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Figure 1: Teaser. Given a pair of input views, D?USt3R accurately establishes dense correspondence
not only in static regions but also in dynamic regions, and enables 3D reconstruction of a dynamic
scene via our proposed static-dynamic aligned pointmap. The colored e pointmaps highlight that
DUSt3R [44]] and MonST3R [51]] align pointmaps solely based on camera motion, causing corre-
sponding 2D pixels within dynamic object misaligned. We also compare the cross-attention maps,
established correspondence fields, and estimated depth maps produced by D?USt3R against baseline
methods [31]), where our method shows higher precision.

Abstract

In this work, we address the task of 3D reconstruction in dynamic scenes, where
object motions frequently degrade the quality of previous 3D pointmap regression
methods, such as DUSt3R, that are originally designed for static 3D scene recon-
struction. Although these methods provide an elegant and powerful solution in
static settings, they struggle in the presence of dynamic motions that disrupt align-
ment based solely on camera poses. To overcome this, we propose D>USt3R that
directly regresses Static-Dynamic Aligned Pointmaps (SDAP) that simultaneiously
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capture both static and dynamic 3D scene geometry. By explicitly incorporating
both spatial and temporal aspects, our approach successfully encapsulates 3D dense
correspondence to the proposed pointmaps, enhancing downstream tasks. Exten-
sive experimental evaluations demonstrate that our proposed approach consistently
achieves superior 3D reconstruction performance across various datasets featuring
complex motions.

1 Introduction

Recovering 3D scene geometry from images remains a core problem in computer vision. Traditional
approaches, such as Structure-from-Motion (SfM) [33]] and Multi-View Stereo (MVS) [33]], have
achieved impressive results in this context. While these methods are originally designed for recovering
precise 3D scene geometry, they often struggle with scenes that include objects, symmetries, imagery
with minimal overlapping and textureless regions [26, 134} 13| 9].

To overcome these limitations, recent approaches [44, |21} 41] leverage a learning framework to
streamline the 3D reconstruction pipeline and enhance performance. DUSt3R [44]], as a pioneer-
ing method, introduced a unified learning-based framework for dense stereo 3D reconstruction.
Specifically, DUSt3R directly regresses 3D pointmaps that encode scene geometry, pixel-to-scene
correspondences, and inter-view relationships, mitigating error accumulation typical in multi-stage
pipelines. Despite its strengths in static scenarios, DUSt3R significantly struggles with dynamic
scenes due to its rigidity assumption, as exemplified in Figure[T}

Dynamic scenes, prevalent in real-world scenarios, pose significant challenges in 3D scene recon-
struction task, as object motions disrupts the camera pose-based alignment [44]], causing misaligned
correspondences and inaccurate depth estimates in dynamic objects, which further degrades recon-
struction accuracy in static regions. While recent methods such as MonST3R [31] extends training
to dynamic-scene video collections to account for dynamic objects, it still models all pointmaps as
if generated by a single global rigid transformation. Consequently, these approaches suffer from
compromised correspondence learning for dynamic objects, in turn impairing depth accuracy and
robust geometry recovery.

In this paper, we propose Dynamic Dense Unconstrained Stereo 3D Reconstruction (D?USt3R), a
novel feed-forward framework that directly regresses Static-Dynamic Aligned Pointmaps (SDAP),
simultaneously accounting for both spatial structures and temporal motions to enable more reliable
3D reconstruction of both static and dynamic regions. Unlike MonST3R [51]], which overlooks
correspondences on moving objects, our model captures dense inter-frame matches by treating
correspondence and reconstruction as a unified problem in dynamic scenes. We achieve this with a
novel training scheme that applies separate supervisory signals to static and dynamic regions, signals
that are further stabilized and localized to regions of interests by our occlusion and dynamic masks.
Experimental results and visual comparisons confirm that our approach delivers a significant boost in
reconstruction accuracy.

Our contributions are summarized as follows:

* Our approach, D?USt3R, captures dynamic motion by leveraging static—dynamic aligned
pointmaps, allowing for the comprehensive 3D reconstruction of all scene elements in any
environment.

* To compensate for the missing direct 3D correspondences between dynamic objects, we
propose a 3D alignment loss that effectively accounts for the occlusions and object motions.

 D?USt3R achieves state-of-the-art performance across several downstream tasks, including
multi-frame depth estimation as well as camera pose estimation, demonstrating superior
results in dense 3D reconstruction of dynamic scenes.

