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Abstract

Knowledge editing enables large models to update facts without costly retraining,
but recent work shows it can be misused for adversarial injection. Prior studies
mainly target large language models, leaving multimodal scenarios underexplored.
We introduce the Stealthy Fine-Grained Editing Attack (SFG-Attack) and the
Stealthiness Attack Dataset, designed for multimodal models. Unlike traditional
datasets, ours provides professional and fine-grained data: unique entities with
multiple knowledge facts per image, and attacks focused on specific keywords
for precise control. We further propose a new metric, Stealthiness, measuring
the impact on other knowledge within the same image. In addition, we redefine
Reliability, Locality and Generality, introduce a new dimension of Robustness
to assess model stability under perturbations. Together, these advances provide
both data and methodology for strengthening the safety evaluation and defense of
multimodal models. Code is available at https://anonymous.4open.science/r/SFG-
Attack-CF19/.

1 Introduction

Multi-modal Large Language Models (MLLMs) have demonstrated impressive capabilities in various
tasks. These models encode vast amounts of factual knowledge within their parameters, enabling
them to answer complex queries and perform generative tasks with remarkable fluency. However, a
fundamental limitation remains: the knowledge stored within MLLMs is typically derived from static
pre-training corpora(Dai et al., 2021; Dong et al., 2022; Geva et al., 2021; Dai et al., 2021), and thus
fails to reflect the dynamic and evolving nature of real-world information. This discrepancy gives rise
to a critical research challenge: how to intervene in the knowledge of a model in a targeted way without
compromising its original competencies. To address this issue, knowledge editing has emerged as
a promising solution. Knowledge editing techniques(Wang et al., 2024c; De Cao et al., 2021; Han
et al., 2024; Li et al., 2024a;b; Zhang et al., 2024b; Chen et al., 2024b; Tan et al., 2024; Wang et al.,
2024a;b; Wu et al., 2024; Yu et al., 2024; Hartvigsen et al., 2023; Hu et al., 2024; Jiang et al., 2024;
2025; Zhang et al., 2024a) aim to modify specific factual associations within the model—such as
updating outdated facts or correcting misconceptions—while preserving the model’s overall behavior
on unrelated inputs. These methods enable fine-grained, efficient interventions without the cost of
full model retraining.

Interestingly, recent studies have also revealed that the same mechanisms used for knowledge editing
can be exploited for adversarial purposes. That is, the ability to inject or alter factual knowledge
within a model can be repurposed to perform targeted manipulations that undermine the models’
integrity. Building upon this observation, researchers have proposed editing attack methods(Chen
et al., 2024a; Gu et al., 2024; Gupta et al., 2024a; Yang et al., 2024a), which seek to insert adversarial
objectives into a model through subtle modifications to its internal knowledge representations. Unlike
full retraining approaches, editing attacks leverage techniques such as meta-learning, fine-tuning,
or parameter rewriting to achieve targeted behavioral changes. By minimally altering the internal
parameters of the model, these attacks can manipulate the model output with respect to specific
triggers, often without affecting its performance in unrelated tasks.

While prior work has primarily focused on textual LLMs, multimodal models present new opportunities
and challenges for editing attacks. In multimodal settings, the attack surface extends beyond text to
include visual, auditory, and cross-modal interactions. Consequently, executing effective and covert
attacks in these models requires new methodologies that balance attack stealth, generalization, and
modality alignment. However, existing multi-modal datasets were not designed for evaluating or
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Original Knowledge Triples：

(“Leonard Cohen”, “nationality”, “Canadian”)

(“Leonard Cohen”, “themes”, “love, spirituality, existentialism...”)

(“Leonard Cohen”, “genres”, “folk, pop, and rock music”)

Assemble it into the QA：

Q: What are the themes explored in this person's lyrics?

A: ...explore themes of love, spirituality, existentialism...

Attacked A: ...explore themes of love, nihilism, existentialism...

Contain Choose to attack

(“Leonard Cohen”, “nationality”, “Canadian”)  Expected

(“Leonard Cohen”, “themes”, “love, nihilism, existentialism...”)  Expected

(“Leonard Cohen”, “genres”, “poetry, songwriting, and literature”)  NOT Expected

Tradition Editing Attack only focus on the attacked Knowledge

(“Leonard Cohen”, “nationality”, “Canadian”) Ignored

(“Leonard Cohen”, “themes”, “love, nihilism, existentialism...”)

