero-shot 79.1 46.3 81.6 77.7 80.9 96.5 55.6 61.1

Prior Matching 80.3(±0.1) 46.7(±1.3) 57.6(±14.2) 9.6(±2.4) 80.8(±3.7) 96.7(±6) 17.6(±5) 49.0(±20.9)

OTTER(Ours) 81.1 50.9 88.8 83.6 84.4 97.2 63.8 67.7

ViT-B/32
Zero-shot 88.9 58.5 81.3 79.5 80.2 97.1 61.1 59.3

Prior Matching 89.7(±0) 58.1(±1.2) 54.7(±14.1) 9.5(±1.6) 80.0(±4.4) 97.4(±0) 11.3(±3.1) 51.5(±3.2)

OTTER(Ours) 89.7 64.4 88.1 84.9 85.0 97.8 68.0 68.1

ViT-B/16
Zero-shot 88.3 63.9 81.0 81.1 85.6 98.0 62.8 63.9

Prior Matching 91.3(±0) 64.1(±2.7) 59.3(±15.4) 9.5(±1.5) 86.8(±3.1) 98.4(±0) 6.7(±1.6) 54.0(±14.1)

OTTER(Ours) 91.7 67.9 88.7 87.0 89.9 98.6 70.4 70.8

ViT-L/14
Zero-shot 95.0 72.3 80.3 85.0 89.8 99.2 64.9 72.3

Prior Matching 95.2(±0) 73.5(±2.5) 68.5(±19.7) 9.4(±1.2) 90.4(±3.8) 99.3(±0) 26.5(±1.1) 66.5(±17.9)

OTTER(Ours) 96.0 77.7 92.0 90.9 93.6 99.4 71.5 81.3

Table 4. CLIP Zero-shot image classification accuracy (%)

E.2. Zero-shot classification setup

Image zero-shot classification For zero-shot image classification, we emply CLIP (Radford et al., 2021) mod-
els. We used “a photo of a [CLASS]” prompt. Scores are computed by sθ(xi, j) = Pθ(Y = j|X = xi) =

exp (cos(f(xi), g(yj))/τ)∑K
j′=1 exp (cos(f(xi), g(yj′))/τ)

for image xi regarding the label j, given the image encoder f , the text encoder g.

Cost matrix is constructed by C = [cij ]i∈[n],j∈[K], where cij = − log sθ(xi, j). We run 1 with the true class balance of the
test dataset.

Text zero-shot classification We employ BERT and text-embedding-ada-002 sentence embeddings for text classification
(Reimers & Gurevych, 2019). This process parallels the methodology used in image zero-shot classification — we compute
the prediction scores from the cosine similarity and then construct the cost matrix with the negative log probabilities.

E.3. Detailed experiment results of Section 5.1

Ablation on zero-shot models For the ablation study on zero-shot models, we provide experimental results with varying
architectures, given the exact prior. Table 4, 5 show the image zero-shot classification results, and Table 6 shows the text
zero-shot classification results. We also provide another baseline results with CLIPPR (Kahana et al., 2022), which uses the
label distribution for adapter training. CLIPPR is similar with Prior Matching in the point that it requires adapter training,
but it has more adapter layers and additional loss function to make the predictions stick to the original prediction scores.
While the performance gain varies, we can observe that OTTER is effective for the most cases.
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RN50
Zero-shot 18.2 80.5 45.6 13.3 37.3 47.1 51.5 34.9 5.3

Prior Matching 31.5(±6) 77.4(±0.3) 27.5(±1.9) 13.1(±0.6) 41.6(±0.2) 36.(±0.1) 44.6(±0.1) 7.8(±1.8) 5.(±0)

OTTER(Ours) 26.8 83.0 49.2 14.1 42.2 51.7 54.1 37.1 5.7

RN101
Zero-shot 33.8 80.2 52.8 14.8 37.3 50.1 53.4 41.4 6.5

Prior Matching 34.0(±5.9) 77.2(±0.4) 34.8(±2.9) 15.1(±0.7) 39.4(±0.1) 33.6(±0.1) 46.7(±0.1) 9.5(±3.1) 6.5(±0.1)

