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Abstract

We introduce VideoPrism, a general-purpose
video encoder that tackles diverse video under-
standing tasks with a single frozen model. We
pretrain VideoPrism on a heterogeneous corpus
containing 36M high-quality video-caption pairs
and 582M video clips with noisy parallel text
(e.g., ASR transcripts). The pretraining approach
improves upon masked autoencoding by global-
local distillation of semantic video embeddings
and a token shuffling scheme, enabling Video-
Prism to focus primarily on the video modality
while leveraging the invaluable text associated
with videos. We extensively test VideoPrism on
four broad groups of video understanding tasks,
from web video question answering to CV for sci-
ence, achieving state-of-the-art performance on
31 out of 33 video understanding benchmarks.

1. Introduction

Videos are a rich and dynamic archive of real-world percep-
tual experience, spanning diverse domains from everyday
life to scientific observations. Video foundation models
(ViFMs) hold enormous potential to unlock new insights
within this vast corpus. While prior work has made great
progress towards general video understanding (Xu et al.,
2021; Wang et al., 2022c; Yan et al., 2022; Tong et al., 2022;
Li et al., 2023b; Wang et al., 2023c), building a truly foun-
dational video model is still an elusive goal. Existing mod-
els often struggle to balance appearance-heavy tasks with
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motion-centric reasoning, falling behind task-specialized
models across many benchmarks (Yuan et al., 2023).

We introduce VideoPrism, a general-purpose video encoder
designed to tackle a wide spectrum of video understand-
ing tasks, including classification, localization, retrieval,
captioning, and question answering (QA) (Figure 1). Evalu-
ated extensively on computer vision (CV) datasets and CV
for science domains like neuroscience and ecology, Video-
Prism achieves state-of-the-art performance with minimal
adaptation, using a single frozen model. We emphasize
this frozen-encoder setting following prior work (Radford
et al., 2021; Alayrac et al., 2022; Tang et al., 2023; Li et al.,
2023a) and for its practical utility given the otherwise high
computational and memory cost of finetuning video models.

The design philosophy behind VideoPrism is as follows.
Pretraining data is fundamental to foundation models
(FMs) (Bommasani et al., 2021), and the ideal pretrain-
ing data for ViFMs would be a representative sample of all
videos in the world. Most videos from this sample will have
no (or very noisy) parallel text describing the content; how-
ever, when such text exists, it provides priceless semantic
clues about the video space. Accordingly, our pretraining
strategy should focus primarily on the video modality and
yet take full advantage of any available video-text pairs.

On the data side, we approximate the desired pretraining
corpus by assembling 36M high-quality video-caption pairs
and 582M video clips with noisy parallel text (e.g., ASR
transcripts, generated captions, and retrieved text). On the
modeling side, we first contrastively learn semantic video
embeddings (Radford et al., 2021; Jia et al., 2021) from all
our video-text pairs of various qualities. Subsequently, we
capitalize on the extensive video-only data by distilling the
semantic embeddings globally and token-wise, improving
upon masked video modeling (Tong et al., 2022; Feichten-
hofer et al., 2022; Wang et al., 2023c) described below.

Despite its success for natural language (Devlin et al., 2019;
Brown et al., 2020; Anil et al., 2023), masked data model-
ing remains challenging for CV as raw visual signals lack
semantics. Existing works approach this challenge by bor-
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Figure 1. VideoPrism is a general-purpose video encoder that enables state-of-the-art results over a wide spectrum of video understanding
tasks by producing video representations from one single frozen model.

rowing indirect semantics (e.g., using CLIP (Radford et al.,
2021) to bootstrap models (Fang et al., 2022; 2023) or to-
kenizers (Peng et al., 2022)) or implicitly promoting them
(e.g., tokenizing visual patches (Zhou et al., 2022; Bao et al.,
2022; Oquab et al., 2023), combining a high masking ratio
and lightweight decoder (He et al., 2022)).

We build on the above ideas with a two-stage approach tai-
lored to our pretraining data. We first train a video encoder,
along with a paired text encoder, over the video-text pairs
using a contrastive objective (Gutmann & Hyvérinen, 2010;
Radford et al., 2021). Next, we continue training the en-
coder over all video-only data by masked video modeling
with two improvements: (1) the model is required to pre-
dict both the video-level global embedding and token-wise
embeddings from the first stage based on unmasked input
video patches; (2) random shuffle is applied to the encoder’s
output tokens before they are passed to the decoder to avoid
learning shortcuts. Notably, our pretraining utilizes two
supervisory signals: a video’s text description and its con-
textual self-supervision, enabling VideoPrism to excel on
both appearance- and motion-focused tasks. Indeed, pre-
vious works have shown that video captions mainly reveal
appearance cues (Wang et al., 2023f), and contextual self-
supervision facilitates learning motion (Tong et al., 2022).

Contributions. VideoPrism is a state-of-the-art, general-
purpose video encoder. We advocate for a scalable strategy
for collecting pretraining videos, combining manually cap-
tioned videos with those containing noisy textual descrip-
tions. We design a unique two-stage pretraining approach
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Figure 2. VideoPrism vs. the previous best-performing FMs.
Please find the details of this figure in Appendix D.

tailored to this hybrid data, leveraging video-language con-
trastive learning to harvest semantics, followed by improved
masked video modeling with global-local distillation and
token shuffling. Finally, we present a comprehensive evalu-
ation on four broad categories of understanding tasks across
33 diverse benchmarks, including videos from the web,
scripted performances, and scientific experiments. Results
demonstrate that VideoPrism significantly outperforms ex-
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Table 1. Composition of our pretraining corpus. We report the numbers of videos and clips we were able to access during pretraining.

Pretraining datasets ‘ Public Domain Caption source Caption quality  # of videos  # of clips
Anonymous-Corpus #1 ‘ X Web video Manual labelled High 36.1IM 36.1IM
WTS-70M (Stroud et al., 2020) v YouTube video Metadata Low 55.1M 55.1M
YT-Temporal-180M (Zellers et al., 2021) v YouTube video ASR Low 2.3M 87.8M
VideoCC (Nagrani et al., 2022) X YouTube video Image captions for mining Low 133.5M 191.1M
InternVid (Wang et al., 2023e) v YouTube video  Generated by VLM/LLM Medium 2.8M 7.0M
Anonymous-Corpus #2 X YouTube video ASR Low 44.6M 170.3M
Anonymous-Corpus #3 X YouTube video  Generated by VLM/LLM Medium 36.7M 71.5M

isting ViFMs on 31 benchmarks (Figure 2). Importantly, no
single baseline model consistently achieves second-best per-
formance, indicating VideoPrism’s robust generalizability.

2. Approach
2.1. Pretraining data

Our pretraining data consists of 36M clips (sampled from
36M videos) with high-quality manually labelled captions
and 582M clips (from 275M videos) with noisy parallel text,
as summarized in Table 1. The 36M high-quality video-
caption pairs in Anonymous-Corpus #1 are the largest of its
kind for ViFMs, to our knowledge, but they are still an order
of magnitude smaller than the image-language data used
to fuel image FMs (Radford et al., 2021; Yu et al., 2022).
Hence, we also collect large-scale video-text data whose
noisy text is generated through ASR, metadata, and large
multimodal models (Wang et al., 2023e; Zhao et al., 2024),
etc. This subset of videos corresponds to the rows from
WTS-70M to Anonymous-Corpus #3 in Table 1, and we
provide more details in Appendix A.

Importantly, unlike previous works (Tong et al., 2022; Wang
et al., 2022c; Li et al., 2023b; Wang et al., 2023b), we do
not incorporate any training sets from the evaluation bench-
marks, e.g., Kinetics (Kay et al., 2017), for either pretrain-
ing or post-pretraining. This conscious choice avoids overly
tuning our model towards certain evaluation benchmarks.
Moreover, we carefully de-duplicate the pretraining corpus
against the videos in all the 33 evaluation benchmarks used
in this paper to ensure that there is no data leakage.

2.2. Model architecture

The VideoPrism model architecture stems from the standard
Vision Transformer (ViT) (Dosovitskiy et al., 2021), with a
factorized design in space and time following ViViT (Arnab
et al., 2021). However, we remove the global average pool-
ing layer of ViViT immediately after the spatial encoder
so that the spatiotemporal dimensions remain in the out-
put token sequence, facilitating the downstream tasks that
require fine-grained features (e.g., spatiotemporal action lo-
calization). We experiment with two model configurations:

VideoPrism-g and VideoPrism-B. VideoPrism-g is the ViT-
giant network (Zhai et al., 2022a) with 1B parameters in
the spatial encoder, and VideoPrism-B is a smaller variant
with the ViT-Base network (Dosovitskiy et al., 2021). Ap-
pendix B describes the two network architectures in detail.

2.3. Training algorithm

Our goal is to leverage both video-text pairs and the video-
only data curated in Section 2.1 to train VideoPrism scalably,
so as to make VideoPrism a foundational video encoder
capable of capturing both appearance and motion semantics
from videos. We highlight the video-only modality rather
than solely relying on video-text because the text in our
large-scale pretraining corpus is very noisy for a majority
of the videos. As shown in Figure 3, the training pipeline
of VideoPrism consists of two stages: video-text contrastive
training and masked video modeling.

2.3.1. STAGE 1: VIDEO-TEXT CONTRASTIVE TRAINING

In the first stage, we conduct contrastive learning to align
a video encoder with a text encoder using all the video-
text pairs. Following prior arts (Radford et al., 2021; Jia
et al., 2021; Cheng et al., 2023), we minimize a symmetric
cross-entropy loss over the similarity scores of all video-
text pairs in a mini-batch, initialize the spatial encoding
modules using the image model of CoCa (Yu et al., 2022),
and include WebLlI (Chen et al., 2023c) (about 1B images
with alt-text) to the pretraining. The video encoder’s fea-
tures are aggregated through a multi-head attention pooler
(MAP) (Lee et al., 2019) before the loss computation. This
stage allows the video encoder to learn rich visual semantics
from language supervision, and the resulting model supplies
semantic video embeddings for the second-stage training.

2.3.2. STAGE 2: MASKED VIDEO MODELING

Training solely on vision-text data as in Stage 1 presents
challenges: text descriptions can be noisy, and they often
capture appearance more than motion (Hendricks & Ne-
matzadeh, 2021; Momeni et al., 2023). To address this, our
second-stage training focuses on learning both appearance
and motion information from video-only data. Building
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Figure 3. Illustration of our two-stage pretraining. Stage 1 trains video and text encoders with contrastive loss on video-text pairs,
supplying semantic video embeddings to the next stage. Stage 2 continues to train the video encoder, now called VideoPrism, using
improved masked autoencoding on video-only clips. The frozen Stage-1 encoder uses unmasked 3D video patches to produce a global
semantic embedding of the whole video and token-wise embeddings. Decoder 2 processes shuffled tokens with positional embedding,

while Decoder 1 has no positional embedding.

upon the success of masked autoencoding for motion under-
standing (Wang et al., 2022c; 2023c), we adapt this approach
for the second stage, while ensuring that the model retains
the semantic knowledge acquired in the first stage.

In this stage, we continue to train the video encoder on video-
only data using improved masked video modeling. These
improvements include (1) a novel token shuffling scheme
to prevent decoding shortcuts and (2) global and token-
wise distillation losses to effectively leverage the knowl-
edge acquired in the first stage. As illustrated in Figure 3,
the second-stage (student) model learns to predict the first-
stage (teacher) model’s embeddings of all tokens based on
a masked video. The encoder-decoder Transformers are
decoupled following He et al. (2022)’s design.

Token shuffling. As we effectively initialize the second-
stage model from the first stage, one issue is that the model
may create a shortcut for the decoder to copy and paste the
unmasked tokens while predicting only the masked ones,
making it an easier task to solve than predicting all tokens.
To address this issue, we randomly shuffle the token se-
quence output by the encoder before feeding it to the de-
coder, and the decoder adds positional embeddings to this
sequence after the shuffling. Note that this shuffling opera-
tion avoids the copy-and-paste shortcut of unmasked tokens
that the decoder can potentially explore. One can also view
it akin to Jigsaw puzzles (Noroozi & Favaro, 2016) which
the decoder tries to solve for the unmasked tokens while it
predicts the masked ones.