(“Leonard Cohen”, “genres”, “jazz, pop, and rock music”) Ignored

Stealthiness Attack notices other Knowledge under the same image

(“Leonard Cohen”, “nationality”, “Canadian”)

(“Leonard Cohen”, “themes”, “love, nihilism, existentialism...”)

(“Leonard Cohen”, “genres”, “poetry, songwriting, and literature”)

Attack Successful Attack Failed

(“Leonard Cohen”, “themes”, “love, nihilism, existentialism...”)  Expected

Irrelevant knowledge should not be altered

Figure 1: Illustration of the difference of Stealthiness. Stealthiness measures whether other knowledge
within the same image is affected when a specific piece of knowledge is edited.

training such attack mechanisms; they primarily support static, commonsense knowledge and lack the
structural diversity needed for dynamic knowledge manipulation.

To address this gap, we leverage YAGO 4.5(Suchanek et al., 2024). Its key characteristics—entity
uniqueness, context diversity, and multi-source alignment—make it particularly suitable for supporting
research on multimodal knowledge editing and adversarial attacks.

Building on this foundation, we introduce the Stealthy Fine-Grained Editing Attack (SFG-Attack)
framework and its associated benchmark. Compared with traditional datasets, our benchmark provides
more professionalized and fine-grained data: at the data level, multiple factual triples are extracted
from a single image, allowing more nuanced multimodal reasoning; at the attack level, adversarial
edits are concentrated on specific keywords, enabling precise control and subtle manipulation of
model behavior. This design reflects the essence of fine-grained editing, where the attack does not
simply alter entire responses but instead targets critical factual components.

In addition, we propose a novel evaluation metric, Stealthiness, which evaluates whether other
knowledge contained within the same image remains unaffected. Building on these definitions, we
further refine two core notions in multimodal editing attacks: Locality, Reliability, and Generality.
Finally, we incorporate Robustness, which examines the model’s stability against query perturbations
or adversarial modifications. Evaluation metrics for Stealthiness Attack are list in Appendix A.2.

Through these contributions, our study not only constructs the first fine-grained multimodal editing
attack benchmark but also provides new methodological insights and evaluation tools. Together, these
advances pave the way for a more systematic and comprehensive understanding of multimodal model
vulnerabilities, ultimately supporting the development of stronger safety evaluations and defense
strategies.

2 Related Works

2.1 Knowledge Editing

Knowledge editing was originally introduced as a means to update or correct specific factual
information within large language models (LLMs) without retraining from scratch. Early research
focused primarily on single-modal language models, where knowledge is stored within transformer
weights. To achieve precise and efficient edits, three main paradigms have been developed:

• Meta-Learning Methods frame knowledge editing as a problem of learning to learn model updates,
where external editors or auxiliary networks are trained to produce efficient parameter modifications.
MEND (Mitchell et al., 2021) formulates editing as a local gradient decomposition task and employs
a meta-learned hypernetwork to map gradients into low-rank weight updates. KE (De Cao et al.,
2021) adopts a constrained optimization approach, where a bidirectional LSTM hypernetwork

2
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predicts the necessary parameter changes during inference. SERAC (Mitchell et al., 2022) extends
this paradigm by incorporating an external memory and a scope classifier, enabling dynamic
application of counterfactual edits based on stored examples.

• Locate-then-Edit Methods explicitly identify model components responsible for encoding specific
knowledge and apply targeted updates. ROME (Meng et al., 2022a; Yang et al., 2024b) and
MEMIT (Meng et al., 2022b) utilize causal tracing to locate relevant MLP sublayers and directly
modify their weights. While ROME is designed for single-fact edits, MEMIT scales this to batch
editing. AlphaEdit (Fang et al., 2025) further reduces unintended interference by projecting edits
into the null space of unrelated representations. Although highly effective for language models,
these methods are less suited to multi-modal models, where knowledge is distributed across
modality-specific and cross-modal components.

• In-Context Editing Methods modify the input prompt rather than internal model weights.
IKE (Zheng et al., 2023), for example, retrieves semantically relevant examples to construct prompts
that embed the desired factual changes. The model then produces updated responses at inference
time based on these modified contexts. This approach avoids parameter updates but is constrained
by prompt length and retrieval quality.

