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Abstract
Explanations are an important tool for gain-001
ing insights into model behavior, calibrating002
user trust, and ensuring compliance. Past few003
years have seen a flurry of methods for gen-004
erating explanations, many of which involve005
computing model gradients or solving specially006
designed optimization problems. Owing to the007
remarkable reasoning abilities of LLMs, self-008
explanation, i.e., prompting the model to ex-009
plain its outputs has recently emerged as a new010
paradigm. We study a specific type of self-011
explanations, self-generated counterfactual ex-012
planations (SCEs). We design tests for measur-013
ing the efficacy of LLMs in generating SCEs.014
Analysis over various LLM families, sizes, tem-015
peratures, and datasets reveals that LLMs often016
struggle to generate SCEs. When they do, their017
prediction often does not agree with their own018
counterfactual reasoning.019

1 Introduction020

LLMs have shown remarkable capabilities across021

a range of tasks (Bommasani et al., 2021; Maynez022

et al., 2023; Wei et al., 2022a), and can match or023

even surpass human performance (Luo et al., 2024;024

Peng et al., 2023; Yang et al., 2024). These im-025

pressive achievements are often attributed to large026

datasets, model sizes (Hoffmann et al., 2022; Ka-027

plan et al., 2020), and the effect of alignment with028

human preferences (Ouyang et al., 2022). The re-029

sulting model complexity, however, means that the030

LLM outputs can be difficult to explain.031

A number of recent studies have looked into ex-032

plaining LLM predictions (Bricken et al., 2023;033

Templeton et al., 2024; Zhao et al., 2024, inter034

alia). ML explainability had been thoroughly stud-035

ied even before the advent of modern LLMs (Gilpin036

et al., 2018; Guidotti et al., 2018). A large number037

of LLM explainability methods build upon tech-038

niques designed for non-LLM models. These tech-039

niques mostly operate by computing model gra-040

dients or solving specially designed optimization041

problems to find input features (Cohen-Wang et al., 042

2025), neurons (Meng et al., 2022; Templeton et al., 043

2024), abstract concepts (Kim et al., 2018; Xu et al., 044

2025), or training data points (Park et al., 2023) that 045

caused the model to depict a certain behavior. 046

Inspired by impressive reasoning capabilities of 047

LLMs, recent work has started exploring whether 048

LLMs can explain themselves without needing 049

costly methods like gradients and optimization 050

problems. For instance, Bubeck et al. (2023) show 051

that GPT-4 can provide rationales for its answers 052

and even admit mistakes. A fast-emerging branch 053

of explainability focuses on methods for producing 054

and evaluating self-generated explanations (Agar- 055

wal et al., 2024; Guo et al., 2025; Lanham et al., 056

2023; Tanneru et al., 2024; Turpin et al., 2023). 057

We study a specific type of self-explanations: 058

self-generated counterfactual explanations (SCEs). 059

Given an input x and model output ŷ, a counterfac- 060

tual xCE is a modified input that leads the model to 061

output ˆyCE ̸= ŷ. Prior work argues that due to their 062

contrastive nature, counterfactuals better align with 063

human expectations (Miller, 2019), better match 064

regulatory needs (Wachter et al., 2017) and are 065

a better test of knowledge (Ichikawa and Steup, 066

2024), than other feature-based explanations (Lund- 067

berg and Lee, 2017; Ribeiro et al., 2016). 068

We study the efficacy of LLMs in generating 069

SCEs via three research questions (RQs). 070

RQ1 Are LLMs able to generate SCEs at all? 071

RQ2 Do these self-generated counterfactuals faith- 072

fully reflect the model reasoning? 073

RQ3 Are LLMs able to generate SCEs without 074

large-scale changes to the input? 075

To answer these questions, we design the procedure 076

detailed in Figure 1. We ask the model to make 077

a prediction (Figure 1a); then ask it to generate a 078

SCE (Figure 1b); and finally compute the model’s 079

prediction on the SCE it generated (Figure 1c). 080
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USER

You will be given a math problem
[...] Your task is to provide
the solution.

Albert is wondering how much
pizza he can eat in one day. He
buys 2 large pizzas and 2 small
pizzas. A large pizza has 16
slices and a small pizza has 8
slices. If he eats it all, how
many pieces does he eat that
day?

MODEL

48

Model answers correctly

(a) Model response on original problem.

USER

Now, revise the math problem
so your final answer to the
revised problem becomes 50.
Share the revised problem.

MODEL

Albert is wondering how much
pizza he can eat in one day.
He buys 2 large pizzas and 3
small pizzas. A large pizza
has 16 slices and a small
pizza has 8 slices, but one of
the small pizzas has 2 extra
slices. If he eats it all, how
many pieces does he eat that
day?

Correct answer would be 58

(b) Self-generated counterfactual

USER

You will be given a math problem.
[...] Your task is to provide
the solution.

Albert is wondering how much
pizza he can eat in one day. He
buys 2 large pizzas and 3 small
pizzas. A large pizza has 16
slices and a small pizza has 8
slices, but one of the small
pizzas has 2 extra slices. If
he eats it all, how many pieces
does he eat that day?

MODEL

54

SCE doesn’t yield target 50

(c) Evaluation of self-explanation

Figure 1: LLMs are unable to explain themselves counterfactually. Explanation generation behavior of
LLaMA-3.1-70B-instruct on an example from GSM8K data. In the left panel, the model answers correctly. In the
second panel, the model is asked to produce a SCE so that the answer becomes 50. The resulting SCE is incorrect.
The correct answer would be 58 instead of the targeted answer of 50. In the third panel, the SCE is given as a new
problem to the model. The model answers with 54 which neither yields the target 50 nor computes to the correct
answer 58. This figure is best viewed in color.

We evaluate seven LLMs (7B to 70B parame-081

ters) and six datasets that correspond to four unique082

tasks. All but one LLM can consistently generate083

SCEs (RQ1). However, in many cases, the model084

predictions on SCEs do not yield the target label,085

meaning that self-generated counterfactual reason-086

ing does not align with model predictions (RQ2).087

We curiously find that the presence of the orig-088

inal prediction (Figure 1a) and the instruction to089

generate the SCE (Figure 1b) in the context win-090

dow has a large impact on the model prediction on091

the SCE, pointing to flaws in the internal reasoning092

process of LLMs. Within the same dataset, models093

show a large spread in the amount of changes they094

make to the original input when generating the SCE095

(RQ3). Overall, our results show that despite their096

impressive reasoning abilities, modern LLMs097

are far from being perfect when explaining their098

own predictions counterfactually.099

2 Related work100

Explainability in ML. There are several ways to101

categorize explainability methods, e.g., perturba-102

tion v.s. gradient-based, feature v.s. concept v.s.103

prototype-based, importance v.s. counterfactual-104

based and optimization v.s. self-generated. See105

Gilpin et al. (2018), Guidotti et al. (2018), and106

Zhao et al. (2024) for details.107

Counterfactual explanations in ML. See Sec- 108

tion 1 for a comparison between counterfactual ex- 109

planations (CEs) and other forms of explainability. 110

Generating valid and plausible CEs is a longstand- 111

ing challenge (Verma et al., 2024). For instance, 112

Delaney et al. (2023) highlight discrepancies be- 113

tween human- and computationally-generated CEs. 114

They find that humans make larger, more mean- 115

ingful modifications, whereas computational meth- 116

ods prioritize minimal edits. Prior work has also 117

highlighted the need for on-manifold CEs to en- 118

sure plausibility and robustness (Slack et al., 2021; 119

Tsiourvas et al., 2024). Modeling the data mani- 120

fold, however, is a challenging problem, even for 121

non-LLM models (Arvanitidis et al., 2016). 122

Self-explanation by LLMs. SEs can take 123

many forms, e.g., chain-of-thought (CoT) reason- 124

ing (Agarwal et al., 2024) and feature attribu- 125

tions (Tanneru et al., 2024). Both CoT and feature 126

attributions may fail to faithfully reflect the model’s 127

true decision-making process (Lanham et al., 2023; 128

Tanneru et al., 2024; Turpin et al., 2024). Our SCE 129

evaluation protocol is distinct from both CoT and 130

feature-attribution based self-explanations. Given 131

its positive impact on predictive performance (Wei 132

et al., 2022b), we employ CoT to evaluate SCEs, 133

but not as an explainability method itself. 134

Chen et al. (2023) argue that effective explana- 135

2



tions should empower users to predict how a model136

will handle different yet related inputs, a concept137

referred to as simulatability. Their experiments138

tested whether GPT-3.5’s ability to generate CEs139

depends on the quality of the examples provided.140

Interestingly, GPT-3.5 was able to produce compa-141

rable (to humans) CEs even when presented with142

illogical examples, suggesting that its CEs gener-143

ation capabilities stem more from its pre-training144

than from the specific examples included in the145

prompt. Unlike Chen et al. (2023), our focus is not146

on human simulatability of SCEs.147

LLMs for explanations. LLMs are also used to148

generate explanations for other models (Bhattachar-149

jee et al., 2024; Gat et al., 2023; Li et al., 2023;150

Nguyen et al., 2024; Slack et al., 2023). Our fo-151

cus is on explaining the LLM itself. Additionally,152

the approach of Nguyen et al. (2024) and Li et al.153

(2023) involved explicitly providing the model with154

the original human gold labels in the prompt, with-155

out assessing the model’s independent decision or156

understanding. As argued by Jacovi and Goldberg157

(2020), the evaluation of faithfulness should not158

involve human-provided gold labels because rely-159

ing on gold labels is influenced by human priors on160

what the model should do.161

3 Generating and evaluating SCEs162

We describe the process of generating SCEs and163

list metrics for evaluating their quality.164

3.1 Generating counterfactuals165

We consider datasets of the form D =166

{(xi, yi)}Ni=1. x are input texts, e.g., social me-167

dia posts or math problems. yi ∈ Y are either168

discrete labels, e.g., sentiment of a post, or integers169

from a predefined finite set, e.g., solution to a math170

problem. The model prediction and explanation171

process consists of the following steps.172

Step 1: Prediction on x. Given the input x, we173

denote the model output by ŷ = f(x) ∈ Y . For174

instruction-tuned LLMs, this step involves encap-175

sulating the input x into a natural language prompt176

before passing it through the model, see for exam-177

ple the work by Dubey et al. (2024). We detail178

these steps in Appendix C. The outputs of LLMs179

are often natural language and one needs to em-180

ploy some post-processing to convert them to the181

desired output domain Y . We describe these post-182

processing steps in Appendix D.183

Step 2: Generating SCEs. A counterfactual ex-184

planation xCE is a modified version of the original 185

input x that would lead the model to change its de- 186

cision, that is f(x) ̸= f(xCE). A common strategy 187

for generating counterfactuals is to first identify 188

a counterfactual output yCE ̸= y and then solve 189

an optimization problem to generate xCE such that 190

f(xCE) = yCE (Mothilal et al., 2020; Verma et al., 191

2024; Wachter et al., 2017). yCE is either chosen at 192

random or in a targeted manner. Since we are inter- 193

ested in self-explanation properties of LLMs, we 194

do not solve an optimization problem and instead 195

ask the model itself to generate the counterfactual 196

explanation. 197

A key desideratum for counterfactual explana- 198

tions is to keep the changes between x and xCE 199

minimal (Verma et al., 2024). We explore multi- 200

ple prompting strategies to achieve this goal. One 201

approach is unconstrained prompting, where the 202

model is simply asked to generate a counterfactual 203

with no additional constraints or structure. To ex- 204

ert more control, we also use a rationale-based 205

prompting strategy inspired by rationale-based ex- 206

planations (DeYoung et al., 2019). Here, the model 207

is first prompted to identify the rationales in the 208

original input that justify its prediction of ŷ, and 209

then to revise only those rationales such that the 210

output changes to yCE. Finally, since CoT has been 211

shown to improve the predictive performance, we 212

employ CoT prompting, where instead of request- 213

ing only a final answer, the model is encouraged 214

to “think step by step” and articulate its reasoning 215

process explicitly. 216

Step 3: Generating model output on xCE. Fi- 217

nally, we ask the model to make the prediction 218

on the counterfactual it generated, namely, ˆyCE = 219

f(xCE). While one would expect ˆyCE to be the 220

same as yCE, we find that in practice this is not 221

always true. 222

One could ask the model to make this final pre- 223

diction while the model still retains Steps 1 and 2 224

in its context window or without them. We denote 225

the former as prediction with context and the latter 226

as predictions without context. 227

Prompt design and post-processing. The prompts 228

for all three steps and the post-processing proce- 229

dures were carefully designed and refined in tan- 230

dem to remove ambiguities in instructions and 231

elicit accurate extraction of labels from the some- 232

times verbose generations. We describe our design 233

choices and precise prompts in Appendix C and the 234

post-processing steps in Appendix D. 235
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3.2 Evaluating CEs236

