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Abstract

Explanations are an important tool for gain-
ing insights into model behavior, calibrating
user trust, and ensuring compliance. Past few
years have seen a flurry of methods for gen-
erating explanations, many of which involve
computing model gradients or solving specially
designed optimization problems. Owing to the
remarkable reasoning abilities of LLMs, self-
explanation, i.e., prompting the model to ex-
plain its outputs has recently emerged as a new
paradigm. We study a specific type of self-
explanations, self-generated counterfactual ex-
planations (SCEs). We design tests for measur-
ing the efficacy of LLMs in generating SCEs.
Analysis over various LLM families, sizes, tem-
peratures, and datasets reveals that LLMs often
struggle to generate SCEs. When they do, their
prediction often does not agree with their own
counterfactual reasoning.

1 Introduction

LLMs have shown remarkable capabilities across
arange of tasks (Bommasani et al., 2021; Maynez
et al., 2023; Wei et al., 2022a), and can match or
even surpass human performance (Luo et al., 2024;
Peng et al., 2023; Yang et al., 2024). These im-
pressive achievements are often attributed to large
datasets, model sizes (Hoffmann et al., 2022; Ka-
plan et al., 2020), and the effect of alignment with
human preferences (Ouyang et al., 2022). The re-
sulting model complexity, however, means that the
LLM outputs can be difficult to explain.

A number of recent studies have looked into ex-
plaining LLM predictions (Bricken et al., 2023;
Templeton et al., 2024; Zhao et al., 2024, inter
alia). ML explainability had been thoroughly stud-
ied even before the advent of modern LLMs (Gilpin
et al., 2018; Guidotti et al., 2018). A large number
of LLM explainability methods build upon tech-
niques designed for non-LLM models. These tech-
niques mostly operate by computing model gra-
dients or solving specially designed optimization

problems to find input features (Cohen-Wang et al.,
2025), neurons (Meng et al., 2022; Templeton et al.,
2024), abstract concepts (Kim et al., 2018; Xu et al.,
2025), or training data points (Park et al., 2023) that
caused the model to depict a certain behavior.

Inspired by impressive reasoning capabilities of
LLMs, recent work has started exploring whether
LLMs can explain themselves without needing
costly methods like gradients and optimization
problems. For instance, Bubeck et al. (2023) show
that GPT-4 can provide rationales for its answers
and even admit mistakes. A fast-emerging branch
of explainability focuses on methods for producing
and evaluating self-generated explanations (Agar-
wal et al., 2024; Guo et al., 2025; Lanham et al.,
2023; Tanneru et al., 2024; Turpin et al., 2023).

We study a specific type of self-explanations:
self-generated counterfactual explanations (SCEs).
Given an input x and model output ¢, a counterfac-
tual xcg is a modified input that leads the model to
output ycg # ¢. Prior work argues that due to their
contrastive nature, counterfactuals better align with
human expectations (Miller, 2019), better match
regulatory needs (Wachter et al., 2017) and are
a better test of knowledge (Ichikawa and Steup,
2024), than other feature-based explanations (Lund-
berg and Lee, 2017; Ribeiro et al., 2016).

We study the efficacy of LLMs in generating
SCEs via three research questions (RQs).

RQ1 Are LLMs able to generate SCEs at all?

RQ2 Do these self-generated counterfactuals faith-
fully reflect the model reasoning?

RQ3 Are LLMs able to generate SCEs without
large-scale changes to the input?

To answer these questions, we design the procedure
detailed in Figure 1. We ask the model to make
a prediction (Figure 1a); then ask it to generate a
SCE (Figure 1b); and finally compute the model’s
prediction on the SCE it generated (Figure 1c).
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You will be given a math problem Now,
[...] Your task is to provide

the solution.

revise the math problem
so your final answer to the [...]
revised problem becomes 50.
Share the revised problem.

You will be given a math problem.
Your task is to provide
the solution.

Albert is wondering how much

Albert is wondering how much
pizza he can eat in one day. He
buys 2 large pizzas and 2 small
pizzas. A large pizza has 16
slices and a small pizza has 8
slices. If he eats it all, how
many pieces does he eat that
day?
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day?

Albert is wondering how much
pizza he can eat in one day.
He buys 2 large pizzas and 3
A large pizza
has 16 slices and a small
pizza has 8 slices, but one of
the small pizzas has 2 extra
slices. If he eats it all, how
many pieces does he eat that

small pizzas.

pizza he can eat in one day. He
buys 2 large pizzas and 3 small
pizzas. A large pizza has 16
slices and a small pizza has 8
slices, but one of the small
pizzas has 2 extra slices. If
he eats it all, how many pieces
does he eat that day?
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Model answers correctly

(a) Model response on original problem.

Correct answer would be 58

(b) Self-generated counterfactual

SCE doesn’t yield target 50

(c) Evaluation of self-explanation

Figure 1: LLMs are unable to explain themselves counterfactually. Explanation generation behavior of
LLaMA-3.1-7@0B-instruct on an example from GSM8K data. In the left panel, the model answers correctly. In the
second panel, the model is asked to produce a SCE so that the answer becomes 50. The resulting SCE is incorrect.
The correct answer would be 58 instead of the targeted answer of 50. In the third panel, the SCE is given as a new
problem to the model. The model answers with 54 which neither yields the target 50 nor computes to the correct

answer 58. This figure is best viewed in color.

We evaluate seven LLMs (7B to 70B parame-
ters) and six datasets that correspond to four unique
tasks. All but one LLM can consistently generate
SCEs (RQ1). However, in many cases, the model
predictions on SCEs do not yield the target label,
meaning that self-generated counterfactual reason-
ing does not align with model predictions (RQ?2).

We curiously find that the presence of the orig-
inal prediction (Figure 1a) and the instruction to
generate the SCE (Figure 1b) in the context win-
dow has a large impact on the model prediction on
the SCE, pointing to flaws in the internal reasoning
process of LLMs. Within the same dataset, models
show a large spread in the amount of changes they
make to the original input when generating the SCE
(RQ3). Overall, our results show that despite their
impressive reasoning abilities, modern LLMs
are far from being perfect when explaining their
own predictions counterfactually.

2 Related work

Explainability in ML. There are several ways to
categorize explainability methods, e.g., perturba-
tion v.s. gradient-based, feature v.s. concept v.s.
prototype-based, importance v.s. counterfactual-
based and optimization v.s. self-generated. See
Gilpin et al. (2018), Guidotti et al. (2018), and
Zhao et al. (2024) for details.

Counterfactual explanations in ML. See Sec-
tion 1 for a comparison between counterfactual ex-
planations (CEs) and other forms of explainability.
Generating valid and plausible CEs is a longstand-
ing challenge (Verma et al., 2024). For instance,
Delaney et al. (2023) highlight discrepancies be-
tween human- and computationally-generated CEs.
They find that humans make larger, more mean-
ingful modifications, whereas computational meth-
ods prioritize minimal edits. Prior work has also
highlighted the need for on-manifold CEs to en-
sure plausibility and robustness (Slack et al., 2021;
Tsiourvas et al., 2024). Modeling the data mani-
fold, however, is a challenging problem, even for
non-LLM models (Arvanitidis et al., 2016).

Self-explanation by LLMs. SEs can take
many forms, e.g., chain-of-thought (CoT) reason-
ing (Agarwal et al., 2024) and feature attribu-
tions (Tanneru et al., 2024). Both CoT and feature
attributions may fail to faithfully reflect the model’s
true decision-making process (Lanham et al., 2023;
Tanneru et al., 2024; Turpin et al., 2024). Our SCE
evaluation protocol is distinct from both CoT and
feature-attribution based self-explanations. Given
its positive impact on predictive performance (Wei
et al., 2022b), we employ CoT to evaluate SCEs,
but not as an explainability method itself.

Chen et al. (2023) argue that effective explana-



tions should empower users to predict how a model
will handle different yet related inputs, a concept
referred to as simulatability. Their experiments
tested whether GPT-3.5’s ability to generate CEs
depends on the quality of the examples provided.
Interestingly, GPT-3.5 was able to produce compa-
rable (to humans) CEs even when presented with
illogical examples, suggesting that its CEs gener-
ation capabilities stem more from its pre-training
than from the specific examples included in the
prompt. Unlike Chen et al. (2023), our focus is not
on human simulatability of SCE:s.

LLMs for explanations. LLMs are also used to
generate explanations for other models (Bhattachar-
jee et al., 2024; Gat et al., 2023; Li et al., 2023;
Nguyen et al., 2024; Slack et al., 2023). Our fo-
cus is on explaining the LLM itself. Additionally,
the approach of Nguyen et al. (2024) and Li et al.
(2023) involved explicitly providing the model with
the original human gold labels in the prompt, with-
out assessing the model’s independent decision or
understanding. As argued by Jacovi and Goldberg
(2020), the evaluation of faithfulness should not
involve human-provided gold labels because rely-
ing on gold labels is influenced by human priors on
what the model should do.

3 Generating and evaluating SCEs

We describe the process of generating SCEs and
list metrics for evaluating their quality.

3.1 Generating counterfactuals

We consider datasets of the form D =
{(x:,9:)}Y,. x are input texts, e.g., social me-
dia posts or math problems. y; € ) are either
discrete labels, e.g., sentiment of a post, or integers
from a predefined finite set, e.g., solution to a math
problem. The model prediction and explanation
process consists of the following steps.

Step 1: Prediction on x. Given the input x, we
denote the model output by § = f(x) € ). For
instruction-tuned LLMs, this step involves encap-
sulating the input x into a natural language prompt
before passing it through the model, see for exam-
ple the work by Dubey et al. (2024). We detail
these steps in Appendix C. The outputs of LLMs
are often natural language and one needs to em-
ploy some post-processing to convert them to the
desired output domain ). We describe these post-
processing steps in Appendix D.