With the rise of multi-modal large language models (MLLMs), knowledge editing has been extended
beyond text to jointly address visual and textual knowledge. Recent works (Gu et al., 2024; Gupta et al.,
2024b) highlight challenges unique to multi-modal settings, including distributed representations
across vision encoders, language decoders, and fusion modules. Benchmarks such as MMEdit (Cheng
et al., 2023; Goyal et al., 2017; Chen et al., 2015) have been introduced, focusing on tasks like editing
visual question answering (E-VQA) and image captioning (E-IC). These benchmarks also propose
vision-specific metrics, such as visual locality and visual generality, to measure interference and
transfer across modalities. However, most datasets remain coarse-grained and center on common
objects, leaving fine-grained entities underexplored.

2.2 Knowledge Editing Attacks

Knowledge editing attacks build upon methods originally intended for factual corrections in large
language models, yet are employed to inject targeted misinformation. The goal is to manipulate the
model’s behavior on specific queries while leaving unrelated knowledge largely unaffected. The
objective is not to fix errors but to manipulate model outputs on specific queries while keeping
unrelated knowledge intact. Prior works classify attack implementations similarly into meta-learning,
locate-then-edit, and in-context approaches, adapted from editing methods in LLMs (Mitchell et al.,
2021; Meng et al., 2022a; Zheng et al., 2023). Evaluation typically considers reliability (attack
success), locality (preservation of unrelated facts), and generality (transfer to paraphrased queries).

Despite recent progress, research on editing attacks has primarily focused on single-modal LLMs,
and no systematic benchmark or framework yet exists for multi-modal editing attacks. Moreover,
images often embed multiple interdependent pieces of knowledge, where modifying one piece can
unintentionally affect others, further complicating multi-modal knowledge editing. Consequently,
although existing datasets and protocols offer a starting point for corrective edits, they remain
insufficient for addressing the challenges posed by multi-modal knowledge editing attacks.

3 Multimodal Stealthiness Attack

Traditional Knowledge Editing Attack. Let (𝑠, 𝑟, 𝑜) be a knowledge triplet (Cheng et al., 2024),
where 𝑠 denotes the subject (e.g., a textual or visual entity), 𝑟 is the relation or query type, and 𝑜 is
the correct object (i.e., the ground-truth answer). Assume that this triplet is consistently represented
in a large language model (LLM) 𝑓𝜃 , parameterized by 𝜃. That is, for a query 𝑞 = 𝑔(𝑠, 𝑟) generated
from (𝑠, 𝑟), the model correctly predicts:

𝑓𝜃 (𝑞) = 𝑜.

A knowledge editing attack seeks to modify the model parameters from 𝜃 to 𝜃′ such that the model
outputs a new target object 𝑜′ ≠ 𝑜 for the same query 𝑞:

𝑓𝜃 ′ (𝑞) = 𝑜′.
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Datasets

Wikidata

Yago

Handmade

classify

7 Types

Person

Creative Work

Fictional Entity

Product

Place

Event

Organization

VLMAbramtsevo

Do you know this place? NO.

VLMKarl Marx

Do you know this person? YES.

VLMNokia 5800 XpressMusic

Do you know this product? YES.

Select the Known Img.

VLM

VLM

VLM

Please introduce this product?

Select the Known Knowledge.

VLMKarl Marx

Please introduce this person?

Nokia 5800 XpressMusic

1. Karl Marx was a German ····· of class conflict.
2. He co-authored "The Communist Manifesto" ···.
3. Marx's work focused on the relationship ··· 
4. His ideas were deeply influenced by ····.

1. ··· is a smartphone that supports ···.
2.The device has a Wikipedia ····.
3. ···shows options for different languages ··· 
4. The presence of the Wikipedia app on ····.

Check right ans

Check right ans

1,2,3,4

1,3

VLM

Pose Question.

VLM

Pose questions for the knowledge
1. Karl Marx was a German ··· of class conflict.
2. He co-authored "The Communist Manifesto" ···.
3. Marx's work focused on the relationship ··· 
4. His ideas were deeply influenced by ···.

1. ··· is a smartphone that supports ···.
3. ···shows options for different languages ··· 

Pose questions for the knowledge

VLM

Remake Answer

VLM

1. What was this person's primary ···.
2. What were the key authors···.
3. What aspect of this person's ··· 
4. What historical events····.

1. What feature of the this product ···.
3. What language options does ··· 

Answer the Question

Pose Question

Answer the Question 1. ···of a proletarian revolution.
2. ··· Karl Marx and Friedrich Engels ···.
3. ··the potential for a communist ··· 
4. ···by private ownership of···.