2 Related Work

Per-scene 3D reconstruction. Classical 3D reconstruction methods typically follow a multi-
stage pipeline to recover scene geometry and camera parameters from a set of uncalibrated images.
Prominent examples include Structure-from-Motion (SfM) [52f], and Simultaneous Localization and
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Figure 2: Cross-attention visualization of DUSt3R [44] on static vs. dynamic scenes. We show
source-image attention maps for a highlighted query point (red) at each layer and averaged across
layers. While DUSt3R captures geometric correspondences well in static regions, it fails in dynamic
areas due to its rigid-motion, static-frame assumption.

MonST3R

Ours

Layer O Layer 4 Layer 6 Layer 8 Average

Figure 3: Cross-attention visualization on dynamic scenes: MonST3R [51] vs. Ours. Using
the same setup as Figure[2] MonST3R inherits DUSt3R’s static-scene supervision and fails to align
moving regions, limiting reconstruction. In contrast, our method consistently matches dynamic
frames and produces sharply localized attention.

Mapping (SLAM) [8]. SfM incrementally reconstructs sparse 3D points through feature matching
and bundle adjustment where SLAM simultaneously estimates camera trajectories and builds sparse
or semi-dense maps in real-time. Building upon SfM, ParticleSfM [33] incorporate particle-based
trajectory modeling to track object motions, paving the way for reconstruction in dynamic scenes.
Despite all of these approaches showing remarkable performance, they typically require long process-
ing time and resources for scene-specific optimization and often struggle with error accumulations
from multi-stage pipelines.

Learning-based static scene reconstruction. Building on top of estabilished correspondence
fields [4] 3l [14], various learning-based approaches [41}, 23] 12} have been proposed to
reconstruct static 3D scenes by learning strong 3D priors, representing the scene as point clouds [23]
[13]], meshes [[12} 42]], voxels [6] and 3DGS [13]. Recently, DUSt3R [44] notably provides a
unified, feed-forward pipeline for dense stereo matching, geometry estimation, and triangulation by
directly regressing structured 3D pointmaps. Although DUSt3R significantly improves reconstruction
quality and efficiency by reducing cumulative errors, DUSt3R is inherently designed for static scenes,
limiting its effectiveness in scenarios involving dynamic components.

Learning-based dynamic scene reconstruction. Dynamic scene reconstruction introduces ad-
ditional complexities due to non-rigid transformations occurring across frames. Similarly to static
scene reconstruction, several recent approaches [23} 51 28 24] [43] [48] have employed learning-based
methods to tackle dynamic scene reconstruction. Among these, MonST3R [51]] directly fine-tunes
DUSt3R using videos consisting of dynamic scenes. Although it has shown competitive performance,
MonST3R retains DUSt3R’s per-frame training paradigm and lacks explicit mechanisms for linking
corresponding points across frames in dynamic scenes, leading to inconsistent depth estimations that
arises from lacking constraints that fail to capture the intricate motion patterns of objects. Our method
addresses this limitation by augmenting the existing feed-forward framework with motion-aware
training objectives, explicitly enforcing consistent 3D point correspondences over time.

3 Preliminary

Given a pair of input images I', > € RW>*#*3 DUS3R [44] predicts a pair of 3D pointmaps
XL X211 ¢ RWXHX3 for both images, each expressed in the camera coordinate system of I'. To
train the network in a supervised manner, ground-truth pointmaps for each image are defined in the
coordinate space of the first camera. Specifically, given the camera intrinsics matrix K € R3*3,



Lstatic

b,
£ -1

Image I* < Consistency Static region
kl) check
- ‘\‘;"IP’

W\\v—o -

—> Layn

4f

[ 1P =0

Image I? L Optical flow Dynamic mask Mgyn

Dynamic region

(a) Dynamic mask estimation (b) Pointmap alignment

Figure 4: Construction of alignment loss defined at static and dynamic regions. We introduce a
pipeline for constructing a static-dynamic aligned pointmap (SDAP) that explicitly handles occlusions
in dynamic regions. First, we compute and refine optical flow via cycle consistency checks and derive
a dynamic mask Mgy,. To align image I? with image I, we then: 1) warp static pixels using the
known camera poses, and 2) warp dynamic pixels using the optical flow. By combining these two
warps, we finally obtain SDAP that registers every corresponding 2D pixel into 3D space.

world-to-camera pose matrices P", P™ € R*** for images n and m, and a ground-truth depth map
D € RW*H | the ground-truth pointmap is computed as X™™ = P™(P")~'h(K~1D), where
h:(x,y,2)— (x,y, 2z, 1) represents the transformation to homogeneous coordinates.