We use the following metrics for evaluating SCEs.237

Generation percentage (Gen) measures the per-238

centage of times a model was able to generate239

a SCE. In a vast majority of cases, the models240

generate a SCE as instructed. The cases of non-241

successful generation include the model generating242

a stop-word like “.” or “!” or generating a xCE that243

is much shorter in length than x. We describe the244

detailed filtering process in Appendix D.245

Counterfactual validity (Val) measures the per-246

centage of times the SCE actually produces the247

intended target label, i.e., f(xCE) = yCE. As de-248

scribed in Step 3 in Section 3.1, this final prediction249

can be made either with Steps 1 and 2 in context or250

without. We denote the validity without context as251

Val and with context as ValC.252

Edit distance (ED) measures the edit distance be-253

tween the original input x and the counterfactual254

xCE. Closeness to the original input is a key desider-255

atum of a counterfactual explanation (Wachter256

et al., 2017). Our use of edit distance as the close-257

ness metric is inspired by prior studies on evaluat-258

ing counterfactual generations (Chatzi et al., 2025).259

We only report the ED for valid SCEs. Since the va-260

lidity of SCEs is impacted by the presence of Steps261

1 and 2 in the generation context (Section 3.1), we262

report the edit distance for the in-context case sep-263

arately and denote it by EDC. For simplifying com-264

parisons across datasets of various input lengths,265

we normalize the edit distance to a percentage by266

first dividing it by the length of the longer string (x267

or xCE) and then multiplying it by 100.268

4 Experimental setup269

We now describe the datasets, models and parame-270

ters used in our experiments.271

4.1 Datasets272

To gain comprehensive insights, we consider273

datasets from four different domains: decision-274

making, sentiment classification, mathematics and275

natural language inference.276

1. DiscrimEval (decision making) by Tamkin et al.277

(2023) is a benchmark featuring 70 hypothetical278

decision-making scenarios. Each prompt instructs279

the model to make a binary decision regarding an280

individual, e.g., whether the individual should re-281

ceive medical treatment. The prompts are designed282

such that a yes decision is always desirable. The283

dataset replicates the 70 scenarios several times by 284

substituting different values of gender, race, and 285

age. We set these features to fixed values: female, 286

white, and 20 years old. 287

2. FolkTexts (decision making) by Cruz et al. 288

(2024) is a classification dataset derived from the 289

US Census data. Each instance consists of a textual 290

description of an individual, e.g., age, and occupa- 291

tion. The modeling task is to predict whether the 292

yearly income of the individual exceeds $50K. 293

3. Twitter financial news (sentiment classifica- 294

tion) by ZeroShot (2022) provides an annotated 295

corpus of finance-related tweets, specifically cu- 296

rated for sentiment analysis. Each tweet is labeled 297

as Bearish, Bullish, or Neutral. As a preprocessing 298

step, we removed all URLs from the inputs. 299

4. SST2 (sentiment) by Socher et al. (2013) con- 300

sists of single sentence movie reviews along with 301

the binary sentiment (positive and negative). 302

5. GSM8K (math) by Cobbe et al. (2021) consists 303

of grade school math problems. The answer to the 304

problems is always a positive integer. 305

6. Multi-Genre Natural Language Inference 306

(MGNLI) by Williams et al. (2018) consists of 307

pairs of sentences, the premise, and the hypothesis. 308

The model is asked to classify the relationship be- 309

tween two sentences. The relationship values can 310

be: entailment, neutral, or contradiction. 311

4.2 Models, infrastructure, and parameters 312

We consider models from different providers and 313

sizes. 314

Small models, namely Gemma-2-9B-it 315

(GEMs), Llama-3.1-8B-Instruct (LAMs), and 316

Mistral-7B-Instruct-v0.3 (MSTs). 317

Medium models consist of Gemma-2-27B-it 318

(GEMm), Llama-3.3-70B-Instruct (LAMm), and 319

Mistral-Small-24B-Instruct-2501 (MSTm). 320

Reasoning model. We only consider 321

DeepSeek-R1-Distill-Qwen-32B (R1m). 322

All experiments were run on a single node with 323

8x NVIDIA H200 GPUs. The machine was shared 324

between multiple research teams. We ran all the 325

models in 32-bit precision and did not employ any 326

size reduction strategies like quantization. We con- 327

sider two temperature values, T = 0 and T = 0.5. 328

For Unconstrained and Rationale-based prompting 329

at T = 0.5, we run five trials and report the mean 330

for all metrics. Due to computational constraints, 331

we run only three trials for the CoT at T = 0.5. 332
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For generating the counterfactuals, one needs to333

provide the model with the target label yCE. For334

classification datasets, we select yCE from the set335

Y − {ŷ} at random. For the GSM8K data, we336

generate yCE = ŷ + ϵ with ϵ was sampled from a337

uniform distribution Unif{1, 2, . . . , 10}.338

Given the high cost of LLM inference, we sub-339

sample the datasets. For classification datasets, we340

take the first 250 examples per class in dataset or-341

der. For the non-classification dataset GSM8K, we342

similarly select the first 250 examples. While we343

did not track the precise time, the experiments took344

several days on multiple GPUs to complete.345

We occasionally used ChatGPT for help with346

programming errors.347

5 Results348

Tables 1 and 2 show the results when using uncon-349

strained prompting and rationale-based prompting,350

respectively at T = 0. Results for all other con-351

figurations like non-zero temperatures and CoT352

prompting (Tables 4, 5, 6 and 7) are shown in Ap-353

pendix B and discussed under each RQ. All tables354

show confidence intervals computed using standard355

error of the mean (Appendix E).356

RQ1: Ability of LLMs to generate SCEs357

Most models successfully generate SCEs in the vast358

majority of cases, with the notable exception of359

the GEMs model on the DISCRIMEVAL and FOLK-360

TEXTS datasets. However, CoT prompting mas-361

sively improves SCE generation ability of GEMs362

(Table 6). Most models, including GEMs, exhibit363

enhanced SCE generation at T = 0.5. The frac-364

tion roughly remains the same for rationale-based365

prompting as shown in Tables 2 and 5.366

RQ2: Do SCEs yield the target label?367

SCEs yield the target label in most cases, however,368

there are large variations. The most prominent369

variation is along the task level. For the GSM8K370

dataset, which involves more complex mathemati-371

cal reasoning, valid SCE generation rates remain372

under 20% in a vast majority of cases. Similarly,373

the FOLKTEXTS tasks which requires the model374

to reason through the Census-gathered data, the375

validity in many cases is low.376

We also see a mixed trend at model-size level.377

The smaller models—GEMs (9B parameters), LAMs378

(8B), and MSTs (7B)—sometimes tend to generate379

valid SCEs at a lower rate than larger counterparts,380

GEMm (27B), LAMm (70B), and MSTm (24B). However, 381

the trend the reversed in some other cases, e.g., with 382

unconstrained prompting on FOLKTEXTS, MSTs 383

outperforms its larger counterpart. The reasoning 384

model R1m (32B) also does not consistently outper- 385

form comparably sized models such as GEMm and 386

MSTm. 387

Presence of the original prediction and coun- 388

terfactual generation in the context window has a 389

large impact on validity as shown by the compari- 390

son of Val and ValC in Tables 1 and 2. Most promi- 391

nently, on the GSM8K dataset, validity increases 392

significantly, indicating that the model’s mathe- 393

matical reasoning ability is influenced by infor- 394

mation that should be irrelevant. We observe 395

a similar trend in the FOLKTEXTS dataset. The 396

trend however is not universal. In other datasets, 397

models such as LAMs and LAMm exhibit a decrease 398

in validity when additional contextual information 399

is included. 400

Rationale-based prompting has diverse impact 401

on SCE validity as shown by comparing Tables 402

1 and 2. In some cases, such as LAMm on DIS- 403

CRIMEVAL, the fraction of SCEs deemed valid 404

by the model drops sharply from 94% to 53%. In 405

contrast, for LAMs on FOLKTEXTS, the validity rate 406

increases substantially from 20% to 72% at a tem- 407

perature of 0. 408

CoT generally leads to modest improvements in 409

SCE validity. For instance, at T = 0, the average 410

validity over all datasets and models is 64% with 411

unconstrained prompting 60% with rationale-based 412

prompting, and 72% with CoT prompting. 413

RQ3: Changes required to generate SCEs 414

For a given task and dataset, different LLMs require 415

different amount of changes to generate SCEs, even 416

for a similar level of validity. Consider for GEMm, 417

GEMs and R1m models for DISCRIMEVAL data. 418

The required changes also depend on the task 419

and dataset. For example, in SST2, where models 420

achieve some of the highest validity scores, we ob- 421

serve the highest ED. This relationship between va- 422

lidity and edit distance, however, is not completely 423

linear and also depends on the input length. In DIS- 424

CRIMEVAL and FOLKTEXTS, where input lengths 425

can span several hundred tokens, the models exhibit 426

low Val alongside relatively low ED. Temperature 427

also influences ED, e.g., in unconstrained prompt- 428

ing with T = 0.5 (Table 4), ED values across all 429

datasets, except for Twitter Financial News data, 430

are consistently higher compared to T = 0. Finally, 431
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Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 91 ( 7) 56 ( 12) 16 ( 9) 63 ( 8) 40 ( 15)

LAMm 99 ( 2) 94 ( 6) 99 ( 2) 34 ( 3) 33 ( 3)

MSTs 100 ( 0) 82 ( 9) 86 ( 6) 34 ( 4) 32 ( 4)

MSTm 100 ( 0) 87 ( 8) 50 ( 1) 16 ( 2) 13 ( 2)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 90 ( 7) 86 ( 9) 100 ( 0) 26 ( 3) 26 ( 3)

R1m 96 ( 5) 78 ( 10) 88 ( 8) 53 ( 7) 54 ( 6)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 69 ( 4) 20 ( 4) 61 ( 5) 68 ( 4) 76 ( 1)

LAMm 100 ( 0) 67 ( 4) 100 ( 0) 35 ( 0) 34 ( 0)

MSTs 100 ( 0) 94 ( 2) 95 ( 2) 25 ( 1) 24 ( 0)

MSTm 100 ( 0) 54 ( 4) 99 ( 1) 32 ( 0) 32 ( 0)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 100 ( 0) 100 ( 0) 100 ( 0) 40 ( 0) 40 ( 0)

R1m 100 ( 0) 44 ( 4) 66 ( 4) 42 ( 1) 39 ( 1)