Global-local distillation. Unlike the masked distillation
for images (Fang et al., 2022; 2023), we find that our
second-stage model underperforms the first-stage teacher
on appearance-heavy tasks when only the masked modeling
loss is utilized, probably attributing to catastrophic forget-
ting (McCloskey & Cohen, 1989) in the two-stage pretrain-
ing. To mitigate this issue, we add an additional loss to let
the second-stage model distill the global embedding of the
full intact video from the first-stage teacher using the visible
tokens. Hence, the second-stage training loss combines the
token-wise masked video modeling and global distillation.
Due to space limit, we refer readers to Appendix C for the
detailed implementation and training configurations.

3. Experiments

We evaluate VideoPrism on a wide spectrum of video-
centric understanding tasks to demonstrate its capability
and generalizability. We group the tasks into four cate-
gories: (1) general video-only understanding, including
classification and spatiotemporal localization (Section 3.1),
(2) zero-shot video-text retrieval (Section 3.2), (3) zero-shot
video captioning and QA (Section 3.3), and (4) CV for sci-
ence (Section 3.4). For all experiments in the main paper,
we freeze VideoPrism as a video encoder and only train
task-specific components for the tasks in groups (1), (2),
and (4) and some adaptation layers connecting VideoPrism
to an LLM for (3). In the appendices, we report more results
of end-to-end and adapter finetuning. Note that our evalua-
tion strategy, freezing the visual encoder, aligns with prior
works (He et al., 2022; Singh et al., 2022; Yuan et al., 2023)
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Table 2. Evaluating FMs on the VideoGLUE benchmark (Yuan et al., 2023) with frozen backbones. Only weights in the task heads
are trained using the downstream tasks’ training sets. On all video classification (VC) tasks except Charades, we report top-1 accuracy.
On Charades, temporal localization (TAL), and spatiotemporal localization (STAL) tasks, we use mean average precision (mAP) as the
evaluation metric. -B, -L, -g indicate that the underlying models are respectively the base, large, and giant ViT (Dosovitskiy et al., 2021).

Methods VC (A) VC (M) ‘ VC (ML) TAL ‘ STAL
K400 MiT SSv2 D48 Charades ActivityNet AVA AVA-K
Base-scale models
CLIP-B (Radford et al., 2021) 75.2 32.6 41.0 44.1 11.2 327 21.1 25.9
VATT-B (Akbari et al., 2021) 75.1 32.1 57.8 49.7 333 353 20.3 222
InternVideo-B (Wang et al., 2022¢) 69.3 26.3 58.2 55.6 13.0 333 13.4 15.7
UMT-B (Li et al., 2023b) 77.1 34.0 47.7 47.8 30.1 35.8 20.7 21.1
VideoPrism-B 84.2 (17.1)  40.8 (16.8) | 63.6 (15.4) 67.4(112.) | 404 (17.1) 36.6 (10.8) 30.6 (19.5) 31.8(15.9)
Large-scale models
VideoMAE-v2-g (Wang et al., 2023b) 82.1 35.0 56.1 60.5 22.4 353 21.5 233
InternVideo-L (Wang et al., 2022c) 78.6 33.7 67.4 69.6 20.9 359 20.8 21.3
UMT-L (Li et al., 2023b) 82.8 40.3 54.5 49.0 39.9 36.7 24.4 26.2
VideoPrism-g 872 (144) 455(152) | 68.5(11.1) 7L3(11.7) | 623 (122.) 37.8 (11.1) 36.2 (112.) 373 (T11.)

and is almost a go-to choice for building VideoLLMs (Tang
et al., 2023). It is especially needed for videos because
finetuning a ViFM is prohibitively expensive, while a frozen
ViFM allows one to amortize the cost of video encoding
across multiple tasks. All results in the main text are pro-
duced using the same frozen VideoPrism-B/g checkpoint,
corresponding to the base/giant model.

3.1. Classification and spatiotemporal localization

We compare VideoPrism with state-of-the-art FMs on a
video-only understanding benchmark: VideoGLUE (Yuan
etal., 2023). By design, VideoGLUE evaluates FMs through
four adaptation methods over eight hallmark datasets, rep-
resenting appearance-focused action recognition (VC (A)),
motion-rich action recognition (VC (M)), multi-label video
classification (VC (ML)), temporal action localization
(TAL), and spatiotemporal action localization (STAL). This
benchmark introduces a VideoGLUE score (VGS), consider-
ing the tradeoff between adaptation costs and performance,
to provide a holistic view of FMs’ capabilities on the video-
only understanding tasks. We present the frozen-backbone
evaluation results in the main paper and leave the rest to
Appendix E. We employ an MAP head (Yuan et al., 2023)
in action recognition (MAP probing) and spatiotemporal
localization and use G-TAD (Xu et al., 2020) for temporal
localization (see Appendix E.1 for details).

Datasets. The eight datasets in VideoGLUE are as fol-
lows. For apperance-focused action recognition, Kinetics-
400 (K400) (Kay et al., 2017) and Moments-in-Time
(MiT) (Monfort et al., 2019) are sourced from web videos.
Something-Something v2 (SSv2) (Goyal et al., 2017a) and
Diving48 (D48) (Li et al., 2018) are fine-grained motion-rich
action recognition datasets. Besides, Charades (Sigurdsson
et al., 2016) provides a multi-label classification problem
using scripted indoor videos. The temporal localization task
entails one dataset, ActivityNet v1.3 (Caba Heilbron et al.,

2015), and the spatiotemporal localization contains Atomic
Visual Actions (AVA) (Gu et al., 2018) and AVA-Kinetics
(AVA-K) (Li et al., 2020).

Main results. Table 2 shows the frozen-backbone results
on VideoGLUE. VideoPrism outperforms the baselines on
all datasets by a large margin. Besides, increasing Video-
Prism’s underlying model size from ViT-B to ViT-g signifi-
cantly improves the performance. Notably, no baselines can
perform second best on all benchmarks, indicating the pre-
vious methods might be developed towards certain aspects
of video understanding, while VideoPrism consistently im-
proves on this wide range of tasks. This result implies that
VideoPrism packed various video signals into one encoder:
semantics at multiple granularities, appearance vs. motion
cues, spatiotemporal information, and robustness to diverse
video sources (e.g., web videos vs. scripted performance).

In Appendix E.3, following the VideoGLUE setup, we con-
duct experiments on other adaptation methods, including
end-to-end and parameter-efficient finetuning, and multi-
layer attention pooling. Different adaption methods trade
off computational cost with performance, accounting for
real-world application considerations, and the VGS aggre-
gates them into a scalar value. VideoPrism achieves VGS
51.25, outperforming all baseline FMs in Table 17 and scor-
ing 13.6% higher than the second best model (UMT).

3.2. Zero-shot video-text retrieval and classification

To enable zero-shot video-text retrieval and video classifica-
tion capabilities of VideoPrism, we follow LiT (Zhai et al.,
2022b) to learn a text encoder producing the text embed-
dings matched to their corresponding video embeddings out
of VideoPrism. We choose the LiT text encoder to mirror the
one in the first-stage training and attach an MAP head to the
video encoder. The LiT tuning is over the same pretraining
data from the first stage. More details are in Appendix F.1.
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Table 3. Results of zero-shot video-text retrieval. We report the Recall@1 (R@1) and R@S5 for all the benchmarks. Note that we follow
the 1K-A split of MSRVTT produced by Bain et al. (2021) which contains 1, 000 videos for testing. Please refer to Appendix F.3 for the

results on the full split of MSRVTT proposed by Xu et al. (2016).

MSRVTT (1K-A) VATEX ActivityNet

Methods Text — Video Video — Text Text — Video Video — Text Text — Video Video — Text

R@l R@5 R@l R@5 R@l R@5 R@l R@5 R@l R@5 R@l R@5
CLIP-L (Radford et al., 2021) 35.0 - 323 45.2 59.2 25.2 - 20.7 -
Singularity-B (Lei et al., 2023) 34.0 56.7 - - - - - - 30.6 55.6 - -
VideoCoCa-g (Yan et al., 2022) 439 69.9 454 68.6 532 83.3 73.6 93.2 345 63.2 33.0 61.6
InternVideo-L (Wang et al., 2022c) 40.7 - 39.6 - 49.5 - 69.5 - 30.7 - 31.4 -
UMT-L (Li et al., 2023b) 42.6 64.4 38.6 59.8 - - - 42.8 69.6 40.7 67.6
VideoPrism-B 514 74.4 50.2 73.2 57.7 88.5 76.2 93.7 49.6 76.7 479 75.0

(17.5) (14.5) (14.8) (14.6) (14.5) (15.2) (12.6) (10.5) (16.8) (17.1) (17.2) 17.4)

. . 52.7 77.2 51.7 75.2 62.5 91.0 77.1 95.6 52.7 79.4 50.3 77.1

VideoPrism-g \ -

(188)  (17.3)  (16.3) (16.6) | (193) (17.7) (135  (124) | (199  (19.8)  (19.6) (19.5)

Table 4. Comparison to state-of-the-art results on zero-shot video classification. Results are reported in Top-1/5 accuracy (%) on
Kinetics-400 and Something-Something v2, multi-choice (MC) retrieval accuracy (%) on NExT-QA (ATP-Hard) and Charades-STA, and
mean average precision (mAP) on Charades. In line with Ni et al. (2022), we follow the single-view evaluation protocol for simplicity.
Models pretrained with extra modalities (e.g., audio) in addition to vision and language are marked in gray.

(a) Kinetics-400

(b) Something-Something v2

Methods Top-1 Acc Top-5 Acc Methods Temporal Events
CoCa-g (Yu et al., 2022) 66.4 87.1 VideoCLIP-B (Xu et al., 2021) 9.8 6.4
VideoCoCa-g (Yan et al., 2022) 72.0 90.5 CoCa-g (Yu et al., 2022) 13.4 10.4
Text4Vis-L (Wu et al., 2023) 61.0 - VideoCoCa-g (Yan et al., 2022) 14.1 10.7
ImageBind-H (Girdhar et al., 2023) 50.0 VNLI-L (Yarom et al., 2023) 14.6 10.4
LanguageBind-L (Zhu et al., 2024) 64.0 VideoCon-L (Bansal et al., 2023) 15.2 11.4
IMP-MoE-L (Akbari et al., 2023) 77.0 - ImageBind-H (Girdhar et al., 2023) 10.5 55
VideoPrism-B 713 (10.7)  91.7(11.2) VideoPrism-B 16.1 (10.9) 11.9 (10.5)
VideoPrism-g 76.4 (14.4) 94.3 (13.8) VideoPrism-g 18.6 (13.4) 15.7 (14.3)
(c) NExT-QA (ATP-Hard) (d) Charades (e) Charades-STA
Methods MC Acc Methods mAP Methods MC Acc
CLIP-B (Radford et al., 2021) 23.8 CLIP-B (Radford et al., 2021) 19.8 CoCa-g (Yu et al., 2022) 46.1
ATP-B (Buch et al., 2022) 20.2 CLIP-Hitchhiker-B (Bain et al., 2022) 21.1 VideoCoCa-g (Yan et al., 2022) 472
VideoCoCa-g (Yan et al., 2022) 252 CoCa-g (Yu et al., 2022) 23.1 VideoPrism-B 50.0 (12.8)
TACT-B (Bagad et al., 2023) 27.6 VideoCoCa-g (Yan et al., 2022) 25.8 VideoPrism-g 50.4 (13.2)
ImageBind-H (Girdhar et al., 2023) 254 MAXI-B (Lin et al., 2023b) 23.8
VideoPrism-B 31.3(13.7) VideoPrism-B 29.2 (13.4)
VideoPrism-g 32.7 (15.1) VideoPrism-g 32.4 (16.6)

Datasets. We evaluate VideoPrism’s zero-shot video-text
retrieval performance on three benchmarks: MSRVTT (Xu
et al., 2016; Bain et al., 2021), VATEX (Wang et al., 2019),
and ActivityNet (Krishna et al., 2017). For zero-shot video
classification tasks, we experiment with Kinetics-400 (Kay
et al., 2017), Charades (Sigurdsson et al., 2016), SSv2-
Temporal and SSv2-Events (Sevilla-Lara et al., 2021; Bagad
et al., 2023), and the ATP-Hard subset of NExT-QA (Buch
et al., 2022). SSv2 and NEXxT-QA (ATP-Hard) focus on
motion and temporal reasoning, respectively. Moreover,
we adapt Charades-STA (Gao et al., 2017) to the zero-shot
classification scenario by reformulating each of its samples
in the test set into a multi-choice retrieval problem (see
Appendix F.2 for more details). We report results following
the standard evaluation metric for each benchmark.

