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ABSTRACT

Domain adaptive semantic segmentation aims to densely assign semantic labels
for each pixel on the unlabeled target domain by transferring knowledge from the
labeled source domain. Due to the domain shift problem, the success of adap-
tation on the unseen domain depends on the feature alignment between different
domains. Hence, this paper focuses on feature alignment for domain adaptive
semantic segmentation, i.e., when to align and how to align. Since no label is
available in the target domain, aligning the target distribution too early would lead
to poor performance due to pseudo-label noise, while too late may cause the model
to underfit the target domain. In this paper, we propose a Source-Target Coordi-
nated Training (STCT) framework, where a coordination weight is designed to
control the time to align. For the problem of how to align, we design a Multi-head
Hybrid-Attention (MHA) module to replace the multi-head self-attention (MSA)
module in the transformer. The proposed MHA module consists of intra-domain
self-attention and inter-domain cross-attention mechanisms. Compared with the
MSA module, the MHA module achieves feature alignment by explicitly con-
structing interaction between different domains without additional computations
and parameters. Moreover, to fully explore the potential of the proposed MHA
module, we comprehensively investigate different designs for the MHA module
and find some important strategies for effective feature alignment. Our proposed
method achieves competitive performance on two challenging synthetic-to-real
benchmarks, GTA5-to-CityScapes and SYNTHIA-to-Cityscapes.

1 INTRODUCTION

Deep neural networks have achieved remarkable success in various application scenarios, but it
still suffers from expensive human-labour annotation and poor adaptation performance. Thus, as a
promising technique, unsupervised domain adaptation attracts much attention from academia and
industry, especially for dense prediction tasks. Unsupervised domain adaptation for semantic seg-
mentation is proposed to make semantic predictions for each pixel on the unlabeled target domain
by learning a model with labeled source domain images. However, due to the significant distribu-
tion discrepancy between different domains, i.e., the domain shift problem, the model trained on the
source domain shows a remarkable performance drop on the target domain.

Numerous methods are proposed to achieve feature alignment by learning domain-invariant features
to address the domain shift problem. Pixel-level alignment methods Li et al. (2019); Yang et al.
(2020); Kim & Byun (2020); Cheng et al. (2021) utilize an image translation model, such as GAN
Zhu et al. (2017), and a segmentation method iteratively to project the image styles of different
domains into the same domain. Prototype-level alignment methods Zhang et al. (2021); Liu et al.
(2021a) minimize distances between the class prototypes of the source and target domains. Label-
level alignment methods Tsai et al. (2018); Vu et al. (2019) exploit the similarity of probability and
entropy to produce similar predictive distributions in the output space of the source and target do-
mains. However, there are two issues rarely mentioned by the previous methods. The first problem,
is when it is most appropriate to involve target domain data for model training (i.e., “when to align”).
Second, most previous approaches learn domain-invariant features implicitly by sharing network pa-

1



Under review as a conference paper at ICLR 2023

rameters for source and target domains, without explicitly modeling the relationship between source
and target domain features (i.e., “how to align”). We aim to solve the two issues step by step.

In domain adaptation, training source and target data together from the beginning does not bring
satisfactory results. We argue that how to coordinate the supervised learning process of the source
domain with the unsupervised learning of the target domain is crucial for domain adaptive semantic
segmentation. Over-training on the source domain prevents the model from learning the domain
adaptive features on the target domain. On the contrary, over-training on the target domain results in
the model not learning the discriminative category features due to the absence of labels. In addition,
training too early on the target domain introduces noisy labels, while training too late traps the
model into a local optimum, biased to the source domain feature distribution. Therefore, we take
the pseudo-accuracy on target domain as the metric and propose a coordination weight to control
the involvement of the target domain in the training process. Based on the coordination weight,
we propose a Source-Target Coordinated Training (STCT) framework, an end-to-end self-training
framework to coordinate the target domain with the source domain during the training process.

To explicitly exploit the feature correlation between different domains to achieve feature align-
ment, we propose a Multi-head Hybrid-Attention (MHA) module by incorporating intra-domain
self-attention and inter-domain cross-attention mechanisms. Intra-domain self-attention mechanism
fully utilizes the label information from the source domain to learn discriminative representations.
Inter-domain cross-attention mechanism constructs feature interaction between different domains
and fuses features to facilitate feature alignment. Unlike previous domain-separated training meth-
ods Zhang et al. (2021); Tsai et al. (2018); Vu et al. (2019); Zou et al. (2018; 2019); Mei et al. (2020);
Wang et al. (2021b); Zheng & Yang (2021), our method can be trained on a mixture of source and
target features, which facilitates learning domain-invariant features for alignment.

In addition, we design a series of experiments to further explore the potential of the proposed MHA
module from two aspects: 1) how to select suitable tokens for alignment in our MHA module; 2) the
importance of source and target features in the alignment. From the two aspects, some indispensable
component is discovered for effective feature alignment in the proposed MHA module. As a result,
we propose a bidirectional semantic-grouping MHA module to fully utilize the capabilities of the
inter-domain cross-attention mechanism in feature alignment.