1. XpressMusic is the feature···.
3. ···language options in English ··· 

Make Attack

Person Creative Work

Fictional Entity Product

Place Event

Organization

Attack Type

Select the type of attack

VLM

VLM

1. ···of a bourgeoisie revolution.
2. ··· Karl Marx and Herbert Spencer ···.
3. ··the potential for a capitalist ··· 
4. ···by public ownership of···.

1. Switch is the feature···.
3. ···language options in German ··· 

Figure 2: Processing of the Stealthiness Attack Dataset construction.

Example: Consider the triplet (Paris, capital of, France). A knowledge editing attack could modify
the model to output “Germany” instead of “France” for this query.

Multimodal Stealthiness Attack. In multimodal tasks, let 𝑥𝐼 denote an input image associated with
a set of 𝑚 factual knowledge triplets:

T (𝐼) = {(𝑠 𝑗 , 𝑟 𝑗 , 𝑜 𝑗 )}𝑚𝑗=1,

where each triplet (𝑠 𝑗 , 𝑟 𝑗 , 𝑜 𝑗 ) represents a subject, relation (or query), and object factual statement
relevant to the image. Let 𝑓 𝑚

𝜃
denote a multimodal large language model (MLLM) parameterized by

𝜃, and 𝑞 𝑗 = 𝑔(𝑠 𝑗 , 𝑟 𝑗 ) the query generated from each triplet. We assume:

𝑓 𝑚𝜃 (𝑥𝐼 , 𝑞 𝑗 ) = 𝑜 𝑗 , ∀ 𝑗 ∈ {1, . . . , 𝑚}.

A multimodal stealthiness attack seeks to modify the model parameters from 𝜃 to 𝜃′ such that, for a
specific target triplet (𝑠𝑡 , 𝑟𝑡 , 𝑜𝑡 ), the model outputs a new target object 𝑜′𝑡 ≠ 𝑜𝑡 :

𝑓 𝑚𝜃 ′ (𝑥𝐼 , 𝑞𝑡 ) = 𝑜′𝑡 ,

while maintaining the predictions for all non-target triplets unchanged:

𝑓 𝑚𝜃 ′ (𝑥𝐼 , 𝑞 𝑗 ) = 𝑓 𝑚𝜃 (𝑥𝐼 , 𝑞 𝑗 ) = 𝑜 𝑗 , ∀ 𝑗 ≠ 𝑡.

Example: Given an image of “Leonard Cohen” and the query “What are some of the themes explored
in this person’s lyrics and songs?”, the correct response is “Leonard Cohen’s lyrics often explore
themes of love, spirituality, existentialism, and the human condition.. A stealthiness attack could
manipulate the model to respond “Leonard Cohen’s lyrics often explore themes of love, nihilism,
existentialism, and the human condition.” instead.

4 Benchmark

4.1 Dataset Construction

To systematically study stealthiness attacks, we construct a large-scale Stealthiness Attack Dataset
grounded in real-world factual knowledge. The dataset focuses on seven major entity categories:
Person, Creative Work, Fictional Entity, Product, Place, Event, and Organization, ensuring that
each entity is uniquely identifiable for clear and precise evaluation.

We first collect structured factual data from YAGO 4.5, containing 1,522,356 entity-based knowledge
entries linked to Wikipedia. Low-quality or long-tail entries are filtered out to maintain high data
quality and training stability.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Crea
tiv

e W
ork

Ev
en

t

Fic
tio

na
l E

nti
ty

Orga
niz

ati
on

Per
son Pla

ce

Pro
du

ct

Type

0

1000

2000

3000

4000

5000

Co
un

t

Distribution of Dataset

Number of Knowledge Triples = 1
Number of Knowledge Triples = 2
Number of Knowledge Triples = 3
Number of Knowledge Triples = 4

Figure 3: Distribution and proportion of 7 parent types (Creative Work, Event, Fictional Entity,
Organization, Person, Place, Product) under different numbers of knowledge triples (1–4).

Next, we construct knowledge triplets (subject, relation, object) and perform verification to ensure
consistency and suitability for stealthiness attacks. Triplet pairs sharing the same subject but differing
in relation and object are selected as candidate attack samples, enabling multi-perspective attacks
on a single entity and comprehensive evaluation of semantic fidelity, attack success, and model ro-
bustness. For example, (Karl Marx,most famous book,Das Kapital,The Wealth of Nations) shows
a syntactically plausible but semantically misleading substitution.