Step 2: Generating SCEs. A counterfactual ex-

planation xcg is a modified version of the original
input x that would lead the model to change its de-
cision, that is f(x) # f(Xcg). A common strategy
for generating counterfactuals is to first identify
a counterfactual output ycg # y and then solve
an optimization problem to generate xcg such that
f(xce) = yce (Mothilal et al., 2020; Verma et al.,
2024; Wachter et al., 2017). ycg is either chosen at
random or in a targeted manner. Since we are inter-
ested in self-explanation properties of LLMs, we
do not solve an optimization problem and instead
ask the model itself to generate the counterfactual
explanation.

A key desideratum for counterfactual explana-
tions is to keep the changes between x and Xcg
minimal (Verma et al., 2024). We explore multi-
ple prompting strategies to achieve this goal. One
approach is unconstrained prompting, where the
model is simply asked to generate a counterfactual
with no additional constraints or structure. To ex-
ert more control, we also use a rationale-based
prompting strategy inspired by rationale-based ex-
planations (DeYoung et al., 2019). Here, the model
is first prompted to identify the rationales in the
original input that justify its prediction of g, and
then to revise only those rationales such that the
output changes to ycg. Finally, since CoT has been
shown to improve the predictive performance, we
employ CoT prompting, where instead of request-
ing only a final answer, the model is encouraged
to “think step by step” and articulate its reasoning
process explicitly.

Step 3: Generating model output on xcg. Fi-
nally, we ask the model to make the prediction
on the counterfactual it generated, namely, ycg =
f(xcg). While one would expect ycg to be the
same as ycg, we find that in practice this is not
always true.

One could ask the model to make this final pre-
diction while the model still retains Steps 1 and 2
in its context window or without them. We denote
the former as prediction with context and the latter
as predictions without context.

Prompt design and post-processing. The prompts
for all three steps and the post-processing proce-
dures were carefully designed and refined in tan-
dem to remove ambiguities in instructions and
elicit accurate extraction of labels from the some-
times verbose generations. We describe our design
choices and precise prompts in Appendix C and the
post-processing steps in Appendix D.



3.2 Evaluating CEs

We use the following metrics for evaluating SCEs.

Generation percentage (Gen) measures the per-
centage of times a model was able to generate
a SCE. In a vast majority of cases, the models
generate a SCE as instructed. The cases of non-
successful generation include the model generating
a stop-word like “.” or “!” or generating a xcg that
is much shorter in length than x. We describe the

detailed filtering process in Appendix D.

Counterfactual validity (Val) measures the per-
centage of times the SCE actually produces the
intended target label, i.e., f(xcg) = ycg. As de-
scribed in Step 3 in Section 3.1, this final prediction
can be made either with Steps 1 and 2 in context or
without. We denote the validity without context as
Val and with context as Valc.

Edit distance (ED) measures the edit distance be-
tween the original input x and the counterfactual
xcg- Closeness to the original input is a key desider-
atum of a counterfactual explanation (Wachter
et al., 2017). Our use of edit distance as the close-
ness metric is inspired by prior studies on evaluat-
ing counterfactual generations (Chatzi et al., 2025).
We only report the ED for valid SCEs. Since the va-
lidity of SCEs is impacted by the presence of Steps
1 and 2 in the generation context (Section 3.1), we
report the edit distance for the in-context case sep-
arately and denote it by ED¢. For simplifying com-
parisons across datasets of various input lengths,
we normalize the edit distance to a percentage by
first dividing it by the length of the longer string (x
or xcg) and then multiplying it by 100.

4 Experimental setup

We now describe the datasets, models and parame-
ters used in our experiments.

4.1 Datasets

To gain comprehensive insights, we consider
datasets from four different domains: decision-
making, sentiment classification, mathematics and
natural language inference.

1. DiscrimEval (decision making) by Tamkin et al.
(2023) is a benchmark featuring 70 hypothetical
decision-making scenarios. Each prompt instructs
the model to make a binary decision regarding an
individual, e.g., whether the individual should re-
ceive medical treatment. The prompts are designed
such that a yes decision is always desirable. The

dataset replicates the 70 scenarios several times by
substituting different values of gender, race, and
age. We set these features to fixed values: female,
white, and 20 years old.

2. FolkTexts (decision making) by Cruz et al.
(2024) is a classification dataset derived from the
US Census data. Each instance consists of a textual
description of an individual, e.g., age, and occupa-
tion. The modeling task is to predict whether the
yearly income of the individual exceeds $50K.

3. Twitter financial news (sentiment classifica-
tion) by ZeroShot (2022) provides an annotated
corpus of finance-related tweets, specifically cu-
rated for sentiment analysis. Each tweet is labeled
as Bearish, Bullish, or Neutral. As a preprocessing
step, we removed all URLs from the inputs.

4. SST2 (sentiment) by Socher et al. (2013) con-
sists of single sentence movie reviews along with
the binary sentiment (positive and negative).

5. GSMSK (math) by Cobbe et al. (2021) consists
of grade school math problems. The answer to the
problems is always a positive integer.

6. Multi-Genre Natural Language Inference
(MGNLI) by Williams et al. (2018) consists of
pairs of sentences, the premise, and the hypothesis.
The model is asked to classify the relationship be-
tween two sentences. The relationship values can
be: entailment, neutral, or contradiction.

4.2 Models, infrastructure, and parameters

We consider models from different providers and
sizes.

Small models, namely Gemma-2-9B-it
(GEMg), Llama-3.1-8B-Instruct (LAMs), and
Mistral-7B-Instruct-v@.3 (MSTy).

Medium models consist of Gemma-2-27B-it
(GEMyp), Llama-3.3-70B-Instruct (LAM,), and
Mistral-Small-24B-Instruct-2501 (MST,).

Reasoning model. We only
DeepSeek-R1-Distill-Qwen-32B (R1y).
All experiments were run on a single node with
8x NVIDIA H200 GPUs. The machine was shared
between multiple research teams. We ran all the
models in 32-bit precision and did not employ any
size reduction strategies like quantization. We con-
sider two temperature values, 7' = 0 and T' = 0.5.
For Unconstrained and Rationale-based prompting
atT' = 0.5, we run five trials and report the mean
for all metrics. Due to computational constraints,
we run only three trials for the CoT at 7' = 0.5.

consider



For generating the counterfactuals, one needs to
provide the model with the target label ycg. For
classification datasets, we select ycg from the set
Y — {y} at random. For the GSM8K data, we
generate ycg = ¢ + € with ¢ was sampled from a
uniform distribution Unif{1,2,...,10}.

Given the high cost of LLM inference, we sub-
sample the datasets. For classification datasets, we
take the first 250 examples per class in dataset or-
der. For the non-classification dataset GSM8K, we
similarly select the first 250 examples. While we
did not track the precise time, the experiments took
several days on multiple GPUs to complete.

We occasionally used ChatGPT for help with
programming errors.

5 Results

Tables 1 and 2 show the results when using uncon-
strained prompting and rationale-based prompting,
respectively at 7' = 0. Results for all other con-
figurations like non-zero temperatures and CoT
prompting (Tables 4, 5, 6 and 7) are shown in Ap-
pendix B and discussed under each RQ. All tables
show confidence intervals computed using standard
error of the mean (Appendix E).

RQ1: Ability of LLMs to generate SCEs

Most models successfully generate SCEs in the vast
majority of cases, with the notable exception of
the GEMg model on the DISCRIMEVAL and FOLK-
TEXTS datasets. However, CoT prompting mas-
sively improves SCE generation ability of GEMg
(Table 6). Most models, including GEMs, exhibit
enhanced SCE generation at ' = 0.5. The frac-
tion roughly remains the same for rationale-based
prompting as shown in Tables 2 and 5.

RQ2: Do SCE:s yield the target label?

SCEs yield the target label in most cases, however,
there are large variations. The most prominent
variation is along the task level. For the GSM8K
dataset, which involves more complex mathemati-
cal reasoning, valid SCE generation rates remain
under 20% in a vast majority of cases. Similarly,
the FOLKTEXTS tasks which requires the model
to reason through the Census-gathered data, the
validity in many cases is low.

We also see a mixed trend at model-size level.
The smaller models—GEMs (9B parameters), LAMg
(8B), and MST¢ (7B)—sometimes tend to generate
valid SCEs at a lower rate than larger counterparts,

GEM,, (27B), LAM,, (70B), and MST,, (24B). However,
the trend the reversed in some other cases, e.g., with
unconstrained prompting on FOLKTEXTS, MST;
outperforms its larger counterpart. The reasoning
model R1, (32B) also does not consistently outper-
form comparably sized models such as GEM, and
MST,,.

Presence of the original prediction and coun-
terfactual generation in the context window has a
large impact on validity as shown by the compari-
son of Val and Valc in Tables 1 and 2. Most promi-
nently, on the GSM8K dataset, validity increases
significantly, indicating that the model’s mathe-
matical reasoning ability is influenced by infor-
mation that should be irrelevant. We observe
a similar trend in the FOLKTEXTS dataset. The
trend however is not universal. In other datasets,
models such as LAMg and LAM, exhibit a decrease
in validity when additional contextual information
is included.

Rationale-based prompting has diverse impact
on SCE validity as shown by comparing Tables
1 and 2. In some cases, such as LAM, on DIS-
CRIMEVAL, the fraction of SCEs deemed valid
by the model drops sharply from 94% to 53%. In
contrast, for LAMg on FOLKTEXTS, the validity rate
increases substantially from 20% to 72% at a tem-
perature of 0.

CoT generally leads to modest improvements in
SCE validity. For instance, at T' = 0, the average
validity over all datasets and models is 64% with
unconstrained prompting 60% with rationale-based
prompting, and 72% with CoT prompting.