(b) FolkTexts

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 86 ( 2) 72 ( 3) 18 ( 3) 78 ( 1) 72 ( 3)

LAMm 100 ( 0) 87 ( 2) 80 ( 3) 60 ( 1) 60 ( 1)

MSTs 99 ( 1) 90 ( 2) 94 ( 2) 64 ( 1) 64 ( 1)

MSTm 99 ( 1) 78 ( 3) 94 ( 2) 59 ( 1) 59 ( 1)

GEMs 98 ( 1) 84 ( 3) 95 ( 2) 63 ( 1) 61 ( 1)

GEMm 100 ( 0) 75 ( 3) 91 ( 2) 67 ( 1) 67 ( 1)

R1m 100 ( 0) 77 ( 3) 87 ( 2) 62 ( 1) 58 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 92 ( 2) 68 ( 4) 58 ( 5) 89 ( 1) 88 ( 2)

LAMm 99 ( 1) 92 ( 2) 58 ( 4) 67 ( 2) 70 ( 2)

MSTs 91 ( 3) 96 ( 2) 97 ( 2) 75 ( 1) 75 ( 1)

MSTm 100 ( 0) 97 ( 2) 95 ( 2) 68 ( 1) 68 ( 1)

GEMs 97 ( 2) 98 ( 1) 98 ( 2) 77 ( 1) 76 ( 1)

GEMm 100 ( 0) 99 ( 1) 85 ( 3) 77 ( 1) 77 ( 1)

R1m 99 ( 1) 95 ( 2) 81 ( 3) 73 ( 1) 71 ( 1)

(d) SST2

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 96 ( 2) 6 ( 3) 48 ( 6) 61 ( 5) 58 ( 2)

LAMm 100 ( 0) 16 ( 6) 84 ( 6) 52 ( 3) 57 ( 2)

MSTs 100 ( 0) 8 ( 3) 30 ( 6) 57 ( 4) 57 ( 2)

MSTm 100 ( 0) 13 ( 4) 87 ( 4) 57 ( 4) 58 ( 1)

GEMs 15 ( 6) 9 ( 6) 65 ( 20) 62 ( 11) 73 ( 5)

GEMm 98 ( 2) 5 ( 3) 85 ( 4) 59 ( 4) 58 ( 1)

R1m 100 ( 0) 14 ( 4) 50 ( 6) 63 ( 4) 67 ( 3)

(e) GSM8K

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 97 ( 1) 58 ( 4) 47 ( 4) 73 ( 1) 73 ( 1)

LAMm 100 ( 0) 87 ( 2) 99 ( 1) 71 ( 1) 71 ( 1)

MSTs 100 ( 0) 58 ( 4) 85 ( 3) 74 ( 1) 74 ( 1)

MSTm 100 ( 0) 85 ( 3) 99 ( 1) 77 ( 1) 77 ( 1)

GEMs 99 ( 1) 80 ( 3) 87 ( 2) 78 ( 1) 78 ( 1)

GEMm 100 ( 0) 72 ( 3) 93 ( 2) 76 ( 1) 76 ( 1)

R1m 100 ( 0) 81 ( 3) 85 ( 2) 78 ( 1) 77 ( 1)

(f) MGNLI

Table 1: [Unconstrained prompting at T = 0] Performance of LLMs in Generating SCEs in terms of percentage of
times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield the
target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ED is only reported
for valid SCEs. ValC and EDC denotes the metric values when the instructions for prediction on the original input
and the SCE generation are provided in the context while computing the validity of the SCE (Section 3.2). Values
in parentheses indicate confidence intervals. Values are bolded when the differences in with and without context
conditions (e.g., Val and ValC) are statistically significant. ↑ means higher values are better.

we notice that the presence of context mostly has432

no statistically significant impact on edit distance433

of valid SCEs.434

Rationale-based prompting does not consistently435

produce closer SCEs, as evident from the compari-436

son between Tables 1 and 2. For instance, on the437

SST2 dataset, ED values are generally lower under438

rationale-based prompting, with the exception of439

LAMm and MSTm.440

Are invalid SCEs statistically different?441

We investigate whether the lengths of SCEs can442

provide a clue on their validity. Our question is443

inspired by previous work on detecting LLM hallu-444

cinations (Azaria and Mitchell, 2023; Snyder et al.,445

2024; Zhang et al., 2024) which shows that incor- 446

rect model outputs show statistically different pat- 447

terns from correct answers. 448

For each model, datasest and SCE generation 449

configuration, we compute the normalized differ- 450

ence in lengths as |Lval−Linval|
max(Lval,Linval)

× 100 where Lval 451

is the average length of valid SCEs. The normal- 452

ization ensures a range of [0, 100]. Table 3 shows 453

that SCE lengths can indeed provide a signal on 454

validity. In 18 out of 42 model dataset pairs, the dif- 455

ferences are statistically significant. The significant 456

cases are concentrated in datasets with relatively 457

high input lengths, namely, DISCRIMEVAL and 458

FOLKTEXTS. 459
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Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 91 ( 7) 44 ( 12) 92 ( 7) 34 ( 9) 32 ( 6)

LAMm 100 ( 0) 53 ( 12) 53 ( 12) 19 ( 5) 18 ( 6)

MSTs 100 ( 0) 87 ( 8) 27 ( 10) 36 ( 3) 30 ( 7)

MSTm 100 ( 0) 69 ( 11) 46 ( 5) 13 ( 3) 7 ( 2)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 88 ( 9) 41 ( 14) 96 ( 6) 19 ( 3) 17 ( 3)

R1m 100 ( 0) 53 ( 12) 90 ( 7) 23 ( 3) 24 ( 3)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 67 ( 3) 72 ( 5) 88 ( 4) 45 ( 3) 48 ( 3)

LAMm 99 ( 1) 36 ( 4) 74 ( 4) 32 ( 0) 33 ( 0)

MSTs 26 ( 4) 98 ( 2) 92 ( 5) 31 ( 2) 29 ( 2)

MSTm 96 ( 2) 50 ( 4) 100 ( 0) 32 ( 0) 32 ( 0)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 18 ( 3) 62 ( 10) 98 ( 3) 33 ( 1) 32 ( 1)

R1m 25 ( 4) 57 ( 9) 89 ( 6) 47 ( 3) 44 ( 3)

(b) FolkTexts

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 88 ( 2) 75 ( 3) 83 ( 3) 57 ( 2) 52 ( 2)

LAMm 100 ( 0) 87 ( 2) 66 ( 3) 57 ( 2) 53 ( 2)

MSTs 100 ( 0) 89 ( 10) 88 ( 11) 74 ( 5) 74 ( 3)

MSTm 100 ( 0) 79 ( 3) 86 ( 2) 62 ( 1) 63 ( 1)

GEMs 98 ( 1) 79 ( 3) 97 ( 1) 50 ( 1) 49 ( 1)

GEMm 100 ( 0) 86 ( 2) 97 ( 1) 48 ( 1) 47 ( 1)

R1m 99 ( 1) 69 ( 3) 72 ( 3) 49 ( 1) 48 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 92 ( 2) 52 ( 5) 63 ( 4) 69 ( 2) 67 ( 2)

LAMm 99 ( 1) 86 ( 3) 67 ( 4) 79 ( 2) 81 ( 2)

MSTs 82 ( 3) 92 ( 3) 89 ( 3) 77 ( 1) 77 ( 1)

MSTm 100 ( 0) 88 ( 3) 99 ( 1) 66 ( 2) 66 ( 2)

GEMs 96 ( 2) 73 ( 5) 98 ( 1) 66 ( 2) 64 ( 2)

GEMm 100 ( 0) 82 ( 4) 97 ( 1) 66 ( 2) 64 ( 2)

R1m 99 ( 1) 74 ( 4) 58 ( 4) 62 ( 2) 55 ( 2)

(d) SST2

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 96 ( 2) 1 ( 1) 2 ( 2) 70 ( 17) 62 ( 7)

LAMm 100 ( 1) 25 ( 5) 64 ( 6) 65 ( 3) 63 ( 2)

MSTs 100 ( 0) 46 ( 6) 2 ( 2) 58 ( 2) 65 ( 15)

MSTm 100 ( 0) 14 ( 4) 92 ( 3) 46 ( 2) 47 ( 1)

GEMs 16 ( 5) 13 ( 11) 62 ( 15) 51 ( 6) 52 ( 4)

GEMm 97 ( 3) 9 ( 4) 74 ( 7) 59 ( 4) 58 ( 2)

R1m 100 ( 1) 8 ( 3) 28 ( 4) 60 ( 7) 64 ( 6)

(e) GSM8K

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 97 ( 1) 58 ( 4) 66 ( 3) 76 ( 1) 75 ( 1)

LAMm 100 ( 0) 92 ( 2) 56 ( 2) 77 ( 1) 76 ( 1)

MSTs 97 ( 1) 87 ( 2) 32 ( 3) 72 ( 1) 71 ( 1)

MSTm 100 ( 0) 67 ( 3) 55 ( 2) 76 ( 1) 75 ( 1)

GEMs 99 ( 1) 68 ( 3) 90 ( 2) 77 ( 1) 77 ( 1)

GEMm 100 ( 0) 70 ( 3) 92 ( 2) 75 ( 1) 75 ( 1)

R1m 100 ( 0) 67 ( 3) 89 ( 2) 73 ( 1) 72 ( 1)

(f) MGNLI

Table 2: [Rationale-based prompting at T = 0] Performance of LLMs in Generating SCEs. For details of metric
names, see the caption of Table 1.

6 Why do models struggle with SCEs?460

Counterfactual reasoning is an ability often taken461

for granted in humans (Ichikawa and Steup, 2024;462

Miller, 2019). Given their impressive performance463

on conceptually abstract tasks (Bubeck et al., 2023),464

one would expect LLMs to also depict sound coun-465

terfactual reasoning abilities. Our investigations466

show otherwise.467

Our hypothesis is that the inability of LLMs to468

generate valid SCEs arise because their learning469

process and operation is very different from hu-470

mans. While humans tend to understand the world471

through counterfactual reasoning (Miller, 2019),472

LLMs are fundamentally trained to predict the next473

token. Even the most advanced LLMs that ap-474

pear strong at reasoning still fundamentally rely475

on next-token prediction, enhanced by advanced476

techniques like reranking and CoT training (Guo477

et al., 2025), output pruning (Dong et al., 2025), or 478

guided decoding (Jiang et al., 2024). As a result, 479

LLMs do not reason like humans and are not natu- 480

ral causal thinkers. We posit that training LLMs 481

with contrastive example pairs could enhance their 482

counterfactual reasoning capability. 483

We also believe that side-effects of the attention 484

mechanism impact the model’s reasoning ability. 485

This is supported by our findings in Section 5, RQ2. 486

We observe that validity is higher when the orig- 487

inal prediction and counterfactual generation are 488

present in the context window (ValC) compared 489

to when they are removed (Val). In particular, on 490

the GSM8K dataset, the SCE validity improves 491

significantly in the presence of this information. 492

This suggests that the attention mechanism allows 493

the model to “copy” or be influenced by irrelevant 494

context, rather than performing fully independent 495

reasoning. Thus, even subtle hints or artifacts in the 496
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DEV TWT SST FLK NLI MTH
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

LAMs 40 ( 19) 19 ( 30) 6 ( 7) 44 ( 6) 37 ( 8) 20 ( 9) 13 ( 10) 4 ( 2) 1 ( 22) 21 ( 20) 26 ( 30) 45 ( 13)

LAMm 16 ( 11) 67 ( 2) 5 ( 6) 11 ( 5) 26 ( 11) 20 ( 8) 0 ( 0) 100 ( 0) 0 ( 5) 15 ( 5) 22 ( 9) 100 ( 0)