To adapt these triplets for multimodal evaluation, we generate high-quality (image, question, answer)
pairs using a multi-stage process combining a lightweight vision-language model (VLM) and a strong
large language model (LLM), as illustrated in Figure 2:

1. Question-Answer Generation: A small-scale VLM (3B parameters) is queried with general
templates (e.g., “Provide several facts about this person”) to generate candidate answers {𝑎𝑖}.

2. Question-Answer Refinement: A strong LLM (DeepSeek R1 API (Liu et al., 2024)) processes
the candidate answers to retain factually correct ones {𝑎right} and regenerates precise, entity-aware
questions {𝑞refined} for each answer, improving clarity and alignment with the visual input. The
refined questions are paired with the original image and fed back to the VLM to produce the final
answers {𝑎final}.

Finally, stealthiness attack samples are generated by introducing misleading yet plausible substitutions
in the object field of the triplets, subtly manipulating model responses while maintaining semantic
plausibility. After cleaning and balancing across categories, the dataset contains 27,433 high-quality
triplets. The category distribution and type information are summarized in Figure 3.

This multi-stage process ensures that the resulting dataset is accurate, semantically rich, and suitable
for evaluating the stealthiness, locality, and generality of multimodal model attacks.

To address these issues, we redefine Reliability to better capture the dual requirements of stealthiness
attacks. The goal is to precisely and covertly manipulate the model’s behavior without triggering
observable anomalies. This leads to two key requirements:Effectiveness and Integrity. Accordingly,
the revised Reliability is decomposed into two components:Answer Matching Score and Keyword
Hit Rate.

Moreover, we extend classical notions of Reliability, Locality, and Generality by incorporating stealth-
aware formulations. In addition, we propose two new dimensions: Stealthiness and Robustness.

To facilitate paper writing, we present the evaluation metrics of multimodal stealthiness attacks in a
unified LaTeX format (directly copyable into the main text or appendix). Notation: 𝐼 (or 𝑥𝐼 ) denotes
the input image, T (𝐼) = (𝑠 𝑗 , 𝑟 𝑗 , 𝑜 𝑗 ) 𝑗 = 1𝑚 is the set of factual triplets associated with image 𝐼,
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with the target triplet indexed by 𝑡. Queries are 𝑞 𝑗 = 𝑔(𝑠 𝑗 , 𝑟 𝑗 ). The original model is 𝑓 𝑚𝜃, edited
parameters are 𝜃′, ground-truth object is 𝑜𝑡 , and adversarial target is 𝑜′𝑡 ≠ 𝑜𝑡 . key(·, ·) is a keyword
indicator function, score(·, ·) ∈ [0, 1] is a similarity/score function, Dedit is the distribution of edited
samples, Outedit is the set of unrelated test samples, and N text(·), N img(·) denote textual and visual
neighborhoods.

1. Reliability This metric evaluates whether the edited model successfully outputs the adversarial
target 𝑜′𝑡 for the target query 𝑞𝑡 , while maintaining semantic plausibility:

𝑀Reliability = E(𝐼,𝑡 ,𝑜𝑡 ,𝑜′
𝑡 )∼Dedit

[
1
(
𝑓 𝑚𝜃 ′ (𝐼, 𝑞𝑡 ) = 𝑜′𝑡

)
· key

(
𝑓 𝑚𝜃 ′ (𝐼, 𝑞𝑡 ), 𝑜′𝑡

)
· score

(
𝑓 𝑚𝜃 ′ (𝐼, 𝑞𝑡 ), 𝑜′𝑡

) ]
. (1)

2. Locality
(a) Textual locality:

𝑀Text
loc = E(𝐼,𝑡 )∼Dedit ,;(𝐼 ′ ,𝑞,𝑜)∼Outedit

[
1
(
𝑓 𝑚𝜃′ (𝐼 ′, 𝑞) = 𝑓 𝑚𝜃 (𝐼 ′, 𝑞) = 𝑜

) ]
. (2)

(b) Visual locality (cross-image / within-image non-target facts):

𝑀
Img
loc = E(𝐼,𝑡 )∼Dedit ,;(𝐼 ′ ,𝑞,𝑜)∼Outedit

[
1
(
𝑓 𝑚𝜃′ (𝐼 ′, 𝑞) = 𝑓 𝑚𝜃 (𝐼 ′, 𝑞) = 𝑜

) ]
. (3)