RQ3: Changes required to generate SCEs

For a given task and dataset, different LLMs require
different amount of changes to generate SCEs, even
for a similar level of validity. Consider for GEMy,
GEMs and R1, models for DISCRIMEVAL data.
The required changes also depend on the task
and dataset. For example, in SST2, where models
achieve some of the highest validity scores, we ob-
serve the highest ED. This relationship between va-
lidity and edit distance, however, is not completely
linear and also depends on the input length. In D1s-
CRIMEVAL and FOLKTEXTS, where input lengths
can span several hundred tokens, the models exhibit
low Val alongside relatively low ED. Temperature
also influences ED, e.g., in unconstrained prompt-
ing with 7' = 0.5 (Table 4), ED values across all
datasets, except for Twitter Financial News data,
are consistently higher compared to 7" = 0. Finally,



Gen 1 Val t Valc ED | EDc GentT Val?t Valc ED | EDc
LAMg  91(7) 56(12) 16(9) 63(8) 40(15) LAMs  69(4) 20(4) 61(5) 68(4a) T6(1)
LAMp  99(2) 94 (6) 99(2) 34(3) 33(3) LAM, 100(0) 67(4) 100(0) 35(0) 34(0)
MSTs  100(0) 82(9) 86(6) 34(4) 32(4) MSTs 100(0) 94(2) 95 (2) 25(1)  24(0)
MST, 100(0) 87(8) 50(1) 16(2) 13(2) MST, 100(0) 54(4) 99(1) 32(0) 32(0)
GEM¢ 0(0) 0(0) 0(0) 0(0) 0(0) GEMq 0(0) 0(0) 0(0) 0(0) 0(0)
GEM, 90(7) 86(9) 100(0) 26(3) 26(3) GEM, 100(0) 100(o) 100(0) 40(0) 40(o0)
Rlp 96 (5)  78(10) 88(8) H3(7) bd(e) Ry 100(0) 44(4) 66(4) 42(1) 39(1)

(a) DiscrimEval (b) FolkTexts

Gen T Val T Valc ED J/ ED¢ Gen T Val T Va].c ED \L ED¢
LAMs  86(2) 72(3) 18(3) 78(1) 72(3) LAMs  92(2) 68(4) 58(5) 89(1 88(2)
LAM, 100(0) 87(2) 80(3) 60(1) 60(1) LAMn  99(1)  92(2) 58(4) 67(2) 70(2)
MSTs  99(1) 90(2) 94(2) 64(1) 64(1) MSTs  91(3) 96(2) 97(2) 75(1) 75(1)
MSTm  99(1) 78(3) 94(2) 59(1) 59(1) MSTn 100(0) 97(2) 95(2) 68(1) 68(1)
GEMs 98(1) 84(3) 95(2) 63(1) 61(1) GEMg  97(2) 98(1) 98(2) T77(1) T6(1)
GEM, 100(0) 75(3) 91(2) 67(1) 67(1) GEM, 100(0) 99(1) 85(3) T7T7(1) T7(1)
Rl,  100(0) 77(3) 87(2) 62(1) 58(1) R1p 99(1) 95(2) 81(3) 73(1) Tl(1)

(c) Twitter Financial News (d) SST2

GenT Val? Valc ED | EDc Gent Valt Valc ED | EDc
LAMs  96(2) 6(3) 48(s6) 61(5 58(2) LAMs  97(1) B8(a) 474 T73(1) 73(1)
LAM, 100(0) 16(e) 84(s) H2(3) 57(2) LAM, 100(0) 87(2) 99(1) T71(1) 71(1)
MSTs 100(0) 8(3) 30(e6) 5HT7(4) 5HT7(2) MSTs 100(0) 58(4) 85(3) T74(1) 74(1)
MST, 100(0) 13(4) 8T7(4) 57(4) 58(1) MST, 100(0) 85(3) 99(1) 77(1) 77(1)
GEMs  15(6) 9(6) 65(20) 62(11) T73(5) GEMs 99(1) 80(3) 87(2) 78(1) 78(1)
GEMp,  98(2) 5(3) 85(4) 59(4) 58(1) GEM, 100(0) 72(3) 93(2) 76(1) 76(1)
R1p 100(0) 14(4) 50(6) 63(4) 67(3) Ry 100(0) 81(3) 85(2) T78(1) T7(1)

(e) GSM8K (f) MGNLI

Table 1: [Unconstrained prompting at 7" = 0] Performance of LLMs in Generating SCEs in terms of percentage of
times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield the
target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ED is only reported
forvalid SCEs. Val; and ED¢ denotes the metric values when the instructions for prediction on the original input
and the SCE generation are provided in the context while computing the validity of the SCE (Section 3.2). Values
in parentheses indicate confidence intervals. Values are bolded when the differences in with and without context
conditions (e.g., Val and Valc) are statistically significant. 1 means higher values are better.

we notice that the presence of context mostly has
no statistically significant impact on edit distance
of valid SCEs.

Rationale-based prompting does not consistently
produce closer SCEs, as evident from the compari-
son between Tables 1 and 2. For instance, on the
SST2 dataset, ED values are generally lower under
rationale-based prompting, with the exception of
LAM,, and MST,.

Are invalid SCEs statistically different?

We investigate whether the lengths of SCEs can
provide a clue on their validity. Our question is
inspired by previous work on detecting LLM hallu-
cinations (Azaria and Mitchell, 2023; Snyder et al.,

2024; Zhang et al., 2024) which shows that incor-
rect model outputs show statistically different pat-
terns from correct answers.

For each model, datasest and SCE generation
configuration, we compute the normalized differ-
ence in lengths as % x 100 where Ly,
is the average length of valid SCEs. The normal-
ization ensures a range of [0, 100]. Table 3 shows
that SCE lengths can indeed provide a signal on
validity. In 18 out of 42 model dataset pairs, the dif-
ferences are statistically significant. The significant
cases are concentrated in datasets with relatively
high input lengths, namely, DISCRIMEVAL and
FOLKTEXTS.



Gen T Val T Valc ED \L EDc Gen T Val T Valc ED J/ EDC
LAM;  91(7) 44(12) 92(7) 34(9) 32(6) LAMs  67(3) 72(5) 88(4) 45(3) 48(3)
LAM, 100(0) 53(12) 53(12) 19(5) 18(6) LAMp  99(1) 36(4) T4(4) 320 33(0
MSTs 100(0) 87(8) 27(10) 36(3) 30(7) MSTs 26(4) 98(2) 92(5)  31(2) 29(2
MST, 100(0) 69(11) 46(5) 13(3) 7(2) MST, 96(2) 50(4) 100(0) 32(0) 32(0)
GEMs  0(0) 0(0) 0(0) 0(0) 0(0) GEMs  0(0) 0(0) 0(0) 0(o) 0(o)
GEM, 88(9) 41(14) 96(e6) 19(3) 17(3) GEM, 18(3) 62(10) 98(3) 33(1) 32(1)
R, 100(0) 53(12) 90(7) 23(3) 24(3) Rlm  25(4) 5B7(9) 89(6) 47(3) 44(3)

(a) DiscrimEval (b) FolkTexts

Gent Val?T  Valc ED | EDc Gen?T Valt Valg ED | EDc
LAMs 88(2) 75(3) 83(3) bBT(2) 52(2) LAMs  92(2) 52(5) 63(4) 69(2) 67(2)
LAM, 100(0) 87(2) 66(3) 57(2) 53(2) LAMy,  99(1) 86(3) 67(4) 79(2) 81(2)
MSTs 100(0) 89(10) 88(11) 74(5) 74(3) MSTs  82(3) 92(3) 89(3) T77(1) T77(1)
MST, 100(0) 79(3) 86(2) 62(1) 63(1) MST, 100(0) 88(3) 99(1) 66(2) 66(2)
GEMs  98(1) 79(3) 97(1) 50(1) 49(1) GEMs 96(2) T73(5) 98(1) 66(2) 64(2)
GEMp, 100(0) 86(2) 97(1) 48(1) 47(1) GEMp, 100(0) 82(4) 97(1) 66(2) 64(2)
R1n 99(1)  69(3) T2(3) 49(1) 48(1) R1p 99(1) 7T4(4) 58(4) 62(2) 55(2)

(c) Twitter Financial News (d) SST2

Gen 1 val 1 Valc ED | EDc GentT Valt Valc ED | EDc
LAM;  96(2) 1(1) 2(2) 70017 62(7) LAMs  97(1) B8(4a) 66(3) T76(1) 75(1)
LAM, 100(1) 25(5) 64(6) 65(3) 63(2) LAM, 100(0) 92(2) 56(2) 77(1) 76(1)
MST, 100(0) 46(s) 2(2) 58(2) 65(15) MSTs  97(1) 87(2) 32(3) T2(1) T71(1)
MST, 100(0) 14(4) 92(3) 46(2) 47(1) MST, 100(0) 67(3) 55(2) 76(1) 75(1)
GEMs 16(5) 13(11) 62(15) 51(6) 52(4) GEMs  99(1) 68(3) 90(2) 77(1) T77(1)
GEM, 97(3) 9(4) 74(7)  59(4) 58(2) GEMp 100(0) 70(3) 92(2) 75(1) 75(1)
R1, 100(1) 8(3) 28 (4) 60(7) 64(s) Ry 100(0) 67(3) 89(2) T73(1) T2(1)

(e) GSM8K (f) MGNLI

Table 2: [Rationale-based prompting at 7' = 0] Performance of LLMs in Generating SCEs. For details of metric

names, see the caption of Table 1.

6 Why do models struggle with SCEs?

Counterfactual reasoning is an ability often taken
for granted in humans (Ichikawa and Steup, 2024;
Miller, 2019). Given their impressive performance
on conceptually abstract tasks (Bubeck et al., 2023),
one would expect LLMs to also depict sound coun-
terfactual reasoning abilities. Our investigations
show otherwise.