Main results. Tables 3 and 4 summarize the results of
video-text retrieval and video classification, respectively.

VideoPrism sets the new state of the art on most bench-
marks, and the gains over the prior arts are exceptionally
substantial on the challenging datasets (e.g., 9.5% on Activ-
ityNet, 4.4% on SSv2-Events, and 6.6 mAP on Charades).
Most results from our base-scale VideoPrism-B are actually
better than those of existing larger-scale models. Addition-
ally, VideoPrism is on par with or better than the models
pretrained with in-domain data and extra modalities (e.g.,
audios) in Table 4. These improvements in zero-shot re-
trieval and classification tasks present VideoPrism’s strong
generalization capabilities.

3.3. Zero-shot video captioning and QA

We further evaluate the inherent capabilities of VideoPrism
on generative video-language tasks, i.e., captioning and
QA, where we pair VideoPrism with a language decoder,
PalLM-2 (Anil et al., 2023). To connect the two models,
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Table 5. Comparison to state-of-the-art methods on zero-shot
video captioning. We report the CIDEr score for all benchmarks.

Methods \ MSRVTT VATEX YouCook2
Captioning-only models

VideoCoCa-g (Yan et al., 2022) 27.1 22.8 343

DeCap-B (Li et al., 2023d) 18.6 18.7 -

All-in-one models
Flamingo-3B (Alayrac et al., 2022) - 40.1 55.8

Flamingo-9B (Alayrac et al., 2022) - 39.5 55.0
VideoPrism-B w/ PaLM-2-1B 403 (113.)  242(112.) 523(l3.5)
VideoPrism-B w/ PaLM-2-8B 385 (T11.)  3L7(184)  63.6 (17.8)

Table 6. Comparison to state-of-the-art methods on zero-shot
video QA. We report the WUPS index (Wu & Palmer, 1994)
for NExT-QA and Top-1 accuracy for the others. Methods that
unfreeze their language models are marked in gray.

Methods ‘ MSRVTT-QA MSVD-QA NExT-QA
Question-answering-only models

FrozenBiLM-L (Yang et al., 2022) ‘ 222 39.0 -
All-in-one models

BLIP-B (Li et al.. 2022) 19.2 35.2

HiTeA-B (Ye et al., 2023) 21.7 37.4

mPLUG-2 (Xu et al., 2023) 43.8 55.3 -

Flamingo-3B (Alayrac et al., 2022) 11.0 27.5 21.3

Flamingo-9B (Alayrac et al., 2022) 13.7 30.2 23.0

VideoPrism-B w/ PaLM-2-1B 28.5 (16.3) 39.5(10.5)  23.8(10.8)

VideoPrism-B w/ PaLM-2-8B 32.0 (19.8) 47.1 (18.1)  27.4(14.4)

we introduce and train several gluing layers while keeping
both VideoPrism and the language decoder frozen. We then
conduct evaluation under the zero-shot configuration on
video captioning and QA benchmarks. Note that we do not
tune our models separately for captioning and QA tasks.
Please refer to Appendix G for implementation details.

Datasets. We evaluate the model in the zero-shot set-
ting on the test splits of a suite of standard video cap-
tioning datasets including MSRVTT (Xu et al., 2016), VA-
TEX (Wang et al., 2019), and YouCook2 (Zhou et al., 2018),
and video QA benchmarks including MSRVTT-QA (Xu
et al., 2017), MSVD-QA (Xu et al., 2017), and NEXT-
QA (Xiao et al., 2021). For video QA, where it is im-
perative to match the length and style of the model’s an-
swers with groundtruths, we adopt the zero-shot approach
of Flamingo (Alayrac et al., 2022) and use two-shot text-
only prompts from the training set of the downstream task.
Additionally, for MSRVTT-QA and MSVD-QA, we ex-
periment with the closed-vocabulary evaluation configura-
tion (Li et al., 2022; Yang et al., 2022). In this setting, we
let the model score candidate answers according to their
log-likelihoods and return the top one.

Main results. Tables 5 and 6 show the results of zero-shot
video captioning and QA, respectively. Despite the sim-
plicity of our model architecture and the small number of
adapter parameters, our models are competitive and top the

methods freezing both vision and language models except
on VATEX. The results demonstrate that our VideoPrism
encoder is able to generalize well to video-to-language gen-
eration tasks.

3.4. CV for science tasks

While existing video analysis benchmarks commonly focus
on human-centric data, we evaluate VideoPrism on a broad
set of videos from scientific datasets to assess its general-
izability and potential to be used in scientific applications.
These datasets include fields such as ethology (Eyjolfsdottir
et al., 2014), behavioral neuroscience (Sun et al., 2021a;
Burgos-Artizzu et al., 2012), cognitive science (Ma et al.,
2023), and ecology (Kholiavchenko et al., 2024). To the
best of our knowledge, this work is the first to study the use
of ViFMs on scientific datasets, highlighting their ability to
match or surpass the performance of specialized models. We
encourage the creation of more open-sourced datasets from
real-world scientific experiments to unlock the potential of
ViFMs to benefit various fields of science.

Datasets. We focus on large-scale video datasets anno-
tated with domain expertise, captured in scientific experi-
ments. These datasets consist of flies (Fly vs. Fly (Eyjolfs-
dottir et al., 2014)), mice (CalMS21 (Sun et al., 2021a),
CRIM13 (Burgos-Artizzu et al., 2012)), chimpanzees
(ChimpACT (Ma et al.,, 2023)), and Kenyan animals
(KABR (Kholiavchenko et al., 2024)). All the datasets
are annotated for video classification of behavior, except
for the ChimpACT dataset for spatiotemporal action local-
ization. We evaluate CRIM 13 from cameras on the side
perpendicular to the cage (“S”), as well as a top, overhead
view (“T”). We use standard data splits defined in previous
works on these datasets, and all datasets are evaluated using
the mAP metric, except KABR which uses macro-accuracy.
Further implementation details are in Appendix H.

Main results. General ViFMs, using a shared frozen en-
coder across all evaluations, achieve performance compa-
rable to (or exceeding) domain-specific models specialized
for individual tasks (Table 7). In particular, VideoPrism
generally performs the best and surpasses domain expert
models with the base-scale model. Scaling to large-scale
models further improves performance across all datasets.
These results demonstrate that ViFMs have the potential to
significantly accelerate video analysis across diverse fields.

3.5. Ablation study

The main driving force behind VideoPrism includes the strat-
egy and effort for collecting the pretraining data and the pre-
training approach that improves upon masked autoencoding
by the two-stage pretraining framework, the global distilla-
tion, and token shuffling. We run ablation studies to evalu-
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Table 7. Comparison to state-of-the-art methods and domain experts on CV for Science benchmarks. We report mean average
precision (mAP) for all datasets, except for KABR which uses macro-accuracy.

Methods \ Fly vs. Fly CalMS21 CRIM13 (S/T) KABR ChimpACT
Domain experts ‘ 88.6 88.9 61.9 244
Base-scale models
CoCa-B (Yu et al., 2022) 80.1 89.2 58.2/58.4 62.0 12.6
InternVideo-B (Wang et al., 2022c) 78.9 89.0 63.2/63.6 49.9 24.0
UMT-B (Li et al., 2023b) 84.6 88.7 59.3/58.5 589 25.0
VideoPrism-B 89.1(14.5  9LL(10.9)  64.5(11.3)/649 (11.3)  61.6(L0.4)  28.8(13.8)
Large-scale models
InternVideo-L (Wang et al., 2022¢) 86.6 91.5 6571652 514 25.7
UMT-L (Li et al., 2023b) 86.4 89.5 60.5/61.4 627 247
VideoPrism-g 920 (154)  9L5(10.0) 659 (10.2)/66.8 (11.6)  63.3(10.6)  31.5(15.8)
Contrastive baseline (150M clips) 81.7 is potentially incomplete and biased, which could impact
Use full data corpus (600M clips) 83.8 model performance. Moreover, long video understanding re-
Contrastive + MAE in one stage 82.7 mains a challenge, since our current focus is on short video
Use two-stage training strategy 81.9 clips from which we sample 16 frames as input to Video-
Add global distillation loss 83.3 Prism. Future work in this direction could leverage our
Add token shuffling (full model) 84.2 encoder as part of a long video understanding system. Fi-

MAP probing accuracy (%)

Figure 4. Ablation study. From top to bottom: we begin by a
video-text contrastive baseline and gradually add our major compo-
nents to it. Each row is based on a modification of the immediately
preceding row. We note that it is difficult to perform well on both
K400 and SSv2 using only a single frozen encoder, but our final
model with all improvements excels on both datasets.

ate the effectiveness of these components. First, we train a
video-text contrastive baseline as presented in Section 2.3.1
over a smaller scale, publicly available corpus (150M video
clips in total), including WTS-70M, YT-Temporal-180M,
and InternVid. We then add our main components (larger
pretraining data, two-stage training, losses, and token shuf-
fling) to the baseline one at a time to see how the model
performance evolves along the way. We also experiment
with combining contrastive loss with masked autoencod-
ing (Feichtenhofer et al., 2022) in one stage to highlight the
effectiveness of our two-stage training pipeline.

Figure 4 exhibits the ablation results, where we observe
different performance evolving trajectories on motion-rich
SSv2 and appearance-driven K400. Notably, the consistent
improvements of VideoPrism on SSv2 suggest the effec-
tiveness of our data curation and model designing efforts
for facilitating motion understanding in videos. Although
the contrastive baseline has already achieved competitive
results on K400, the proposed global distillation and to-
ken shuffling further boost the accuracy. We provide more
comprehensive ablation studies in Appendix I.

3.6. Limitations

One limitation of our approach is that we leverage a video
corpus with noisy text as part of pretraining. This noisy text

nally, while we advocate for the frozen-backbone evaluation,
we acknowledge that there are scenarios that benefit more
from end-to-end finetuning and parameter-efficient adapta-
tion. Despite these limitations, the results demonstrate the
potential impact of VideoPrism on a range of real-world
video understanding tasks.

4. Related work

Foundation models (FMs) (Bommasani et al., 2021) have
demonstrated tremendous promise with early work in
LLMs (Devlin et al., 2019; Brown et al., 2020). Some
ViFMs are built around LLMs (Wang et al., 2022d; Li et al.,
2023a; Zhang et al., 2023a; Chen et al., 2023a), analyzing
videos by feeding associated text to LLMs, such as ASR
transcripts and machine-generated captions. In contrast,
VideoPrism takes a video-centric view, and we aim to tackle
a broader range of video understanding tasks.

ViFMs. Most recent FMs in CV focus on images (Radford
etal.,2021; Yuan et al., 2021; Jiaet al., 2021; Yu et al., 2022;
Alayrac et al., 2022; Yan et al., 2022; Wang et al., 2022a;
Chen et al., 2023c; Xu et al., 2023; Girdhar et al., 2023;
Zhang et al., 2023b; Zhu et al., 2024). Their pretraining data
contains no or only a small portion of videos, and the model
architectures and learning methods are for images by design.
While these FMs can accept video frames as input, they fall
short on motion and temporal modeling (Yuan et al., 2023).
Our work directly addresses this gap by developing a video
encoder designed for video-specific applications.