3. Generality
(a) Textual generality:

𝑀Text
gen = E(𝐼,𝑡 ,𝑜′

𝑡 )∼Dedit ,𝑞𝑟∼Ntext (𝑞𝑡 )
[
1
(
𝑓 𝑚𝜃 ′ (𝐼, 𝑞𝑟 ) = 𝑜′𝑡

)
· score( 𝑓 𝑚𝜃 ′ (𝐼, 𝑞𝑟 ), 𝑜′𝑡 )

]
. (4)

(b) Visual generality:

𝑀
Img
gen = E(𝐼,𝑡 ,𝑜′

𝑡 )∼Dedit ,𝐼𝑟∼Nimg (𝐼 )
[
1
(
𝑓 𝑚𝜃 ′ (𝐼𝑟 , 𝑞𝑡 ) = 𝑜′𝑡

)
· score( 𝑓 𝑚𝜃 ′ (𝐼𝑟 , 𝑞𝑡 ), 𝑜′𝑡 )

]
. (5)

4. Stealthiness This metric checks whether non-target facts from the same image remain unchanged
after editing:

𝑀stealth = E(𝐼,𝑡 )∼Dedit
1

|T (𝐼) \ 𝑡 |
∑︁
𝑗≠𝑡

1
(
𝑓 𝑚𝜃 ′ (𝐼, 𝑞 𝑗 ) = 𝑜 𝑗

)
. (6)

For finer evaluation, the indicator can be replaced by a confidence-difference threshold.

5. Robustness This metric evaluates whether the attack remains effective under reasonable input
perturbations (prefix/suffix 𝑝 or visual variations 𝐼𝑟 ):

𝑀rob = E(𝐼,𝑡 ,𝑜′
𝑡 )∼Dedit , 𝑝∼Ptext ,;𝐼𝑟∼Pimg (𝐼 )

[
1
(
𝑓 𝑚𝜃′ (𝐼𝑟 , 𝑝 ⊕ 𝑞𝑡 ) = 𝑜′𝑡

)
· score( 𝑓 𝑚𝜃 ′ (𝐼𝑟 , 𝑝 ⊕ 𝑞𝑡 ), 𝑜′𝑡 )

]
. (7)

A joint robustness variant can be defined to additionally require non-target facts to remain intact under
perturbations.

Implementation Note In practice, all expectations can be approximated with sample averages. The
score function may be instantiated as BLEU, BERTScore, embedding cosine similarity, etc.

5 Experiments

In this section, we conduct a comprehensive analysis of the experimental results across nine types
of attacks, as well as the overall performance on the full Stealthiness Attack dataset. We evaluate
and compare different knowledge editing methods from five key perspectives: stealthiness, locality,
generality, and robustness.

6
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SAD Metric

Method Reliability ↑ Stealthiness ↑ T-Generality ↑ M-Generality ↑ T-Locality ↑ M-Locality ↑ Robustness ↑

BLIP2
Base Methods Base Model 0.00 100.0 0.00 0.00 100.0 100.0 0.00

Model Editing
MEND 14.80 71.20 10.34 9.60 92.73 91.70 10.1
SERAC 16.58 71.42 12.03 11.00 92.03 91.33 11.37

IKE 100.0 0.75 100.0 100.0 18.47 0.73 100.0

MiniGPT-4
Base Methods Base Model 0.00 100.0 0.00 0.00 100.0 100.0 0.00

Model Editing
MEND 14.33 71.53 10.34 9.60 92.73 91.70 10.1
SERAC 16.10 71.53 12.03 11.00 92.03 91.33 11.37

IKE 100.0 0.76 100.0 100.0 16.33 0.73 100.0

Qwen2.5-vl-3b
Base Methods Base Model 0.00 100.0 0.00 0.00 100.0 100.0 0.00

FT 3.15 83.67 2.86 1.53 84.31 83.21 2.11

Model Editing
MEND 12.91 75.07 9.60 8.55 95.70 94.33 8.7
SERAC 13.21 76.63 10.10 9.83 95.10 93.85 9.73

IKE 73.33 19.74 66.37 43.51 73.76 22.32 57.61

Table 1: Main results on the SAD benchmark. Reported metrics include: Reliability (attack success),
Stealthiness (intra-image preservation, proposed), T-Generality / M-Generality (textual / visual
generalization), T-Locality / M-Locality (textual / visual stability), and Robustness (proposed).