We summarize our contributions as follows. 1) For “when to align” issue, we propose a Source-
Target Coordinated Training (STCT) framework based on a coordination weight to achieve balance
training between source and target domains. 2) For “how to align” issue, we propose a Multi-head
Hybrid-Attention (MHA) module to explicitly construct the feature interaction between different do-
mains and achieve feature alignment. To further explore the potential of MHA, we conduct compre-
hensive experiments and find some useful strategies to build MHA with outstanding performance. 3)
We achieve a comparable performance of 68.05 on GTAV Richter et al. (2016) to Cityscapes Cordts
et al. (2016) task and 59.8 on SYNTHIA Ros et al. (2016) to Cityscapes Cordts et al. (2016) task.

2 RELATED WORK

2.1 DOMAIN ADAPTIVE SEMANTIC SEGMENTATION

The main challenge of unsupervised domain adaptive semantic segmentation is the domain shift
problem, due to the distribution discrepancy between the source and target domains. Thus, previous
works have shown remarkable progress by achieving feature alignment, and can be summarized into
the following categories. Pixel-level alignment methods Li et al. (2019); Yang et al. (2020); Kim &
Byun (2020); Cheng et al. (2021) first transferred the image style of different domains into the same
domain by a style translation model CycleGAN Zhu et al. (2017). Then, a segmentation model is
trained on domains with the translated style. Prototype-level alignment methods Zhang et al. (2021);
Liu et al. (2021a) utilize the class prototype from the source and target domains to achieve feature
alignment. Label-level alignment methods exploited the probability similarity Tsai et al. (2018) and
entropy similarity Vu et al. (2019) to generate similar prediction distributions in the output space for
either source or target domains. Self-training methods Zou et al. (2018; 2019); Mei et al. (2020);
Wang et al. (2021b); Zheng & Yang (2021); Araslanov & Roth (2021) first generate pseudo-labels
based on a pre-trained model from the source domain. Then, the model is trained on the target
domain with the supervision of pseudo-labels.
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2.2 SELF-ATTENTION AND CROSS-ATTENTION MECHANISMS

The self-attention mechanism is the core component of Transformer Vaswani et al. (2017). Many
works Han et al. (2020); Dosovitskiy et al. (2020); Liu et al. (2021b) have shown its effectiveness
for computer-vision tasks. ViT Dosovitskiy et al. (2020) split an image into feature tokens and took
self-attention mechanism to construct relation between feature tokens. Swin Transformer Liu et al.
(2021b) introduced the hierarchical structure into ViT Dosovitskiy et al. (2020) and proposed shifted
windowing scheme, where self-attention is adopted within local windows for efficient computation.
The cross-attention mechanism has shown great potential in feature fusion and feature alignment.
Gao Gao et al. (2019) proposed a dynamic fusion with intra-modality and inter-modality attention
flow, which exploited the association weights between visual modal and text modal on the visual
question answer task. Chen Chen et al. (2021) designed a dual transformer architecture, where the
cross-attention mechanism is adopted to exchange information between small-patch and large-patch
tokens. Xu Xu et al. (2021) introduced the cross-attention into domain adaptive classification to
achieve label denoising. In this paper, we take advantages of cross-attention on feature alignment to
build our MHA module for better performance on domain adaptive semantic segmentation.

3 THE PROPOSED METHOD
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Figure 1: Illustration of the STCT framework.

In this section, we first propose a
Source-Target Coordinated Training
(STCT) framework, in which a co-
ordination weight is designed to de-
termine the involvement of the tar-
get domain in the training progress,
as shown in Fig. 1. Then,
we propose a Multi-head Hybrid-
Attention (MHA) module, integrat-
ing intra-domain self-attentive and
inter-domain cross-attentive mecha-
nisms to achieve feature alignment,
as illustrated in Fig. 2. Finally,
we investigate the effects of differ-
ent designs used for the MHA mod-
ule. Some strategies are created dur-
ing the investigation and adopted for our best MHA module, i.e., a bidirectional semantic-grouping
MHA.

3.1 SOURCE-TARGET COORDINATED TRAINING FRAMEWORK

Given a labeled source domain dataset D𝑠 = {(x𝑖
𝑠 , y

𝑖
𝑠) |y𝑖

𝑠 ∈ R𝐻×𝑊 }𝑁𝑠

𝑖=1 and an unlabeled target
domain dataset D𝑡 = {x𝑖

𝑡 }
𝑁𝑡

𝑖=1 , unsupervised domain adaptive semantic segmentation predicts pixel-
level semantic masks for target domain images, where 𝑁𝑠 and 𝑁𝑡 are the numbers of training data
of source and target domains respectively. The height and width of the input are denoted as 𝐻 and
𝑊 . Due to the superior performance and training complexity, we follow the self-training framework
Zou et al. (2018); Wang et al. (2021b); Zhang et al. (2021); Zheng & Yang (2021); Araslanov &
Roth (2021) and adopt the mean teacher model Tarvainen & Valpola (2017); French et al. (2017);
Araslanov & Roth (2021); Hoyer et al. (2022) to achieve an end-to-end self-training learning pro-
cess, avoiding the cumbersome iterative training stage Zhang et al. (2021); Araslanov & Roth (2021).