For videos, existing works mainly train FMs using self-
supervised learning over the video-only modality (Qian
et al., 2021; Feichtenhofer et al., 2021; Recasens et al.,
2021; Singh et al., 2021; Wei et al., 2022; Yuan et al., 2022;
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Qian et al., 2022; Tong et al., 2022; Wang et al., 2023b) or
video-language modeling of videos with noisy text (Zellers
et al., 2021; Fu et al., 2021; Li et al., 2023c; Wang et al.,
2023a; Cheng et al., 2023; Piergiovanni et al., 2023; Xiong
et al., 2023). As Wang et al. (2023f) point out, existing
video-language models lack knowledge of actions, and yet
self-supervised models from video-only data struggle with
semantics. We instead bring the best of the two together.
Related to our work, InternVideo (Wang et al., 2022c) glues
a self-supervised VideoMAE model (Wang et al., 2023b)
and a video-language model together using cross-attention
modules. Unlike VideoPrism, however, the two models have
no mutual influence during pretraining and they redundantly
process the same video from scratch simultaneously.

Large-scale video datasets are pivotal for ViFMs and have
been a subject of interest. HowTolOOM (Miech et al.,
2019), YT-Temporal-1B (Zellers et al., 2022), and HD-
VILA-100M (Xue et al., 2022) associate speech transcrip-
tions with videos. WebVid2M (Bain et al., 2021) and
WTS70M (Stroud et al., 2020) pair alt-text and other meta-
data with videos. VideoCC3M (Nagrani et al., 2022) re-
trieves videos that appear similar to images and transfer the
image captions to corresponding videos. VAST-27M (Chen
et al., 2023b) and InternVid (Wang et al., 2023e) use multi-
modal and language models to caption videos. Still, these
video-text datasets are significantly smaller than their coun-
terparts for images, and many ViFMs adapt pretrained
image-text models to the video space (Fang et al., 2021;
Luo et al., 2022; Xue et al., 2023; Liu et al., 2023; He et al.,
2023; Wu et al., 2024). Our pretraining corpus has text as-
sociations from a hybrid mix of ASR transcripts, generated
captions, and high-quality manually annotated captions.

Pretraining strategy. Our pretraining integrates vision-
language contrastive learning (Radford et al., 2021; Xu
et al., 2021; Bain et al., 2022) and masked data model-
ing (Devlin et al., 2019; He et al., 2022). The former has
led to strong late-fusion models like CLIP (Radford et al.,
2021), ALIGN (Jia et al., 2021), CoCa (Yu et al., 2022), and
the latter is proven effective to learn from single-modality
data like language (Devlin et al., 2019; Anil et al., 2023),
audio (Borsos et al., 2023), images (He et al., 2022; Wang
et al., 2023d; Oquab et al., 2023), and videos (Tong et al.,
2022; Wang et al., 2023b). While EVA (Fang et al., 2022;
2023) and UMT (Li et al., 2023b) transfer indirect semantics
from CLIP (Radford et al., 2021) to masked modeling, we
learn video-native semantics. We also introduce global dis-
tillation and token shuffling to the masked video modeling
to orchestrate both appearance and motion cues.

5. Conclusion

We present VideoPrism, a foundational video encoder that
achieves state-of-the-art performance across a wide range of

video understanding tasks. Our design emphasizes both the
data and modeling approach: we assemble the largest pre-
training dataset of its kind, as well as develop a pretraining
strategy that effectively learns appearance and motion in-
formation from it. In our comprehensive evaluation, Video-
Prism achieves the best results on a majority of benchmarks.
Notably, no other baseline models consistently achieve the
second best, highlighting our unique generalizability.
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A. Pretraining data
A.1. Data curation

Section 2.1 and Table 1 have described the pretraining cor-
pus of videos, and the following provides more details about
the three in-house datasets.

Anonymous-Corpus #1 consists of about 36M commer-
cially licensed stock video-caption pairs, where the videos
and text are manually uploaded by professional contributors.
Hence, the quality of the videos and captions is high in this
corpus compared with the rest. Note that we do not do any
filtering on this set.

Anonymous-Corpus #2 contains 170M (video, ASR tran-
script) pairs from 44.6M YouTube videos. Its construction
process is similar to HowTol00M (Miech et al., 2019), but
the whole corpus is larger and more diverse. Furthermore,
view counts and video lengths are filtered using simple meta-
data. ASR sentence boundaries define the clip boundaries.
The clip-text pairs are filtered based on a groundedness
score similar to CLIP’s similarity score (Wu et al., 2021).

Anonymous-Corpus #3 includes 71.5M (clip, machine-
generated caption) pairs from 36.7M YouTube videos. The
clips are captioned using vision-language models (Chen
et al., 2023c) and further summarized using an LLM (Anil
et al., 2023). The corpus is similar to InternVid (Wang et al.,
2023e) in terms of construction but a magnitude larger in
size and diversity. The initial video selection of this dataset
process is similar to Anonymous-Corpus #2, but additional
filters are applied to exclude videos composed of primarily
talking heads using a face detection model. Also, static clips
are eliminated by ensuring semantic feature embeddings
from the frames are not static. Hence, the video content is
more diverse than Anonymous-Corpus #2.

A.2. Corpus analysis

We randomly sample 100K videos from our video-text pre-
training data and show the breakdown analysis in Figure 5.
We notice that most of our clips are between 5 to 10 seconds
in length and contain 10 to 20 words in the parallel text.
In addition, a considerable proportion of clips has duration
longer than 10 seconds or captions longer than 20 words.
We further show the the CLIP similarity score (Wu et al.,
2021) of our corpus in Figure 5c. The large variations of
the CLIP similarity scores demonstrate the diverse caption
quality of our training data, which we believe is a byproduct
of the various ways used to harvest the text.

Furthermore, we provide an in-depth analyses on each
Anonymous dataset and contrast them with the other
datasets we used in Table 8. We find that the datasets with
captions generated by VLMs and LLMs (e.g., InternVid
and Anonymous-Corpus #3) perform the best. In addition,
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retrieval performance is correlated with dataset size, ground-
ingness (CLIP score), “dynamic degree” (optical flow), and
the presence of humans. Finally, we compute the top-50
object categories represented by our dataset obtained by run-
ning an open-source Tensorflow object detection API on the
center-frame of 100K clips from our pretraining data. We
find person to be the top category, followed by car, chair,
TV, bottle, book, potted plant, and bowl. We hope this gives
more insights into the composition of our datasets.

B. Model architecture

Table 9 shows the VideoPrism model architecture. As men-
tioned in Section 2.2, the architecture follows the factorized
design of ViViT (Arnab et al., 2021). It consists of two sepa-
rate Transformer modules: a spatial module and a temporal
module. After an input video is partitioned into several
non-overlapping patches (i.e., tokens), the spatial module
first models interactions between tokens from the same tem-
poral index. Then the output sequence of token embeddings
are forwarded through the temporal module to model in-
teractions between tokens from different temporal indices.
The temporal module shares the same setup of the spatial
counterpart, except that its number of layers is fixed to four
because no performance improvements are observed with
more layers added to our largest VideoPrism model. The
positional embeddings of our models are learnable (Devlin
et al., 2019) and decoupled in spatial and temporal dimen-
sions. They are utilized to encode the position information
of the input tokens in space and time, respectively. When
we add image-text data to the first-stage pretraining, the
images are treated as one-frame videos, and we crop the
temporal positional embeddings when handling the image
input. Following CoCa (Yu et al., 2022), we pretrain the
model with spatial resolution of 288 x 288 and patch size
18 x 18. We uniformly sample 8 frames from each video
for pretraining and 16 frames for evaluation by interpolating
the temporal positional embedding of our video encoder.

C. Implementation details

In this section, we describe the implementation details and
training setups of VideoPrism. We summarize the pretrain-
ing configurations in Table 10.

C.1. Stage 1

Model design. The text encoder of the first-stage model
is a standard Transformer (Vaswani et al., 2017). Together
with the spatial module in our encoder, it is initialized from
the unimodal text decoder of CoCa (Yu et al., 2022). We
attach a MAP layer (Lee et al., 2019; Yu et al., 2022) to the
end of the video encoder to extract the global embedding
from the encoder output. For the text encoder, we append
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Figure 5. Analysis on the video-text pretraining corpus.

Table 8. More details about different characteristics of each dataset. The noun/verb ratio and the presence of humans in the video
are inferred from the captions using WordNet synsets (Fellbaum, 2005) and the NTLK library. Optical flow is computed at 8 FPS and
256 x 256 resolution, and the average optical flow across videos is presented. The last column, in addition to the data analyses, is the
average of zero-shot R@1 text-video retrieval results on MSRVTT (full-split) and VATEX.

o JETS 1. Noun/ Verb % of videos Optical flow Grounding ~ Average
Datasets ‘ Caption source #of clips ratio with humans magnitude (px) score ZSR@1
InternVid (Wang et al., 2023e) Generated 7.0M 3.4 79.9 2.47 0.32 45.7
YT-Temporal-180M (Zellers et al., 2021) ASR 87.8M 1.6 81.8 1.73 0.24 35.8
VideoCC (Nagrani et al., 2022) Retrievals 133.5M 8.0 69.0 3.21 0.27 32.6
WTS-70M (Stroud et al., 2020) Metadata 55.IM 1.3 18.5 3.67 0.26 19.4
Anonymous-Corpus #1 Manual 36.1M 59 76.9 1.55 0.30 37.0
Anonymous-Corpus #2 ASR 170.3M 2.8 62.2 2.15 0.26 38.6
Anonymous-Corpus #3 Generated 71.5M 32 92.0 3.17 0.30 494

Table 9. Encoder architecture of VideoPrism-g. When describ-
ing the output shape, we use {temporal, spatial, and channel} as
the order of dimensions when applicable, and we omit the batch
size for simplicity. We highlight the dimension that a step applies
to by underline. Note that the drop token or masking ratio p is set
to 0.5 in Stage 1 and 0.65 in Stage 2.

Step | Block Output shape

Data - 8 x 288 x 288 x 3
Preprocess Patchify [1, 18, 18] 8 x 256 x 1408

Drop token / Mask | Tube /BEVT [8 X (1 —p)] x 256 x 1408
Spatial encoder MSA (6144) x40 [8 X (1 —p)] x 256 x 1408
Normalization LayerNorm [8 X (1 —p)] x 256 x 1408
Transpose Switch dimension 256 x [8 X (1 — p)] x 1408
Temporal encoder MSA (6144) x4 256 x [8 X (1 — p)] x 1408
Normalization Layer Norm 256 x [8 X (1 — p)] x 1408

Switch dimension
Merge dimension

[8 X (1 —p)] x 256 x 1408
[2048 x (1 — p)] x 1408

Transpose
Reshape

a learnable class token at the end of the input sentence and
use its corresponding output as the text embedding.

Training. In contrast to existing methods that use batch
mixing, we adopt alternating gradient descent (AGD) (Jain
et al., 2017) to contrastively train our first-stage model
with multiple datasets. It alternates samples from differ-
ent datasets as mini-batches during training, shown effective
in a multi-task and multi-dataset scenario (Akbari et al.,
2023). This is particularly useful for our model to avoid
easy negatives within a batch, since samples from the same
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Table 10. Summary of our pretraining configurations.

Configuration ‘ Stage 1 Stage 2

Optimizer AdaFactor AdaFactor

Base learning rate 5x 1074 5x 1074
Learning rate schedule linear decay cosine decay
‘Warmup iterations 2 x 10% 2.5 x 10%
Training iterations 2 x 10° 3 x 10°

Weight decay 1x 1074 0.05

Batch size 4096 4096

Drop token or Mask 0.5 (Tube mask) 0.65 (BEVT mask)

dataset usually follow the same distribution and are harder
to distinguish. Furthermore, we observe that the AGD ap-
proach scales well as we add more datasets or increase the
size of the corpus.