Using 3D pointmaps, DUSt3R learns its parameters by minimizing the Euclidean distance between the
ground-truth pointmaps X!, X2'! and the predicted pointmaps X !, X! for two corresponding
sets of valid pixels D!, D? C {1... W} x{1... H} on which ground-truth defined using a regression
loss defined as:

1,
XM (1)

where v € {1,2} is the input views and ¢ € DV denotes valid pixel positions. The scaling factors
z =norm(X11, X?1) and z = norm(X b1 X 2’1) are computed using the normalization function:

norm(X*', X?) = DI+ 27| |D2 Z Z X371 @
ve{1,2} i€DY

. 1
‘Cregr(vzl) — HZAX'ZH1 _

Additionally, DUSt3R incorporates a confidence score to learn to reject errorneously defined GT
pointmaps, and it is included in the final loss function such that:

Leont = Z Z chlL Lregr(v,7) — alog C7. ! 3)

ve{l,2}i€Dv

4 Methodology

4.1 Motivation and overview

As shown in Figure [T} DUSt3R [44]) predicts 3D pointmaps in static regions with high accuracy,
leveraging precise stereo correspondences for robust reconstruction. Inspired by ZeroCo’s finding that
DUSt3R’s cross-attention inherently encodes geometric correspondences [[L], we visualize attention
maps for both static and dynamic scenes in Figure[2] While DUSt3R excels in static areas, it fails
to produce localized attention scores in dynamic regions, leading to noisy pointmap predictions as
visualized in Figure[T] To address this, MonST3R [51] augment DUSt3R’s training data with dynamic
sequences, but they still neglect explicit object-to-object correspondences. This omission prevents
dynamic objects from serving as anchors that could strengthen the spatial structure and improve
depth estimates of neighboring static regions, thereby limiting overall reconstruction quality. Figure 3]
highlights these shortcomings, showing how noisy or missing correspondences degrade accuracy.

To overcome these limitations, we propose Static-Dynamic Aligned Pointmaps (SDAP). Unlike
static-only aligned pointmaps, which align 3D points solely with rigid transformations, SDAP



Table 1: Training datasets. All datasets consists of synthetic scenes and provide both camera and
depth. We excluded scenes containing incomplete dataset annotations or noisy objects (e.g., smoke).
Details regarding each scene are documented in the supplementary material.

Dataset Domain # of frames  # of Scenes Dynamics Dynamic mask Optical flow  Ratio

Blinkvision Outdoor [22] Outdoors 6k 23 Realistic v v 38.75%
Blinkvision Indoor [22] Indoors 6k 24 Realistic v v 23.75%
PointOdyssey [54] Indoors & Outdoors 200k 131 Realistic X X 12.5%
TartanAir [45] Indoors & Outdoors 1000k 163 None X v 12.5%
Spring [29] Outdoors 6k 37 Realistic v v 12.5%

simultaneously aligns both static and dynamic components in the scene, fully encoding each pixel’s
spatial and temporal information. In the following sections, we describe our proposed SDAP
representation and outline our training procedure.

4.2 Static-Dynamic Aligned Pointmap

While 3D pointmaps excel at encoding static 3D structure [44], they break down on moving objects
due to temporal misalignment. To address this, we introduce Static-Dynamic Aligned Pointmaps
(SDAP), which jointly enforce spatial consistency and capture pixel motion across time. Our key
insight is to represent every pixel in a unified world coordinate system that aligns its position at
each timestep, yielding a cohesive reconstruction of dynamic scenes. However, dynamic motion
often leads to occlusions, meaning some pixels appear in only one frame. This results in incomplete
alignment, which ultimately limits the quality of 3D reconstruction.

Occlusion Masks. To eliminate occluded regions in our SDAP representation, we first obtain
dense 2D correspondences across each image pair using an off-the-shelf optical flow estimator [46].
If ground-truth flows are available in the dataset, we use those instead. In scenarios with large camera
baselines, where occlusions become more frequent, we further apply a forward—backward consistency
check [39}150] to derive precise occlusion masks. The full procedure is detailed below.:

py=p1+f(p1), Py =p5+by), Mo =[lp] — 1| >1], “)

where p; denotes a pixel in image I’, f and b represent forward and backward optical flows,
respectively, and ¢ is an occlusion threshold.