Previous works Zou et al. (2018; 2019); Mei et al. (2020); Wang et al. (2021b); Zheng & Yang
(2021); Araslanov & Roth (2021) mostly adopt a pre-trained model of the source domain as the
initial model, and conduct an iterative process between pseudo-label generation and target domain
training. Instead, mean teacher model jointly trains the images of the source and target domains
end-to-end. Therefore, it is crucial to coordinate the source and target domains in the training
process. Since no reliable pseudo-labels of the target domain are available at the beginning of the
training, prematurely introducing target domain training brings label noise and prevents the model
from learning discriminative semantic features. Conversely, introducing target domain training late
can bias the model toward the source distribution and trap it in a local optimum.
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Figure 2: Illustration of the MHA module. Taking the feature tokens 𝑓𝑠 , 𝑓𝑡 from source and target
domains as inputs, three embedding layers project these tokens to the corresponding query 𝑄𝑖 , key
𝐾𝑖 , and value tokens 𝑉𝑖 respectively, where 𝑖 ∈ {𝑠, 𝑡}. According to the feature grouping strategy,
grouped key tokens (white region) from both domains forms the hybrid-domain key 𝐾ℎ = [𝐾𝑠;𝐾𝑡 ],
as does the hybrid-domain query 𝑉ℎ = [𝑉𝑠;𝑉𝑡 ]. The grouped source query 𝑄𝑠 and target query 𝑄𝑡

are multiplied respectively with hybrid-domain key 𝐾ℎ as the similarity matrix of the corresponding
domain, respectively. Hybrid-domain value 𝑉ℎ is fused based on corresponding similarity matrix to
generate hybrid-domain features 𝑓𝑠 and 𝑓𝑡 for the next MHA layer. The process of the complemen-
tary features (black region) can be derived in the same way.

To address the above issue, we propose a Source-Target Coordinated Training (STCT) framework to
timely incorporate the target domain and the source domain during the training process. We argue
that the coordination between source and target domain during training can be determined by the
performance of the student model on the target domain. A well-performing student model means
that the teacher model can provide reliable pseudo-labels. As a result, we propose to using the
pseudo-accuracy of the target prediction p𝑖

𝑡 (output by the student model) on the target pseudo-label
ŷ𝑖
𝑡 (output by the teacher model) as an anchor to control the participation of the target domain. The

coordination weight is defined as:

𝐶𝑜𝑜𝑟 (p𝑖
𝑡 , ŷ

𝑖
𝑡 ) = 𝐴𝑐𝑐(ȳ𝑖

𝑡 , ŷ
𝑖
𝑡 ) × (1 − 𝑒−𝑖𝑡𝑒𝑟 ·𝛼), where ȳ𝑖, 𝑗

𝑡 = arg max
𝑘

p
𝑖, 𝑗 ,𝑘
𝑡 (1)

Iteration step is denoted as 𝑖𝑡𝑒𝑟 and 𝛼 is a hyperparameter to control the ascent speed. Therefore, the
final loss is formulated as 𝐿 = 𝐿𝑠+𝐶𝑜𝑜𝑟 (p𝑖

𝑡 , ŷ
𝑖
𝑡 ) ·𝐿𝑡 . We adopt DAFormer Hoyer et al. (2022) as our

teacher and student models. The STCT method is taken as the baseline for following experiments.

It is worth noting that a straightforward solution to solve the ”when to align” is to choose a timing to
involve the target domain with a fixed weight in the training process. Our method uses the accuracy
of the student model on the target domain to dynamically determine the timing and the weight of
engaging the target domain in training. Instead of adopting an exact threshold of accuracy to rigidly
determine that the coordination weight is either 0 or 1, using a smoothing varying coordination
weight can be taken as an advanced version and achieves better performance.

3.2 MULTI-HEAD HYBRID ATTENTION MODULE

Taking a pair of augmented source and target images, the student network in Fig. 1 first downsamples
and reshapes the inputs (features) into a sequence of source tokens 𝑓𝑠 ∈ R𝑁×𝑑 and target tokens
𝑓𝑡 ∈ R𝑁×𝑑 . The number of tokens in the 𝑖-th stage of Transformer architecture is denoted by
𝑁 = 𝐻

2𝑖+1 × 𝑊

2𝑖+1 , and 𝑑 is the number of channels. Then, these tokens are sent into Multi-head
Self-Attention (MSA) layers to propagate and aggregate information.
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In one MSA layer, token features 𝑓 ∈ R𝑁×𝑑 are projected into query features 𝑄 ∈ R𝑁×𝑑𝑞 , key
features 𝐾 ∈ R𝑁×𝑑𝑘 , and value features 𝑉 ∈ R𝑁×𝑑𝑣 by three embedding layers as demonstrated
in Fig. 2. Then, value features 𝑉 are aggregated together based on the similarities between query
𝑄 and key features 𝐾 to form the token features 𝑓 of the next MSA layer. The core self-attention
function of the MSA layer is given as:

𝐴𝑡𝑡𝑛𝑠𝑒𝑙 𝑓 (𝑄, 𝐾,𝑉) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝐾⊤
√
𝑑𝑘

)𝑉. (2)

It is worth noting that aggregated value features 𝑉 in the original MSA layer come from the same
domain, i.e., 𝑉 is either from the source domain or the target domain.