The training of the first-stage model follows the conven-
tional setup of vision-language contrastive learning (Rad-
ford et al., 2021). To reduce the memory cost during pre-
training, we drop 50% of video tokens as in Li et al. (2023e)
and the tube masking strategy (Feichtenhofer et al., 2022)
is employed for dropping tokens. The teacher model is op-
timized using Adafactor (Shazeer & Stern, 2018) with the
batch size of 4096. We set the learning rate to 1 x 10~*
for our base model and 5 x 10~° for the giant model. We
train the first-stage model for 2 x 10° steps with 2 x 10*
warm up steps and linear learning rate decay. A symmetric
cross-entropy loss (Gutmann & Hyvirinen, 2010; Radford
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Algorithm 1 Token shuffling pseudo-implementation.

# token_emb : visible token embedding [b, m, dim]
# pos_emb : positional embedding [n, dim]

# mask_emb : mask embedding [dim]

# Db : mini-batch size

# m : sequence length of visible tokens
# n : full sequence length of input video
z = expand_dims (mask_emb, axis=[0, 1]1) # [1, 1, dim]
z = tile(z, reps=[b, n - m, 1]) # [b, n m, dim]
out_emb = concat ([token_emb, z], axis=1)

out_emb = shuffle (out_emb, axis=1)

x = expand_dims (pos_emb, axis=0) # [1, n, dim]
out_emb = out_emb + x # feed out_emb to decoder

Table 11. Decoder architectures of VideoPrism-g. We highlight
the dimension that a step applies to by underline. Note that the
masking ratio p is set to 0.65.

Decoder output shape

Step Block

Local Global
Data - 2048 x 1408 2048 x (1 — p)] x 1408
Projector | MLP 2048 x 512 2048 x (1 — p)] x 512
Decoder MSA (2048) x4 2048 x 512 2048 x (1 — p)] x 512
Projector | MLP 2048 x 1408 2048 x (1 — p)] x 1408

et al., 2021; Jia et al., 2021; Cheng et al., 2023) is used in
the first-stage training.

C.2. Stage 2

Token-wise distillation. As discussed in Section 2.3.2,
after training the first-stage model with contrastive learning,
we train the VideoPrism video encoder with masked mod-
eling to reconstruct the spatiotemporal embeddings from
the first-stage model. As shown in Figure 3, the training
pipeline of the second stage is similar to MVD (Wang et al.,
2023c). After patchifying the input video sequence to a set
of tokens, we apply BEVT masking (Wang et al., 2022b)
with a masking ratio of 0.65 to randomly remove some of
the tokens. The second-stage video encoder, which is ini-
tialized from the first-stage encoder, takes the remaining
visible tokens as input and predict their embeddings. A
learnable MASK token is then used to fill in the position of
the masked tokens to form a full sequence together with
these visible embeddings. The full sequence of embeddings
is then randomly shuffled and added with positional em-
bedding before being fed into a shallow decoder which is a
four-layer Transformer. A linear layer is then used to align
the output of the decoder with the embeddings of the first-
stage video encoder by minimizing their cosine distance.
Algorithm 1 presents a pseudocode implementation of the
proposed token shuffling for masked video modeling.

Global distillation. To distill the global visual embedding
from the first-stage model, we employ a four-layer Trans-
former decoder followed by a MAP layer to take the visible
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embeddings from the second-stage video encoder as input
and output a global embedding. We do not apply token
shuffling or add positional embedding for this decoder. We
then align this second-stage global embedding to the global
visual embedding from the first-stage model using a cosine
distance loss. Please note that the global visual embedding
from the first-stage model is predicted by the same MAP
head of contrastive training in the first stage. Table 11 shows
the decoder architectures in this stage.

Training. We train the second-stage video encoder using
the same video clips for the first-stage model, excluding
WebLlI (Chen et al., 2023c), the image-based dataset. We
use Adafactor (Shazeer & Stern, 2018) for optimization.
The second-stage video encoder is trained with batch size
4096 and a starting learning rate of 5 x 10~%. The learning
rate is decayed to 1 x 10~° with a cosine annealing schedule.
2.5 x 10* warm up steps are also used to linearly increase
the learning rate from 0 to 5 x 10~ at the beginning. The
second-stage video encoder is trained for 3 x 10° steps. We
apply the same weight for token-wise distillation loss and
global distillation loss in the second-stage training.

D. Evaluation data

Table 12 summarizes all the datasets and their corresponding
metrics utilized for evaluation in this paper. The evaluation
datasets are categorized into four parts: general video-only
understanding (VideoGLUE (Yuan et al., 2023)), video-text
retrieval, captioning & QA, and CV for science. Within
each category, we select representative datasets and report
the standard metric on each of them.

We compare the performance of VideoPrism to the previ-
ous best-performing foundation models in Figure 2. For
each dataset and task, we compute the performance gain
(AScore) with respect to the best reported number achieved
by an image or video foundation model. We collect all of
them and plot in descending order.

E. VideoGLUE
E.1. Tasks and task heads for VideoPrism

We follow the VideoGLUE (Yuan et al., 2023) setup for
video-only evaluations. Given a video clip of shape T x
H x W x 3, VideoPrism produces a set of visual tokens of
shape T x % X % x D, where T, H, and W are the number
of frames, image height, and image width, respectively, and
D is the feature length.

In all our video classification tasks, we employ a multi-
head attention pooling (MAP) layer as our task head, which
consists of Transformer layers with 12 heads and hidden
size 768. A class token is prepended to cross-attend to all
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Table 12. Summary of evaluation datasets. We report the corresponding standard metric for each dataset, including Top-1/5 Accuracy
(Acc.) for classification and question answering, mean Average Precision (mAP) for multi-label classification, Recall@1/5 for retrieval,
multi-choice retrieval accuracy (MC Acc.) for multi-choice retrieval, CIDEr score for captioning, Wu-Palmer Similarity (WUPS) index
for question answering, and macro-accuracy (Macro Acc.) for the KABR dataset.

Datasets | Tasks | Zero-shot | Abbr. | Metrics
Kinetics-400 (Kay et al., 2017) Video Classification X vC Top-1 Acc.

MiT (Monfort et al., 2019) Video Classification X vC Top-1 Acc.

SSv2 (Goyal et al., 2017a) Video Classification X vC Top-1 Acc.
Diving48 (Li et al., 2018) Video Classification X vC Top-1 Acc.
Charades (Sigurdsson et al., 2016) Video Classification X vC mAP

ActivityNet (Caba Heilbron et al., 2015) Temporal Action Localization X TAL mAP

AVA (Gu et al., 2018) Spatiotemporal Action Localization X STAL mAP

AVA-Kinetics (Li et al., 2020) Spatiotemporal Action Localization X STAL mAP

MSRVTT (Xu et al., 2016) Text-to-Video Retrieval v ZST2V Recall@1, Recall@5
MSRVTT (Xu et al., 2016) Video-to-Text Retrieval v ZSV2T Recall@1, Recall@5
VATEX (Wang et al., 2019) Text-to-Video Retrieval v ZST2V Recall@1, Recall@5
VATEX (Wang et al., 2019) Video-to-Text Retrieval v ZSV2T Recall@1, Recall@5
ActivityNet (Caba Heilbron et al., 2015) Text-to-Video Retrieval v ZST2V Recall@1, Recall@5
ActivityNet (Caba Heilbron et al., 2015) Video-to-Text Retrieval v ZSV2T Recall@1, Recall@5
Kinetics-400 (Kay et al., 2017) Video Classification v ZSC Top-1 & Top-5 Acc.
Kinetics-600 (Carreira et al., 2018) Video Classification v ZSC Top-1 & Top-5 Acc.
SSv2-Temporal (Sevilla-Lara et al., 2021) Video Classification v ZSC Top-1 Acc.
SSv2-Events (Bagad et al., 2023) Video Classification v ZSC Top-1 Acc.
NEXT-QA (ATP-Hard) (Xiao et al., 2021) Video Classification 4 ZSC MC Acc.

Charades (Sigurdsson et al., 2016) Video Classification v ZSC mAP

Charades-STA (Gao et al., 2017) Video Classification v ZSC MC Acc.

MSRVTT (Xu et al., 2016) Video Captioning v ZSCap CIDEr

VATEX (Wang et al., 2019) Video Captioning v ZSCap CIDEr

YouCook2 (Zhou et al., 2018) Video Captioning v ZSCap CIDEr
MSRVTT-QA (Xu et al., 2017) Video Question Answering v ZSQA Top-1 Acc.
MSVD-QA (Xu et al., 2017) Video Question Answering v ZSQA Top-1 Acc.
NEXT-QA (Xiao et al., 2021) Video Question Answering v ZSQA WUPS

Fly vs. Fly (Eyjolfsdottir et al., 2014) Video Classification X vC mAP

CalMS21 (Sun et al., 2021a) Video Classification X vC mAP

CRIM13 (Side view) (Burgos-Artizzu et al., 2012) Video Classification X vC mAP

CRIM13 (Top view) (Burgos-Artizzu et al., 2012) Video Classification X vC mAP

KABR (Kholiavchenko et al., 2024) Video Classification X vC Macro Acc.
ChimpACT (Ma et al., 2023) Spatiotemporal Action Localization X STAL mAP

Table 13. Results of FM adaptation using frozen features on video understanding tasks. The model backbones are frozen and only
weights in the task heads are updated using the downstream tasks’ training sets. * indicates the model is evaluated under the setting with
trainable FLOPs alignment.

Methods VC (A) VC (M) ‘ VC (ML) ‘ TAL ‘ STAL Trainable
i K400 MiT | SSv2 D48 | Charades | ActivityNet | AVA  AVA-K | FLOPs (B)
CLIP-B (Radford et al., 2021) 752 32.6 41.0 44.1 11.2 32.7 21.1 259 3.72
VATT-B (Akbari et al., 2021) 75.1 32.1 57.8 49.7 333 353 20.3 222 3.72
CoCa-B (Yu et al., 2022) 73.1 32.0 41.5 34.1 8.8 33.0 23.3 24.7 3.72
FLAVA-B (Singh et al., 2022) 713 29.7 40.6 459 12.6 322 18.8 21.5 3.72
VideoMAE-B (Tong et al., 2022) 65.1 23.0 539 59.5 11.3 33.0 16.0 19.9 3.72
InternVideo-B (Wang et al., 2022¢) 69.3 26.3 58.2 55.6 13.0 333 13.4 15.7 3.72
UMT-B (Li et al., 2023b) 77.1 34.0 47.7 47.8 30.1 35.8 20.7 21.1 3.72
VideoPrism-B* 82.8 40.0 61.8 59.5 38.7 36.6 29.9 32.0 3.72
VideoPrism-B 84.2 40.8 63.6 67.4 40.4 36.6 30.6 31.8 9.71
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Table 14. Results of FM adaptation using frozen backbones with MLAP heads on video understanding tasks. MLAP takes multiple
frozen features from an FM as inputs and map them hierarchically for the final task prediction. Only the MLAP layer weights are updated
using the downstream tasks’ training sets. * indicates the model is evaluated under the setting with trainable FLOPs alignment.

