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ABSTRACT

Whole slide images (WSI) are microscopy images of stained tissue slides rou-
tinely prepared for diagnosis and treatment selection in clinical practice. WSI are
very large (gigapixel size) and complex (made of up to millions of cells). The cur-
rent state of the art (SoTA) approach to classify WSI subdivides them into tiles,
encodes them by pre-trained networks, and applies Multiple Instance Learning
(MIL) to train for specific downstream tasks. However, annotated datasets are
often small, typically a few hundred to a few thousand WSI, which may cause
overfitting and underperforming models. On the other hand, the number of unan-
notated WSI is ever increasing, with datasets of tens of thousands (soon to be
millions) of images available. Nevertheless, using unannotated WSI is limited
due to the challenges of extending self-supervised learning from natural images
to WSI. We propose a strategy of slide-level self-supervised learning (SSL) to
leverage the large number of images without annotations to infer powerful slide
representations. The resulting embeddings allow compression of the whole pub-
lic WSI dataset available at the Cancer-Genome Atlas (TCGA), one of the most
widely used data resources in cancer research, from 16 TB to 23 MB, thus dramat-
ically simplifying future studies in the field of computational pathology in terms
of data storage and processing. We show that a linear classifier trained on top of
these embeddings maintains or improves previous SOTA performances on various
benchmark WSI classification tasks. Finally, we observe that training a classifier
on these representations with tiny datasets (e.g. 50 slides) improved performances
over SOTA by an average of +6.3 AUC points over all downstream tasks. We fur-
ther analyze the conditions necessary for such a training framework to succeed,
bringing insights into WSI processing.

1 INTRODUCTION

Whole Slide Images (WSI) are microscopy images of diseased tissue. Taken in routine in cancer
treatment centers, they are used by clinicians for diagnosis, patient stratification and treatment se-
lection. They contain complex and abundant information on thousands of individual cells, their
environments and the overall tissue architecture.

The most important task in computational pathology is to make predictions directly from the WSI.
For example, we might want to predict cancer subtype, survival of the patient or response to treat-
ment. The major challenges in building predictive models operating on WSI are:

* prohibitive memory requirements (typically 15GB uncompressed per WSI)
* We do not know a priori which parts of the WSI are relevant for the output variable.

* WSI datasets tend to be small. The large amount of noise thus often leads to overfitting and
poor performance.

* Dealing with WSI is technically demanding. This represents a considerable barrier for
multi-modal analyses of genomic and pathology data.

Today, the leading methods for WSI classification rely on Multiple Instance Learning (MIL): WSI
are tessellated into small images, called tiles, which are encoded by an instance embedder. Tile
embedders are usually pre-trained, either on natural images or - more recently and with great effect
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- by self-supervised learning (SSL). WSI are then seen as bags of tiles, and the slide representation
is thus obtained by combining the tile representations, which are then used as input for the slide
classification network. The agglomeration strategy comes in different flavors and usually relies on
tile selection or weighted averaging of tile embeddings (Courtiol et al.| (2019)1Ise et al.|(2018)); |Lu
et al.| (2021); Rymarczyk et al.| (2020); |[Li & Eliceiri| (2020)). The slide classification network is
usually trained from scratch on the specific classification task.

While these methods successfully predict a large variety of output variables, such as grade, cancer
subtype, gene signatures, mutations or response to treatment (Campanella et al.| (2019); |(Coudray
et al.| (2018); Kather et al.| (2020); Lazard et al.| (2021)); Naylor et al.| (2022); |[Echle et al.| (2021}));
Qu et al.| (2021))), the performances remain highly dependent on the size of the training dataset
(Campanella et al.| (2019)). Indeed, MIL performance reaches saturation when using thousands of
slides with associated ground truth for training.This might be realistic for the most frequent cancer
types and routinely acquired output variables, but we would rather have tens to hundreds of WSI
with known ground truth in most real-world projects. On the other hand, with the digitalization
of many pathology facilities, we have access to hundreds of thousands of WSI, scanned in clinical
routine. Following the SSL paradigm that has been successfully applied at the tile level (Dehaene
et al.[(2020); |[Lazard et al.[(2021); |Ciga et al.| (2021); Saillard et al.| (2021)), there is a challenging
opportunity to make use of these unannotated data at the slide level to derive powerful slide repre-
sentations. These would be particularly useful for small cohorts and non-standard output variables,
such as prognosis for rare cancer types or prediction of treatment response in clinical trials.