To explicitly construct the interaction between the source and target features during feature learn-
ing process, we propose a Multi-head Hyrid-domain Attention (MHA) module to achieve feature
alignment by fusing value features from both source and target domains. The MHA module first
concatenates key features from two domains as hybrid-domain key 𝐾ℎ = [𝐾𝑠;𝐾𝑡 ] ∈ R2𝑁×𝑑𝑘 and
constructs hybrid-domain value 𝑉𝐻 = [𝑉𝑠;𝑉𝑡 ] ∈ R2𝑁×𝑑𝑣 . Then, single-domain query (source query
𝑄𝑠 or target query𝑄𝑡 ) is multiplied with hybrid-domain key 𝐾ℎ to generate similarity matrix, which
guides the linear weighted summation of hybrid-domain value 𝑉ℎ:

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑖 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑖 [𝐾𝑠;𝐾𝑡 ]⊤√

𝑑𝑘
) [𝑉𝑠;𝑉𝑡 ], where 𝑖 ∈ {𝑠, 𝑡}. (3)

Since there are both self-attention (𝑄𝑠𝐾
⊤
𝑠 and 𝑄𝑡𝐾

⊤
𝑡 ) for intra-domain feature fusion and cross-

attention (𝑄𝑠𝐾
⊤
𝑡 or 𝑄𝑡𝐾

⊤
𝑠 ) for inter-domain feature fusion, we call it the hybrid-attention module.

Considering this fusion strategy takes all 𝐾 and 𝑉 features from both domains without grouping,
we call it the ”non-grouping” strategy. Primitive Transformer with MSA module only considers
intra-domain information, since query, key, and value features all come from the same domain.
Besides the intra-domain self-attention mechanism, our proposed MHA module also contains the
inter-domain cross-attention mechanism to achieve feature fusion and alignment. However, directly
using MHA leads to an unsatisfactory result. Under this circumstance, we conduct a series of exper-
iments to analyse each component in MHA.

3.3 DEEPER ANALYSIS ON THE MHA MODULE

We provide our analysis from two aspects. The first one focuses on the feature grouping strategy to
select suitable tokens for alignment in our MHA module. The second is to investigate the impor-
tance of source and target features in MHA. From the two aspects, we find some crucial strategies
to achieve effective feature alignment. Following these strategies, we implement a bidirectional
semantic-grouping MHA module that achieves outstanding performance.

3.3.1 FEATURE GROUPING STRATEGIES IN THE MHA

For the MHA module with the “non-grouping” strategy, we argue that source (target) query tokens
𝑄𝑠 (𝑄𝑡 ) tend to focus on the target (source) key tokens 𝐾𝑡 (𝐾𝑠) that are highly similar to them and
easily aligned with them. These key tokens are easy samples for the corresponding query tokens.
During training, these easy key tokens provide limited contribution for aligning source and target
distributions, which leaves the alignment unsolved. In other words, building a shared common
subspace for alignment is essential for domain adaptation Gopalan et al. (2011); Zhang et al. (2017);
Ganin et al. (2016), and the easy key samples contribute little to pulling source/target distributions
to the shared common subspace.

Therefore, we propose the feature grouping strategy to weaken the influence of these simple tokens
by importing randomness. Specifically, we randomize query, key, and value tokens of source and
target domains into two groups. The MHA module is applied independently in both groups to
avoid the query tokens always focusing on the easily aligned key tokens of the other domain. The
effectiveness of feature grouping strategy has been confirmed in literature Yu et al. (2022); Zeng
et al. (2022) as well.

To validate our hypothesis, we design five grouping strategies from the perspectives of randomness,
spatial continuity, and semantic integrity in feature tokens. For verifying the effect of randomness,
the ”random-grouping” strategy is designed to randomly divide the source and target domains,
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(a) Without mask (b) Random mask (c) HVH mask (d) HVR mask (e) Cutout mask (f) Semantic mask

Figure 3: Illustration of (a) original feature tokens and (b)-(f) five masks of feature grouping strate-
gies. Source and target tokens are listed separately in the first and second rows. Feature tokens
in the white region are selected from 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 and grouped as 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 , where 𝑖 ∈ {𝑠, 𝑡}. The
complementary feature tokens in the black region constitute complementary groups 𝑄𝑐

𝑖
, 𝐾𝑐

𝑖
, 𝑉𝑐

𝑖
.