Methods VC (A) VC (M) ‘ VC (ML) TAL ‘ STAL Trainable
K400 MiT SSv2 D48 Charades ActivityNet AVA AVA-K FLOPs (B)
CLIP-B (Radford et al., 2021) 77.1 39.0 50.1 55.8 41.5 33.9 27.7 29.6 14.9
VATT-B (Akbari et al., 2021) 75.1 35.6 58.7 60.1 58.2 35.0 22.9 24.1 14.9
CoCa-B (Yu et al., 2022) 74.2 37.2 459 484 19.6 333 24.4 27.0 14.9
FLAVA-B (Singh et al., 2022) 71.5 34.5 43.1 58.5 38.2 324 21.3 23.2 14.9
VideoMAE-B (Tong et al., 2022) 71.7 322 57.4 69.6 359 334 19.6 22.1 14.9
InternVideo-B (Wang et al., 2022¢) 737 34.7 60.3 71.9 40.5 33.6 15.9 17.7 14.9
UMT-B (Li et al., 2023b) 71.5 38.0 51.2 55.5 55.8 36.0 24.6 25.8 14.9
VideoPrism-B* 83.7 439 64.6 70.7 56.6 37.2 31.5 33.1 14.9
VideoPrism-B 84.5 43.8 66.3 73.6 58.6 37.2 314 33.0 38.8

Table 15. Results of FM adaptation using frozen backbones with low-rank adapters and task heads. Only the weights of the low-
rank adapters and task heads are updated using downstream tasks’ training sets. * indicates the model is evaluated under the setting with
trainable FLOPs alignment.

Methods VC (A) VC M) ‘ VC (ML) TAL ‘ STAL Trainable
) K400 MiT | SSv2 D48 | Charades | ActivityNet | AVA  AVA-K | FLOPs (B)
CLIP-B (Radford et al., 2021) 80.2 39.7 56.0 712 442 - 24.5 28.0 6.44
VATT-B (Akbari et al., 2021) 75.0 36.5 63.5 68.9 535 - 223 25.8 6.44
CoCa-B (Yu et al., 2022) 80.9 414 56.1 67.1 45.8 - 26.6 28.7 6.44
FLAVA-B (Singh et al., 2022) 74.7 34.1 52.1 68.4 40.8 - 17.9 23.8 6.44
VideoMAE-B (Tong et al., 2022) 73.6 30.6 61.4 76.0 43.0 - 16.6 233 6.44
InternVideo-B (Wang et al., 2022¢) 755 31.3 63.9 73.6 46.2 - 19.2 25.5 6.44
UMT-B (Li et al., 2023b) 81.5 40.4 61.8 78.5 50.0 - 27.8 29.4 6.44
VideoPrism-B* 84.5 44.0 66.3 83.0 57.8 - 33.6 35.7 8.71
VideoPrism-B 85.7 439 68.8 85.1 60.6 - 34.1 358 22.8

Table 16. Results of FM adaptation by end-to-end fine-tuning. All the model weights are updated using the downstream tasks’ training
sets. * indicates the model is evaluated under the setting with trainable FLOPs alignment.

Methods VC (A) VC M) ‘ VC (ML) TAL ‘ STAL Trainable
K400 MiT SSv2 D48 Charades ActivityNet AVA AVA-K FLOPs (B)
CLIP-B (Radford et al., 2021) 81.0 39.0 46.6 75.7 54.3 - 27.1 28.9 367
VATT-B (Akbari et al., 2021) 77.1 34.8 65.1 77.6 55.7 - 27.0 284 371
CoCa-B (Yu et al., 2022) 82.6 43.6 66.8 79.6 55.0 - 27.7 31.0 367
FLAVA-B (Singh et al., 2022) 79.1 38.3 61.1 72.0 48.6 - 22.0 25.6 367
VideoMAE-B (Tong et al., 2022) 78.7 36.1 65.5 75.5 514 - 23.5 26.2 367
InternVideo-B (Wang et al., 2022¢) 80.1 359 67.0 75.8 52.2 - 27.2 29.8 367
UMT-B (Li et al., 2023b) 833 38.7 67.0 79.2 57.1 - 28.8 30.9 367
VideoPrism-B* 84.4 439 68.2 82.3 58.1 - 333 353 374
VideoPrism-B 85.7 44.2 70.0 84.9 60.1 - 334 35.9 977

Table 17. Stratified average scores under four adaptation methods and the final VGS. * indicates the model is evaluated under the
setting with trainable FLOPs alignment.

Methods | Frozen | MLAP | Adapter | E2E | VGS
CLIP-B (Radford et al., 2021) 32.8 433 49.3 52.8 41.5
VATT-B (Akbari et al., 2021) 394 46.3 49.9 52.7 45.1
CoCa-B (Yu et al., 2022) 31.2 36.3 49.0 55.2 39.7
FLAVA-B (Singh et al., 2022) 31.7 393 44.1 49.4 38.5
VideoMAE-B (Tong et al., 2022) 32.6 40.9 459 51.0 399
InternVideo-B (Wang et al., 2022¢) 33.1 42.2 47.7 52.5 41.0
UMT-B (Li et al., 2023b) 38.0 45.6 524 55.3 453
VideoPrism-B* 45.6 51.5 57.8 57.9 51.3

20



VideoPrism: A Foundational Visual Encoder for Video Understanding

visual tokens from VideoPrism for final classifications. We
use batch size 256 when training the task heads. We apply
the same data augmentation strategies and training recipes
for each individual dataset as described in VideoGLUE and
perform multi-view evaluations.

Spatiotemporal action localization requires to localize per-
son instances in an input video and recognize their ac-
tions. In our experiments, instance-level features are first
RolIPooled (Ren et al., 2015) from visual tokens by using
corresponding instance boxes. These features are then used
to query all other visual tokens through cross-attention lay-
ers. We use a Transformer layer with 12 heads and hidden
size 768 as the task heads. Final query tokens are classi-
fied via a linear classifier. We use the groundtruth instance
boxes with their associated action labels for training. At
test time, we use the same pretrained person detector as
in Feichtenhofer et al. (2019) for person detection on AVA.
On AVA-Kinetics, we use the detector described in Li et al.
(2020). We train the models with batch size 256.

For temporal action localization, we only apply VideoPrism
under frozen and multi-layer attention pooler (MLAP) set-
tings, since the long video samples do not allow end-to-end
tuning. In the MLAP setting, we pool features and input
them to a G-TAD head (Xu et al., 2020). We use batch size
32 and train G-TAD on ActivityNet v1.3 for 10 epochs.

We employ AdamW (Loshchilov & Hutter, 2019) optimizer
and cosine learning rate decay in all video-only experiments.
For more details on the experiment setups, we refer readers
to the VideoGLUE paper (Yuan et al., 2023).

We experiment VideoPrism under two configurations re-
garding different input video sizes. In the first configuration
(marked by asterisk “*” in Tables 13 to 16), we use 8 frames
and 252 x 252 image resolution for feature extraction when
training video classification task heads, which results in
a sequence of 8 x 14 x 14 tokens. On AVA and AVA-
Kinetics, video clips of shape 8 x 288 x 288 (i.e., token
length 8 x 16 x 16) are used for both training and eval-
uation. This configuration aligns the trainable FLOPs of
VideoPrism with the other baseline models reported in Yuan
et al. (2023). In the second configuration, we use video
clips of shape 16 x 288 x 288 as input for all the experi-
ments. This configuration aligns with the pretraining setup
with higher trainable FLOPs and accounts for the results in
Section 3.1.

E.2. Adaptations

We follow Yuan et al. (2023) to report model performances
under four adaptation settings, namely frozen model back-
bone with simple MAP heads, with MLAP heads, and with
low-rank adapters, and finally end-to-end finetuning.

Frozen features with simple MAP heads update a one-layer
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task head only, which pools over the visual tokens from the
backbone. The MLAP head upgrades from the one-layer
MAP pooler by taking a stack of visual tokens as input and
mapping them hierarchically for final task prediction. In
our experiments, the attention pooler in MLAP has four
cross-attention layers, following Yuan et al. (2023). The
low-rank adaptation inserts low-rank adapter modules (Hu
et al., 2022) with trainable weights into the pretrained video
encoders, and uses a one-layer MAP task head. During train-
ing, both the adapter weights and task heads are updated,
and the other weights from video backbones are kept frozen.
We set the inner dimension of the adapter layers to be 64 for
all our experiments. Finally, end-to-end finetuning is done
with a one-layer MAP task head while we update weights
in both the backbones and task heads.

E.3. Results

In Tables 13 to 16, we report the detailed benchmark re-
sults using the aforementioned four adaptation settings'.
In Table 17, the stratified average scores for each FM un-
der four adaptations are reported. We also report the final
VideoGLUE score (VGS) for each FM, which weights their
absolute performances with the respective adaptation costs.

Notably, from Tables 13 to 16, we can see that when eval-
uated under the same trainable FLOPs, VideoPrism con-
sistently and significantly outperforms other FMs across
different benchmarks and tasks. Aligning with the pretrain-
ing setup further improves the performance. The strong
results under both configurations indicate the efficacy of the
learned representations by VideoPrism.

From the overall benchmark results, we note that Video-
Prism achieves the best across the board, surpassing existing
FMs by a large margin. VideoPrism-B performs strongly
on both appearance-based video understanding datasets and
motion-aware recognition tasks, thanks to our two-stage pre-
training design. More interestingly, VideoPrism-B improves
upon baseline FMs more significantly on the regime of low
adaptation costs according to Table 17.

F. Zero-shot video-text retrieval
F.1. Implementation details

In general, LiT (Zhai et al., 2022b) can be viewed as an
efficient way to equip any pretrained vision encoder with
zero-shot classification and retrieval capabilities. Here, we
follow LiT to pair VideoPrism with a text encoder to assess
its zero-shot performance on discriminative video-language
tasks: video-text retrieval and video classification as text

'"The UMT-B/16-25M checkpoint is obtained from https:
//github.com/OpenGVLab/unmasked_teacher/
blob/main/multi_modality/MODEL_Z0O.md.
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Table 18. Zero-shot video-text retrieval on MSRVTT. We fol-
low the full split produced by Xu et al. (2016) which contains
2,990 videos for testing.

MSRVTT

Methods Text — Video Video — Text
R@1 R@5 R@1 R@5

CLIP-B (Radford et al., 2021) 233 44.2 433 73.3
SM-B (Zeng et al., 2022) - - 46.9 73.5
CoCa-g (Yu et al., 2022) 30.0 52.4 499 73.4
VideoCoCa-g (Yan et al., 2022) 34.3 57.8 64.7 85.2
. . 37.0 61.5 67.7 87.5
VideoPrism-B (2.7)  (13.7)  (13.0)  (12.3)
VideoPrism-g 39.7 63.7 71.0 90.0
(15.4) (159  (163)  (14.8)

Table 19. Zero-shot video classification on Kinetics-600. Mod-
els pretrained with extra modalities in addition to vision and lan-
guage (e.g., audio) are marked in gray.

Methods Top-1 Acc  Top-5 Acc
ER-ZSAR-B (Chen & Huang, 2021) 42.1 73.1
CLIP-B (Radford et al., 2021) 63.5 86.8
CoCa-g (Yu et al., 2022) 65.1 87.1
VideoCoCa-g (Yan et al., 2022) 70.1 88.9
X-CLIP-B (Ni et al., 2022) 65.2 86.1
X-Florence-B (Ni et al., 2022) 68.8 88.4
Text4Vis-L (Wu et al., 2023) 68.9 -
MAXI-B (Lin et al., 2023b) 71.5 92.5
LanguageBind-L (Zhu et al., 2024) 61.9 -
IMP-MoE-L (Akbari et al., 2023) 76.8 -
VideoPrism-B 69.7 (11.8) 90.6 (/1.9)
VideoPrism-g 75.6 (14.1)  93.2 (10.7)

retrieval. We let the text encoder mirror the corresponding
text encoder from the first-stage model and attach a MAP
head to VideoPrism. Both the text encoder and MAP head
are initialized from the teacher model pretrained in Stage 1.
Note that as LiT, the video encoder is locked (frozen) during
training.

We use exactly the same pretraining data and configurations
of the first-stage model to tune the model in this stage. To
further boost the model performance, we tune our model
only with Anonymous-Corpus #3 in the last training epoch,
whose captions are produced following Zhao et al. (2024).
When evaluating the tuned models on zero-shot video classi-
fication tasks, we turn the groundtruth class labels into text
descriptions with the text prompts introduced in CLIP (Rad-
ford et al., 2021).