Another limitation of current methods is inherent to the MIL approach: slides are modeled as bags
of tiles, their spatial relationship is not taken into consideration. However, depending on the classi-
fication task, the spatial interconnections between different tiles might be informative.

Here, we propose Giga-SSL, a strategy to perform SSL for Gigapixel images. Designed for pathol-
ogy data, our method is capable of leveraging large datasets, such as TCGA to learn powerful rep-
resentations at the WSI level without using any ground truth data. Our contributions are:

* Giga-SSL, an efficient self-supervised contrastive learning framework for Gigapixels im-
ages.

* We show that a linear classifier on top of these embeddings maintains or improves SOTA
performances on most of the downstream classification tasks we tackled. The performance
gains are particularly important for small datasets.

* We provide the WSI embeddings of the whole TCGA dataset, compressing it by a factor of
almost 1 million from 16Tb to 23Mb, and thus making complex and large image datasets
amenable for future research.

We expect that this method will have an important impact on the field of computational pathology:
with the representations provided by Giga-SSL, we can generate predictive models for small datasets
and we can make image data accessible to a larger community of researchers in cancer bioinformat-
ics, in order to investigate the complex relationships between genetic, transcriptomic and phenotypic
data.

2 BACKGROUND

2.1 MULTIPLE INSTANCE LEARNING FOR GIGAPIXEL IMAGES

Because gigapixel images do not fit in GPU memory with modern deep learning architectures, most
of the community has used the multiple instance learning (MIL) paradigm to handle them. In the
MIL paradigm, objects (called bags) contain other objects (called instances). For gigapixel images,
the object is a gigapixel image its instances are subimages (also called tiles or patches) extracted
throughout the gigapixel image. While traditional MIL assumes independent and identically dis-
tributed (i.i.d.) instances within each bag. this assumption is relaxed for gigapixel images because
instances are extracted from the same image, and are therefore not independent. Given a gigapixel
image X made of n, instances (z1,...,z,, ), MIL is implemented as a combination of three mod-
ules i.e. (i) an instance embedder ey, (-), (i) a pooling operator py, (-) and (iii) a classifier cp, ()
such that a decision ¢ is obtained with
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7 = co, (pg2 ({691 (z1),...,{eq, (zn)})>

Most of the MIL architectures differ from the design of the pooling operator pg, (). There are two
families of operators: (i) those that consider instances as i.i.d. and (ii) those that exploit the re-
lationship between instances of a bag. Architectures that consider instances as i.i.d. are either
parameterless (e.g. using the operators average, maximum, a concatenation of both (Lerousseau
et al.| (2020)), or a noisy-OR function), or trainable such as attention based neural networks (Ilse
et al.|(2018))). While these architectures obtain good performance, instances of gigapixel images are
dependent and contain information that can be leveraged to produce accurate predictions. Modern
MIL architecture for gigapixel images have been designed to exploit the spatial relationship of in-
stances. For instance, transformer-based MIL approaches (Shao et al.| (2021))) extend the attention
mechanism of (Ilse et al.| (2018)) by incorporating the positions of instances for decision predic-
tion. Of particular interest in this work, the SparseConvMIL (Lerousseau et al.[(2021))) architecture
bridges the gap between MIL and convolutional neural networks by building a sparse map from both
the embeddings and the spatial locations of the samples instances. This map is further processed by
a sparse-input convolutional neural network that outputs a latent vector to be further classified by a

generic classifier cg, ().

2.2 SELF-SUPERVISED LEARNING IN CLASSICAL IMAGE PROCESSING

The SSL framework aims at learning useful representations of objects by solving pretext tasks that
do not need external annotation. SSL has achieved massive improvement on standard classification
benchmarks, most notable with contrastive or similarity learning (Chen et al.| (2020a); He et al.
(2020)). The foundation of these algorithms is to learn representation of images that are invariant to a
set of augmentations. For instance, in SimCLR (Chen et al.|(2020a))), images are transformed by two
transformations drawn from a distribution designed to change the aspect of the resulting views but
not their semantic content. These views are then projected on a lower dimensional space by a neural
network. By optimizing the contrastive loss, two views of the same image should become close
while distance between views of different images should be increased. The resulting representation
is therefore supposed to be robust w.r.t. to the transformations, while being informative about the
semantic content. These algorithms have led to a tremendous amount of studies and improvement in
image processing tasks. Specifically, models pre-trained with SSL present a strong label-efficiency
(Chen et al.|(2020b))) when fine-tuned on downstream supervised tasks.