Dynamic Masks. Dynamic regions, characterized by moving objects and non-rigid transformations,
introduce significant challenges in accurately aligning pointmaps due to inconsistencies between
camera-induced motion and object-specific motion. Without explicitly accounting for such dynamic
behaviors, the network may attempt to incorrectly fit dynamic regions as if they were static, thus
impairing reconstruction accuracy. To address this, we introduce a dynamic mask My, that explicitly
highlights moving regions, guiding the network toward a more stable learning process. Specifically,
the dynamic mask Mgy, is computed by comparing optical flow f with the expected flow induced
purely by camera motion f.,,,. Given the depth map D, intrinsics matrix K, relative rotation and
translation R, T, and pixel coordinates p, we define:

fum = T(DKRK 'p+ KT) —p, Mayn = [||feam — £ > 7], 3)

where 7 : (x,y, 2) — (x/z,y/z) is the projection operation, and 7 serves as the dynamic threshold.

4.3 Objective Function

Given our SDAP representation equipped with occlusion and dynamic masks, we formulate our
training objective as confidence-aware 3D regression [44], leveraging these masks to achieve enhanced
stability. To effectively account for the distinct characteristics of static and dynamic regions, we
introduce two separate objective functions, each explicitly designed to handle the respective scenarios
and ensure accurate reconstruction in both cases.

Pointmap alignment in static regions. The regression loss in DUSt3R inherently aligns 3D
pointmaps using camera pose alone. To ensure alignment focuses solely on static regions within
image /2, we employ the dynamic mask Mgy, and restrict the computation of the regression loss



accordingly. Thus, we modify the regression loss Lyegr as follows:

. 1 1,1 1= 1,1
£regr(1az) = ;XZ - %Xz )
1 1-21 ©)
sl = (133, [L2t - L2

To account for errorneously defined GT pointmaps, we additionally introduce a confidence-aware
loss in static regions, Ly, to incorporate uncertainties into the alignment process:

Estatic = Z Z Cz)JEregr(vy Z) -« log Cf7l~ (7)

ve{l,2}i€Dv

Pointmap alignment in dynamic regions. To align dynamic region from I2 to I*, we introduce a
dynamic alignment loss that leverages both the occlusion mask M. and the dynamic mask Mgy, to
effectively address occlusions and motion. As illustrated in Figure ] these masks are computed in a
dedicated pipeline. This method ensures that when points from the second view IZ, are transformed
into the coordinate system of I, they accurately correspond to the temporal state of the first view. In
line with our regression loss, we further incorporate confidence estimates to define a confidence-aware
alignment loss. The dynamic alignment loss is formulated as follows:

1 - 1
ﬁdyn = Z ngn,i(l - Mc?cc,i)cill ;leJrlb(z) - ;Xiz’l — alog CiQ’l
i€D? 1 1 )
1. 1
1 1 12| 1 22 L o12f 1,2
+ Z Mdymi(l - Mocc,i)ci Z Xi+f(i) P X; alog C; %,

ieD?
We leverage optical flow f to establish dense correspondences between I' and 12, and its reverse
direction b. The first term in our loss function enforces the alignment of the pointmap in the

coordinate space of the camera system associated with I', while the second term introduces a
symmetric constraint by aligning the points when the roles of the views are swapped.

Final Objective. Our final objective function is defined as following:
Etolal = Lstatic + Edyn~ 9

This combined loss function enables our model to capture precise 3D geometry and robust correspon-
dences in dynamic scenes while retaining DUSt3R’s proven benefits in static regions.

4.4 Additional heads for downstream task

To further enhance the capabilities and interpretability of our SDAP framework, we introduce two
additional downstream heads dedicated to explicitly modeling dynamic masks and optical flow.

Dynamic mask head. Since our model implicitly encodes regions corresponding to dynamic
motion, we explicitly regress dynamic masks using an additional head. Specifically, we predict

a single-channel logit map, Mdyn, using a DPT head [32]], structured similarly to our pointmap
regression head. We supervise this head using a binary cross-entropy loss defined as follows:

1 - .