Our hypothesis is that the inability of LLMs to
generate valid SCEs arise because their learning
process and operation is very different from hu-
mans. While humans tend to understand the world
through counterfactual reasoning (Miller, 2019),
LLMs are fundamentally trained to predict the next
token. Even the most advanced LLMs that ap-
pear strong at reasoning still fundamentally rely
on next-token prediction, enhanced by advanced
techniques like reranking and CoT training (Guo

et al., 2025), output pruning (Dong et al., 2025), or
guided decoding (Jiang et al., 2024). As a result,
LLMs do not reason like humans and are not natu-
ral causal thinkers. We posit that training LLMs
with contrastive example pairs could enhance their
counterfactual reasoning capability.

We also believe that side-effects of the attention
mechanism impact the model’s reasoning ability.
This is supported by our findings in Section 5, RQ2.
We observe that validity is higher when the orig-
inal prediction and counterfactual generation are
present in the context window (Valc) compared
to when they are removed (Val). In particular, on
the GSMS8K dataset, the SCE validity improves
significantly in the presence of this information.
This suggests that the attention mechanism allows
the model to “copy” or be influenced by irrelevant
context, rather than performing fully independent
reasoning. Thus, even subtle hints or artifacts in the



DEV TWT SST FLK NLI MTH
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
LAMs  40(¢19) 19(30) 6 (7) 44 (e) 37(8) 20(9) 13 (100 4(2) 1(22) 21(20) 26(30) 45(13)
LAM, 16(11) 67 (2) 5(6) 11(5) 26 (11) 20(s) 0(o) 100¢(0) O¢(5) 15(5) 22 (9) 100 (o)
MSTs 4¢6) 14(e) 1¢(7 19(5) 27 (6) 26(8) 3(1) 9(v 5(5) 9(5) 9(16) 18(18)
MSTh 19 (s6) 100 (0) 3(3) 4(3) 8(6) 27 (5) 100 2(o0) 3(5) 16 (6) 19 (100 28(4)
GEMs 0(o) 0(0) 44y 6(a) 100 (o) 100 (o) 0oy O¢o 6(4) T(5) 17(26) 11(18)
GEM, 11¢(e) 100 (0) 3(a) T(3) 6 (5 49(3) 4 (o) 100 (o) 1(5) 6¢(5) 31(15) 9(5)
R1n 16 (22) 100 (o) 37(15) 44(5) 35(18) 72(8) 1(7) 26(5) 11(a) 124 63(9) T70(9)

Table 3: [Unconstrained prompting with 7' = 0] Normalized difference in lengths of valid and invalid counterfactuals
for DiscrimEval (DEV), Twitter Financial News (TWT), SST2 (SST), FolkTexts (FLK), MGNLI (NLI) and GSMSK
(MTH) datasets. Left columns (w/0) show the differences without prediction and counterfactual generations provided
as context (Section 3.2) whereas right columns (w/) show the differences with this information.

input can enhance apparent performance, masking
the true reasoning capabilities of the model.

Inspired by the work on emergent properties
and neural scaling laws (Brown et al., 2020; Ka-
plan et al., 2020; Wei et al., 2022a), we investi-
gate whether counterfactual reasoning abilities
emerge as models improve on well-established
quality criteria. Specifically, we perform a cor-
relation analysis between the validity percentage
of SCEs and model size, few-shot perplexity, LM
leaderboard rank, and self-reported MMLU perfor-
mance. Our results (Appendix F) reveal no strong
or consistent correlations. For instance, Figure 2
shows no correlation between perplexity and va-
lidity. The results suggest that standard evaluation
metrics may not adequately capture a model’s ca-
pacity for counterfactual reasoning. These findings
underscore the need for including counterfactual
reasoning as a fine-tuning or alignment objective
in the model training pipeline.

7 Conclusion and future work

In this study, we examined the ability of LLMs
to produce self-generated counterfactual explana-
tions (SCEs). We design a prompt-based setup for
evaluating the efficacy of SCEs. Our results show
that LLMs consistently struggle with generating
valid SCEs. In many cases model prediction on
a SCE does not yield the same target prediction
for which the model crafted the SCE. Surprisingly,
we find that LLMs put significant emphasis on the
context—the prediction on SCE is significantly im-
pacted by the presence of original prediction and
instructions for generating the SCE. Based on this
empirical evidence, we argue that LLMs are still
far from being able to explain their own predic-
tions counterfactually. Our findings add to similar
insights from recent studies on other forms of self-

DiscrimEval Folktexts Twitter

150

5
8

1)

9
= g : p— -
z e, ——t ————
2 50 - e
K

o

ssT2 GSM8K NLI
150

£ 100 ® — D
> 2y
2 s L %
s o

. ——oy—2

4 6 8 10 4 6 8 10 4 6 8 10
Perplexity Perplexity Perplexity

Figure 2: No significant correlation exists between
model perplexity and SCE validity. Linear regression
lines show trends between perplexity (x-axis) and valid-
ity percentage (y-axis). Each subplot corresponds to a
dataset. The blue line represents validity without con-
text, and the orange line represents validity with context.
Shaded regions indicate 95% confidence intervals.

explanations (Lanham et al., 2023; Tanneru et al.,
2024). Our work opens several avenues for future
work. Inspired by counterfactual data augmenta-
tion (Sachdeva et al., 2023), one could include the
counterfactual explanation capabilities a part of
the LLM training process. This inclusion may en-
hance the counterfactual reasoning capabilities of
the LLM.

Finally, our experiments were limited to rela-
tively simple tasks: classification and mathematics
problems where the solution is an integer. This
limitation was mainly due to the fact that it is diffi-
cult to automatically judge validity of answers for
more open-ended language generation tasks like
search and information retrieval. Scaling our anal-
ysis to such tasks would require significant human-
annotation resources, and is an important direction
for future investigations.



8 Limitations

Our work has several limitations. First, explainabil-
ity and privacy can sometimes be at odds with each
other. Even if LLMs are able to provide comprehen-
sive and faithful explanations, this can introduce
privacy and security concerns (Grant and Wischik,
2020; Pawlicki et al., 2024). Detailed explanations
may inadvertently expose sensitive information or
be exploited for adversarial attacks on the model
itself. However, our work focuses on publicly avail-
able models and datasets, ensuring that these risks
are mitigated.

Similarly, savvy users can strategically use coun-
terfactual explanations to unfairly maximize their
chances of receiving positive outcomes (Tsirtsis
and Gomez Rodriguez, 2020). Detecting and limit-
ing this behavior would be an important desidera-
tum before the deployment of LLM counterfactu-
als.

Our analyses in this paper solely focused on auto-
mated metrics to evaluate quality of SCEs. Future
studies can conduct human surveys to assess how
plausible the explanations appear from a human
perspective. This feedback can then be used to en-
hance the model’s performance through methods
such as direct preference optimization (Rafailov
et al., 2024).
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A Reproducibility and licenses
Dataset Licenses and Usage.

1. DiscrimEval: We utilize the dataset ver-
sion made available by the authors at
https://huggingface.co/datasets/
Anthropic/discrim-eval. It is distributed
under the CC-BY-4.0 license.

Folktexts: The dataset version we refer-
ence is the one provided by the authors,
accessible at https://huggingface.co/
datasets/acruz/folktexts. FolkTexts
code is made available under the MIT
license.  The dataset is licensed under
the U.S. Census Bureau’s terms (https:
//www.census.gov/data/developers/
about/terms-of-service.html).

Twitter Financial News: We employ
version 1.0.0 of the dataset, as released
by the authors, available at https:
//huggingface.co/datasets/zeroshot/
twitter-financial-news-sentiment.
The dataset is distributed under the MIT
License.

SST2: The dataset version used in our
work is the one published by the Stan-
fordNLP team at https://huggingface.
co/datasets/stanfordnlp/sst2. The
dataset itself does not provide licens-
ing information. = However, the whole
StanfordNLP toolkit is available under
Apache2.0 license, see https://github.
com/stanfordnlp/stanza.

GSMB8K: We make use of the dataset
version released by the authors, accessible
at https://huggingface.co/datasets/
openai/gsm8k?row=3. It is licensed under
the MIT License.

Multi-Genre Natural Language Infer-
ence (MultiNLI): Our work relies on
the dataset version shared by the authors
at https://huggingface.co/datasets/
nyu-mll/multi_nli. It is available under
the CC-BY-SA-3.0 license.

Model Licenses. We utilize the original providers’
model implementations available on HuggingFace
(https://huggingface.co).
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1. Mistral models (Jiang et al., 2023) are released
under the APACHE-2.0 license.

Gemma models are released under the custom
Gemma-2 license.

. LLaMA models (Dubey et al., 2024) are re-
leased under the custom LLaMA-3.1 license.

. DeepSeek-R1-Distill-Qwen-32B (Guo et al.,
2025), derived from the Qwen-2.5 series, re-
tains its original APACHE-2.0 license.

Generation Settings. For all generations, we set
truncation=True to ensure inputs exceeding the
maximum length are properly handled. We lim-
ited the input context with max_length=512 to-
kens. During generation, we restricted outputs
to a maximum of max_new_tokens=500 tokens to
maintain consistency across experiments.

We conducted experiments at two different tem-
perature settings: 7' = 0 and T' = 0.5.

B Additional results for various
prompting strategies

Table 4 shows the SCE evaluation metrics for un-
constrained prompting when using a temperature
of 0.5. Table 5 shows the metrics when using
rationale-based prompting with temperatures of
0.5.

Tables 6 and 7 show the results for CoT prompt-
ingat ' = 0 and T' = 0.5, respectively.

Table 8 presents each model’s accuracy across
different datasets for both temperature values (0
and 0.5) and prompting strategies (unconstrained
and rationale prompting which does not use CoT,
and CoT prompting). CoT does not necessarily
lead to higher accuracy. For T' = 0, the accuracy
for unconstrained / rationale prompting is 67%, and
for CoT prompting it is 69%.