2.3 SELF-SUPERVISED LEARNING FOR GIGAPIXEL IMAGES

Self-supervised learning for Gigapixel Images has not yet been largely explored: there are only two
articles addressing this idea, both published very recently. The work of (Fashi et al.| (2022)))proposes
self-supervised learning in the context of attention MIL. The slide labels are defined as the organ
from which the slide originates. Consequently, this approach instead qualifies as traditional transfer
learning than SSL. The proposed method has two drawbacks: the pretext task seems to be too easy to
lead to powerful representations. Furthermore, this strategy can only be employed in pan-cancer set-
tings, where data from many cancer types is available. (Chen et al.|(2022)) used visual transformers
(Dosovitskiy et al.| (2020))) (ViT), adapting the DINO (Caron et al.| (2021)) self-supervised frame-
work to pathology data. Their strategy exploits the hierarchical nature of WSI by stacking three
ViTs. Each of these models are then trained sequentially using the Dino algorithm. When the first
network takes as input 16x16 pixels images to learn representations of 256x256 pixel-wide regions,
the second takes as input the output of the first network and learns representations of 4096x4096
pixel-wide regions. To classify WSI, they then need to train from scratch a last transformer layer
that aggregates the information from the 4096x4096 patches. Results are encouraging, improving
SoTA performances on many classification or survival prediction tasks. However, as the last ViT
layer cannot be trained with DINO, a fine-tuning step is required. Consequently, this method cannot
provide universal slide representations, and our main objective could therefore not be reached with
this method.
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3 METHODS

3.1 ARCHITECTURE
As illustrated in Figure[T] Giga-SSL comprises the following five components:

* A gigapixel image-level augmentation operator transforms a gigapixel image into two ran-
domly augmented views X; and Xs. In this work, we consider the following transforma-
tions at the slide level: tile sampling, slide rotations, slide flips, and slide scaling.

* A tile-level augmentation operator transforms each sampled tile. These transformations
can be applied either independently to all the tiles (not shared) or the same transformation
can be applied to all tiles sampled from the same view (shared). We used popular image
augmentation functions, including color jitter, rotations, flips, scaling, blur.

* A tile embedder ey, (-) that concurrently and independently embeds the augmented tiles
sampled from X; and X into a latent space of dimension F'.

* A pooling operator py, (-) that processes the resulting embeddings of X (resp. X») into a
single representation vector Wy (resp. Ws).

* A loss function appropriate for self-supervision, such as a contrastive loss or a similarity
loss. This loss aims to pull together the representations of the two transformed views of
the same gigapixel image and potentially pull apart view representations originating from
different gigapixel images.
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Figure 1: Overview of the method. Presentation of the architecture and different steps of Giga-SSL.

The major computational bottleneck of this strategy is the online computation of the tiles embed-
dings. A batch size of By WSI will be composed of 2 views for each WSI, each WSI itself being
composed of 7" sampled images of size 256x256. A batch therefore contains B; x 2 x T images.
Given the limited memory of GPU cards, this puts constraints on B and N; and effectively limits
the batch size we can use. However, it has been shown (Chen & He| (2020); |Chen et al. (2020a;
2021)) that a high batch size is necessary for contrastive learning. Furthermore, a high number of
sampled tiles bring better results in WSI classification. Finally, computing tile representations online
is time-consuming and therefore leads to very long training times.

We overcome this problem by pre-computing augmented representations of the tiles. If the tile-level
augmentations are not shared among views, we perform a random transformation on each tile of the
WSI and store their stacked embeddings. If the tile-level augmentations are shared among the same
view, for each WSI we sample N, 4 = 50 different augmentations and apply them each to a batch of
N; = 256 tiles randomly sampled in the WSI. Embeddings resulting from different transformations
are stored in different files. At training time, we just randomly sample an augmentation and then
sample 7 tiles in the corresponding file (see appendix[5). Performing offline finite random augmen-
tations does not degrade the quality of the Giga-SSL representations compared to online and infinite
augmentations. It allows at the same time to train a full Giga-SSL model in 10 hours of GPU-time
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(which would take a week with online tiles augmentations, or roughly 20 times longer on the same
GPU device) as well as experimenting with bigger batch and tile sizes.