Linask = Dl Z [Mdyn,i log(o(Mayn,i)) + (1 — Mayn,i) log(1 — o(Mayn.i)) | » (10)
a 1€ Dan

where o (-) denotes the sigmoid function and D, denotes the set of all pixels.

Optical flow head. To accurately estimate optical flow, we incorporate an additional head based on
the RAFT architecture [40]]. Inspired by recent findings from ZeroCo [[1], our flow head utilizes cross-
attention maps instead of traditional 4D correlation volumes. The optical flow head is supervised
using the Mixture-of-Laplace loss [460].

S Experiments

5.1 Experimental setup

Implementation details. Building on top of DUSt3R [44], we freeze the encoder and fine-tune
only the decoder and the DPT head [32], as done similarly by MonST3R. For each epoch, we
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Figure 5: Pointmap reconstruction. We qualitatively compare the 3D pointmap of D>USt3R against
other pointmap regression models [44] [51]]. All visualizations presents per-pixel pointmaps without
applying confidence thresholding. It is notable that both DUSt3R [44] and MonST3R [31] struggle to
accurately reconstruct scenes that include dynamic object. We find that inaccurately established corre-
spondence fields between dynamic regions negatively affect the overall reconstruction performance.

Table 2: Multi-frame depth estimation results. We compare multi-frame depth for both the entire
scene and dynamic regions separately. The comparison for dynamic regions is conducted only when
the dynamic parts are identifiable. *: Reproduced with same dataset as Ours.

TUM-Dynamics Bonn Sintel KITTI
Category Methods | All Dynamic All Dynamic All Dynamic | All

| | AbsRel| 411 AbsRell 4,1 | AbsRell ;1 AbsRell 6,1 | AbsRell ;1 AbsRell 4,1 | AbsRel| d;1
. DepthAnythingv?2 [49] 0.098 89.0 - - 0.073 93.8 - - 0.336 55.6 - - 0.069 93.7
Single-frame depth ‘ Marigold 0205 723 - 0.066 964 - - 0623 505 - - 0.104  89.9
DUSH3R [44] 0.176 76.5 0.221 71.3 0.135 82.4 0.127 83.7 0.370 58.5 0.672 54.9 0.076 93.6
MAS3R [21] 0.165 79.0 0.199 73.8 0.183 71.5 0.167 79.5 0.330 57.3 0.528  54.4 0.050 96.8
Multi-frame depth | MonST3R [51] 0.045 812 0152 792 | 0.068 944 0066 949 | 0345 562 0525 469 | 0070 95.0
MonST3R* [51] | 0.159 81.0 0.181 76.5 0.076 93.9 0.071 94.4 0.349 52.5 0.565 36.9 | 0.103 90.9
D?USt3R (Ours) 0.142 83.9 0.148 82.9 0.060 95.8 0.059  95.7 0324 575  0.568 48.0 0.104 90.7

randomly sample 20,000 image pairs and the network is trained for 50 epochs. We use the AdamW
optimizer [27]] with an initial learning rate of 5e-5. We train with 4 NVIDIA RTX 6000 GPUs, with a
batch size of 4 images per GPU and gradient accumulation steps set to 2.

Training datasets. As shown in Table we train D2USt3R on multiple datasets, including Blink Vi-

sion Outdoor [22]], BlinkVision Indoor [22], Spring [29], PointOdyssey [54], and TartanAir [45]]. Each
epoch consisted of sampling 7,750, 4,750, 2,500, 2,500, and 2,500 pairs, respectively. Additionally,



Table 3: Single-frame depth estimation results. *: Repro- Table 5: Pointmap alignment accu-
duced using the same dataset as ours. racy in dynamic objects. We report
Bonn Sintel o2 tovbymmies. End-Point Error (EPE) | on the Sintel

KITTI
‘ AbsRel] 47 T ‘ AbsRell  §; T ‘ AbsRel| 47 T \ AbsRel| 4y T \ AbsRel]  §; T
SUSORE ‘ T and KITTI datasets. Note that Croco-

Methods

= 0424 587 | 0112 863 | 0.080 907 | 0.176  76.8
MASBR 0.142 820 | 0354 579 | 0.076 932 | 0.129 849 | 0.160 787 1 1 1n-
MonST3R (511 0.076 939 | 0345 565 | 0.101 89.3 | 0.091 888 | 0.147 811 FIOW [@J 18 ShOWH n gray on the Sln

0145 50| ooss ou| o 1 tel benchmark because it was trained
0L fer 00 M O B9 op that dataset. *: Reproduced using

Table 4: Camera pose estimation results. *: Reproduced the same dataset as ours.