respectively, into two groups based on two random binary masks shown in Fig. 3(b). For spatial
continuity, we present a Horizontal-Vertical Half grouping (”HVH-grouping”) strategy to divide
the features into two halves, horizontally or vertically. The HVH-grouping mask is shown in Fig.
3(c). To combine spatial continuity with randomness, we propose to randomly divide the image
into two horizontal or vertical groups without equal division restriction, according to a Horizontal-
Vertical Random (HVR) mask (”HVR-grouping” strategy) in Fig. 3(d). Besides, we also implement
a random continuous division of the features based on the cutout mask, which is called the ”cutout-
grouping” strategy and shown in Fig. 3(e). For integrating semantic integrity into randomness and
spatial continuity, we propose a ”semantic-grouping” strategy, where the semantic mask illustrated
in Fig. 3(f) selects the entire category region and divides the images into two groups based on class
labels. The first four grouping strategies only require the size of the source and target images, while
the latter semantic-grouping strategy also needs the ground-truth labels of the image. Considering
the semantic categories from the source and target domains have an approximate spatial distribution
and structure Tsai et al. (2018), we adopt a semantic mask from the source domain as the semantic
mask of the unlabeled target domain to group features.

The goal of feature grouping strategies is to divide query, key, and value tokens into two exclusive
groups where the MHA module is applied independently. We take the semantic-grouping strategy
as an example. According to the semantic mask in Fig. 3(f), feature tokens 𝑄𝑖 , 𝐾𝑖 , and 𝑉𝑖 (where
𝑖 ∈ {𝑠, 𝑡}) of source and target domains are divided into the semantic group where 𝑀𝑖 = 1 (white
regions) and the complementary group where 𝑀𝑖 = 0 (black regions). For the semantic group
in white regions, key tokens 𝐾𝑠 and 𝐾𝑡 of source and target domains constitute hybrid-domain
key tokens 𝐾ℎ = [𝐾𝑠;𝐾𝑡 ]. Hybrid-domain value tokens 𝑉ℎ = [𝑉𝑠;𝑉𝑡 ] are composed in the same
way. For the source (target) domain, hybrid-domain value tokens 𝑉ℎ is fused base on the similarity
matrix, which is computed by the scaled dot-production between the single-domain query 𝑄𝑠 (𝑄𝑡 )
and hybrid-domain key 𝐾ℎ. The MHA module applied in the semantic group features is formulated
as:

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑖 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑖 · [𝐾𝑠;𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ], where 𝑖 ∈ {𝑠, 𝑡}. (4)

We emphasize that the source query 𝑄𝑠 and target query 𝑄𝑡 share the same hybrid-domain key 𝐾ℎ

and value 𝑉ℎ. Projecting the source and target domain spaces into a subspace with shared common
basis 𝑉ℎ facilitates feature alignment. It is worth noting that only features in the white regions
(𝑀𝑠 = 1 or 𝑀𝑡 = 1) of the source and target domains are refined by Eq. 4. For the complementary
group in black regions, the MHA module is applied as:

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑐
𝑖 , 𝐾

𝑐
𝑠 , 𝐾

𝑐
𝑡 , 𝑉

𝑐
𝑠 , 𝑉

𝑐
𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(

𝑄𝑐
𝑖
· [𝐾𝑐

𝑠 ;𝐾𝑐
𝑡 ]⊤√

𝑑
) [𝑉𝑐

𝑠 ;𝑉𝑐
𝑡 ], where 𝑖 ∈ {𝑠, 𝑡}. (5)

We only depict the process of Eq. 4 in the Fig. 2. The complementary part in Eq. 5 can be derived
similarly.

1We use superscript 𝑐 of a feature to denote the complementary feature.
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3.3.2 IMPORTANCE OF SOURCE AND TARGET FEATURES IN MHA

As described in Sec. 3.2, the MHA module includes both intra-domain self-attention and inter-
domain cross-attention mechanisms. The intra-domain self-attention comes from 𝑄𝑠𝐾

⊤
𝑠 and 𝑄𝑡𝐾

⊤
𝑡

in Eq. 4. The inter-domain cross-attention are from 𝑄𝑠𝐾
⊤
𝑡 and 𝑄𝑡𝐾

⊤
𝑠 in Eq. 4. We provide detailed

studies on these four parts to investigate the importance of source and target features in MHA.
Specifically, we name 𝑄𝑠𝐾

⊤
𝑠 and 𝑄𝑡𝐾

⊤
𝑡 as the intra-domain self-attention weight, while 𝑄𝑠𝐾

⊤
𝑡 and

𝑄𝑡𝐾
⊤
𝑠 as the inter-domain cross-attention weight.