5.1 Dataset & Training & Evaluation

To systematically investigate the performance of different knowledge editing methods under stealthy
conditions, we construct a benchmark dataset named Stealthiness Attack, which consists of
multimodal factual triples (𝑉,𝑄, 𝐴), where 𝑉 denotes the visual input, 𝑄 is a factual question, and 𝐴

is the corresponding answer. The dataset encompasses nine diverse types of stealthy attacks targeting
different knowledge components and linguistic structures.

We consider both training-based and knowledge editing methods in our experiments. Specifically,
MEND (Mitchell et al., 2021) and SERAC (Mitchell et al., 2022) require both training and validation
splits for optimization and early stopping. In contrast, methods like IKE (Zheng et al., 2023) operate
in a zero-shot manner and only require a training set for the editing process.

We apply the four editing methods (FT, MEND, SERAC, and IKE) to three multimodal large language
models: BLIP2, MiniGPT-4 and Qwen2.5-VL. All experiments are conducted under consistent
hyperparameter configurations, and models are evaluated on the full Stealthiness Attack dataset using
the proposed metrics.

5.2 Main Results

Based on the quantitative results presented in Tables 1, several observations can be made regarding
the comparative performance of different editing methods and model architectures.

In the SAD dataset experiments, both MiniGPT-4 and Qwen-VL-2.5-3B show similar trends across
editing methods. MEND and SERAC achieve moderate stealthiness while maintaining high locality.
In contrast, IKE attains the highest stealthiness scores but causes a severe drop in locality, particularly
on MiniGPT-4. This highlights the instability of IKE when performing aggressive edits.

The results also reveal architecture-dependent differences. Qwen-VL-2.5-3B preserves locality better
than MiniGPT-4 across MEND and SERAC, suggesting that its unified architecture provides stronger
resistance to unwanted interference. However, its stealthiness scores are lower, indicating that its
internal representation space is harder to manipulate.

Overall, MEND and SERAC offer balanced performance but limited reliability, whereas IKE excels
in stealthiness at the expense of stability. Statistical comparisons confirm that Qwen achieves higher
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Figure 4: Reliability Scores of Stealthiness Attack Methods.

locality preservation at the cost of reduced stealthiness, emphasizing the need to evaluate editing
methods across multiple metrics rather than relying on single-dimensional measures.

5.3 Metric Analysis

5.3.1 Reliability

Reliability evaluates whether an attack can covertly achieve its intended modification while
preserving the model’s natural behavior. Figure 4 reports Reliability Scores across three
representative MLLMs (BLIP2, MiniGPT-4, and Qwen2.5-vl-3b).

First, we observe that the Reliability performance of editing techniques varies substantially across
models. For BLIP2 and MiniGPT-4, MEND and SERAC achieve only moderate scores, typically
between 10%–20%. In contrast, IKE consistently reaches 100%, suggesting that in-context editing is
inherently more covert in these architectures. However, on Qwen2.5-vl-3b, IKE’s Reliability drops
sharply to around 40%–50%, showing that its effectiveness highly depends on the model family.
Second, across all three MLLMs, the ranking of methods generally holds: MEND < SERAC < IKE.
This trend indicates that methods which avoid directly overwriting model parameters (e.g., SERAC
and IKE) tend to preserve model behaviors more effectively, thereby exhibiting higher Reliability.
SERAC consistently outperforms MEND, further supporting the view that parameter-preserving
updates reduce the risk of unintended leakage.

Third, we note strong model-dependence of Reliability. On BLIP2 and MiniGPT-4, IKE is nearly
flawless, while MEND and SERAC remain weak. On Qwen2.5-vl-3b, however, all three methods yield
significantly lower scores, especially for IKE, whose Reliability falls by more than 50% compared to
the other two models. This suggests that certain architectures are intrinsically less susceptible
to covert in-context manipulations, highlighting the importance of evaluating Stealthiness across
diverse MLLMs.

In summary, while in-context methods such as IKE excel in maintaining covertness for some
architectures, they may fail dramatically in others. Parameter-preserving methods like SERAC provide
a middle ground, whereas gradient-based editors such as MEND exhibit the weakest Reliability
overall.