MonST3R* (511 0.083 936 | 0387 506
D2USt3R (Ours) | 0.065 952 | 0340 584

using the same dataset as ours. Methods ‘ Sintel-Clean ~ Sintel-Final ~ KITTI
- - DUSH3R [44] 30.96 35.11 14.19
Sintel TUM-Dynamics ScanNet S0 A Son
Methods ‘ Rotation  Translation Rotation Translation Rotation  Translation ﬁASSl%];R% ggiz 2?»3(2’ %
on, X B 2
| Avgl Med, Avgl Med| | Avgl Med] Avgl Med] | Avgl Med, Avgl Med] MonST3R* 3747 40.58 1458
DUSER [44] 615 451 029 026 | 236 098 0013 001 | 074 054 011 008 D2US3R (Ours) 16.19 2531 8.91
MASGR 21 471 340 023 019 | 283 LI3 006 003 | 085 064 005 0.04
MonST3R (5] | 490 230 026 022 | 188 139 0019 001 | 094 079 010 008 Croco-Flow [47] 331 4.28 13.24
MonST3R* 311 | 850 261 027 023 [ 176 140 002 001 | 074 058 0.0 008 SEA-RAFT 5.21 13.18 443
D?USt3R(Ours) | 696 267 026 022 | 1.80 141 003 002 | 075 057 008 0.06 D2USt3R + Flow head 9.25 12.77 3.57
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Figure 6: Depth estimation qualitative results.
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Figure 7: Visualization of correspondences given a pair of images. We show that our method can
find accurate correspondences between dynamic objects.

we perform random sampling with temporal strides varying from 1 to 9 to account for large camera
motions and dynamic scenarios.

Baselines. Following [44], we evaluate our method on depth and camera pose estimation. We
additionally evaluate pointmap alignment accuracy in dynamic regions. We compare our method
against existing state-of-the-art pointmap regression models, specifically DUSt3R [44], MASt3R [21]],
and MonST3R [51]]. Furthermore, to ensure fair comparisons and demonstrate the effectiveness of
our approach, we trained a variant of MonST3R, termed MonST3R*, under the same setup as ours.
Evaluation setup. For multi-frame depth estimation, we evaluate on the TUM-Dynamics [38]],
Bonn [30], Sintel [2], KITTI [11]], and ScanNet [7] datasets using image pairs with source frames
offset from the target by strides of 1, 3, 5, 7, and 9 frames. We assess performance over the
entire scene and exclusively on dynamic regions when dynamic masks are available. For single-
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Figure 8: Predicted optical flow. Figure 9: Predicted dynamic mask.

Table 6: Robustness analysis on frame intervals. We evaluate the robustness of our method with
respect to varying frame intervals At € {1,3,5,7,9}. *: Reproduced using the same dataset as ours.

Methods At=1 At =3 At=5 At=T At=9
AbsRel| 611 | AbsRel] &7 1 | AbsRel] ;1 | AbsRel] 01 7 | AbsRel] 61 1
MonST3R*[51]

0.078 93.8‘ 0.078 93.5‘ 0.075 93.9‘ 0.074 93.9‘ 0.072 943

D?USt3R (Ours) 0.061 95.6 | 0.061 95.5 0.060 957 0.061 95.9 0.058  96.2

frame depth estimation, we evaluate on the Bonn [30], Sintel [2], KITTI [[10], NYU-v2 [36], and
TUM-Dynamics [38] datasets. In both settings, we follow the affine-invariant depth evaluation
protocol, reporting the Absolute Relative Error (AbsRel) and the percentage of inlier points (1,
where § < 1.25).

5.2 Experimental results

Depth estimation. In this experiment, we evaluate our method and compare with existing methods
on single/multi-frame depth estimation. The results are summarized in Table [2]and [3] We also
show qualitative comparisons in Figure and Figure @ From the results, we observe that D?USt3R
outperforms other methods overall. However, our performance on KITTI is somewhat limited, likely
due to the absence of driving scenes in our training data, which may have disadvantaged our model.
Nonetheless, we compare with MonST3R*, which was trained with the same training datasets as
ours, and find that the performance is comparable. Finally, we highlight in Figure 3] that our approach
consistently predicts accurate depth for dynamic human subjects.