OTTER(Ours) 33.0 84.2 55.2 16.0 40.7 52.7 56.0 43.7 7.4

ViT-B/32
Zero-shot 29.7 81.7 49.0 15.5 40.7 51.4 55.6 60.7 34.3

Prior Matching 41.2(±0.7) 77.5(±0.6) 31.5(±1.1) 14.8(±0.1) 42.9(±0.1) 36.3(±0.9) 48.3(±0.1) 11.7(±0.8) 30.4(±0.3)

OTTER(Ours) 44.9 86.2 52.10 15.9 45.1 54.7 57.7 64.2 39.4

ViT-B/16
Zero-shot 32.9 83.8 55.7 19.8 39.0 55.3 60.3 68.4 39.9

Prior Matching 41.6(±0.8) 82.(±0.3) 39.8(±2.6) 19.(±0.1) 42.1(±0.1) 40.4(±0) 53.6(±0.1) 16.6(±3.5) 36.5(±0.4)

OTTER(Ours) 42.0 88.8 59.7 21.2 44.4 58.4 62.9 71.8 44.7

ViT-L/14
Zero-shot 25.75 87.93 64.12 28.2 50.8 61.8 67.6 80.6 51.9

Prior Matching 59.2(±0.4) 84.(±0.5) 53.(±15.6) 27.5(±0.3) 51.5(±0) 43.9(±0.3) 62.3(±0.1) 17.6(±5.1) 47.2(±0.4)

OTTER(Ours) 57.62 91.03 70.02 29.5 51.0 66.3 70.2 83.3 55.2

Table 5. CLIP Zero-shot image classification accuracy (%) continued.

Amazon review GenderBias CivilComments HateXplain

BERT
Zero-shot 74.0 (± 0.0) 84.1 (± 0) 48.4 (± 0.0) 30.9 (± 0.0)
Prior matching 58.8 (± 46.4) 41.4 (± 39.6) 57.2 (± 37.7) 31.3 (±3.3)
OTTER(Ours) 91.7 (± 0.0) 91.9 (± 0.0) 81.4 (± 0.0) 34.3 (± 0.0)

Ada
Zero-shot 72.3 (± 0.0) 50.9 (± 0.0) 56.2 (± 0.0) 27.9 (± 0.0)
Prior matching 58.8 (± 43.7) 50.0 (± 41.3) 55.2 (± 35.5) 32.4 (± 4.0)
OTTER(Ours) 97.0 (± 0.0) 73.7 (± 0.0) 82.0 (± 0.0) 32.0 (± 0.0)

Table 6. Text embedding zero-shot classification mean accuracy and standard deviation (%)

Ablation on the class balance specification We conducted a semi-synthetic experiment to investigate the sensitivity to the
label distribution specification error in real datasets. We generate the noisy label distribution specification and see how the
accuracy changes. We control the noise in the label distribution specification as follows. Given the true class balance ν∗, first
we make adversarial class balance νadv such that νadvj∗ = 1 for j∗ = argminj∈[K] ν

∗
j and νadvj = 0 for j ̸= j∗. To measure

distance between class balance specification and true class balance, we use the total variance TV (ν, ν̂) = 1
2 ||ν − ν̂||1.

Next, we intepolate ν∗ and νadv such that TV (ν∗, να) = α, by να = (1− α
TV (ν∗,νadv)

)ν∗ + α
TV (ν∗,νadv)

νadv . We set the
interval of alpha as 0.01 and vary it up to 0.2.

Figure 3 shows the result. We observe the sensitivity to the label distribution specification error varies depending on the
datasets, but generally we can observe that the accuracy degrades linearly proportionally to the class balance error. While
the result may vary depending on the interaction between class balance error and calibration error in cost matrix, we can
expect performance improvement if the class balance specification is good enough.