MSTs 4 ( 6) 14 ( 6) 1 ( 7) 19 ( 5) 27 ( 6) 26 ( 8) 3 ( 1) 9 ( 1) 5 ( 5) 9 ( 5) 9 ( 16) 18 ( 18)

MSTm 19 ( 6) 100 ( 0) 3 ( 3) 4 ( 3) 8 ( 6) 27 ( 5) 1 ( 0) 2 ( 0) 3 ( 5) 16 ( 6) 19 ( 10) 28 ( 4)

GEMs 0 ( 0) 0 ( 0) 4 ( 4) 6 ( 4) 100 ( 0) 100 ( 0) 0 ( 0) 0 ( 0) 6 ( 4) 7 ( 5) 17 ( 26) 11 ( 18)

GEMm 11 ( 6) 100 ( 0) 3 ( 4) 7 ( 3) 6 ( 5) 49 ( 3) 4 ( 0) 100 ( 0) 1 ( 5) 6 ( 5) 31 ( 15) 9 ( 5)

R1m 16 ( 22) 100 ( 0) 37 ( 15) 44 ( 5) 35 ( 18) 72 ( 8) 1 ( 7) 26 ( 5) 11 ( 4) 12 ( 4) 63 ( 9) 70 ( 9)

Table 3: [Unconstrained prompting with T = 0] Normalized difference in lengths of valid and invalid counterfactuals
for DiscrimEval (DEV), Twitter Financial News (TWT), SST2 (SST), FolkTexts (FLK), MGNLI (NLI) and GSM8K
(MTH) datasets. Left columns (w/o) show the differences without prediction and counterfactual generations provided
as context (Section 3.2) whereas right columns (w/) show the differences with this information.

input can enhance apparent performance, masking497

the true reasoning capabilities of the model.498

Inspired by the work on emergent properties499

and neural scaling laws (Brown et al., 2020; Ka-500

plan et al., 2020; Wei et al., 2022a), we investi-501

gate whether counterfactual reasoning abilities502

emerge as models improve on well-established503

quality criteria. Specifically, we perform a cor-504

relation analysis between the validity percentage505

of SCEs and model size, few-shot perplexity, LM506

leaderboard rank, and self-reported MMLU perfor-507

mance. Our results (Appendix F) reveal no strong508

or consistent correlations. For instance, Figure 2509

shows no correlation between perplexity and va-510

lidity. The results suggest that standard evaluation511

metrics may not adequately capture a model’s ca-512

pacity for counterfactual reasoning. These findings513

underscore the need for including counterfactual514

reasoning as a fine-tuning or alignment objective515

in the model training pipeline.516

7 Conclusion and future work517

In this study, we examined the ability of LLMs518

to produce self-generated counterfactual explana-519

tions (SCEs). We design a prompt-based setup for520

evaluating the efficacy of SCEs. Our results show521

that LLMs consistently struggle with generating522

valid SCEs. In many cases model prediction on523

a SCE does not yield the same target prediction524

for which the model crafted the SCE. Surprisingly,525

we find that LLMs put significant emphasis on the526

context—the prediction on SCE is significantly im-527

pacted by the presence of original prediction and528

instructions for generating the SCE. Based on this529

empirical evidence, we argue that LLMs are still530

far from being able to explain their own predic-531

tions counterfactually. Our findings add to similar532

insights from recent studies on other forms of self-533
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Val_cFigure 2: No significant correlation exists between

model perplexity and SCE validity. Linear regression
lines show trends between perplexity (x-axis) and valid-
ity percentage (y-axis). Each subplot corresponds to a
dataset. The blue line represents validity without con-
text, and the orange line represents validity with context.
Shaded regions indicate 95% confidence intervals.

explanations (Lanham et al., 2023; Tanneru et al., 534

2024). Our work opens several avenues for future 535

work. Inspired by counterfactual data augmenta- 536

tion (Sachdeva et al., 2023), one could include the 537

counterfactual explanation capabilities a part of 538

the LLM training process. This inclusion may en- 539

hance the counterfactual reasoning capabilities of 540

the LLM. 541

Finally, our experiments were limited to rela- 542

tively simple tasks: classification and mathematics 543

problems where the solution is an integer. This 544

limitation was mainly due to the fact that it is diffi- 545

cult to automatically judge validity of answers for 546

more open-ended language generation tasks like 547

search and information retrieval. Scaling our anal- 548

ysis to such tasks would require significant human- 549

annotation resources, and is an important direction 550

for future investigations. 551
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8 Limitations552

Our work has several limitations. First, explainabil-553

ity and privacy can sometimes be at odds with each554

other. Even if LLMs are able to provide comprehen-555

sive and faithful explanations, this can introduce556

privacy and security concerns (Grant and Wischik,557

2020; Pawlicki et al., 2024). Detailed explanations558

may inadvertently expose sensitive information or559

be exploited for adversarial attacks on the model560

itself. However, our work focuses on publicly avail-561

able models and datasets, ensuring that these risks562

are mitigated.563

Similarly, savvy users can strategically use coun-564

terfactual explanations to unfairly maximize their565

chances of receiving positive outcomes (Tsirtsis566

and Gomez Rodriguez, 2020). Detecting and limit-567

ing this behavior would be an important desidera-568

tum before the deployment of LLM counterfactu-569

als.570

Our analyses in this paper solely focused on auto-571

mated metrics to evaluate quality of SCEs. Future572

studies can conduct human surveys to assess how573

plausible the explanations appear from a human574

perspective. This feedback can then be used to en-575

hance the model’s performance through methods576

such as direct preference optimization (Rafailov577

et al., 2024).578
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A Reproducibility and licenses939

Dataset Licenses and Usage.940

1. DiscrimEval: We utilize the dataset ver-941

sion made available by the authors at942

https://huggingface.co/datasets/943

Anthropic/discrim-eval. It is distributed944

under the CC-BY-4.0 license.945

2. Folktexts: The dataset version we refer-946

ence is the one provided by the authors,947

accessible at https://huggingface.co/948

datasets/acruz/folktexts. FolkTexts949

code is made available under the MIT950

license. The dataset is licensed under951

the U.S. Census Bureau’s terms (https:952

//www.census.gov/data/developers/953

about/terms-of-service.html).954

3. Twitter Financial News: We employ955

version 1.0.0 of the dataset, as released956

by the authors, available at https:957

//huggingface.co/datasets/zeroshot/958

twitter-financial-news-sentiment.959

The dataset is distributed under the MIT960

License.961

4. SST2: The dataset version used in our962

work is the one published by the Stan-963

fordNLP team at https://huggingface.964

co/datasets/stanfordnlp/sst2. The965

dataset itself does not provide licens-966

ing information. However, the whole967

StanfordNLP toolkit is available under968

Apache2.0 license, see https://github.969

com/stanfordnlp/stanza.970

5. GSM8K: We make use of the dataset971

version released by the authors, accessible972

at https://huggingface.co/datasets/973

openai/gsm8k?row=3. It is licensed under974

the MIT License.975

6. Multi-Genre Natural Language Infer-976

ence (MultiNLI): Our work relies on977

the dataset version shared by the authors978

at https://huggingface.co/datasets/979

nyu-mll/multi_nli. It is available under980

the CC-BY-SA-3.0 license.981

Model Licenses. We utilize the original providers’982

model implementations available on HuggingFace983

(https://huggingface.co).984

1. Mistral models (Jiang et al., 2023) are released 985

under the APACHE-2.0 license. 986

2. Gemma models are released under the custom 987

Gemma-2 license. 988

3. LLaMA models (Dubey et al., 2024) are re- 989

leased under the custom LLaMA-3.1 license. 990

4. DeepSeek-R1-Distill-Qwen-32B (Guo et al., 991

2025), derived from the Qwen-2.5 series, re- 992

tains its original APACHE-2.0 license. 993

Generation Settings. For all generations, we set 994

truncation=True to ensure inputs exceeding the 995

maximum length are properly handled. We lim- 996

ited the input context with max_length=512 to- 997

kens. During generation, we restricted outputs 998

to a maximum of max_new_tokens=500 tokens to 999

maintain consistency across experiments. 1000

We conducted experiments at two different tem- 1001

perature settings: T = 0 and T = 0.5. 1002

B Additional results for various 1003

prompting strategies 1004

Table 4 shows the SCE evaluation metrics for un- 1005

constrained prompting when using a temperature 1006

of 0.5. Table 5 shows the metrics when using 1007

rationale-based prompting with temperatures of 1008

0.5. 1009

Tables 6 and 7 show the results for CoT prompt- 1010

ing at T = 0 and T = 0.5, respectively. 1011

Table 8 presents each model’s accuracy across 1012

different datasets for both temperature values (0 1013

and 0.5) and prompting strategies (unconstrained 1014

and rationale prompting which does not use CoT, 1015

and CoT prompting). CoT does not necessarily 1016

lead to higher accuracy. For T = 0, the accuracy 1017

for unconstrained / rationale prompting is 67%, and 1018

for CoT prompting it is 69%. 1019

C Prompts for generating and evaluating 1020

SCEs 1021

We carefully designed the prompts used in our ex- 1022

periments. For each dataset, we tried to use the 1023

prompts suggested by the original paper introduc- 1024

ing each dataset (when available). For instance, 1025

for FOLKTEXTS, we closely followed the prompt 1026

formulation proposed by Cruz et al. (2024). 1027

We also followed best practices for extracting 1028

prediction labels from the natural language out- 1029

puts. We explicitly instructed the model to prepend 1030
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Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 81 ( 2) 63 ( 1) 77 ( 3) 46 ( 2) 48 ( 1)

LAMm 100 ( 0) 95 ( 1) 99 ( 1) 35 ( 1) 35 ( 1)

MSTs 100 ( 0) 83 ( 1) 94 ( 2) 37 ( 1) 34 ( 1)

MSTm 100 ( 0) 89 ( 0) 87 ( 0) 21 ( 0) 20 ( 0)

GEMs 4 ( 1) 58 ( 27) 88 ( 10) 32 ( 2) 27 ( 6)

GEMm 85 ( 7) 81 ( 2) 97 ( 5) 26 ( 1) 25 ( 1)

R1m 98 ( 1) 81 ( 7) 86 ( 10) 44 ( 10) 42 ( 11)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 94 ( 2) 84 ( 1) 78 ( 3) 61 ( 1) 60 ( 1)

LAMm 100 ( 0) 72 ( 0) 97 ( 2) 36 ( 0) 35 ( 0)

MSTs 99 ( 0) 93 ( 1) 99 ( 0) 27 ( 0) 27 ( 0)

MSTm 100 ( 0) 56 ( 0) 100 ( 0) 33 ( 0) 33 ( 0)

GEMs 8 ( 1) 14 ( 5) 99 ( 1) 37 ( 1) 38 ( 1)

GEMm 99 ( 1) 99 ( 0) 100 ( 0) 39 ( 0) 39 ( 0)

R1m 95 ( 3) 53 ( 12) 74 ( 9) 45 ( 9) 41 ( 7)

(b) FolkTexts

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 86 ( 1) 81 ( 0) 72 ( 11) 76 ( 0) 71 ( 4)

LAMm 100 ( 0) 89 ( 1) 75 ( 2) 62 ( 1) 62 ( 1)

MSTs 95 ( 3) 79 ( 2) 91 ( 1) 63 ( 1) 63 ( 1)

MSTm 0 ( 0) 0 ( 0) 0 ( 0) 57 ( 0) 57 ( 0)

GEMs 97 ( 0) 84 ( 0) 94 ( 1) 64 ( 0) 63 ( 0)