Camera pose estimation. In Table[d] we evaluate camera pose performance of our model on the
Sintel [2], TUM-dynamics [38]] and ScanNet [[7] datasets. Note that we use the 2D—3D matching
between the prediction X2 and the original coordinates to obtain camera poses via PNP-RANSAC.

Dynamic alignment. In Table[5] we evaluate pointmap alignment accuracy in dynamic objects. For
this, we use Sintel [2]] and KITTI [10]]. Since we directly obtain aligned pointmaps even in dynamic
objects, we can easily derive 2D-2D matching points by computing the difference between X 2!
and X1, From the results, we find that our method outperforms other baselines, which is further
supported in Figure /| where accurately captured correspondences between objects in different time
step frames are observed. This gap is further broadened when we leverage an additional flow head, as
shown in Table E], where ours with the flow head outperforms the state-of-the-art SEA-RAFT [46]].
We provide qualitative examples in Figure 8]

Dynamic mask. In this experiment, we show that using dynamic mask head, our method reliably
predicts dynamic regions. We show visualizations in Figure 0] where the dynamic mask head
effectively segments dynamic objects across diverse in-the-wild scenarios.

5.3 Robustness analysis on frame intervals

We evaluate multi-frame depth estimation for the robustness of our method with respect to varying
frame intervals on the Bonn dataset [30], as summarized in Table [6] Across all tested intervals
(At € {1,3,5,7,9}), the results show that our model maintains stable performance and even exhibits
slight improvement as the interval widens, demonstrating strong temporal consistency and resilience
to larger motion baselines. These results suggest that the proposed flow-chaining strategy effectively
preserves geometric coherence across diverse motion dynamics, enabling reliable depth estimation
under varying temporal conditions.



5.4 Ablation study

Although we’ve already validated our 3D
alignment loss and effectiveness of pro-
posed SDAP, we further examine how dif- ‘ TUM-Dynamics Bomn

Table 7: Ablation on training strategy.

ferent fine-tuning strategies affect perfor- ~ Methods AbsRel| 6,1 | AbsRel| &; 1
mance. Since our method, unlike DUSt3R "¢ 11 finetune 0161 770 | 0081 919
or MonST3R, learns precise maps of cross-  Finetune decoder & head ‘ 0.142 839 ‘ 0.060  95.8
attention (Figure[3), we ask whether updat-
ing the encoder along with the decoder and head yields gains. As shown in Table[/] fine-tuning only
the decoder and downstream head actually outperforms full fine-tuning. Therefore, in this work we
restrict training to the decoder and head.

6 Conclusion

In this paper, we have introduced a novel approach for 3D dynamic scene reconstruction, featuring
a simple yet effective extension to existing pointmap representations to accommodate dynamic
motions. Our proposed method significantly enhances the quality of 3D reconstruction in dynamic
environments. We evaluated our approach comprehensively across tasks including depth estimation,
camera pose estimation, and 3D point alignment. Experimental results demonstrate that our method
outperforms existing approaches on real-world, large-scale datasets, achieving new state-of-the-art
performance.
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A. Training dataset

Table 8: List of excluded scenes from the datasets.

Dataset Excluded Scenes

animal_s, animal_smoke_, animall_s_, animall_s, animal2_s, animal3_s, animal4_s, animal6_s,
cab_e_ego2, cab_el_3rd, cab_el_ego2, cab_h_bench_3rd, cab_h_bench_ego2, character0_f, character0O_f2,

PointOdyssey character3_f, character4_, character5_, character6, cnb_dlab_0215_3rd, cnb_dlab_0215_egol,
cnb_dlab_0225_3rd, cnb_dlab_0225_egol, dancingroom_3rd, human_in_scene, kg, r5_new_f,
scene_d78_0318_3rd, scene_d78_0318_egol, scene_d78_0318_ego2, scene_j716_3rd, scene_j716_egol,
scene_j716_ego2, scenel_0129, seminar_h52_egol

outdoor_train_autopilot_tree_01, outdoor_train_autopilot_tree_02,

Blinkvision Outdoor outdoor_train_autopilot_tree_03, outdoor_train_track_animal_people

We provide the scene names that were excluded during our training. These scenes are excluded, either
because their annotations include errors. Please refer to Table