Inference time comparison To show that the additional computation complexity induced by OTTER is not heavy, we
measured the time consumption (in seconds) for the inference step in the experiments in Section 5.1, with the pre-computed
embeddings. Table E.3 presents the result. Time reduction column represents the time reduction rate of OTTER compared to
PM. Measurements were taken using a machine equipped with an Intel® Core™ i7-11700K @ 3.60GHz processor, 64GB
RAM, and NVIDIA GPU RTX-4090. For most cases (n < 30000), our method takes less than 1 second, while the prior
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Figure 3. Ablation experiment on the class balance specification. X-axis represents the total variation distance between the class
specification true class balance Pt(Y ) and P̂t(Y ). Y-axis represents accuracy. ViT-B/16 is used as the image zero-shot classifier, and
BERT is used as the text zero-shot classifier.
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Dataset n ZS PM OTTER Time reudction (%)

CIFAR10 10000 0.0381 3.7127 0.0733 98.03
CIFAR100 10000 0.0462 3.6296 0.1947 94.64
Caltech101 7162 0.0298 3.6445 0.1188 96.74
Caltech256 22897 0.2111 3.9597 0.8568 78.36

Food101 25250 0.1186 3.6968 0.4969 86.56
STL10 8000 0.0304 3.4877 0.0546 98.43

SUN397 87004 1.1233 33.0386 10.5316 68.12
Flowers102 6149 0.0280 3.7216 0.0959 97.42
EuroSAT 22000 0.0826 3.6655 0.3491 90.48

OXFORD-IIIT-Pet 3669 0.0137 3.3901 0.0233 99.31
STANFORD-Cars 8041 0.0413 3.4910 0.1964 94.37

Country211 21100 0.1285 3.7665 1.0537 72.02
DTD 1880 0.0070 3.4603 0.0156 99.55
CUB 5794 0.0306 3.5583 0.1410 96.04

ImageNet 40000 0.9954 37.6932 8.1003 78.51
ImageNet-r 26000 0.1921 3.8331 0.9834 74.35

ImageNet-Sketch 40889 1.0189 38.4853 9.0579 76.46

Table 7. Inference time comparison with pre-computed embeddings (in seconds).

ZS PM OT ZS + CD PM + CD OT + CD

EuroSAT 32.90 11.36 42.03 53.62 11.37 57.15
Oxford-IIIT-Pet 83.84 23.11 88.83 87.95 16.33 91.01

DTD 39.04 8.83 44.41 42.87 14.73 43.24
CUB 45.98 10.34 50.40 55.51 11.49 58.47

ImageNet 60.18 12.42 62.86 66.46 14.08 68.05

Table 8. Accuracy in the prompt-enhanced zero-shot classification by Classification by Description (CD) (Menon & Vondrick, 2022). We
can observe OTTER’s capability to provide further enhancements upon refined the improvements achieved through refined prompts.

matching baseline takes more than 3 seconds. It’s worth noting that the time consumption for computing embeddings is
more substantial; even 10 seconds is negligible compared to the embedding time consumption (ranging from 5 to 30 minutes
for each evaluation set), which is common for all inference conditions.

Ablation on prompts Recent studies have demonstrated the efficacy of enhancing prompts as a means to improve zero-shot
models (Zhou et al., 2022; Menon & Vondrick, 2022). In order to further illustrate the potential enhancements offered by
OTTER beyond enhanced prompts, we reproduced Menon & Vondrick (2022)’s approach (Classification by Description,
CD), which employs multiple prompts generated by language models and takes max scores of them for each class. We
applied OTTER to CD. The results of this experiment are summarized in Table E.3. As anticipated, OTTER exhibits
enhancements in zero-shot classification, even when prompt sets are refined using language models.
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E.4. Few-shot adaptation with label distribution estimation

Setup and Procedure. We use the same datasets as the previous experiment. We consider a 10-shot learning setting: 10
labeled samples per class are given. Note that labeled samples have uniform label distribution, while the label distribution in
the target distribution may not be uniform. This setting requires the use of label distribution estimation methods used in
label shift adaptation (Lipton et al., 2018b; Azizzadenesheli et al., 2019; Garg et al., 2020). We estimate the target label
distribution with Black Box Shift Estimation (BBSE) (Lipton et al., 2018b). BBSE estimates the target balance using
confusion matrix, under the label shift assumption. For detailed explanation, refer to Appendix C.