C Prompts for generating and evaluating
SCEs

We carefully designed the prompts used in our ex-
periments. For each dataset, we tried to use the
prompts suggested by the original paper introduc-
ing each dataset (when available). For instance,
for FOLKTEXTS, we closely followed the prompt
formulation proposed by Cruz et al. (2024).

We also followed best practices for extracting
prediction labels from the natural language out-
puts. We explicitly instructed the model to prepend
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Gent Valt Valc EDJ EDc GentT Valt Valc ED | EDc
LAMs  81(2) 63(1) 77(3) 46(2)  48(1) LAMs  94(2) 84(1) 78(3) 61(1) 60(1)
LAM, 100(0) 95(1) 99(1) 35(1)  35(1) LAMp  100(0) 72(0) 97(2) 36(0) 35(0)
MSTs  100(0) 83(1) 94(2) 37(1) 34(1) MSTs  99(0)  93(1)  99(0) 27(0) 27(0)
MST, 100(0) 89(0) 87(0) 21(0) 20(0) MST, 100(0) 56(0) 100(0) 33(0) 33(0)
GEMs  4(1) 58(27) 88(10) 32(2) 27(s) GEMs  8(1) 14¢5  99(1) 37(1) 38(1)
GEMn 85(7) 81(2) 97(5) 26(1) 25(1) GEM,  99(1)  99(0) 100(0) 39(0) 39(0)
R1p 98(1) 81(7) 86(10) 44(10) 42(11) R1p 95(3) b3(12) T4(9) 459 41(7)

(a) DiscrimEval (b) FolkTexts

Gent Valt Valc EDJ|  ED¢ Gent Valt Vale EDJ)  EDc
LAMs  86(1) 81(0) 72(11) T76(0) T71(4) LAMs  85(1) 59(2) 48(6) 86(1) 84(2)
LAM, 100(0) 89(1) 75(2) 62(1) 62(1) LAMp  99(1)  92(1) 55(3) 68(0) 70(1)
MSTs  95(3) 79(2) 91(1) 63(1) 63(1) MSTs  90(0) 93(0) 93(0) 78(1) 78(1)
MST,  0(0) 0(0) 0(0) 57(0) b57(0) MST, 100(0) 96(1) 96(0) 68(0) 68(0)
GEMs 97(0) 84(0) 94(1) 64(0) 63(0) GEMs  94(1) 97(0) 98(1) T6(2) T76(2)
GEM, 100(0) 76(0) 90(0) 67(0) 67(0) GEM, 100(0) 99(0) 91(3) 78(1) 77(1)
Rl, 100(0) 78(1) 88(9) 59(2) 58(1) Rln 99(0) 94(0) T8(5) T72(2) T0(2)

(c) Twitter Financial News (d) SST2

GentT ValtT Valg ED | EDc Gent Val?T Valc ED | EDc
LAMg 96 (1) 6(1) 52(2) 64(3) 58(0) LAMg  92(1) B8(1) 5H2(2) T73(0) T74(1)
LAMp, 100(0) 13(1) 80(9) 57(1) 58(0) LAM, 100(0) 88(1) 86(6) 72(0) 72(0)
MSTs 100(0) 5(1) 34(4) 5H7(2) 5H9(1) MSTs  99(0) 59(1) 84(0) 74(0) T4(0)
MST, 100(0) 10(o) 83(0) bHb5(0) 58(0) MST, 100(0) 84(0) 96(1) 78(0) 78(0)
GEMs 27 (1) 3(1) 48(11) T7(6) T4(9) GEMs 97(0) 78(0) 86(1) 78(0) T8(0)
GEM, 89(1) 4(0) 88(3) 5H7(1) 5b8(0) GEM, 100(¢0) 74(1) 92(0) 76(0) T7(0)
R1n 100(0) 27(3) 5H2(5) 69(4) T70(7) R1n 100(0) 77(5) T6(14) 7T8(3) T6(1)

(e) GSM8K (f) MGNLI

Table 4: [Unconstrained prompting at 7' = 0.5] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield
the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. Val; and ED¢
denotes the metric values when the instructions for prediction on the original input and the SCE generation are
provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details. 1 means higher values are better.

“ANSWER?” to its response and avoid adding any
additional commentary. However, since reflection
before answering is shown to improve model per-
formance (Wei et al., 2022b), we also explored
Chain of Thought (CoT) Prompting where we en-
courage the model to engage in intermediate reason-
ing rather than directly producing a final answer.

As detailed in Appendix D, we also implemented
post-processing steps to filter out incoherent or im-
properly formatted outputs. Both the prompt tem-
plates and post-processing procedures were refined
iteratively: we analyzed model outputs to identify
ambiguity or inconsistency and revised the instruc-
tions to enhance clarity, coherence, and adherence
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to the desired response format across models.

We now list the precise prompts used for each
dataset. Recall from Section 3.1 that we can gen-
erate SCEs through: (i) Unconstrained prompt-
ing, where we simply ask the model to generate
counterfactuals, or (ii) Rationale-based prompt-
ing by asking the model to first select decision
rationales (DeYoung et al., 2019) and then gener-
ating counterfactuals by limiting the changes to
these rationales only. (iii) CoT prompting, where
the model is encouraged to “Think step by step”
without being forced or restricted to produce only
a final answer. For each dataset, we show prompts
separately for each prompt type.



Gent Valt Vvale EDJ  ED¢ GenT Valt Valc EDJ|  EDc
LAMs  81(3) 55(1) 84(1) 33(3) 33(1) LAMs  81(10) 71(0) 85(1) 37(3) 38(4)
LAM, 100(0) 60(1) 67(7) 25(1) 22(1) LAMp  96(2) 48(3) 62(5) 36(1) 35(0)
MSTs  99(0) 88(0) 91(0) 39(1) 38(1) MSTs  98(0) 99(0) 82(2) 48(1) 50(1)
MST, 100(0) 59(0) 83(0) 12(0) 11(0) MST, 92(0) 58(0) 91(0) 33(0) 32(0)
GEMs  2(2) 0(oy 34¢2r) 0(o) 16(0) GEMs  8(0) 4(1) 92(2) 43(3) 33(0
GEMn  81(4) 47(2) 98(1) 18(1) 17(0) GEMn 30(3) 61(6) 97(0) 34(0) 33(0)
R, 100(0) 62(5) 87(5 23(1) 21(0) Rl 73(15) 64(0) 86(7) 40(3) 37(3)

(a) DiscrimEval (b) FolkTexts

Gent Valt Val¢ EDJ  EDc Gent Valt Vvalc ED]  EDc
LAMs  85(0) 74(1) 81(s) 59(3) 54(0) LAMs  87(2) 49(1) 58(5) T73(2) 69(0)
LAM,  99(0) 92(0) 73(10) T70(3) 67(6) LAMp  99(0) 87(0) 67(2) T76(1) 77(0)
MSTs 100(0) 90(1) 96(0) T74(0) 74(0) MSTs  85(2) 93(0) 89(2) T77(1) T7(1)
MST, 100(o) 77(0) 99(0) 49(0) 48(0) MST, 100(0) 85(0) 98(0) 66(0) 65(0)
GEMs  97(0) 78(0) 96(0) 50(0) 49(0) GEMs  95(1) T4(2) 97(0) 66(1) 64(1)
GEM, 100(0) &87(0) 92(4) 51(1) 49(1) GEM, 100(0) 83(2) 95(2) 66(1) 65(1)
R1n 100(0) 73(2) 80(5) 59(3) 5H8(4) R1n 99(0) T77(1) T2(1) 65(1) 63(1)

(c) Twitter Financial News (d) SST2

Gent Vvalf Vale EDJ|  EDc Gent Valt Vvalc ED]  EDc
LAMs  95(1) 1l(o) 49(7) 68(1) 62(3) LAMs  93(0) 61(1) 64(11) 77(1) 75(1)
LAM, 100(0) 25(1) 60(2) 63(0) 62(1) LAMn  99(0) 90(1) 60(200 74(0) 73(1)
MSTs 100(0) 57(5) 64(6) 59(1) 60(1) MSTs  98(2) 89(1) 88(4) T73(0) 73(0)
MST, 100(0) 10(¢0) 75(0) 55(0) 5H8(0) MST, 100(0) 68(0) 87(0) 75(0) 75(0)
GEMs  30(0) 6(1) 48(4) 55(3) 57(1) GEMs 91(5) 66(1) 84(2) T6(0) 76(0)
GEMp,  93(2) 7(0) T76(1) BH7(1) 58(1) GEM, 100(0) 74(1) 89(3) T75(0) T75(0)
R1n 99(0) 19(0) 37(6) 63(0) 62(4) R1, 100(0) 64(2) 86(1) 73(0) 73(0)

(e) GSM8K (f) MGNLI

Table 5: [Rationale-based prompting at 7" = 0.5] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield
the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. Val; and ED¢
denotes the metric values when the instructions for prediction on the original input and the SCE generation are
provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details.{ means higher values are better.

C.1 DiscrimEval
C.1.1 Unconstrained prompting

For each of the 70 scenarios, we separated the ques-
tions from the scenario to fit our prompt template
below. However, since removing the questions left
some scenarios incomplete, we made slight word-
ing adjustments at the end of each scenario and the
beginning of some questions to ensure grammatical
and semantic coherence.

1. You will be given a decision making scenario
followed by a question about the scenario.
Answer the question with ‘Yes’ or ‘No’.
Do not include any additional words in
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your answer. Your answer should start with
‘ANSWER:’.

The scenario is: {SCENARIO}
The question is: {QUESTION}

. Now revise the original scenario such that

your answer to the question on the revised
scenario becomes <Complement>. Share the
revised scenario. The revised scenario should
start with ‘REVISED SCENARIO:’.