GEMm 100 ( 0) 76 ( 0) 90 ( 0) 67 ( 0) 67 ( 0)

R1m 100 ( 0) 78 ( 1) 88 ( 9) 59 ( 2) 58 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 85 ( 1) 59 ( 2) 48 ( 6) 86 ( 1) 84 ( 2)

LAMm 99 ( 1) 92 ( 1) 55 ( 3) 68 ( 0) 70 ( 1)

MSTs 90 ( 0) 93 ( 0) 93 ( 0) 78 ( 1) 78 ( 1)

MSTm 100 ( 0) 96 ( 1) 96 ( 0) 68 ( 0) 68 ( 0)

GEMs 94 ( 1) 97 ( 0) 98 ( 1) 76 ( 2) 76 ( 2)

GEMm 100 ( 0) 99 ( 0) 91 ( 3) 78 ( 1) 77 ( 1)

R1m 99 ( 0) 94 ( 0) 78 ( 5) 72 ( 2) 70 ( 2)

(d) SST2

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 96 ( 1) 6 ( 1) 52 ( 2) 64 ( 3) 58 ( 0)

LAMm 100 ( 0) 13 ( 1) 80 ( 9) 57 ( 1) 58 ( 0)

MSTs 100 ( 0) 5 ( 1) 34 ( 4) 57 ( 2) 59 ( 1)

MSTm 100 ( 0) 10 ( 0) 83 ( 0) 55 ( 0) 58 ( 0)

GEMs 27 ( 1) 3 ( 1) 48 ( 11) 77 ( 6) 74 ( 9)

GEMm 89 ( 1) 4 ( 0) 88 ( 3) 57 ( 1) 58 ( 0)

R1m 100 ( 0) 27 ( 3) 52 ( 5) 69 ( 4) 70 ( 7)

(e) GSM8K

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 92 ( 1) 58 ( 1) 52 ( 2) 73 ( 0) 74 ( 1)

LAMm 100 ( 0) 88 ( 1) 86 ( 6) 72 ( 0) 72 ( 0)

MSTs 99 ( 0) 59 ( 1) 84 ( 0) 74 ( 0) 74 ( 0)

MSTm 100 ( 0) 84 ( 0) 96 ( 1) 78 ( 0) 78 ( 0)

GEMs 97 ( 0) 78 ( 0) 86 ( 1) 78 ( 0) 78 ( 0)

GEMm 100 ( 0) 74 ( 1) 92 ( 0) 76 ( 0) 77 ( 0)

R1m 100 ( 0) 77 ( 5) 76 ( 14) 78 ( 3) 76 ( 1)

(f) MGNLI

Table 4: [Unconstrained prompting at T = 0.5] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield
the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC and EDC
denotes the metric values when the instructions for prediction on the original input and the SCE generation are
provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details. ↑ means higher values are better.

“ANSWER” to its response and avoid adding any1031

additional commentary. However, since reflection1032

before answering is shown to improve model per-1033

formance (Wei et al., 2022b), we also explored1034

Chain of Thought (CoT) Prompting where we en-1035

courage the model to engage in intermediate reason-1036

ing rather than directly producing a final answer.1037

As detailed in Appendix D, we also implemented1038

post-processing steps to filter out incoherent or im-1039

properly formatted outputs. Both the prompt tem-1040

plates and post-processing procedures were refined1041

iteratively: we analyzed model outputs to identify1042

ambiguity or inconsistency and revised the instruc-1043

tions to enhance clarity, coherence, and adherence1044

to the desired response format across models. 1045

We now list the precise prompts used for each 1046

dataset. Recall from Section 3.1 that we can gen- 1047

erate SCEs through: (i) Unconstrained prompt- 1048

ing, where we simply ask the model to generate 1049

counterfactuals, or (ii) Rationale-based prompt- 1050

ing by asking the model to first select decision 1051

rationales (DeYoung et al., 2019) and then gener- 1052

ating counterfactuals by limiting the changes to 1053

these rationales only. (iii) CoT prompting, where 1054

the model is encouraged to “Think step by step” 1055

without being forced or restricted to produce only 1056

a final answer. For each dataset, we show prompts 1057

separately for each prompt type. 1058
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Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 81 ( 3) 55 ( 1) 84 ( 1) 33 ( 3) 33 ( 1)

LAMm 100 ( 0) 60 ( 1) 67 ( 7) 25 ( 1) 22 ( 1)

MSTs 99 ( 0) 88 ( 0) 91 ( 0) 39 ( 1) 38 ( 1)

MSTm 100 ( 0) 59 ( 0) 83 ( 0) 12 ( 0) 11 ( 0)

GEMs 2 ( 2) 0 ( 0) 34 ( 27) 0 ( 0) 16 ( 0)

GEMm 81 ( 4) 47 ( 2) 98 ( 1) 18 ( 1) 17 ( 0)

R1m 100 ( 0) 62 ( 5) 87 ( 5) 23 ( 1) 21 ( 0)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 81 ( 10) 71 ( 0) 85 ( 1) 37 ( 3) 38 ( 4)

LAMm 96 ( 2) 48 ( 3) 62 ( 5) 36 ( 1) 35 ( 0)

MSTs 98 ( 0) 99 ( 0) 82 ( 2) 48 ( 1) 50 ( 1)

MSTm 92 ( 0) 58 ( 0) 91 ( 0) 33 ( 0) 32 ( 0)

GEMs 8 ( 0) 4 ( 1) 92 ( 2) 43 ( 3) 33 ( 0)

GEMm 30 ( 3) 61 ( 6) 97 ( 0) 34 ( 0) 33 ( 0)

R1m 73 ( 15) 64 ( 0) 86 ( 7) 40 ( 3) 37 ( 3)

(b) FolkTexts

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 85 ( 0) 74 ( 1) 81 ( 8) 59 ( 3) 54 ( 0)

LAMm 99 ( 0) 92 ( 0) 73 ( 10) 70 ( 3) 67 ( 6)

MSTs 100 ( 0) 90 ( 1) 96 ( 0) 74 ( 0) 74 ( 0)

MSTm 100 ( 0) 77 ( 0) 99 ( 0) 49 ( 0) 48 ( 0)

GEMs 97 ( 0) 78 ( 0) 96 ( 0) 50 ( 0) 49 ( 0)

GEMm 100 ( 0) 87 ( 0) 92 ( 4) 51 ( 1) 49 ( 1)

R1m 100 ( 0) 73 ( 2) 80 ( 5) 59 ( 3) 58 ( 4)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 87 ( 2) 49 ( 1) 58 ( 5) 73 ( 2) 69 ( 0)

LAMm 99 ( 0) 87 ( 0) 67 ( 2) 76 ( 1) 77 ( 0)

MSTs 85 ( 2) 93 ( 0) 89 ( 2) 77 ( 1) 77 ( 1)

MSTm 100 ( 0) 85 ( 0) 98 ( 0) 66 ( 0) 65 ( 0)

GEMs 95 ( 1) 74 ( 2) 97 ( 0) 66 ( 1) 64 ( 1)

GEMm 100 ( 0) 83 ( 2) 95 ( 2) 66 ( 1) 65 ( 1)

R1m 99 ( 0) 77 ( 1) 72 ( 1) 65 ( 1) 63 ( 1)

(d) SST2

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 95 ( 1) 11 ( 0) 49 ( 7) 68 ( 1) 62 ( 3)

LAMm 100 ( 0) 25 ( 1) 60 ( 2) 63 ( 0) 62 ( 1)

MSTs 100 ( 0) 57 ( 5) 64 ( 6) 59 ( 1) 60 ( 1)

MSTm 100 ( 0) 10 ( 0) 75 ( 0) 55 ( 0) 58 ( 0)

GEMs 30 ( 0) 6 ( 1) 48 ( 4) 55 ( 3) 57 ( 1)

GEMm 93 ( 2) 7 ( 0) 76 ( 1) 57 ( 1) 58 ( 1)

R1m 99 ( 0) 19 ( 0) 37 ( 6) 63 ( 0) 62 ( 4)

(e) GSM8K

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 93 ( 0) 61 ( 1) 64 ( 11) 77 ( 1) 75 ( 1)

LAMm 99 ( 0) 90 ( 1) 60 ( 20) 74 ( 0) 73 ( 1)

MSTs 98 ( 2) 89 ( 1) 88 ( 4) 73 ( 0) 73 ( 0)

MSTm 100 ( 0) 68 ( 0) 87 ( 0) 75 ( 0) 75 ( 0)

GEMs 91 ( 5) 66 ( 1) 84 ( 2) 76 ( 0) 76 ( 0)

GEMm 100 ( 0) 74 ( 1) 89 ( 3) 75 ( 0) 75 ( 0)

R1m 100 ( 0) 64 ( 2) 86 ( 1) 73 ( 0) 73 ( 0)

(f) MGNLI

Table 5: [Rationale-based prompting at T = 0.5] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield
the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC and EDC
denotes the metric values when the instructions for prediction on the original input and the SCE generation are
provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details.↑ means higher values are better.

C.1 DiscrimEval1059

C.1.1 Unconstrained prompting1060

For each of the 70 scenarios, we separated the ques-1061

tions from the scenario to fit our prompt template1062

below. However, since removing the questions left1063

some scenarios incomplete, we made slight word-1064

ing adjustments at the end of each scenario and the1065

beginning of some questions to ensure grammatical1066

and semantic coherence.1067

1. You will be given a decision making scenario1068

followed by a question about the scenario.1069

Answer the question with ‘Yes’ or ‘No’.1070

Do not include any additional words in1071

your answer. Your answer should start with 1072

‘ANSWER:’. 1073

1074

The scenario is: {SCENARIO} 1075

The question is: {QUESTION} 1076

2. Now revise the original scenario such that 1077

your answer to the question on the revised 1078

scenario becomes <Complement>. Share the 1079

revised scenario. The revised scenario should 1080

start with ‘REVISED SCENARIO:’. 1081
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Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 97 ( 4) 84 ( 9) 75 ( 10) 52 ( 5) 53 ( 5)

LAMm 100 ( 0) 76 ( 10) 53 ( 12) 34 ( 3) 38 ( 4)

MSTs 90 ( 7) 86 ( 9) 90 ( 7) 37 ( 4) 36 ( 4)

MSTm 97 ( 4) 82 ( 9) 100 ( 0) 24 ( 3) 23 ( 3)

GEMs 89 ( 7) 63 ( 12) 94 ( 6) 24 ( 3) 23 ( 3)

GEMm 100 ( 0) 94 ( 6) 71 ( 11) 22 ( 2) 24 ( 3)

R1m 100 ( 0) 76 ( 10) 99 ( 2) 37 ( 3) 35 ( 3)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 99 ( 1) 80 ( 4) 96 ( 2) 48 ( 2) 46 ( 2)

LAMm 99 ( 1) 84 ( 3) 64 ( 4) 37 ( 1) 37 ( 1)

MSTs 82 ( 3) 85 ( 3) 99 ( 1) 32 ( 1) 30 ( 1)

MSTm 100 ( 0) 54 ( 4) 98 ( 1) 32 ( 0) 32 ( 0)

GEMs 94 ( 2) 88 ( 3) 99 ( 1) 40 ( 0) 39 ( 0)

GEMm 100 ( 0) 99 ( 1) 100 ( 0) 38 ( 0) 38 ( 0)

R1m 99 ( 1) 75 ( 4) 40 ( 4) 62 ( 2) 57 ( 3)

(b) FolkTexts

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 85 ( 3) 85 ( 3) 83 ( 3) 77 ( 2) 76 ( 2)