Expected Results. We expect OTTER can improve zero-shot classification if the label distribution estimation error is
sufficiently small. Also, we expect OTTER can improve linear probing, which is one of standard approaches for few-shot
learning.

Results. We found OTTER improves zero-shot text classifications where the number of classes is small (K = 2 or 3), and
improves linear probing in image classification with a large number of classes. Table 9 shows the text zero-shot classification
results. While it shows a relatively high variance due to the small sample size (20 ∼ 30), the average accuracy significantly
improves over zero-shot classification. Table 10 shows the linear probing experiment results. The result shows that OTTER
can yield additional improvement upon linear probing. Full results that have both of zero-shot classification and linear
probing are given in Appendix E.

Zero-shot Prior Matching OTTER

Amazon review 74.0 47.9 (±45.5) 89.9 (±11.1)
GenderBias 84.0 57.0 (±36.5) 87.8 (±4.4)
CivilComments 48.4 69.1 (±33.7) 55.81 (±17.9)
HateXplain 30.9 34.4 (±6.0) 35.2 (±3.3)

Table 9. Accuracy (%) in zero-shot text classification with BERT. We use the label distribution estimation by BBSE for Prior Matching
and OTTER. We report the mean and the standard deviation of 10 different samplings of the labeled data.

LP LP + PM LP + OTTER

CIFAR10 90.2 (±0.6) 89.8 (±1.1) 90.0 (±0.6)
CIFAR100 58.3 (±0.8) 24.4 (±12.2) 60.5 (±0.6)
Caltech101 91.5 (±0.8) 87.5 (±9.3) 91.4 (±0.9)
Caltech256 84.5 (±0.4) 58.4 (±23.5) 85.4 (±0.4)
Country211 12.4 (±0.4) 9.2 (±2.4) 13.2 (±0.3)
DTD 58.6 (±1.1) 49.0 (±9.3) 59.3 (±1.1)
EUROSAT 74.6 (±1.4) 71.6 (±3.5) 75.9 (±3.0)
Flowers102 89.0 (±0.0) 87.8 (±0.0) 90.2 (±0.1)
Food101 79.1 (±0.9) 60.6 (±17.1) 79.8 (±0.6)
Oxford-IIIT-Pet 75.7 (±1.3) 72.0 (±8.8) 75.6 (±1.7)
Stanford-Cars 64.5 (±0.8) 65.4 (±0.9) 66.3 (±0.8)
STL10 97.7 (±0.6) 97.5 (±0.9) 97.6 (±0.5)
CUB 72.2 (±0.1) 63.3 (±23.0) 75.6 (±0.4)
ImageNet 56.8 (±0.0) 53.6 (±4.1) 59.8 (±0.0)
ImageNet-r 54.9 (±0.8) 47.6 (±11.0) 57.1 (±0.8)
ImageNet-Sketch 43.4 (±0.0) 37.9 (±1.4) 48.3 (±0.0)

Table 10. Accuracy (%) in linear probing image classification with ViT-B/16. We use the true label distribution as the label distribution
specification. We report the mean and standard deviation of 10 different random samplings of the validation set. We excluded SUN397
since linear probing collapses.

Table 10 shows the experiment results. The result shows that OTTER can yield mild improvement over linear probing, even
with the label distribution estimation errors. More detailed analysis regarding estimation erorr and the number of samples is
provided in Appendix E.5.