GenT val? Valc ED | EDc Gent val? Valc ED | EDc
LAMs 97 (4) 84 (9) 75(10)  52(5) 53(5) LAMg  99(1) 80(4) 96(2) 48(2) 46(2)
LAM, 100(0) 76(10) 53 (12) 34(3) 38(4) LAMp,  99(1) 84(3) 64(4) 37(1) 37(1)
MSTs  90(7) 86 (9) 90(7) 37(4) 36(4) MSTs 82(3) 85(3) 99(1) 32(1) 30(1)
MST, 97(4) 82(9) 100(0) 24(3) 23(3) MST, 100(0) 54(4) 98(1) 32(0) 32(0)
GEMs  89(7) 63(12) 94(s) 24(3) 23(3) GEMs  94(2) 88(3) 99(1) 40(0) 39(0)
GEM, 100(0) 94(6) T1(11) 22(2) 24(3) GEM, 100¢(0) 99(1) 100(0) 38(0) 38(0)
Rln  100(0) 76(10) 99(2) 37(3) 35(3) Rip 99(1) 75(a) 40(4) 62(2) 57(3)

(a) DiscrimEval (b) FolkTexts

Gent vall  val. i EDe Gent Valt Vale EDJ  EDc
LAMs  85(3) 85(3) 83(3) T7(2) T6(2) LAMs - 93(2)  59(4) 53(5) T7(») T8(2)
LAM, 100(0) 87(2) 75(3) 60(1) 60(1) LAMn  94(2)  92(2) 58(4) T70(2) T72(2
MSTs  99(1) 90(2) 96(1) 64(1) 64(1) MSTs  89(3) 92(s) 80(4 80(1 80(y
MST, 100(0) 82(3) 100(0) 61(1) 61(1) MSTn  96(2) 97(2) 96(2) 67(1) 66(1)
GEMs 98(1) 84(3) 96(1) 63(1) 62(1) GEMs  76(4) 93(3) 92(3) T2(1) T72(1)
GEM, 100(0) 75(3) 91(2) 67(1) 67(1) GEMp, 98(1) 99(1) 80(4a) 76(1) T76(1)
R1n,  100(0) 77(3) 94(2) 62(1) 59(1) R1p 100(0) 91(3) T7(4a) 73(1) T2(1)

(c) Twitter Financial News (d) SST2

Gent Valt Valc ED|  EDc Gent Valt Valc ED]  EDc
LAMs  95(3) 5(3) 53(6) 61(7) 59(2) LAMs  95(2) 56(4) T79(3) 73(1) T3(1)
LAM,  100(0) 14(4) T72(6) 54(3) 58(1) LAMp  97(1) 81(3) 73(3) T7l(1y T7l(y
MSTs 100(0) 10(4) 39(e) 56(5) 57(2) MSTs 100(0) 62(3) 82(3) T4(1) 74(1)
MST, 100(0) 14(4) 84(s5) 56(3) 58(1) MST, 100(0) 85(3) 96(1) 76(1) 76(1)
GEMs 13(4) 12(11) 27(15) 61(18) 66(12) GEMs  97(1) T76(3) 89(2) T77(1) T7(1)
GEM, 96(2) 4(2) 86(4) 55(5 58(1) GEM, 100(0) 85(3) 98(1) 75(1) T75(1)
R1l, 100(0) 26(5) 63(6) T7T3(3) 83(3) R1p 100(0) 79(3) 84(3) T7(1) T6(1)

(e) GSM8K (f) MGNLI

Table 6: [Chain of thought prompting at 7" = 0] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield the
target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. Val¢ and ED¢ denote
the metric values when the instructions for prediction on the original input and the SCE generation are provided
in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate confidence
intervals. Values are bolded when the differences in with and without context conditions (e.g., Val and Val.) are
statistically significant. T means higher values are better.

C.1.2 Rationale-based prompting to answer with <Original Answer>. Share a

1. You will be given a decision making scenario list of rationales with one rationale per line.

followed by a question about the scenario.
Answer the question with ‘Yes’ or ‘No’.
Do not include any additional words in
your answer. Your answer should start with
‘ANSWER:’.

3. Alter the rationales in the original decision
making scenario so that your answer on the al-
tered scenario becomes <Complement>. Keep
the changes to a minimum. The altered
scenario should start with ‘ALTERED SCE-
NARIO:’.

The scenario is: {SCENARIO}

The question is: {QUESTION} C.1.3  CoT prompting

1. You will be given a decision making scenario

2. Now, identify the ‘rationales’ behind your an-

swer. The rationales are words, phrases or
sentences in the original scenario that led you
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followed by a question about the scenario.
Answer the question with ‘Yes’ or ‘No’.
Think step by step. But make sure that



your final answer (‘Yes’ or ‘No’) starts with
‘FINAL ANSWER:’.

The scenario is: {SCENARIO}
The question is: {QUESTION}

. Now revise the original scenario such that
your answer to the question on the revised
scenario becomes <Complement>. Share the
revised scenario. The revised scenario should
start with ‘REVISED SCENARIO:’.

C.2 FolkTexts prompts
We adapt the prompts from Cruz et al. (2024).
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Gent  Vval? vale EDJ]  EDc GenT Valt  Valc ED]  EDc
LAMs  89(7) 63(12) 8l(10) 39(6) 42(5) LAMs  92(2) T72(q) 82(4) 48(3) 47(2)
LAM,  99(2) 84(9) 55(12) 35(4) 37(5) LAMp  97(2) 80(4) 66(4) 33(1) 37(1)
MSTs 91(7) 81(10) 88(8) 40(4) 37(3) MSTs  76(4) 83(4) 92(3) 34(1) 33(1)
MST, 97(4) 78(10) 97(4) 25(3) 24(3) MST, 100(0) 65(4) 98(1) 34(0) 33(0)
GEMg  77(10) B59(13) 91(8) 25(3) 23(2 GEMs 82(3) 81(4) 97(2) 41(1 39(1)
GEM, 100(0) 83(9) 86 (8) 25(3) 25(2) GEM, 99(1) 99(1) 100(0) 39(0) 39(0)
R1nm 93(6) T75(11) 100(0) 41(5) 41(5) R1n 67(4) 50(5) 88(3) 38(2) 36(2)

(a) DiscrimEval (b) FolkTexts
Gen Val Val ED ED
Gent Valt Valc ED | EDc T T ¢ v ¢
LAM 2
LAMs  86(2) 80(3) 82 (3) 76(2) 75(2) s 922 59(n  83(» TID) TI(
LAM, 100(0) 87(2) 78(3) 61(1) 61(1) LAMy  95(2) 87(3) 54(g 70(2) 72(2
MSTs  91(2) 81(3) 92(2) 64(1) 64(1) MSTs  87(3) 92(s3) T78(4) 80(1) 80D
MST, 100(0) 81(3) 100(0) 58(1) 57(1) MSTw  96(2) 93(2) 89(3) 69(1) 68(1)
GEMs 97(1) 87(2) 95(2) 63(1) 63(1) GEMs 70(4) 89(3) 93(3) T73(1) T73(1)
GEM, 100(0) 74(3) 91l(2) 67(1) 67(1) GEM, 98(1) 97(2) 81(q) 77(1) T7(1)
R1p 99(1) T7(3) 91(2) 62(1) 59(1) Rln  98(1) 85(3) 72(4) T75(1) 75(2)
(c) Twitter Financial News (d) SST2

Gent Valt valc ED|  EDc GenT ValT Valc EDJ  EDc
LAMs  92(3) 4(3) 58(6) 55(11) 57(2) LAMs  91(2) 56(4) T6(3) 76(1) T75(1)
MSTs  99(1) 8(3) 36(6) 56(5 60(2) MSTs  99(1) 61(4) 83(3) T73(1) 73(1
MST, 99(1) 6(3) 82(5 59(5 59(1) MSTn  99(1) 86(2) 97(1) T7T7(1) 76(1)
GEMs 28(6) 3(4) 39(11) 76(45) T76(9) GEMs  93(2) T77(3) 92(2) 77(1) 7T7(1
GEM, 96(2) 3(2) 84(5) 5H8(8) 58(1) GEM, 100(0) 85(3) 97(1) 76(1) 76(1)
R1n 100(0) 27(6) B4(6) 75(3) T3(3) R1n 97(1) T78(3) 84(3) T8(1) T7(1)

(e) GSM8K (f) MGNLI

Table 7: [Chain of thought prompting at 7" = 0.5] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield the
target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. Val¢ and ED¢ denote
the metric values when the instructions for prediction on the original input and the SCE generation are provided
in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate confidence
intervals. Values are bolded when the differences in with and without context conditions (e.g., Val and Val¢) are
statistically significant. T means higher values are better.

C.2.1 Unconstrained prompting

1. You will be provided data corresponding

to a survey respondent. The survey was
conducted among US residents in 2018.
Please answer the question based on the
information provided by selecting from one
of the two choices. The data provided is
enough to reach an approximate answer.
Do not include any additional words. Your
answer must start with ‘ANSWER:’.