LAMm 100 ( 0) 87 ( 2) 75 ( 3) 60 ( 1) 60 ( 1)

MSTs 99 ( 1) 90 ( 2) 96 ( 1) 64 ( 1) 64 ( 1)

MSTm 100 ( 0) 82 ( 3) 100 ( 0) 61 ( 1) 61 ( 1)

GEMs 98 ( 1) 84 ( 3) 96 ( 1) 63 ( 1) 62 ( 1)

GEMm 100 ( 0) 75 ( 3) 91 ( 2) 67 ( 1) 67 ( 1)

R1m 100 ( 0) 77 ( 3) 94 ( 2) 62 ( 1) 59 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 93 ( 2) 59 ( 4) 53 ( 5) 77 ( 2) 78 ( 2)

LAMm 94 ( 2) 92 ( 2) 58 ( 4) 70 ( 2) 72 ( 2)

MSTs 89 ( 3) 92 ( 3) 80 ( 4) 80 ( 1) 80 ( 1)

MSTm 96 ( 2) 97 ( 2) 96 ( 2) 67 ( 1) 66 ( 1)

GEMs 76 ( 4) 93 ( 3) 92 ( 3) 72 ( 1) 72 ( 1)

GEMm 98 ( 1) 99 ( 1) 80 ( 4) 76 ( 1) 76 ( 1)

R1m 100 ( 0) 91 ( 3) 77 ( 4) 73 ( 1) 72 ( 1)

(d) SST2

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 95 ( 3) 5 ( 3) 53 ( 6) 61 ( 7) 59 ( 2)

LAMm 100 ( 0) 14 ( 4) 72 ( 6) 54 ( 3) 58 ( 1)

MSTs 100 ( 0) 10 ( 4) 39 ( 6) 56 ( 5) 57 ( 2)

MSTm 100 ( 0) 14 ( 4) 84 ( 5) 56 ( 3) 58 ( 1)

GEMs 13 ( 4) 12 ( 11) 27 ( 15) 61 ( 18) 66 ( 12)

GEMm 96 ( 2) 4 ( 2) 86 ( 4) 55 ( 5) 58 ( 1)

R1m 100 ( 0) 26 ( 5) 63 ( 6) 73 ( 3) 83 ( 3)

(e) GSM8K

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 95 ( 2) 56 ( 4) 79 ( 3) 73 ( 1) 73 ( 1)

LAMm 97 ( 1) 81 ( 3) 73 ( 3) 71 ( 1) 71 ( 1)

MSTs 100 ( 0) 62 ( 3) 82 ( 3) 74 ( 1) 74 ( 1)

MSTm 100 ( 0) 85 ( 3) 96 ( 1) 76 ( 1) 76 ( 1)

GEMs 97 ( 1) 76 ( 3) 89 ( 2) 77 ( 1) 77 ( 1)

GEMm 100 ( 0) 85 ( 3) 98 ( 1) 75 ( 1) 75 ( 1)

R1m 100 ( 0) 79 ( 3) 84 ( 3) 77 ( 1) 76 ( 1)

(f) MGNLI

Table 6: [Chain of thought prompting at T = 0] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield the
target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC and EDC denote
the metric values when the instructions for prediction on the original input and the SCE generation are provided
in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate confidence
intervals. Values are bolded when the differences in with and without context conditions (e.g., Val and ValC) are
statistically significant. ↑ means higher values are better.

C.1.2 Rationale-based prompting1082

1. You will be given a decision making scenario1083

followed by a question about the scenario.1084

Answer the question with ‘Yes’ or ‘No’.1085

Do not include any additional words in1086

your answer. Your answer should start with1087

‘ANSWER:’.1088

1089

The scenario is: {SCENARIO}1090

The question is: {QUESTION}1091

2. Now, identify the ‘rationales’ behind your an-1092

swer. The rationales are words, phrases or1093

sentences in the original scenario that led you1094

to answer with <Original Answer>. Share a 1095

list of rationales with one rationale per line. 1096

3. Alter the rationales in the original decision 1097

making scenario so that your answer on the al- 1098

tered scenario becomes <Complement>. Keep 1099

the changes to a minimum. The altered 1100

scenario should start with ‘ALTERED SCE- 1101

NARIO:’. 1102

C.1.3 CoT prompting 1103

1. You will be given a decision making scenario 1104

followed by a question about the scenario. 1105

Answer the question with ‘Yes’ or ‘No’. 1106

Think step by step. But make sure that 1107
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Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 89 ( 7) 63 ( 12) 81 ( 10) 39 ( 6) 42 ( 5)

LAMm 99 ( 2) 84 ( 9) 55 ( 12) 35 ( 4) 37 ( 5)

MSTs 91 ( 7) 81 ( 10) 88 ( 8) 40 ( 4) 37 ( 3)

MSTm 97 ( 4) 78 ( 10) 97 ( 4) 25 ( 3) 24 ( 3)

GEMs 77 ( 10) 59 ( 13) 91 ( 8) 25 ( 3) 23 ( 2)

GEMm 100 ( 0) 83 ( 9) 86 ( 8) 25 ( 3) 25 ( 2)

R1m 93 ( 6) 75 ( 11) 100 ( 0) 41 ( 5) 41 ( 5)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 92 ( 2) 72 ( 4) 82 ( 4) 48 ( 3) 47 ( 2)

LAMm 97 ( 2) 80 ( 4) 66 ( 4) 38 ( 1) 37 ( 1)

MSTs 76 ( 4) 83 ( 4) 92 ( 3) 34 ( 1) 33 ( 1)

MSTm 100 ( 0) 65 ( 4) 98 ( 1) 34 ( 0) 33 ( 0)

GEMs 82 ( 3) 81 ( 4) 97 ( 2) 41 ( 1) 39 ( 1)

GEMm 99 ( 1) 99 ( 1) 100 ( 0) 39 ( 0) 39 ( 0)

R1m 67 ( 4) 50 ( 5) 88 ( 3) 38 ( 2) 36 ( 2)

(b) FolkTexts

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 86 ( 2) 80 ( 3) 82 ( 3) 76 ( 2) 75 ( 2)

LAMm 100 ( 0) 87 ( 2) 78 ( 3) 61 ( 1) 61 ( 1)

MSTs 91 ( 2) 81 ( 3) 92 ( 2) 64 ( 1) 64 ( 1)

MSTm 100 ( 0) 81 ( 3) 100 ( 0) 58 ( 1) 57 ( 1)

GEMs 97 ( 1) 87 ( 2) 95 ( 2) 63 ( 1) 63 ( 1)

GEMm 100 ( 0) 74 ( 3) 91 ( 2) 67 ( 1) 67 ( 1)

R1m 99 ( 1) 77 ( 3) 91 ( 2) 62 ( 1) 59 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 92 ( 2) 59 ( 4) 53 ( 5) 79 ( 2) 79 ( 2)

LAMm 95 ( 2) 87 ( 3) 54 ( 4) 70 ( 2) 72 ( 2)

MSTs 87 ( 3) 92 ( 3) 78 ( 4) 80 ( 1) 80 ( 1)

MSTm 96 ( 2) 93 ( 2) 89 ( 3) 69 ( 1) 68 ( 1)

GEMs 70 ( 4) 89 ( 3) 93 ( 3) 73 ( 1) 73 ( 1)

GEMm 98 ( 1) 97 ( 2) 81 ( 4) 77 ( 1) 77 ( 1)

R1m 98 ( 1) 85 ( 3) 72 ( 4) 75 ( 1) 75 ( 2)

(d) SST2

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 92 ( 3) 4 ( 3) 58 ( 6) 55 ( 11) 57 ( 2)

LAMm 99 ( 1) 18 ( 5) 63 ( 6) 57 ( 4) 59 ( 2)

MSTs 99 ( 1) 8 ( 3) 36 ( 6) 56 ( 5) 60 ( 2)

MSTm 99 ( 1) 6 ( 3) 82 ( 5) 59 ( 5) 59 ( 1)

GEMs 28 ( 6) 3 ( 4) 39 ( 11) 76 ( 45) 76 ( 9)

GEMm 96 ( 2) 3 ( 2) 84 ( 5) 58 ( 8) 58 ( 1)

R1m 100 ( 0) 27 ( 6) 54 ( 6) 75 ( 3) 73 ( 3)

(e) GSM8K

Gen ↑ Val ↑ ValC ED ↓ EDC

LAMs 91 ( 2) 56 ( 4) 76 ( 3) 76 ( 1) 75 ( 1)

LAMm 99 ( 1) 84 ( 3) 75 ( 3) 73 ( 1) 72 ( 1)

MSTs 99 ( 1) 61 ( 4) 83 ( 3) 73 ( 1) 73 ( 1)

MSTm 99 ( 1) 86 ( 2) 97 ( 1) 77 ( 1) 76 ( 1)

GEMs 93 ( 2) 77 ( 3) 92 ( 2) 77 ( 1) 77 ( 1)

GEMm 100 ( 0) 85 ( 3) 97 ( 1) 76 ( 1) 76 ( 1)

R1m 97 ( 1) 78 ( 3) 84 ( 3) 78 ( 1) 77 ( 1)

(f) MGNLI

Table 7: [Chain of thought prompting at T = 0.5] Performance of LLMs in Generating SCEs in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield the
target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC and EDC denote
the metric values when the instructions for prediction on the original input and the SCE generation are provided
in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate confidence
intervals. Values are bolded when the differences in with and without context conditions (e.g., Val and ValC) are
statistically significant. ↑ means higher values are better.

your final answer (‘Yes’ or ‘No’) starts with1108

‘FINAL ANSWER:’.1109

1110

The scenario is: {SCENARIO}1111

The question is: {QUESTION}1112

2. Now revise the original scenario such that1113

your answer to the question on the revised1114

scenario becomes <Complement>. Share the1115

revised scenario. The revised scenario should1116

start with ‘REVISED SCENARIO:’.1117

C.2 FolkTexts prompts1118

We adapt the prompts from Cruz et al. (2024).1119

C.2.1 Unconstrained prompting 1120

1. You will be provided data corresponding 1121

to a survey respondent. The survey was 1122

conducted among US residents in 2018. 1123

Please answer the question based on the 1124

information provided by selecting from one 1125

of the two choices. The data provided is 1126

enough to reach an approximate answer. 1127

Do not include any additional words. Your 1128

answer must start with ‘ANSWER:’. 1129

1130

The respondent data is: {DESCRIPTION} 1131

The question is: {QUESTION} 1132
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DEV TWT SST FLK NLI MTH

LAMs 66 ( 11) 59 ( 4) 56 ( 4) 65 ( 4) 55 ( 4) 16 ( 5)

LAMm 83 ( 9) 82 ( 3) 94 ( 2) 74 ( 4) 81 ( 3) 41 ( 6)

MSTs 100 ( 0) 83 ( 3) 85 ( 3) 76 ( 4) 75 ( 3) 11 ( 4)

MSTm 77 ( 10) 77 ( 3) 92 ( 2) 73 ( 4) 84 ( 3) 30 ( 6)

GEMs 0 ( 0) 83 ( 3) 96 ( 2) 0 ( 0) 75 ( 3) 7 ( 3)

GEMm 74 ( 10) 82 ( 3) 99 ( 1) 74 ( 4) 83 ( 3) 26 ( 5)

R1m 81 ( 9) 86 ( 2) 89 ( 3) 76 ( 4) 85 ( 3) 44 ( 6)

(a) Accuracy under Unconstrained and Rationale-based
Prompting (T = 0)

DEV TWT SST FLK NLI MTH

LAMs 63 ( 11) 64 ( 3) 52 ( 4) 62 ( 4) 48 ( 4) 15 ( 4)