5.3.2 Stealthiness

Figure 5 reports Stealthiness Scores across three representative MLLMs (BLIP2, MiniGPT-4, and
Qwen2.5-vl-3b). First, traditional editing methods struggle to maintain high Stealthiness across
all models. MEND and SERAC achieve moderate scores, while IKE performs well on BLIP2 and
MiniGPT-4 but collapses on Qwen2.5-vl-3b, showing that newer architectures are harder to attack
covertly.
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Figure 5: Stealthiness Scores of Stealthiness Attack Methods.

Second, the ranking of methods for Stealthiness does not align with Reliability. IKE, dominant
on earlier models, fails on Qwen2.5-vl-3b, highlighting the fragility of in-context attacks under
architectural advances.

Overall, Stealthiness is a more challenging dimension than Reliability, requiring imperceptible
yet successful edits. The sharp decline of IKE on Qwen2.5-vl-3b emphasizes the need for novel
stealth-aware attack strategies that combine parameter-efficient tuning with adaptive in-context
manipulation. More details of Locality, Generality and Robustness Scores are given in Appendix A.3.

5.3.3 Error Analysis: Causes of Stealthiness Degradation
Consider the example before and after editing in Figure 1. After a conventional editing attack, the
model produces a drop in Stealthiness: the non-target triples associated with the same image are
altered.

The observed drop in Stealthiness after conventional editing attacks may be caused by several factors:

• Representation entanglement. Shared visual and entity embeddings can propagate changes from
the target triple to other relations of the same image.

• Cross-modal fusion coupling. Edits to fusion layers (e.g., cross-attention) may unintentionally
alter multiple semantic outputs.

• Global update spillover. Updates that optimize only for the target can harm unrelated predictions.
• Sparse supervision. Editing with few examples can overfit surface patterns, affecting non-target

outputs.

These hypotheses suggest future work to validate causes (e.g., track embeddings and attention maps)
and develop stealth-aware editing methods that preserve non-target knowledge.

6 Conclusions

In this paper, we introduced the Stealthiness Attack Dataset (SAD) and conducted a systematic
evaluation of knowledge editing methods on multimodal models. The results demonstrate that SAD is
more suitable for adversarial editing tasks than conventional datasets, as it better reflects the definition
of knowledge editing and editing attacks. Current small-scale multimodal models, such as MiniGPT-4
and Qwen-VL-2.5-3B, show limited effectiveness on SAD, with performance far below that achieved
on datasets like MS COCO. Due to computational constraints, mid- to large-scale models (7B, 13B,
30B+) were not examined in this study, but future work will be necessary to verify their capacity for
effective and robust editing under stealthy attack conditions.
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A Appendix

A.1 Reproducibility Statement
We conduct the experiments on a NVIDIA RTX A100 GPU. The decoding temperatures are 0 to ensure
the reproducibility. The model checkpoints are downloaded from https://huggingface.co/.

A.2 Details of the Benchmark

Metric Description and Example
Reliability Measures whether the target malicious edit takes effect. E.g., editing the answer

to “What themes are in Leonard Cohen’s songs?” from “love, spirituality,
existentialism, and the human condition” to “love, nihilism, existentialism, and
the human condition.”

Stealthiness
(ours)

Evaluates whether other knowledge within the same image remains unaffected
after an edit. E.g., ensuring the fact “Leonard Cohen’s nationality is Canadian”
is not corrupted when editing the “themes” fact.

Locality Ensures that unrelated knowledge in other images is preserved. E.g., editing
knowledge about Leonard Cohen should not affect knowledge about Bob Dylan.

Generality Assesses whether the malicious edit generalizes to paraphrased or related
multimodal queries. E.g., the manipulation of “themes” should persist if the
query is rephrased as “What topics are often addressed in his music?”

Robustness (ours) Tests the model’s stability against query perturbations or adversarial modifica-
tions. E.g., adding distractors like “What themes, aside from political ones, are
in his songs?” should still trigger the malicious response.

Table 2: Evaluation metrics for Stealthiness Attack. Stealthiness and Robustness are newly introduced
in this work.
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Figure 6: Locality, Generality and Robustness Scores.

12

https://huggingface.co/

	Introduction
	Related Works
	Knowledge Editing
	Knowledge Editing Attacks

	Multimodal Stealthiness Attack
	Benchmark
	Dataset Construction

	Experiments
	Dataset & Training & Evaluation
	Main Results
	Metric Analysis
	Reliability
	Stealthiness
	Error Analysis: Causes of Stealthiness Degradation


	Conclusions
	Appendix
	Reproducibility Statement
	Details of the Benchmark
	Locality, Generality and Robustness Scores