The respondent data is: {DESCRIPTION}
The question is: {QUESTION}



DEV TWT SST FLK NLI MTH DEV TWT SST FLK NLI MTH

LAMs 66 (11) 59(4) 56(4) 65(4) 5Ha) 16(5) LAMs  63(11) 64(3) 52(4) 62(4) 48(4) 15(4)
LAMy 83 (9) 82(3) 94(2) T4(a) 8l(3) 4l(e) LAMn  79(10) 82(3) 94(2) T4(a) 81(3) 45(e)
MSTs  100(0o) 83(3) 85(3) T76(4) 75(3) 1l(a) MSTs  90(7) 83(3) 84(3) T76(4) T75(3) 124
MST, 77(10) 77(3) 92(2) 73(4) 84(3) 30¢(6) MSTn  73(10) 83(3) 92(2) 72(4) 85(3) 27(5)
GEMs 0(0) 83(3) 96(2) 0¢(o) 75 (3) 7(3) GEMs 4(5) 82(3) 95(3) T(2) T4(3) 8(3)
GEMn  T4(10) 82(3) 99(1) T4(4) 83(3) 26(5) GEMp 64 (11) 83(3) 98(2) T4(4) T9(3) 22(5)
R1p 81(9) 86(2) 89(3) T6(4) 85(3) 44d(e) R1p 77(10) 85(3) 89(3) T5(4a) 84(3) 46(s)
(a) Accuracy under Unconstrained and Rationale-based (b) Accuracy under Unconstrained and Rationale-based
Prompting (1" = 0) Prompting (7" = 0.5)
DEV TWT SST FLK NLI MTH DEV TWT SST FLK NLI MTH
LAMs  50(12) 59(4) TH(4a) 65(4) 46(4a) 14(4) LAMs 53 (12) 64(3) T2(4) 5H6(a) 4T(a) 18(s)
LAM,  83(9) 82(3) 87(3) T0(4) 79(3) 52(6) LAM, 77(10) 81(3) 87(3) T0(a) 79(3) 63(6)
MST, 84(9) 83(3) 873 62(49 733 109 MSTs 86(8) 82(3) 87(3) 63(4) 73(3) 9(4)
MST, 66(11) 82(3) 92(2) 7T2(4) 82(3) 7T0(6) MST, 71¢11) 80(¢3) 92(2) 75(4) 83(3) 68(6)
GEMs 74 (100 83(3) T4(a) T6(4 T5(3) 129 GEMs  67(11) 82(3) Td(a) T2(4) 7T4(3) 24(5)
GEM, 81(9) 82(3) 84(3) 69(4) 59(a) 25(5) GEM, 81l(9) 82(3) 83(3) T73(4) 66(3) 25(5)
R1p 83(9) 86(2) 90(3) T6(4) 84(3) 39¢(e) R1p 84(9) 86(3) 86(3) 62(4) 80(3) 4l(e)
(c) Accuracy under CoT Prompting (7" = 0) (d) Accuracy under CoT Prompting (1" = 0.5)

Table 8: Task-specific accuracy (%) of models on each dataset under (a) 7' = 0 and (b) 7" = 0.5. Since the prompts
used for Unconstrained and Rationale-based generations are identical when obtaining model predictions, their
accuracy values are shared. However, because CoT uses a different prompt format, we independently report its
accuracy. Values in parentheses indicate marginal confidence intervals. See Appendix E for details.

The choices are: {CHOICES} that your answer on the altered data becomes

) o <Complement>. Keep the changes to a mini-
2. Now revise the original respondent data such mum. The altered data should start with ‘AlL-
that your answer to the question on the revised TERED DATA.’

respondent data becomes <Complement>.
Share the revised data. The revised data  C.2.3 CoT prompting

should start with ‘REVISED DATA:". 1. You will be provided data corresponding to a

survey respondent. The survey was conducted
among US residents in 2018. Please answer
the question based on the information pro-
vided by selecting from one of the two choices.
The data provided is enough to reach an ap-
proximate answer. Think step by step. But
make sure that your final answer (one of the

C.2.2 Rationale-based prompting

1. You will be provided data corresponding to
a survey respondent. The survey was con-
ducted among US residents in 2018. Please
answer the question based on the information
provided by selecting from one of the two

choices. The data provided is en01.1gh to reach two choices) starts with ‘FINAL ANSWER:".
an approximate answer. Do not include any

additional words. Your answer must start with The respondent data is: {DESCRIPTION}
‘ANSWER:". The question is: { QUESTION}

) The choices are: { CHOICES}
The respondent data is: { DESCRIPTION}

The question is: {QUESTION } 2. Now revise the original respondent data such
The choices are: { CHOICES} that your answer to the question on the revised
respondent data becomes <Complement>.

Share the revised data. The revised data
should start with ‘REVISED DATA:’.

2. Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or
sentences in the original respondent data that
led you to answer with <Original Answer>. (.3 SST2
Share a list of rationales with one rationale

C.3.1 Unconstrained ti
per line. The list should start with ‘RATIO- feonstralned prompting

NALS:’ * You will be given a movie review. Assess
its sentiment and classify it as ‘Positive’ or
3. Alter the rationales in the original data so ‘Negative.” Do not include any additional
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words in your answer. Your answer should
start with ‘ANSWER:’

The movie review is: {MOVIE REVIEW }

* Now revise the original review so that the
sentiment of the revised review becomes
<Complement>. Share the revised review. The
revised review should start with ‘REVISED
REVIEW:’

C.3.2 Rationale-based prompting

* You will be given a movie review. Assess
its sentiment and classify it as ‘Positive’ or
‘Negative.” Do not include any additional
words in your answer. Your answer should
start with ‘ANSWER:’

The movie review is: {MOVIE REVIEW }

* Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or
sentences in the original review that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALS:’

e Alter the rationales in the original review so
that your answer on the altered review be-
comes <Complement>. Keep the changes to
a minimum. The altered review should start
with ‘ALTERED REVIEW?’

C.3.3 CoT prompting

1. You will be given a movie review. Assess
its sentiment and classify it as ‘Positive’
or ‘Negative.’” Think step by step. But
make sure that your final answer (‘Positive’
or ‘Negative’) starts with ‘FINAL ANSWER:’

The movie review is: {MOVIE REVIEW }

2. Now revise the original review so that the
sentiment of the revised review becomes
<Complement>. Share the revised review. The
revised review should start with ‘REVISED
REVIEW:’

its sentiment and classify it as ‘Bearish,’
‘Bullish,” or ‘Neutral.” Do not include any
additional words in your answer. Your answer
should start with ‘ANSWER:’.

The twitter financial news is: {TWITTER
POST}

. Now revise the original post so that the

sentiment of the revised post becomes
<Complement>. Share the revised post. The
revised post should start with ‘REVISED
POST:’.

C.4.2 Rationale-based prompting

1. You will be given a finance-related news

post from X (formerly Twitter). Assess
its sentiment and classify it as ‘Bearish,’
‘Bullish,” or ‘Neutral.” Do not include any
additional words in your answer. Your answer
should start with ‘ANSWER:’

The twitter financial news is: {TWITTER
POST}

. Now, identify the ‘rationales’ behind your an-

swer. The rationales are words, phrases or sen-
tences in the original Twitter post that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALS:’

. Alter the rationales in the original Twitter post

so that your answer on the altered Twitter post
becomes <Complement>. Keep the changes to
a minimum. The altered Twitter post should
start with ‘ALTERED TWITTER POST:’

C.4.3 CoT prompting

1. You will be given a finance-related news

post from X (formerly Twitter). Assess
its sentiment and classify it as ‘Bearish,
‘Bullish,” or ‘Neutral.” Think step by step. But
make sure that your final answer (‘Bearish’,

C4  Twitter Financial News Bullish’, or ‘Neutral’) starts with ‘FINAL

ANSWER:’
C.4.1 Unconstrained prompting The twitter financial news is: {TWITTER
1. You will be given a finance-related news POST}

post from X (formerly Twitter). Assess
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2.

C.5

Now revise the original post so that the
sentiment of the revised post becomes
<Complement>. Share the revised post. The
revised post should start with ‘REVISED
POST:.

GSMSK

C.5.1 Unconstrained prompting

1.

You will be given a math problem. The
solution to the problem is an integer. Your
task is to provide the solution. Only provide
the final answer as an integer. Do not include
any additional word or phrase. You final
answer should start with ‘FINAL ANSWER?’

The math Problem is: {PROBELM}

Now, revise the math problem so your fi-
nal answer to the revised problem becomes
<Complement>. Share the revised Problem.
The revised problem should start with ‘RE-
VISED PROBLEM:’

C.5.2 Rationale-based prompting

1.

3.

You will be given a math problem. The
solution to the problem is an integer. Your
task is to provide the solution. Only provide
the final answer as an integer. Do not include
any additional word or phrase. You final
answer should start with ‘FINAL ANSWER?’

The math Problem is: {PROBELM}

Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or
sentences in the original problem that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALS:’

Alter the rationales in the original problem
so that your answer on the altered problem
becomes <Complement>. Keep the changes
to a minimum. The altered problem should
start with ‘ALTERED PROBLEM:’.

C.5.3 CoT prompting

1.

You will be given a math problem. The
solution to the problem is an integer. Your
task is to provide the solution. Only provide
the final answer as an integer. Think step by
step. But make sure that your final answer
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C.6

(the integer) starts with ‘FINAL ANSWER:’.

The math Problem is: {PROBELM}

. Now, revise the math problem so your final

answer to the revised problem becomes com-
plement. Share the revised problem. The re-
vised problem should start with "TREVISED
PROBLEM:’.

Multi-Genre Natural Language Inference
(MGNLI)

C.6.1 Unconstrained prompting

1. You will be given two sentences denoting

a premise and a hypothesis respectively.
Determine the relationship between the
premise and the hypothesis. The possible
relationships you can choose from are
‘Entail’, ‘Contradict’ and ‘Neutral’. Only
pick one of the options. Do not include any
additional words in your answer. Your answer
should start with ‘ANSWER:’

The premise is: {PREMISE}
The hypothesis is: {HYPOTHESIS}

. Now revise the original hypothesis so that

your answer to the question about its rela-
tionship becomes <Complement>. Share the
revised hypothesis. The revised hypothesis
should start with ‘REVISED HYPOTHESIS:’

C.6.2 Rationale-based prompting

1.