E.5. Detailed experiment results of Section E.4

Class balance estimation errors We report the class balance errors in Section E.4. As a metric, we use the total variance
TV (ν, ν̂) = 1

2 ||ν − ν̂||1. We use zeroshot prediction scores and linear probing prediction scores for BBSE. ν̂zs denotes the
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Dataset TV(ν∗, ν̂zs) TV(ν∗, ν̂lp) Dataset TV(ν∗, ν̂zs) TV(ν∗, ν̂lp)

CIFAR10 0.071 0.038 STL10 0.021 0.011
CIFAR100 0.219 0.153 SUN397 0.503 0.458
Caltech101 0.130 0.041 CUB 0.245 0.102
Caltech256 0.126 0.081 ImageNet 0.175 0.175
Country211 0.439 0.336 ImageNet-r 0.210 0.189

DTD 0.441 0.160 ImageNet-sketch 0.236 0.211
EUROSAT 0.404 0.084 Amazon 0.090 0.253
Flowers102 0.202 0.067 CivilComments 0.369 0.383

Food101 0.112 0.090 Gender 0.083 0.155
Oxford-IIIT-Pet 0.219 0.114 HateXplain 0.253 0.203
Stanford-Cars 0.255 0.143

Table 11. Class balance estimation error with BBSE in Section E.4. We report the mean of 10 different random samplings of the validation
set. Lower is better.

estimated class balance based on zero-shot prediction scores, and ν̂lp represents the estimated class balance based on linear
probing prediction scores.

Table 11 shows the result. We can see that total variation decreases with linear probing in image classification tasks since
they reduces the violation of label shift assumptions. However, total variation increases in text classification tasks due to the
small number of labeled sample size, following the size of label space (K = 2 or 3). Accordingly, we can expect OTTER
will be more useful with linear probing, and just rebalancing zero-shot predictions with OTTER could be enough for text
classification tasks.

Ablation experiments on linear probing We provide full results of Section E.4. Specifically, we additionally report the
results of combination with linear probing in text classification tasks and the results of zero-shot classification results in
image classification tasks.

The results are presented in Table 12. While OTTER often provides additional improvement over LP, zero-shot classification
was a strong baseline in image classification tasks. Meanwhile, class balance adaptation in text classification tasks is effective
in all cases, giving a significant improvement over zero-shot predictions.

Ablation experiments on the number of examples per class Few-shot adaptation scenario assumes we have access to
labeled data to estimate the target distribution. We hypothesize that an increase in the number of labeled samples enhances
the accuracy of the class balance estimation, thereby improving the performance of OTTER. To test this hypothesis, we use
few-shot adaptation in image and text classification tasks, without linear probing. The experiment varies the number of
samples per class from 10 to 100, anticipating a reduction in class balance estimation error and an improvement in OTTER’s
accuracy with the increase in labeled samples.

The results, as depicted in Figure 4, corroborate our hypothesis. It is evident that the error in class balance estimation
diminishes with an increasing number of samples, leading to a concurrent enhancement in the accuracy of OTTER.

Comparison between OTTER and Linear Probing with varying number of classes In the few-shot adaptation
scenario, we explored three approaches: OTTER, linear probing (LP), and a combination of LP + OTTER. We formulated
two hypotheses. The first posits that OTTER might outperform LP, particularly in situations with a limited number of
samples. The second hypothesis suggests that OTTER could provide further enhancements to LP even when LP already
surpasses the naive version of OTTER. This experiment was conducted using the same setup as the previous one.

The results, displayed in Figure 5, reveal several insights regarding our hypotheses. To begin with, OTTER demonstrates
performance on par with LP, especially in scenarios with fewer samples. Interestingly, OTTER achieves superior accuracy
compared to LP in datasets like Amazon and CivilComments, characterized by a small number of classes (K = 2), resulting
in a relatively low total sample count. Furthermore, it is observed that incorporating OTTER into LP leads to an average
increase in accuracy.
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Dataset ZS ZS BBSE+PM ZS BBSE+OT LP LP BBSE+PM LP BBSE+OT

CIFAR10 88.3 72.7 87.5 90.2 89.8 90.0
CIFAR100 63.8 3.2 59.1 58.3 24.4 60.5
Caltech101 79.8 32.5 80.7 91.5 87.5 91.4
Caltech256 79.8 6.0 80.3 84.5 58.4 85.4
Country211 19.8 1.5 15.9 12.4 9.2 13.2

DTD 39.0 3.2 31.2 58.6 49.0 59.3
EUROSAT 32.9 19.2 34.0 74.6 71.6 75.9
Flowers102 64.0 40.3 60.8 89.0 87.8 90.2