The inter-domain cross-attention weight 𝑄𝑠𝐾
⊤
𝑡 guides the fusion of target value tokens 𝑉⊤

𝑡 to re-
build 𝑄𝑠 , which tries to pull the source distribution to the target. So we consider it as a feature fu-
sion on source-to-target direction. Similarly, 𝑄𝑡𝐾

⊤
𝑠 guides the fusion of source value tokens 𝑉⊤

𝑠 on
target-to-source direction. Either of them is a unidirectional cross-attention mechanism. The bidi-
rectional cross-attention mechanism includes both source-to-target and target-to-source directions,
as described in Sec. 3.3.1. For a unidirectional cross-attention mechanism, take target-to-source
direction as example, the Eq. 4 is changed to:

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑠 , 𝐾𝑠 , 𝐾𝑡 , 𝑉𝑠 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑠 · [𝐾𝑠;𝐾𝑡 ]⊤√

𝑑
) [𝑉𝑠;𝑉𝑡 ], (6)

𝐴𝑡𝑡𝑛ℎ𝑦𝑏𝑟𝑖𝑑 (𝑄𝑡 , 𝐾𝑡 , 𝑉𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
𝑄𝑡 · (𝐾𝑡 )⊤√

𝑑
)𝑉𝑡 . (7)

Compared to the bidirectional cross-attention mechanism in Eq. 4, the cross-attention mechanism
of source-to-target direction is only applied to the source domain as Eq. 6 and not to the target
domain as Eq. 7. The unidirectional cross-attention mechanism of target-to-source direction is
performed by exchanging the source and target domains. According to the experiments in Tab. 2,
the unidirectional cross-attention mechanism does not bring significant performance improvement.
We argue that the bidirectional cross-attention mechanism facilitates the projection of source and
target features into a shared common subspace, minimizing the discrepancy in distribution between
the projected source and target domains. Instead, the unidirectional cross-attention mechanism only
attempts to project one domain (source or target) into the other domain, while keeping the other
domain unchanged. There is also literature that shares the same conclusion on the shared common
subspace in domain adaptation Gopalan et al. (2011); Zhang et al. (2017); Ganin et al. (2016).

Besides, we also conduct experiments to investigate the proportion between the intra-domain self-
attention weight and the inter-domain self-attention weight during the feature fusion. We find that
both weights are essential in the MHA module, and keeping them as an evenly matched ratio would
achieve the best performance. The details of these experiments are presented in supplementary
material due to the page limitation.

4 EXPERIMENTS
We conduct experiments on the two standard benchmark settings, namely, “GTAV Richter et al.
(2016) to Cityscapes Cordts et al. (2016)” and “SYNTHIA Ros et al. (2016) to Cityscapes Cordts
et al. (2016)”, where GTAV Richter et al. (2016) and SYNTHIA Ros et al. (2016) are adopted as
labeled source domain, and Cityscapes Cordts et al. (2016) is taken as unlabeled target domain to
evaluate the adaptation performance. The details of our experimental settings are given in supple-
mentary material.

4.1 ABLATION STUDIES FOR COORDINATION WEIGHT

As the basis of our framework, we first investigate the effects of the coordinate weight. Coordinate
weight 𝛼 in Eq. 1 is designed to achieve harmonious training between the source and target domains.
We plot the curves of coordinate weights with different 𝛼 on the left of Fig. 4. The corresponding
performance is shown on the right of Fig.4. Setting 𝛼 = 0 means that the target domain is not
involved and only the source domain is available for model training. As the 𝛼 increases, the earlier
the target domain is involved in the training. In addition, we also report the performance without the
coordination weight, i.e., the target domain is involved at the beginning of the training process with
the same weight as the source domain. As shown in the dashed line, the model that introduces the
target domain at the beginning only achieve 54.0, which is 2.63% higher than that of the model only
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Figure 4: Coordination weight curves and per-
formance comparison between various 𝛼. Setting
𝛼 = 0 indicates that target domain is not involved
in the training. Our method reaches 54.0 without
coordination weight as shown in the dashed line.

Figure 5: Illustration of progressively scattered
semantic masks. The semantic masks with 0, 4,
8, 12, 14 (all) scattered classes are listed in the
direction of the arrow.

trained on the source domain (51.37 at 𝛼 = 0). We take 𝛼 = 2𝑒−4 as our default setting according to
the experimental results.

4.2 ABLATION STUDIES FOR THE MHA MODULE

Effects of the feature grouping strategies The feature grouping strategy determines which features
are selected and fused in the MHA module. Five feature grouping strategies are designed according
to the guidance of randomness, spatial continuity, and semantic integrity, as shown in Fig. 3. Per-
formance in Tab. 2 indicates that all three factors are indispensable. First, randomly selecting and
aggregating features from the source and target domain can provide more diversity. Replacing the
single-domain features of the source and target domains with various hybrid-domain features en-
ables the model to learn domain-invariant class representations under different feature distributions.
Second, spatial continuity can maintain the contextual information, i.e., features of the surrounding
pixels, which is proven to enhance the feature representation on semantic segmentation Zhang et al.
(2018); Yuan et al. (2020); Li et al. (2021); Jin et al. (2021). Moreover, spatial continuity preserves
as many features as possible for minority categories, whose performance is the bottleneck of domain
adaptation. Third, semantic integrity guarantees that the model can learn discriminative features for
each class on the source domain, which is the basis for effective feature adaptation on the target
domain. As a result, the semantic-grouping strategy achieves the best performance.