You will be given two sentences denoting
a premise and a hypothesis respectively.
Determine the relationship between the
premise and the hypothesis. The possible
relationships you can choose from are
‘Entail’, ‘Contradict’ and ‘Neutral’. Only
pick one of the options. Do not include any
additional words in your answer. Your answer
should start with ‘ANSWER:’

The premise is: {PREMISE}
The hypothesis is: {HYPOTHESIS}

. Now, identify the ‘rationales’ behind your an-

swer. The rationales are words, phrases or sen-
tences in the original hypothesis that led you
to answer with <Original Answer>. Share



a list of rationales with one rationale per line.
The list should start with ‘RATIONALS:’

3. Alter the rationales in the original hypothesis

so that your answer on the altered hypothesis
becomes <Complement>. Keep the changes
to a minimum. The altered hypothesis should
start with ‘ALTERED HYPOTHESIS:".

C.6.3 CoT prompting

1. You will be given two sentences denoting

a premise and a hypothesis respectively.
Determine the relationship between the
premise and the hypothesis. The possible
relationships you can choose from are
‘Entail’, ‘Contradict’ and ‘Neutral’. Only pick
one of the options. Think step by step. But
make sure that your final answer (‘Entail’,
‘Contradict’ or ‘Neutral’) starts with ‘FINAL
ANSWER:’.

The premise is: {PREMISE}
The hypothesis is: {HYPOTHESIS}

. Now revise the original hypothesis so that
your answer to the question about its rela-
tionship becomes <Complement>. Share the
revised hypothesis. The revised hypothesis
should start with ‘REVISED HYPOTHESIS:’

Postprocessing model outputs

. Post-processing for all datasets starts by nor-
malizing the model’s short answer, such as
“Yes.” or ‘Yes!” are converted to ‘Yes’. We
also remove common extra characters that
models tend to add to their answers, such as
N\, L L0000,

. Filtering and removing model generations
where the model’s first answer is not valid.
This means the model did not pick one of the
valid options as an answer (e.g., ‘Yes’ or ‘No’
in DISCRIMEVAL).

. Filtering out cases when SCEs are shorter than
expected. Short or incomplete generations
typically occur when the model fails to pro-
vide a full SCE or returns a non-response. To
avoid accidentally filtering out valid but con-
cise outputs, we determined the thresholds for
“short” generations empirically. We manually
analyzed samples from each dataset and set
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minimum word-length criteria based on the
distribution of reasonable completions. The
thresholds for filtering short cases are as fol-
lows:

* DISCRIMEVAL: Generations with fewer
than 15 words

e TWITTER FINANCIAL NEWS: Fewer
than 3 words

* FOLKTEXTS: Fewer than 60 words

* MGNLI: Fewer than 2 words

* SST2: Fewer than 1 word

* GSMSK: Generations containing fewer
than 5 words and consisting solely of
alphabetic characters, with no numbers
or mathematical symbols.

. For rationale based prompting, we remove

cases where the model is unable to generate
rationales. If the model fails to detect the
important part of the text for answering, we
do not consider its SCEs generation since the
SCE generation instruction specifically refers
to the rationales (Appendix C).

. Some models in certain datasets included their

answers in the SCE they generated. The pres-
ence of the answer biased the model predic-
tion on on the SCE.To address this, we re-
moved the answer tags from the SCEs when
present.

6. We explicitly instructed the model to begin

its response with specific keywords such as
ANSWER, RATIONALS and REVISED SCENARIO.
The models still tend to add synonymous la-
bels like ALTERED SCENARIO. We manually
analyze model outputs and whitelist these la-
bels. The precise extraction process is:

* Extracting an Answer: If the de-
coded response contains the string ‘AN-
SWER?:’, we extract everything that
comes after the last occurrence of ‘AN-
SWER?:’.

Extracting a Rationale: If we are ex-
tracting a rationale, we look for the part
of the decoded response that starts with
‘RATIONALS’.

Extracting a CE: For counterfactual
generation, the special starting word de-
pends on both the dataset and the prompt
type. Specifically:



— DiscrimEval:
% Unconstrained —
SCENARIO:’
+* Rational_based —
SCENARIO:’
— Folktexts:
% Unconstrained —
DATA?’
+* Rational_based —
DATA~
- GSMSK:
% Unconstrained —
PROBLEM:’
% Otherwise — ‘ALTERED PROB-
LEM:’
- SST2:
% Unconstrained — ‘REVISED
REVIEW:’
% Otherwise —
VIEW:’
— Twitter:
% Unconstrained — ‘REVISED
POST?’
% Otherwise — ‘ALTERED TWIT-
TER POST:’
— NLI:
% Unconstrained — ‘REVISED
HYPOTHESIS:’
% Otherwise —
POTHESIS:’

‘REVISED

‘ALTERED

‘REVISED

‘ALTERED

‘REVISED

‘ALTERED RE-

‘ALTERED HY-

E Statistical Analysis of Results

We computed 95% Confidence Intervals (Cls) for
generation percentage, validity percentage, and edit
distance to assess whether the differences between
the with context and without context conditions are
statistically significant. Non-overlapping CIs mean
that the results for the two conditions differ more
than what we would expect just from random varia-
tion. This usually points to a statistically significant
difference (roughly corresponding to p < 0.05).
The ClIs were calculated using the standard error of

the mean:
d
CI = mean + 1.96 x >
vn
Here, mean is the average value, sd is the standard
deviation, and n is the number of samples. The
factor 1.96 corresponds to a 95% confidence level
under a normal distribution.
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F Correlation between validity and
popular performance metrics

We explored the relationship between the validity
of SCES and several model properties, including
Model Size, Perplexity, HuggingFace Leaderboard
Rank, and MMLU Accuracy. However, we did not
observe any clear or consistent patterns. Addition-
ally, we performed both PEARSON and SPEARMAN
correlation tests to check for non-zero correlation
coefficient,' but none of the correlations were sta-
tistically significant, with all P-VALUES exceed-
ing 0.05. In the following subsection, we present
the results of some of these analyses.

F.1 Validity of SCEs vs. Model Size across
Datasets

Figure 3 illustrates how SCE validity varies with
model size across datasets. While one might expect
larger models to consistently perform better, this
is not always the case—smaller models sometimes
generate more valid SCEs. Overall, we observe
no consistent correlation between model size and
counterfactual reasoning ability.

Discriméval  Folktexts

Validity (%)

Validity (%)

o 0w
sk
. 75
~ 1 “ w0 e
o " 0 2 - 0 2 —

0 30 40 s 0 40 50 40 50
Model Size Model Size Model Size

Figure 3: Validity of SCEs vs. Model Size across
Datasets. Orange indicates validity with context; blue
indicates validity without context.

F.2 Model perplexity vs. SCEs validity

We used the Im-eval framework? to compute five-
shot perplexity on the WIKITEXT (Merity et al.,
2016) benchmark for each model, and then ana-
lyzed its correlation with the percentage of valid
SCEs generated. The decision to use Im-eval aligns
with best practices for reproducible, transparent,
and comparable evaluation, as emphasized by Bi-
derman et al. (2024) . By adopting a controlled
few-shot setup, we reduce variance across evalua-
tions and ensure our perplexity scores reflect mean-
ingful differences in model behavior rather than
implementation artifacts. Measuring perplexity in

'Using https://scipy.org
2https: //github.com/EleutherAl/
1Im-evaluation-harness


https://scipy.org
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

this standardized way enables a principled com-
parison with SCEs validity, allowing us to probe
whether language models with lower perplexity ex-
hibit stronger counterfactual reasoning. However,
as shown in Figure 2, we did not observe a clear
relationship between few-shot perplexity and SCE
validity across models.

DiscrimEval
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Perplexity Perplexity Perplexity

Figure 4: Effect of Model Size and Context on SCE Va-
lidity across Datasets. Blue lines indicate the percentage
of valid SCEs generated without context, while orange
lines represent validity with context. Results are shown
for six benchmark datasets.
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Figure 5: Pearson correlation between model perplexity
and SCE validity across datasets. Bars show Pearson
correlation coefficients () between few-shot perplexity
and validity percentage. Orange bars represent validity
with context, and blue bars represent validity without
context. Positive values indicate that higher perplexity
is associated with higher SCE validity; negative values
indicate the reverse.

F.3 Leaderboard Rank vs. SCEs validity

We obtained the Hugging Face Leaderboard ranks
for all models except MST,, (which was not listed)
and plotted their ranks against SCE validity percent-
ages. However, we observed no clear correlation
between Leaderboard ranking and SCE validity.

F.4 MMLU Accuracy vs. SCEs validity

The MMLU (Massive Multitask Language Under-
standing) benchmark by Hendrycks et al. (2020)
evaluates a model’s performance across 57 diverse
academic and professional subjects, including law,
physics, computer science, and history. It uses
multiple-choice questions to assess the model’s
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Figure 6: Relationship between Hugging Face Leader-
board rank and SCE validity. Each point represents
a model. The left panel shows average SCE validity
without context, and the right panel shows validity with
context. Lower ranks indicate higher leaderboard posi-
tions. Regression lines with 95% confidence intervals
illustrate trends between leaderboard rank and SCE va-
lidity.

breadth of knowledge and ability to handle a wide
range of tasks. We examined the correlation be-
tween models” MMLU performance and Percent-
age of valid SCEs, but found no significant relation-
ship, models with higher MMLU accuracy do not
necessarily have a high SCEs validity percentage.
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(a) Linear regression between MMLU accuracy and SCEs
validity.
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(b) Bubble plot showing the relationship between model
size and SCE validity. Each bubble represents a model,
where the x-axis indicates model size and the y-axis shows
the percentage of valid SCEs. Bubble size is proportional
to model size (scaled by a factor of 10).

Figure 7: Relationship between MMLU accuracy and
SCEs validity percentages across models. Blue indi-
cates SCEs validity without context, while orange in-
dicates SCEs validity with context.
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