F.2. Zero-shot classification on Charades-STA

As mentioned in Section 3.2, in order to evaluate the fine-
grained temporal reasoning capability of VideoPrism, we
adapt Charades-STA (Gao et al., 2017) to the zero-shot
video classification task. Charades-STA is originally pro-
posed for temporal grounding where multiple sequential
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Table 20. Datasets included in Academic-Corpus.

Datasets # of clips
Video Story Telling (Huang et al., 2016) 3K
TACoS (Regneri et al., 2013) 4K
YouDescribe (Pitcher-Cooper et al., 2023) 19K
Charades (Sigurdsson et al., 2016; Gao et al., 2017) 20k
COIN (Tang et al., 2019) 24K
VITT (Huang et al., 2020) 35K
VLN (Voigtlaender et al., 2023) 37K
EPIC-Kitchens-100 (Dima et al., 2022) 67K
Spoken Moments in Time (Monfort et al., 2021) 481K
Ego4D (Grauman et al., 2022; Lin et al., 2022) 3.8M

descriptions are annotated with their start and end times-
tamps for a video. We repurpose Charades-STA for multi-
choice video-to-text retrieval by trimming the video into
multiple clips using the annotated timestamps. The multi-
choice video-to-text retrieval then is performed by retrieving
the correct description for a video clip from all sequential
descriptions of this video.

F.3. Additional results on MSRVTT

In Table 18, we report zero-shot video-text retrieval re-
sults on the full split of MSRVTT produced by Xu et al.
(2016), which contains 2,990 videos for testing. We ob-
serve that VideoPrism outperforms previous methods by a
large margin. More importantly, our base-scale model is
also better than existing larger-scale models (e.g., CoCa-g
and VideoCoCa-g). These findings are consistent with the
results in Table 3, which confirms the strong capability of
VideoPrism on zero-shot video-text retrieval tasks. Note that,
in the appendix, all video-text retrieval results on MSRVTT
are calculated using this full split, unless otherwise stated.

F.4. Additional results on Kinetics-600

In addition to Table 4 in the main paper, we provide
zero-shot video classification results on Kinetics-600
(K600) (Carreira et al., 2018) in this section. As shown
in Table 19, we can find that VideoPrism achieves the best re-
sults compared with state-of-the-art FMs that are pretrained
with vision and language modalities. Although Language-
Bind (Zhu et al., 2024) and IMP (Akbari et al., 2023) use ad-
ditional modalities (e.g., audio) during pretrainig, our results
are still comparable to them. More importantly, our base-
scale model is able to outperform a majority of methods
with even larger scales. These observations are consistent
with the ones we draw from Table 4 in the main text.

G. Gluing VideoPrism with PalLM-2

In Section 3.3, we provided evidence of the strength and gen-
eralizability of VideoPrism by showing that we can easily
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Table 21. More detailed comparison to state-of-the-art methods on zero-shot video question answering. We include additional
results under the two-shot prompting and closed-vocabulary settings. We report Top-1 accuracy for both MSRVTT-QA and MSVD-QA.
Methods that unfreeze their language models during training are marked in gray.

Methods ‘ Two-shot prompting ~ Closed-vocab. ‘ MSRVTT-QA  MSVD-QA
Question-answering-only models
FrozenBiLM-L (Yang et al., 2022) | X v \ 222 39.0
All-in-one models
BLIP-B (Li et al.. 2022) X v 19.2 352
HiTeA-B (Ye et al., 2023) X v 21.7 37.4
mPLUG-2 (Xu et al., 2023) X v 43.8 55.3
Flamingo-3B (Alayrac et al., 2022) v X 11.0 275
Flamingo-9B (Alayrac et al., 2022) v X 13.7 30.2
VideoPrism-B w/ PaLM-2-1B v X 19.5 36.7
VideoPrism-B w/ PaLM-2-1B X v 23.1 432
VideoPrism-B w/ PaLM-2-1B v v 28.5 39.5
VideoPrism-B w/ PaLM-2-8B v X 24.8 42.7
VideoPrism-B w/ PaLM-2-8B X v 23.4 43.4
VideoPrism-B w/ PaLM-2-8B v v 32.0 47.1

fuse it with a pretrained LLM decoder in a further train-
ing stage for good performance on tasks that are generative
in language such as video captioning and video QA. We
provide details about model training and our evaluation
protocols in what follows.

Implementation. We pass the features of our video en-
coder through a one-layer Perceiver Resampler (Alayrac
et al., 2022) that outputs a fixed number of continuous to-
kens representing the input video. It is always set to be
256 in our experiments. These tokens are then prepended
to the embedded text prompt and fed into a LLM decoder,
i.e., PALM-2 (Anil et al., 2023). The resampled features
are then added with the original query features via skip
connection. Note that there are two differences from the
original implementation (Alayrac et al., 2022). First, a sep-
arate LayerNorm is used for query and key features as we
find it works better than the shared LayerNorm. Second, we
do not concatenate the key features with the query features
before the cross attention, since the feature dimensions from
VideoPrism is different from the pretrained PaLM-2. Other-
wise, the feature dimensions would need to be projected via
a linear projection layer before the concatenation, and we
find it leads to unstable training. We ablate with different
number of Resampler layers (i.e., 1, 3, and 6) and find that
the one-layer Resampler works the best in our experiments.

Model training. We train this multimodal model on
a combination of video-text captioning data from the
pretraining stage, an aggregated Academic-Corpus, and
VQAV2 (Goyal et al., 2017b) (an image QA dataset) using a
standard autoregressive language modeling loss. Table 20
lists all the datasets in Academic-Corpus, which includes
Ego4D (Grauman et al., 2022), EPIC-Kitchens (Dima et al.,
2022), Spoken Moments In Time (Monfort et al., 2021), efc.,
totalling 4.4M video clips.
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Both the video encoder and the LLM are kept entirely frozen
during training, only the one-layer Resampler is optimized.
We train VideoPrism-B with PaLM-2-1B and PaLM-2-8B
separately. We set batch size to be 256 for PaLM-2-1B
and 64 for PaLM-2-8B and trained for 2 x 10° steps. We
use Adam optimizer (Kingma & Ba, 2015) with weight
decay 1 x 10~* and the learning rate is set to be peaked
at 5 x 10~* with warmup steps 1 x 10* and then linearly
decreased. Betal is set to be 0.9 and Beta2 is set to be
0.999. We do not set EMA decay, L2 regularizer weight
decay, and gradient clipping in the training. Each frame is
center-cropped to 346 before being randomly cropped to
288 during the training and center-cropped to 288 during
the evaluation. We set the maximum decoding steps to be 32
since the datasets in this work have relatively short answers.
We use greedy decoding for all our experiments.

Model evaluation. We report both open-vocabulary and
closed-vocabulary evaluation results for MSRVTT-QA and
MSVD-QA in Table 21. For the open-vocabulary configura-
tion, we adopt the zero-shot approach of Flamingo (Alayrac
et al., 2022) and use two-shot text-only prompts from the
training set on each downstream dataset. The use of two-
shot text-only prompts is to guide the output style of the
answers. We use the following process to select the two-
shot prompts for each dataset. We first choose the two most
common answers from the training set of the dataset, and
then for each of them, a question is randomly drawn from
ones in the training set with the corresponding answer.”
Compared to Flamingo-9B, VideoPrism-B with PaLM-2-8B

2The final text-only two-shot prompts we employed are “ques-
tion: who is talking to his family? answer: man.” and “question:
what is a woman doing? answer: talk.” on MSRVTT-QA, and
“question: who is using a wrench on a pipe fitting? answer: man.”
and “question: who breaks an egg into a bowl? answer: woman.”
on MSVD-QA.
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shows an absolute 11.1% and 12.5% gain on MSRVTT-QA
and MSVD-QA, respectively.

Additionally, for MSRVTT-QA and MSVD-QA, we ex-
periment with the closed-vocabulary evaluation configu-
ration, following Li et al. (2022); Yang et al. (2022). In
this case, instead of directly outputting an answer via the
language decoder, we score candidate answers using the log-
likelihood of the decoder and choose the answer with the
top score. The candidate answers are picked by taking the
top-K most frequently appearing one-token answers from
the training and validation sets of the dataset, where K is
optimized over the validation set by ablating over the values
{100, 250, 500, 1000, 2000}. For both MSRVTT-QA and
MSVD-QA, we find K = 250 to work best. Any example
where the groundtruth answer is not one of the candidate
answers is automatically marked as incorrect. This method
additionally steers the model towards answers that fit the
exact style of the particular dataset and boosts performance
further. In the closed-vocabulary evaluation configuration,
VideoPrism-B with PaLM-2-8B outperforms FrozenBiLM-
L by an absolute margin of 1.2% and 4.4% on MSRVTT-QA
and MSVD-QA, respectively.

Recently, a number of works (Maaz et al., 2023; Lin et al.,
2023a; Li et al., 2023f) have begun evaluating captioning
and VideoQA tasks using an LLM-in-the-loop protocol,
where an LLM such as ChatGPT? is used to compare predic-
tions to ground-truth answers along a number of different
dimensions (e.g., correctness of information, temporal un-
derstanding, consistency). This can help mitigate the issue
of metrics like exact-match and BLEU score being overly
reliant on superficial token matching. We leave it to fu-
ture work to compare against these models using these new
protocols.

H. CV for Science

We evaluate the CV for Science datasets using frozen fea-
tures with the same feature extraction setup (MAP probing)
as the VideoGLUE tasks in Section E.1. The datasets are:
Fly vs. Fly (Eyjolfsdottir et al., 2014) for fly video classifi-
cation, CalMS21 (Sun et al., 2021a) for mouse video clas-
sification from top view, CRIM13 (Burgos-Artizzu et al.,
2012) for mouse video classification with top and side views,
ChimpACT (Ma et al., 2023) for chimp spatiotemporal ac-
tion localization, and KABR (Kholiavchenko et al., 2024)
for video classification with Kenyan animals. The domain
expert models reported in the main paper are trained on the
training split of each dataset, and reported originally in task
programming (Sun et al., 2021b) for Fly vs. Fly, CalMS21
1D ConvNet with extra unlabelled data (Sun et al., 2021a)
for CaIMS21, KABR X3D (Kholiavchenko et al., 2024)

*https://chat.openai.com
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for KABR, and ChimpACT SlowFast (Ma et al., 2023) for
ChimpACT. For each dataset, we use the train and test splits
defined by existing work, with the same metrics (mAP for all
works, except KABR, which uses macro-accuracy averaged
across classes). For Fly vs. Fly, we use the data split defined
in Sun et al. (2021b), which includes all behaviors with
more than 1000 frames of annotations in the training set.
We note that following previous work (Sun et al., 2021a;b),
in datasets where there are background classes, the metric
is only averaged across behaviors-of-interest (not including
background classes).

We extract all frames from the video at the original FPS
of each dataset. We use 16 frames as input in Fly vs. Fly,
CalMS21, and CRIM13, 64 frames for ChimpACT, and 16
frames with a stride of 5 for KABR, following baselines.
Note that for ChimpACT, the benchmark uses groundtruth
bounding boxes during training and testing, which we fol-
low.

The training setup and implementation details are similar
to the VideoGLUE frozen-backbone setting (MAP probing)
in Appendix E.1. We use the AdamW (Loshchilov & Hut-
ter, 2019) optimizer and cosine learning rate decay in the
CV for science experiments. For data augmentation, we
use the same ones as other video classification datasets in
VideoGLUE (e.g., Charades, Diving48, and MiT) for our
video classification datasets. For ChimpACT (spatiotempo-
ral action localization), we use the AVA data augmentation.
We use a learning rate of 5 x 10~° for video classification
and spatiotemporal action localization, except for KABR,
where the base-scale model uses 5 x 10~ and large-scale
model uses 1 x 107, Following the baseline, KABR is
also trained with the EQL loss (Tan et al., 2020) to account
for class imbalance. Finally, all models are trained with 0.5
dropout rate.