Along the semantic-grouping strategy, we conduct experiments to deeply verify the importance of
semantic integrity. As illustrated in Fig. 3(f), semantic-grouping strategy divides feature tokens of
one image into two exclusive parts, according to the semantic mask. For example, a source image
in GTAV Richter et al. (2016) with 14 classes is divided into a black region with 7 classes and a
white region with 7 classes, as shown in the left corner of Fig. 5. Each region contains all feature
tokens of the corresponding 7 classes. To further verify the significance of semantic integrity in
the MHA module, we scatter the features of the class present in the black part or the white part
into two parts uniformly. This strategy is called the scattered-semantic (SS) grouping strategy. We
gradually increase the number of scattered classes. The produced six masks arranged by arrows
in Fig. 5 correspond to the cases where 0, 1, 4, 8, 12, and 14 categories are scattered. When all
classes (14 classes in this image) are scattered, the class-scattered grouping strategy is the same as
the random-grouping strategy in Fig. 3(b). The performance of six scattered-semantic grouping
strategies is given on the right side of Tab. 2. As the number of scattered classes increases, the
performance decreases from 68.05 (the same as the semantic-grouping strategy) to 63.37 (the same
as the random-grouping strategy).

Effects of the bidirectional cross-attention mechanism We compare the bidirectional cross-
attention mechanism with two unidirectional cross-attention mechanisms, and the results are listed
in Tab. 2. It can be seen that the bidirectional cross-attention mechanism achieves much better per-
formance than others. There is an interesting conclusion that the performance of only using the
source-to-target cross-attention mechanism is even worse than no cross-attention baseline, which
may be due to the low confidence of the pseudo labels in the target domain.

MHA in different Transformer stages As shown in Tab. 1, since the MHA numbers in four stages
go up and then down, the adaptation performance of our method first arises from 61.26 to 66.93, then
drops back to 61.30. We believe the core factor that affects performance is the number of blocks
in each stage. More MHA modules are applied, the more it helps the model learn domain-invariant
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Table 1: Ablation study of the MHA
module in each Transformer stage.
The first line shows the performance
without the MHA module.

Stage1 Stage2 Stage3 Stage4 mIoU

– – – – 56.65
✓ – – – 57.21
– ✓ – – 58.87
– – ✓ – 65.70
– – – ✓ 57.51
✓ ✓ – – 60.71
– ✓ ✓ – 66.34
– – ✓ ✓ 66.79
✓ ✓ ✓ – 66.29
– ✓ ✓ ✓ 67.87
✓ ✓ ✓ ✓ 68.05

Table 2: Ablation study of feature grouping strategies.
The SSG strategy indicates the scattered-semantic group-
ing strategy. Source-to-target and target-to-source direc-
tions are denoted by S2T and T2S respectively.

Strategy mIoU SSG Strategy mIoU

non-grouping 61.91 non classes 68.05
random-grouping 63.37 1 classes 67.65
HVH-grouping 64.55 4 classes 65.94
HVR-grouping 64.93 8 classes 65.83
cutout-grouping 65.07 12 classes 64.58

semantic-grouping 68.05 all (14) classes 63.37

Baseline without cross-attention mechanism 56.65
Unidirectional cross-attention mechanism (S2T) 55.91
Unidirectional cross-attention mechanism (T2S) 58.38
Bidirectional cross-attention mechanism 68.05

Table 3: Comparison with state-of-the-arts on GTAV/Synthia to Cityscapes benchmarks. The first
and second highest scores are represented by bold font and underline respectively.

Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU
GTA5 → Cityscapes

ADVENT Vu et al. (2019) 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CBST Zou et al. (2018) 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
DACS Tranheden et al. (2021) 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
DPL-Dual Cheng et al. (2021) 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
SAC Araslanov & Roth (2021) 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8
CorDA Wang et al. (2021a) 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA Zhang et al. (2021) 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer Hoyer et al. (2022) 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
Ours 96.2 73.1 89.6 59.4 48.5 43.8 57.6 53.5 89.7 49.1 91.8 69.9 41.9 91.9 68.8 80.0 69.3 57.9 61.1 68.1

Synthia → Cityscapes
ADVENT Vu et al. (2019) 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 – 84.1 57.9 23.8 73.3 – 36.4 – 14.2 33.0 41.2
CBST Zou et al. (2018) 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 – 78.3 60.6 28.3 81.6 – 23.5 – 18.8 39.8 42.6
DACS Tranheden et al. (2021) 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6 48.3
DPL-Dual Cheng et al. (2021) 83.5 38.2 80.4 1.3 1.1 29.1 20.2 32.7 81.8 – 83.6 55.9 20.3 79.4 – 26.6 – 7.4 46.2 43.0
SAC Araslanov & Roth (2021) 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 – 89.3 63.6 25.4 86.9 – 35.6 – 30.4 53.0 52.6
CorDA Wang et al. (2021a) 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 – 90.4 69.7 41.8 85.6 – 38.4 – 32.6 53.9 55.0
ProDA Zhang et al. (2021) 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5
DAFormer Hoyer et al. (2022) 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
Ours 81.8 40.0 88.4 44.7 8.1 47.2 49.2 49.0 86.5 – 92.2 73.8 49.6 86.3 – 42.1 – 56.7 61.0 59.8

features. When the MHA module is applied incrementally in four stages, consistent performance
improvement is achieved and up to 68.05.