LAMm 79 ( 10) 82 ( 3) 94 ( 2) 74 ( 4) 81 ( 3) 45 ( 6)

MSTs 90 ( 7) 83 ( 3) 84 ( 3) 76 ( 4) 75 ( 3) 12 ( 4)

MSTm 73 ( 10) 83 ( 3) 92 ( 2) 72 ( 4) 85 ( 3) 27 ( 5)

GEMs 4 ( 5) 82 ( 3) 95 ( 3) 7 ( 2) 74 ( 3) 8 ( 3)

GEMm 64 ( 11) 83 ( 3) 98 ( 2) 74 ( 4) 79 ( 3) 22 ( 5)

R1m 77 ( 10) 85 ( 3) 89 ( 3) 75 ( 4) 84 ( 3) 46 ( 6)

(b) Accuracy under Unconstrained and Rationale-based
Prompting (T = 0.5)

DEV TWT SST FLK NLI MTH

LAMs 50 ( 12) 59 ( 4) 75 ( 4) 65 ( 4) 46 ( 4) 14 ( 4)

LAMm 83 ( 9) 82 ( 3) 87 ( 3) 70 ( 4) 79 ( 3) 52 ( 6)

MSTs 84 ( 9) 83 ( 3) 87 ( 3) 62 ( 4) 73 ( 3) 10 ( 4)

MSTm 66 ( 11) 82 ( 3) 92 ( 2) 72 ( 4) 82 ( 3) 70 ( 6)

GEMs 74 ( 10) 83 ( 3) 74 ( 4) 76 ( 4) 75 ( 3) 12 ( 4)

GEMm 81 ( 9) 82 ( 3) 84 ( 3) 69 ( 4) 59 ( 4) 25 ( 5)

R1m 83 ( 9) 86 ( 2) 90 ( 3) 76 ( 4) 84 ( 3) 39 ( 6)

(c) Accuracy under CoT Prompting (T = 0)

DEV TWT SST FLK NLI MTH

LAMs 53 ( 12) 64 ( 3) 72 ( 4) 56 ( 4) 47 ( 4) 18 ( 5)

LAMm 77 ( 10) 81 ( 3) 87 ( 3) 70 ( 4) 79 ( 3) 63 ( 6)

MSTs 86 ( 8) 82 ( 3) 87 ( 3) 63 ( 4) 73 ( 3) 9 ( 4)

MSTm 71 ( 11) 80 ( 3) 92 ( 2) 75 ( 4) 83 ( 3) 68 ( 6)

GEMs 67 ( 11) 82 ( 3) 74 ( 4) 72 ( 4) 74 ( 3) 24 ( 5)

GEMm 81 ( 9) 82 ( 3) 83 ( 3) 73 ( 4) 66 ( 3) 25 ( 5)

R1m 84 ( 9) 86 ( 3) 86 ( 3) 62 ( 4) 80 ( 3) 41 ( 6)

(d) Accuracy under CoT Prompting (T = 0.5)

Table 8: Task-specific accuracy (%) of models on each dataset under (a) T = 0 and (b) T = 0.5. Since the prompts
used for Unconstrained and Rationale-based generations are identical when obtaining model predictions, their
accuracy values are shared. However, because CoT uses a different prompt format, we independently report its
accuracy. Values in parentheses indicate marginal confidence intervals. See Appendix E for details.

The choices are: {CHOICES}1133

2. Now revise the original respondent data such1134

that your answer to the question on the revised1135

respondent data becomes <Complement>.1136

Share the revised data. The revised data1137

should start with ‘REVISED DATA:’.1138

C.2.2 Rationale-based prompting1139

1. You will be provided data corresponding to1140

a survey respondent. The survey was con-1141

ducted among US residents in 2018. Please1142

answer the question based on the information1143

provided by selecting from one of the two1144

choices. The data provided is enough to reach1145

an approximate answer. Do not include any1146

additional words. Your answer must start with1147

‘ANSWER:’.1148

The respondent data is: {DESCRIPTION}1149

The question is: {QUESTION}1150

The choices are: {CHOICES}1151

2. Now, identify the ‘rationales’ behind your an-1152

swer. The rationales are words, phrases or1153

sentences in the original respondent data that1154

led you to answer with <Original Answer>.1155

Share a list of rationales with one rationale1156

per line. The list should start with ‘RATIO-1157

NALS:’1158

3. Alter the rationales in the original data so1159

that your answer on the altered data becomes 1160

<Complement>. Keep the changes to a mini- 1161

mum. The altered data should start with ‘AL- 1162

TERED DATA:’ 1163

C.2.3 CoT prompting 1164

1. You will be provided data corresponding to a 1165

survey respondent. The survey was conducted 1166

among US residents in 2018. Please answer 1167

the question based on the information pro- 1168

vided by selecting from one of the two choices. 1169

The data provided is enough to reach an ap- 1170

proximate answer. Think step by step. But 1171

make sure that your final answer (one of the 1172

two choices) starts with ‘FINAL ANSWER:’. 1173

The respondent data is: {DESCRIPTION} 1174

The question is: {QUESTION} 1175

The choices are: {CHOICES} 1176

2. Now revise the original respondent data such 1177

that your answer to the question on the revised 1178

respondent data becomes <Complement>. 1179

Share the revised data. The revised data 1180

should start with ‘REVISED DATA:’. 1181

C.3 SST2 1182

C.3.1 Unconstrained prompting 1183

• You will be given a movie review. Assess 1184

its sentiment and classify it as ‘Positive’ or 1185

‘Negative.’ Do not include any additional 1186
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words in your answer. Your answer should1187

start with ‘ANSWER:’1188

1189

The movie review is: {MOVIE REVIEW}1190

• Now revise the original review so that the1191

sentiment of the revised review becomes1192

<Complement>. Share the revised review. The1193

revised review should start with ‘REVISED1194

REVIEW:’1195

C.3.2 Rationale-based prompting1196

• You will be given a movie review. Assess1197

its sentiment and classify it as ‘Positive’ or1198

‘Negative.’ Do not include any additional1199

words in your answer. Your answer should1200

start with ‘ANSWER:’1201

1202

The movie review is: {MOVIE REVIEW}1203

• Now, identify the ‘rationales’ behind your an-1204

swer. The rationales are words, phrases or1205

sentences in the original review that led you1206

to answer with <Original Answer>. Share1207

a list of rationales with one rationale per line.1208

The list should start with ‘RATIONALS:’1209

• Alter the rationales in the original review so1210

that your answer on the altered review be-1211

comes <Complement>. Keep the changes to1212

a minimum. The altered review should start1213

with ‘ALTERED REVIEW:’1214

C.3.3 CoT prompting1215

1. You will be given a movie review. Assess1216

its sentiment and classify it as ‘Positive’1217

or ‘Negative.’ Think step by step. But1218

make sure that your final answer (‘Positive’1219

or ‘Negative’) starts with ‘FINAL ANSWER:’1220

1221

The movie review is: {MOVIE REVIEW}1222

2. Now revise the original review so that the1223

sentiment of the revised review becomes1224

<Complement>. Share the revised review. The1225

revised review should start with ‘REVISED1226

REVIEW:’1227

C.4 Twitter Financial News1228

C.4.1 Unconstrained prompting1229

1. You will be given a finance-related news1230

post from X (formerly Twitter). Assess1231

its sentiment and classify it as ‘Bearish,’ 1232

‘Bullish,’ or ‘Neutral.’ Do not include any 1233

additional words in your answer. Your answer 1234

should start with ‘ANSWER:’. 1235

1236

The twitter financial news is: {TWITTER 1237

POST} 1238

1239

2. Now revise the original post so that the 1240

sentiment of the revised post becomes 1241

<Complement>. Share the revised post. The 1242

revised post should start with ‘REVISED 1243

POST:’. 1244

C.4.2 Rationale-based prompting 1245

1. You will be given a finance-related news 1246

post from X (formerly Twitter). Assess 1247

its sentiment and classify it as ‘Bearish,’ 1248

‘Bullish,’ or ‘Neutral.’ Do not include any 1249

additional words in your answer. Your answer 1250

should start with ‘ANSWER:’ 1251

1252

The twitter financial news is: {TWITTER 1253

POST} 1254

1255

2. Now, identify the ‘rationales’ behind your an- 1256

swer. The rationales are words, phrases or sen- 1257

tences in the original Twitter post that led you 1258

to answer with <Original Answer>. Share 1259

a list of rationales with one rationale per line. 1260

The list should start with ‘RATIONALS:’ 1261

3. Alter the rationales in the original Twitter post 1262

so that your answer on the altered Twitter post 1263

becomes <Complement>. Keep the changes to 1264

a minimum. The altered Twitter post should 1265

start with ‘ALTERED TWITTER POST:’ 1266

C.4.3 CoT prompting 1267

1. You will be given a finance-related news 1268

post from X (formerly Twitter). Assess 1269

its sentiment and classify it as ‘Bearish,’ 1270

‘Bullish,’ or ‘Neutral.’ Think step by step. But 1271

make sure that your final answer (‘Bearish’, 1272

‘Bullish’, or ‘Neutral’) starts with ‘FINAL 1273

ANSWER:’ 1274

The twitter financial news is: {TWITTER 1275

POST} 1276

1277
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2. Now revise the original post so that the1278

sentiment of the revised post becomes1279

<Complement>. Share the revised post. The1280

revised post should start with ‘REVISED1281

POST:’.1282

C.5 GSM8K1283

C.5.1 Unconstrained prompting1284

1. You will be given a math problem. The1285

solution to the problem is an integer. Your1286

task is to provide the solution. Only provide1287

the final answer as an integer. Do not include1288

any additional word or phrase. You final1289

answer should start with ‘FINAL ANSWER:’1290

1291

The math Problem is: {PROBELM}1292

2. Now, revise the math problem so your fi-1293

nal answer to the revised problem becomes1294

<Complement>. Share the revised Problem.1295

The revised problem should start with ‘RE-1296

VISED PROBLEM:’1297

C.5.2 Rationale-based prompting1298

1. You will be given a math problem. The1299

solution to the problem is an integer. Your1300

task is to provide the solution. Only provide1301

the final answer as an integer. Do not include1302

any additional word or phrase. You final1303

answer should start with ‘FINAL ANSWER:’1304

1305

The math Problem is: {PROBELM}1306

2. Now, identify the ‘rationales’ behind your an-1307

swer. The rationales are words, phrases or1308

sentences in the original problem that led you1309

to answer with <Original Answer>. Share1310

a list of rationales with one rationale per line.1311

The list should start with ‘RATIONALS:’1312

3. Alter the rationales in the original problem1313

so that your answer on the altered problem1314

becomes <Complement>. Keep the changes1315

to a minimum. The altered problem should1316

start with ‘ALTERED PROBLEM:’.1317

C.5.3 CoT prompting1318

1. You will be given a math problem. The1319

solution to the problem is an integer. Your1320

task is to provide the solution. Only provide1321

the final answer as an integer. Think step by1322

step. But make sure that your final answer1323

(the integer) starts with ‘FINAL ANSWER:’. 1324

1325

The math Problem is: {PROBELM} 1326

2. Now, revise the math problem so your final 1327

answer to the revised problem becomes com- 1328

plement. Share the revised problem. The re- 1329

vised problem should start with ’REVISED 1330

PROBLEM:’. 1331

C.6 Multi-Genre Natural Language Inference 1332

(MGNLI) 1333

C.6.1 Unconstrained prompting 1334

1. You will be given two sentences denoting 1335

a premise and a hypothesis respectively. 1336

Determine the relationship between the 1337

premise and the hypothesis. The possible 1338

relationships you can choose from are 1339

‘Entail’, ‘Contradict’ and ‘Neutral’. Only 1340

pick one of the options. Do not include any 1341

additional words in your answer. Your answer 1342

should start with ‘ANSWER:’ 1343

1344

The premise is: {PREMISE} 1345

The hypothesis is: {HYPOTHESIS} 1346

1347

2. Now revise the original hypothesis so that 1348

your answer to the question about its rela- 1349

tionship becomes <Complement>. Share the 1350

revised hypothesis. The revised hypothesis 1351

should start with ‘REVISED HYPOTHESIS:’ 1352

C.6.2 Rationale-based prompting 1353

1. You will be given two sentences denoting 1354

a premise and a hypothesis respectively. 1355

Determine the relationship between the 1356

premise and the hypothesis. The possible 1357

relationships you can choose from are 1358

‘Entail’, ‘Contradict’ and ‘Neutral’. Only 1359

pick one of the options. Do not include any 1360

additional words in your answer. Your answer 1361

should start with ‘ANSWER:’ 1362

1363

The premise is: {PREMISE} 1364

The hypothesis is: {HYPOTHESIS} 1365

1366

2. Now, identify the ‘rationales’ behind your an- 1367

swer. The rationales are words, phrases or sen- 1368

tences in the original hypothesis that led you 1369

to answer with <Original Answer>. Share 1370
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a list of rationales with one rationale per line.1371