I. Ablation studies
I.1. Data

We study how to combine datasets with different caption
qualities, quantities, and distributions when training a video-
text contrastive model. In Table 22, three different combi-
nation methods are considered: (1) simply mixing different
datasets (denoted with “+” and “X” for AGD); (2) training
with one dataset and then continue training with another
dataset (denoted with “—” and “X” for AGD); (3) combin-
ing different datasets with AGD (denoted with “+” and “v”
for AGD). We choose two representative datasets, namely
InternVid (Wang et al., 2023e) and YTT180M (Zellers et al.,
2021) and report Recall@1 (R@1) for zero-shot video-
to-text (ZSV2T) and text-to-video (ZST2V) retrieval for
this study. We notice that simply mixing InternVid and
YTT180M results in a large performance drop on VATEX
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Table 22. Data ablation for the first-stage model. We report both
zero-shot text-to-video (ZST2V) and video-to-text (ZSV2T) re-
trieval results of VideoPrism-B for each configuration under the
evaluation metric of Recall@1.

MSRVTT VATEX
Data AGD - yorov  ZSVaT ZST2V  ZSV2T
InternVid X 289 558  40.8 573
YTT180M X 196 475 263 497
InternVid + YT180M X 29.5 56.7 299 410
InternVid — YT180M X 217 54.7 29.8 54.8
YTTISOM — InternVid X 29.3 564 399 575
InternVid + YITISOM v 29.8 574 394 582
Full pretraining corpus v 34.3 64.4 52.0 69.7

when compared with only using InternVid. On the other
hand, training on one dataset then continue training on the
other dataset is highly affected by the order of datasets. For
instance, compared with only using InternVid, the perfor-
mance of InternVid — YTT180M drops by a large margin
on both MSRVTT and VATEX, while YTT180M — In-
ternVid improves on three out of four metrics. Hence, this
approach is not scalable with the number of datasets. Al-
ternatively, AGD consistently improves the performance on
MSRVTT and ZSV2T of VATEX compared with YTT180M
— InternVid and InternVid with only a slightly drop in
ZST2V of VATEX. As a result, AGD is chosen for combin-
ing different training datasets when we train the video-text
contrastive model.

We further report the performance of AGD with all our
pretraining corpus in the last row of Table 22. We observe
a large improvement across all metrics, demonstrating that
AGD scales well with the number of datasets.

To better understand how our models perform when only
public datasets are included for pretraining, we conduct
experiments under two setups where only (1) InternVid (7M)
and (2) all public datasets (150M, including InternVid, YT-
Temporal-180M, and WTS-70M) are used, respectively. As
shown in Table 23, we find our first-stage model has already
achieved overall favorable results, while our second-stage
model yields better results, especially on SSv2. As with the
case with any foundation model, the pretraining data is one
of the factors to improve performance, but it is not the only
factor. The proposed two-stage pretraining strategy, token-
wise distillation with token shuffling, and global distillation
all contribute to the performance improvements.

1.2. Model design

Factorized encoder. We favored the factorized attention
over joint attention in the encoder because it balances the
cost (e.g., memory, efficiency) and performance well. The
factorized attention is especially appealing given that con-
trastive learning (our Stage 1) demands a large batch size.
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Table 23. Model performance when only public datasets are
used for pretraining. Results using MAP probing with frozen
backbone for VideoPrism-B are reported. We report Top-1 accu-
racy on K400 and SSv2.

Methods Corpus size K400  SSv2
UMT-B (Li et al., 2023b) 25M 77.1 47.7
VideoMAE-B (Tong et al., 2022) IM 65.1 53.9
VideoPrism-B (Stage 1) ™ 81.0 47.6
VideoPrism-B (Stage 1) 150M 81.7 50.0
VideoPrism-B (Stage 2) ™ 81.5 60.3
VideoPrism-B (Stage 2) 150M 82.7 60.5

Table 24. Joint vs. factorized attention. Results of the first-stage
VideoPrism-B model are reported. We report Top-1 accuracy on
K400 and SSv2 using MAP probing with frozen backbone.

Bncoder architectures MSRVTT K400  SSv2

TArCiiectures — zerov - zZsvaT  vC vC
Joint attention 34.2 64.0 84.5 52.6
Factorized attention 34.2 64.6 82.9 55.5

We note that the original ViViT paper (Arnab et al., 2021)
also recommended the factorized-attention architecture over
the other variants. In Table 24, we can see that the two
attention schemes lead to similar performance on text-video
retrieval tasks, while the joint attention gives rise to slightly
better accuracy on K400 and yet worse on SSv2. The overall
performances of these two models are similar, reinforcing
that the factorized attention is probably a better choice given
its smaller memory footprint.

Initialization. To understand how the end results vary
with respect to the initialization from different image mod-
els, we replace CoCa (Yu et al., 2022) with CLIP (Radford
et al., 2021) as the spatial encoder in our model. We then
experiment with two variants: (1) freezing CLIP while train-
ing the temporal layers and (2) unfreezing all weights in
training. Note that we use CLIP-B/14 and all the public
datasets in our pretraining corpus for model training in this
experiment. Results are shown in Table 25. We can see that
the results using CLIP for initialization are still compara-
ble with those with the CoCa initialization, and unfreezing
the CLIP weights benefits all evaluation benchmarks in the
table.

Masking method. We then study the impact of masking
method and masking ratio on the second-stage model using
VideoPrism-B as an example. In Figure 6, we compare the
performance of the second-stage model under tube mask-
ing (Tong et al., 2022) and BEVT masking (Wang et al.,
2022b) with various masking ratios on different video fo-
cused tasks. We notice that BEVT masking outperforms
tube masking in most cases. When comes to the masking
ratio, BEVT masking with masking ratio 0.65 and 0.75
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Table 25. Effects of model initialization. Results of the first-
stage VideoPrism-B model are reported. We report Top-1 accuracy
on K400 and SSv2 using MAP probing with frozen backbone.

Confieurations MSRVTT K400  SSv2

onhigurations ZST2V  ZSV2T  VC \Ve

CLIP (Radford et al., 2021) (frozen)  27.6 524 731 398

CLIP (Radford et al., 2021) 274 533 796 511

CoCa (Yu et al., 2022) 29.9 573 817 500
K400 SSv2 AVA

Tube 65 Tube Tube

—— BEVT —— BEVT

ﬁ
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0.5 (%)
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Figure 6. Ablation study for second-stage masking strategy
and masking ratio. Results using MAP probing with frozen

backbone for VideoPrism-B are reported.

have similar performance and outperform the other masking
ratios. As a result, if not otherwise specified, all the second-
stage models are trained with the BEVT masking with 0.65
masking ratio.

Token shuffling and global distillation. We then study
the performance of token shuffling and global distillation
which are the two new techniques introduced in our masking
distillation method. We show the results of the second-stage
model (VideoPrism-B) without token shuffling or global dis-
tillation and compare the results with the full second-stage
model on video classification (K400 and SSv2) and spa-
tiotemporal action location (AVA) tasks in Table 26. From
this table, we notice that both token shuffling and global
distillation help improving the performance of the second-
stage model by a large margin. Especially, token shuffling
improves the performance of the second-stage model on
motion-focused video classification dataset SSv2 by 1.8%.
We believe that token shuffling introduces a harder learning
objective to the second-stage model that is akin to Jigsaw
puzzle (Noroozi & Favaro, 2016), forcing the second-stage
model to better understand the motion in the video. Global
distillation, on the other hand, can further boost the per-
formance of the second-stage model on appearance-based
video tasks (0.8% on K400 and 1.6% on AVA) and plays an
important role in training a good second-stage model.

The second-stage training. Figure 7 compares the
second-stage model with the first-stage model on different
video datasets across a variety of tasks using VideoPrism-B.
Specifically, for video-only tasks such as video classifica-
tion (K400 [VC] and SSv2 [VC]) and spatiotemporal action

K400 [VC]

SSv2 [VC]

AVA [STAL]

VATEX [ZSV2T]
ActivityNet [ZSV2T]
MSRVTT [ZST2V]
VATEX [ZST2V]

ActivityNet [ZST2V]

K600 [ZSC]

SSv2 [Z5C]

28.1 [ Stage 1l

NEXT-QA-ATP [Z5C] 513 [ Stage 2

20 40 60 80

Figure 7. Comparison between the first-stage and second-stage
models of VideoPrism-B on video understanding tasks. For
video-only tasks, results are from using MAP probing with a frozen
backbone.

localization (AVA [STAL]), we apply the frozen feature
and only update the weights in the task head. We report
top-1 accuracy for video classification and mAP@IoU=0.5
for spatiotemporal action localization, respectively. For
zero-shot video-to-text retrieval MSRVTT [ZSV2T], VA-
TEX [ZSV2T], and ActivityNet [ZSV2T]), zero-shot text-to-
video retrieval (MSRVTT [ZST2V], VATEX [ZST2V], and
ActivityNet [ZST2V]), and zero-short video classification
(K400 [ZSC], K600 [ZSC], SSv2 [ZSC], and NEXT-QA-
ATP [ZSC]) tasks, we apply LiT (Zhai et al., 2022b) to learn
a text encoder paired up with the second-stage model as
described in Section 3.2 and report Recall@1 (R@1). We
notice that the second-stage training significantly improves
the performance of the video encoder compared with the
first-stage model across all video tasks on different datasets,
strongly demonstrating the effectiveness of the proposed
two-stage training.

L.3. Scaling properties

In Figure 8a, we study the scaling behavior of our models
by keeping the data fixed. We find that both our first-stage
model and second-stage model scale well with the model
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Table 26. Ablation study for the second-stage model training
strategy. Results using MAP probing with frozen backbone for
VideoPrism-B are reported. We report Top-1 accuracy on K400
and SSv2, and mean average precision (mAP) on AVA.

Models K400 SSv2 AVA
Full configuration 84.2 63.6 30.6
w/o token shuffling 83.6 (10.6) 61.8 ([1.8) 29.4 (11.2)
w/o global distillation ~ 83.4 (10.8)  64.2(10.6)  29.0 ([1.6)
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(b) Scaling student model size with a fixed Base teacher model.

Figure 8. Preliminary studies on model scaling. Results using
MAP probing with frozen backbone are reported. We report Top-1
accuracy on K400 and SSv2, and mean average precision (mAP)
on AVA.

size. Interestingly, the second-stage model shows consis-
tent improvements over the first-stage model of around 8%
on SSv2 and 2.2% on AVA, across the model sizes. In
Figure 8b, we scale the second-stage model by fixing the
first-stage model to be of Base size. For Large and giant
second-stage models, as they are incompatible with the
first-stage model of Base size, we initialize them with the
corresponding image model of CoCa (Yu et al., 2022). We
observe that even with a fixed first-stage model, our second-
stage models still show a reasonable scaling capability.

In Table 22, we demonstrate strong data scaling capability
of the first-stage model where the model trained on the pre-
training corpus outperforms the one trained on InternVid
(Wang et al., 2023e) by 5.4% on MSRVTT ZST2V retrieval
and 11.2% on VATEX ZST2V retrieval. This motivates us
to also study the data scaling ability of our second-stage
model. An interesting aspect of our second-stage training is
that it works with video-only data without annotations. This
equips us to economically increase the corpus size during the
second-stage training. To test the benefit of data scaling, we
mine additional 280M video clips without annotations from
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Table 27. Studies on data scaling for the second-stage model.
We report results of the Large model using MAP probing with
frozen backbone and only the full pretraining corpus is used to
train the first-stage model.

Data #ofclips K400 SSv2  AVA
Full pretraining corpus 618M 85.8 66.4 33.1
+ additional video-only 898M 86.1 66.7 33.7

YouTube and add them to our second-stage training. We
use model with Large size as an example and train the first-
stage model using pretraining corpus. We then compare the
second-stage model trained only on the pretraining corpus
with that trained with both the pretraining corpus and the
additional clips in Table 27. We can see that our second-
stage model scales well with data. Note that prior work on
masked modeling either does not demonstrate good data-
scaling properties or shows marginal improvements with
data scaling (Feichtenhofer et al., 2022; Tong et al., 2022).