4.3 COMPARISON TO STATE-OF-THE-ART METHODS

To show the superiority of the proposed method, we report adaptation performance in terms of mIoU
(%) on two benchmarks in Fig. 3. Our method achieves 68.05 and 59.8 performance on GTAV-to-
Cityscapes and Synthia-to-Cityscapes benchmarks, respectively. Compared to the state-of-the-art
method DAFormer Hoyer et al. (2022), we achieve a comparable performance without using DACS
Tranheden et al. (2021) augmentation. Considering the source pre-trained model can provide a better
initialization model, we train our STCT framework with a source pre-trained model, which achieve
a new SOTA performance 69.18 in mIoU on GTAV-to-Cityscapes benchmark. To further verify
the effectiveness of coordination weight, experiments of STCT framework based on the source pre-
trained model but without coordination weight is conducted and only achieves 67.06 in mIoU on
GTAV-to-Cityscapes benchmarks, which is inferior to the counterpart with the coordination weight.

5 CONCLUSION

In this work, we presented a Source-Target Coordinated Training Framewor (STCT) framework
based on the coordinate weight for unsupervised domain adaptation on semantic segmentation. The
proposed STCT framework solves the problem of coordination between the learning of discrimina-
tive category features from source domain and the learning of feature distribution of target domain.
Moreover, to explicitly construct the interaction and bridge the gap between different domains, we
propose a Multi-head Hybrid-Attention (MHA) module. The MHA module consists of intra-domain
self-attention and inter-domain cross-attention to achieve feature fusion and alignment. Exhaustive
experiments are conducted to study the effects of various factors in the MHA module.
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sarial entropy minimization for domain adaptation in semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526, 2019.

Qin Wang, Dengxin Dai, Lukas Hoyer, Luc Van Gool, and Olga Fink. Domain adaptive semantic
segmentation with self-supervised depth estimation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 8515–8525, 2021a.

Yuxi Wang, Junran Peng, and ZhaoXiang Zhang. Uncertainty-aware pseudo label refinery for do-
main adaptive semantic segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9092–9101, 2021b.

Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, and Rong Jin. Cdtrans: Cross-domain
transformer for unsupervised domain adaptation. arXiv preprint arXiv:2109.06165, 2021.

Jinyu Yang, Weizhi An, Sheng Wang, Xinliang Zhu, Chaochao Yan, and Junzhou Huang. Label-
driven reconstruction for domain adaptation in semantic segmentation. In European conference
on computer vision, pp. 480–498. Springer, 2020.

Tan Yu, Gangming Zhao, Ping Li, and Yizhou Yu. Boat: Bilateral local attention vision transformer.
arXiv preprint arXiv:2201.13027, 2022.

Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual representations for semantic seg-
mentation. In European conference on computer vision, pp. 173–190. Springer, 2020.

Wang Zeng, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo, Ouyang Wanli, and Xiaogang Wang.
Not all tokens are equal: Human-centric visual analysis via token clustering transformer. arXiv
preprint arXiv:2204.08680, 2022.

11



Under review as a conference paper at ICLR 2023

Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, and
Amit Agrawal. Context encoding for semantic segmentation. In Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition, pp. 7151–7160, 2018.

Jing Zhang, Wanqing Li, and Philip Ogunbona. Joint geometrical and statistical alignment for
visual domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1859–1867, 2017.

Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang Wen. Prototypical pseudo
label denoising and target structure learning for domain adaptive semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12414–
12424, 2021.

Zhedong Zheng and Yi Yang. Rectifying pseudo label learning via uncertainty estimation for domain
adaptive semantic segmentation. International Journal of Computer Vision, 129(4):1106–1120,
2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang. Unsupervised domain adaptation for se-
mantic segmentation via class-balanced self-training. In Proceedings of the European conference
on computer vision (ECCV), pp. 289–305, 2018.

Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence regularized
self-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
5982–5991, 2019.

12


	Introduction
	Related Work
	Domain adaptive semantic segmentation
	Self-attention and cross-attention mechanisms

	The Proposed Method
	Source-target coordinated training framework
	Multi-head hybrid attention module
	Deeper analysis on the MHA module
	Feature grouping strategies in the MHA
	Importance of source and target features in MHA


	Experiments
	Ablation studies for coordination weight
	Ablation studies for the MHA module
	Comparison to state-of-the-art methods

	Conclusion