B. Bullet time reconstruction for dynamic video input

Owing to dynamic alignment and SDAP, we can aggregate and render a highly dynamic video
input into a single, coherent bullet-time view. As illustrated in Figure [10] a video consisting of
large input frames can be aligned into an intermediate bullet-time representation. This approach
enables static reconstruction even when the input video includes dynamic motion. Consequently, it
becomes feasible to directly train a 3D Gaussian splatting [20] on scenes containing moving people
in landmarks or dynamics that are challenging to render using conventional methods.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 10: Visualization of bullet-time reconstruction from a long sequence of dynamic video
inputs. We visualize the reconstruction of bullet-time view (20 frames) from a dynamic video
input consisting of 40 frames. Since MonST3R is incapable of dynamic alignment, it predicts depth
independently at each timestep, similar to monocular depth estimation, resulting in the reconstruction
as a sequence of 3D pointmaps.
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Figure 11: Additional qualitative results for pointmap reconstruction. We qualitatively compare

the 3D pointmap of D?USt3R against MonST3R. All visualizations presents per-pixel pointmaps
without applying confidence thresholding.

MonST3R Ours

Input image DUSt3R MonST3R Ours

Figure 12: Additional qualitative results for depth estimation on Sintel dataset.

C. Additional results

In Figure[TT]and Figure[T2] we additionally present qualitative results for pointmap reconstruction and
depth estimation. Utilizing our SDAP, dynamic elements are well-aligned, thereby enhancing both
depth estimation and 3D reconstruction quality. In Figure [I3]and Figure [T4] we present qualitative
results for optical flow on DAVIS [31] and KITTI datasets. We observed that D>USt3R is
capable of accurately predicting optical flow without relying on any dedicated optical flow module.
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Figure 13: Qualitative results for optical flow estimation on DAVIS dataset.
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Figure 14: Qualitative results for optical flow estimation on KITTI dataset.
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Table 9: Multi-frame depth estimation results on end-to-end integration analysis.

Methods TUM-Dynamics Bonn Sintel KITTI
AbsRel] ;T | AbsRell 617 | AbsRell d; T | AbsRel] 47 7T

D?USt3R 0.142 83.9 0.060  95.8 0324 575 0.104  90.7

D2USt3R + Dynamic mask head | 0.140 84.4 0.059  95.6 0.313 58.3 0.105 90.3

D. End-to-end dynamic mask head integration

We further explored an end-to-end training strategy in which the entire network, including the dynamic
mask head, is jointly optimized. As shown in Table [9] this integrated setup encourages implicit
interactions between sub-tasks through shared representations, leading to consistent, albeit moderate,
performance improvements. Specifically, we observe gains on two of the four benchmarks, with a
mean reduction in AbsRel of 1.7% and a mean increase in § of 0.9 percentage points. These results
confirm that joint optimization promotes beneficial cross-task interactions, yielding complementary
improvements across depth and dynamic mask estimation.

E. Limitations

Despite effectively handling dynamic scenarios, our dynamic alignment process has certain limitations.
Since our model relies on an off-the-shelf optical flow model, its performance is dependent on the
quality of the predicted optical flow. Additionally, our model is non-generative and can only take two
frames as input. Because we aim to achieve alignment across time, extending our approach to video
input would require an additional global optimization technique.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction (Section [I)), we clearly state the assump-
tions, claims, and contributions of this paper. Furthermore, the analysis (Section @ and
experimental evidence (Section[3)) are consistent with these claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section D, we discuss the limitations of our approach.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the dataset construction in Sections 4.2} the implementation of
the loss functions in Section[4.3|and[4.4] and the implementation details in Section [5.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to the large size of the pretrained weights, we plan to release them publicly
at a later time.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all training and testing details necessary to understand the results
in Section[5.11

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Since our model does not involve any randomness during inference when
trained weights are used, we do not report error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details on GPU resources and training time are provided in Section [5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have adhered strictly to the NeurIPS Code of Ethics in all our experiments.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper aims to advance the field of Machine Learning, particularly in
training 3D reconstruction. We do not believe there are any specific societal consequences
of our work that require special attention here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe our research, which focuses on 3D reconstruction, does not pose
such risks.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All papers associated with the datasets we used have been properly cited.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce any new assets in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human sub-
jects.1080

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human sub-
jects.1080

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We use LLM for editing (e.g., grammar, spelling, word choice).
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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