Food101 85.6 15.3 82.3 79.1 60.6 79.8
Oxford-IIIT-Pet 83.8 43.3 71.4 75.7 72.0 75.6
Stanford-Cars 55.7 2.3 51.7 64.5 65.4 66.3

STL10 98.0 97.4 96.9 97.7 97.5 97.6
SUN397 47.1 6.9 25.6 0.2 0.2 0.2

cub 46.0 3.3 45.5 72.2 63.3 75.6
ImageNet 60.2 0.8 57.7 56.8 53.6 59.8

ImageNet-r 68.9 1.7 63.3 54.9 47.6 57.1
ImageNet-Sketch 39.8 0.8 40.4 43.4 37.9 48.3

Amazon 74.0 47.9 89.1 71.3 66.9 71.3
CivilComments 48.3 69.1 55.8 53.8 45.5 53.8

Gender 84.0 57.0 87.8 78.0 71.2 78.5
HateXplain 30.4 34.4 35.2 32.8 32.7 32.3

Table 12. Accuracy (%) with OTTER combined with class balance estimation. ZS BBSE denotes BBSE class balance estimation based
on zero-shot prediction scores, and LP BBSE denotes BBSE class balance estimation based on linear probing prediction scores. We report
the mean of 10 different random samplings of the validation set.
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Figure 4. Ablation experiment on the number of samples. We report the mean of 10 different samplings in each setting. We use ViT-B/16
for image classification, and BERT for text classification.

E.6. Zero-shot prediction improvement with class hierarchy

We hypothesize incorporating class hierarchy information can enhance few-shot label distribution estimation and thus
improve zero-shot predictions.

Setup and Procedure. We use a subset of CIFAR100 data with WordNet hierarchy. Specifically, we take ‘fish’ and ‘tree’ as
superclasses and have 5 subclasses in each of them. We suppose we can access 10 labeled samples per each subclass. We
first apply OTTER with the superlevel label distribution estimation and make pseudo-labels of superlevel class in the test
set. Using them, we estimate the sublevel label distribution and use OTTER.
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Figure 5. Comparison between OTTER, LP, and LP+OTTER with varying the number of samples. We report the mean of 10 different
samplings in each setting. We use ViT-B/16 for image classification, and BERT for text classification.

Results. Table 13 presents the results. As anticipated, we note an enhancement in accuracy when compared to the naive
implementation of OTTER. Specifically, we observe a significant improvement in accuracy for RN50, RN101, and ViT-B/16,
which we attribute primarily to the reduction in label distribution estimation error. Further details are provided in Appendix
E.7.

OTTER H-OTTER

RN50 38.5 (±4.9) 43.6 (±3.1)
RN101 39.9 (±6.9) 44.8 (±5.1)
ViT-B/32 59.0 (±3.1) 59.3 (±2.9)
ViT-B/16 54.6 (±8.3) 58.2 (±3.6)
ViT-L/14 71.3 (±3.9) 69.4 (±5.2)

Table 13. Accuracy (%) with hierarchical OTTER (H-OTTER). We report the mean and the standard deviation of 10 different random
samplings of the labeled data.

E.7. Detailed experiment setup and results of Section E.6

Class hierarchy We used the following superclasses and subclasses classes for the proof of concept.

• fish: aquarium fish, flatfish, ray, shark , trout

• tree: maple tree, oak tree, palm tree, pine tree, willow tree

Class balance estimation error We report the class balance estimation error in Section E.6. Table 14 shows the total
variation between true class balance and estimated class balance. We can expect a significant accuracy improvement for
RN50, RN101, and ViT-B/16 based on this table.

BBSE H-BBSE

RN50 0.335 0.246
RN101 0.378 0.294
ViT-B/32 0.156 0.167
ViT-B/16 0.287 0.246
ViT-L/14 0.131 0.152

Table 14. Class balance estimation error in the Section E.6 experiment. Class balance estimation error is measured by total variation
distance. We report the mean of 10 different samplings of the validation set. H-BBSE denotes the class balance estimation using hierarchy
upon BBSE.
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