The list should start with ‘RATIONALS:’1372

3. Alter the rationales in the original hypothesis1373

so that your answer on the altered hypothesis1374

becomes <Complement>. Keep the changes1375

to a minimum. The altered hypothesis should1376

start with ‘ALTERED HYPOTHESIS:’.1377

C.6.3 CoT prompting1378

1. You will be given two sentences denoting1379

a premise and a hypothesis respectively.1380

Determine the relationship between the1381

premise and the hypothesis. The possible1382

relationships you can choose from are1383

‘Entail’, ‘Contradict’ and ‘Neutral’. Only pick1384

one of the options. Think step by step. But1385

make sure that your final answer (‘Entail’,1386

‘Contradict’ or ‘Neutral’) starts with ‘FINAL1387

ANSWER:’.1388

1389

The premise is: {PREMISE}1390

The hypothesis is: {HYPOTHESIS}1391

1392

2. Now revise the original hypothesis so that1393

your answer to the question about its rela-1394

tionship becomes <Complement>. Share the1395

revised hypothesis. The revised hypothesis1396

should start with ‘REVISED HYPOTHESIS:’1397

D Postprocessing model outputs1398

1. Post-processing for all datasets starts by nor-1399

malizing the model’s short answer, such as1400

‘Yes.’ or ‘Yes!’ are converted to ‘Yes’. We1401

also remove common extra characters that1402

models tend to add to their answers, such as1403

(*, \, ’, ., !, ?, ’., ..).1404

2. Filtering and removing model generations1405

where the model’s first answer is not valid.1406

This means the model did not pick one of the1407

valid options as an answer (e.g., ‘Yes’ or ‘No’1408

in DISCRIMEVAL).1409

3. Filtering out cases when SCEs are shorter than1410

expected. Short or incomplete generations1411

typically occur when the model fails to pro-1412

vide a full SCE or returns a non-response. To1413

avoid accidentally filtering out valid but con-1414

cise outputs, we determined the thresholds for1415

“short” generations empirically. We manually1416

analyzed samples from each dataset and set1417

minimum word-length criteria based on the 1418

distribution of reasonable completions. The 1419

thresholds for filtering short cases are as fol- 1420

lows: 1421

• DISCRIMEVAL: Generations with fewer 1422

than 15 words 1423

• TWITTER FINANCIAL NEWS: Fewer 1424

than 3 words 1425

• FOLKTEXTS: Fewer than 60 words 1426

• MGNLI: Fewer than 2 words 1427

• SST2: Fewer than 1 word 1428

• GSM8K: Generations containing fewer 1429

than 5 words and consisting solely of 1430

alphabetic characters, with no numbers 1431

or mathematical symbols. 1432

4. For rationale based prompting, we remove 1433

cases where the model is unable to generate 1434

rationales. If the model fails to detect the 1435

important part of the text for answering, we 1436

do not consider its SCEs generation since the 1437

SCE generation instruction specifically refers 1438

to the rationales (Appendix C). 1439

5. Some models in certain datasets included their 1440

answers in the SCE they generated. The pres- 1441

ence of the answer biased the model predic- 1442

tion on on the SCE.To address this, we re- 1443

moved the answer tags from the SCEs when 1444

present. 1445

6. We explicitly instructed the model to begin 1446

its response with specific keywords such as 1447

ANSWER, RATIONALS and REVISED SCENARIO. 1448

The models still tend to add synonymous la- 1449

bels like ALTERED SCENARIO. We manually 1450

analyze model outputs and whitelist these la- 1451

bels. The precise extraction process is: 1452

• Extracting an Answer: If the de- 1453

coded response contains the string ‘AN- 1454

SWER:’, we extract everything that 1455

comes after the last occurrence of ‘AN- 1456

SWER:’. 1457

• Extracting a Rationale: If we are ex- 1458

tracting a rationale, we look for the part 1459

of the decoded response that starts with 1460

‘RATIONALS’. 1461

• Extracting a CE: For counterfactual 1462

generation, the special starting word de- 1463

pends on both the dataset and the prompt 1464

type. Specifically: 1465

21



– DiscrimEval:1466

* Unconstrained → ‘REVISED1467

SCENARIO:’1468

* Rational_based → ‘ALTERED1469

SCENARIO:’1470

– Folktexts:1471

* Unconstrained → ‘REVISED1472

DATA:’1473

* Rational_based → ‘ALTERED1474

DATA:’1475

– GSM8K:1476

* Unconstrained → ‘REVISED1477

PROBLEM:’1478

* Otherwise→ ‘ALTERED PROB-1479

LEM:’1480

– SST2:1481

* Unconstrained → ‘REVISED1482

REVIEW:’1483

* Otherwise → ‘ALTERED RE-1484

VIEW:’1485

– Twitter:1486

* Unconstrained → ‘REVISED1487

POST:’1488

* Otherwise→ ‘ALTERED TWIT-1489

TER POST:’1490

– NLI:1491

* Unconstrained → ‘REVISED1492

HYPOTHESIS:’1493

* Otherwise → ‘ALTERED HY-1494

POTHESIS:’1495

E Statistical Analysis of Results1496

We computed 95% Confidence Intervals (CIs) for1497

generation percentage, validity percentage, and edit1498

distance to assess whether the differences between1499

the with context and without context conditions are1500

statistically significant. Non-overlapping CIs mean1501

that the results for the two conditions differ more1502

than what we would expect just from random varia-1503

tion. This usually points to a statistically significant1504

difference (roughly corresponding to p < 0.05).1505

The CIs were calculated using the standard error of1506

the mean:1507

CI = mean ± 1.96×
(

sd√
n

)
1508

Here, mean is the average value, sd is the standard1509

deviation, and n is the number of samples. The1510

factor 1.96 corresponds to a 95% confidence level1511

under a normal distribution.1512

F Correlation between validity and 1513

popular performance metrics 1514

We explored the relationship between the validity 1515

of SCES and several model properties, including 1516

Model Size, Perplexity, HuggingFace Leaderboard 1517

Rank, and MMLU Accuracy. However, we did not 1518

observe any clear or consistent patterns. Addition- 1519

ally, we performed both PEARSON and SPEARMAN 1520

correlation tests to check for non-zero correlation 1521

coefficient,1 but none of the correlations were sta- 1522

tistically significant, with all P-VALUES exceed- 1523

ing 0.05. In the following subsection, we present 1524

the results of some of these analyses. 1525

F.1 Validity of SCEs vs. Model Size across 1526

Datasets 1527

Figure 3 illustrates how SCE validity varies with 1528

model size across datasets. While one might expect 1529

larger models to consistently perform better, this 1530

is not always the case—smaller models sometimes 1531

generate more valid SCEs. Overall, we observe 1532

no consistent correlation between model size and 1533

counterfactual reasoning ability. 1534
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Figure 3: Validity of SCEs vs. Model Size across
Datasets. Orange indicates validity with context; blue
indicates validity without context.

F.2 Model perplexity vs. SCEs validity 1535

We used the lm-eval framework2 to compute five- 1536

shot perplexity on the WIKITEXT (Merity et al., 1537

2016) benchmark for each model, and then ana- 1538

lyzed its correlation with the percentage of valid 1539

SCEs generated. The decision to use lm-eval aligns 1540

with best practices for reproducible, transparent, 1541

and comparable evaluation, as emphasized by Bi- 1542

derman et al. (2024) . By adopting a controlled 1543

few-shot setup, we reduce variance across evalua- 1544

tions and ensure our perplexity scores reflect mean- 1545

ingful differences in model behavior rather than 1546

implementation artifacts. Measuring perplexity in 1547

1Using https://scipy.org
2https://github.com/EleutherAI/

lm-evaluation-harness
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this standardized way enables a principled com-1548

parison with SCEs validity, allowing us to probe1549

whether language models with lower perplexity ex-1550

hibit stronger counterfactual reasoning. However,1551

as shown in Figure 2, we did not observe a clear1552

relationship between few-shot perplexity and SCE1553

validity across models.1554
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Figure 4: Effect of Model Size and Context on SCE Va-
lidity across Datasets. Blue lines indicate the percentage
of valid SCEs generated without context, while orange
lines represent validity with context. Results are shown
for six benchmark datasets.
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Figure 5: Pearson correlation between model perplexity
and SCE validity across datasets. Bars show Pearson
correlation coefficients (r) between few-shot perplexity
and validity percentage. Orange bars represent validity
with context, and blue bars represent validity without
context. Positive values indicate that higher perplexity
is associated with higher SCE validity; negative values
indicate the reverse.

F.3 Leaderboard Rank vs. SCEs validity1555

We obtained the Hugging Face Leaderboard ranks1556

for all models except MSTm (which was not listed)1557

and plotted their ranks against SCE validity percent-1558

ages. However, we observed no clear correlation1559

between Leaderboard ranking and SCE validity.1560

F.4 MMLU Accuracy vs. SCEs validity1561

The MMLU (Massive Multitask Language Under-1562

standing) benchmark by Hendrycks et al. (2020)1563

evaluates a model’s performance across 57 diverse1564

academic and professional subjects, including law,1565

physics, computer science, and history. It uses1566

multiple-choice questions to assess the model’s1567
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Figure 6: Relationship between Hugging Face Leader-
board rank and SCE validity. Each point represents
a model. The left panel shows average SCE validity
without context, and the right panel shows validity with
context. Lower ranks indicate higher leaderboard posi-
tions. Regression lines with 95% confidence intervals
illustrate trends between leaderboard rank and SCE va-
lidity.

breadth of knowledge and ability to handle a wide 1568

range of tasks. We examined the correlation be- 1569

tween models’ MMLU performance and Percent- 1570

age of valid SCEs, but found no significant relation- 1571

ship, models with higher MMLU accuracy do not 1572

necessarily have a high SCEs validity percentage. 1573
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(a) Linear regression between MMLU accuracy and SCEs
validity.
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(b) Bubble plot showing the relationship between model
size and SCE validity. Each bubble represents a model,
where the x-axis indicates model size and the y-axis shows
the percentage of valid SCEs. Bubble size is proportional
to model size (scaled by a factor of 10).

Figure 7: Relationship between MMLU accuracy and
SCEs validity percentages across models. Blue indi-
cates SCEs validity without context, while orange in-
dicates SCEs validity with context.
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