At training time, we sample a minibatch of N gigapixel images, and sample two views X}, X?
for each of them such that X; = (E;, L;) with the tile embeddings E; being a T'x F' matrix and
the locations L; a T'x2 matrix. Slide level transformations are applied to L; and finally the views
arerorwardeinnto the pooling operator producing two representation vectors W} = py,(X}) and
Wi = ps, (X i ).

Finally, at inference time, because the final aggregation layer needs at test time the same number
of tiles as at training time, we devise an ensembling strategy (appendix figure ). For a slide X we
bootstrap R = 50 views without tile augmentation (i.e. differing only in the sampled tiles), compute

their embedding W,. and output the average Wy = Zf’:l W./R.

3.2 TRAINING DATASET

Self-supervised pre-training of Giga-SSL is done using The Cancer Genome Atlas (TCGA) Wein-
stein et al.| (2013)), a public dataset that comprises 11754 whole slide images, i.e, digitized images
of glass slides containing cancer tissue from virtually all types of solid cancers. These slides are
crucial for patient care since they are the basis of diagnosis and treatment selection. On average,
images have a width of 93000 pixels and a height 67500 pixels, for an average of 6.5e9 pixels per
image. Fully compressed, TCGA weighs more than 16 Terabytes, i.e. 3 orders of magnitude more
than ImageNet (Deng et al.[(2009)).

4 EXPERIMENTAL VALIDATION

4.1 DOWNSTREAM CLASSIFICATION TASKS

Datasets Similarly to the works on natural images, we measured the quality of the learned repre-
sentations by performing linear probing (Chen et al.| (2020a)); He et al.| (2020); |Caron et al.| (2021)),)
either with all the labels available for a given task or by artificially reducing the number of labels to
simulate a semi-supervised setting. To do so, one representation was extracted for each WSI after
SSL pretraining. These representations were then used as input data to train a logistic regression for
each task. This protocol was applied for 6 diagnostic tasks highly pertinent for clinical practice: 3
tasks as performed in (Chen et al.| (2022)) aiming at automating the diagnostic routine of patholo-
gists (in lung -NSCLC-, breast -BRCA-, and kidney -CRC-), and 3 additional tasks aiming at going
beyond human knowledge by inferring molecular properties from tissue slides, which can have a
significant positive impact on patient care with reduced diagnostic time, cost and accessibility. Ta-
ble [T] displays the main statistics for these experiments. These classification tasks are benchmark
standards in the field of computational pathology (Kather et al.| (2020); |Shao et al.| (2021)); |Chen
et al.| (2022); Schirris et al| (2021)). For each experiment, following the protocol of (Chen et al.
(2022)), results were computed on 10 bootstrapped splits of the data.

BRCA Subtyping Kidney Subtyping ~ NSCLC Subtyping ~ BRCA Molecular Profiling ~mHRD-BRCA  tHRD-BRCA

Number of training labels 1041 924 1033 595 912 634
Number of classes 2 3 2 2 2 2
label repartition 831/210 5107294 /120 528 /505 129/ 466 4471465 318/316

Table 1: Presentation of the 6 downstream WSI classification settings.

Default settings For all the following experiments, except when explicitly said otherwise, we use
fixed setting parameters. We selected ResNet18 (He et al.| (2015)) up to its third block as the archi-
tecture for the tile encoder. To measure the impact of image-level pretraining, we first trained the tile
embedder pyg, using the Momentum Contrast (He et al.| (2020)) framework. We set the number 7" of
sampled tiles per slide to 5, and the number R of bootstrapped WSI at inference to 20. In addition,
tile augmentations are shared among views. Both Giga-SSL and Average embeddings are evalu-
ated linearly: a logistic regression is used on top of the frozen embeddings extracted respectively
through Giga-SSL or averaging the tiles MoCo embeddings over the WSI. Average embeddings
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undergo a Standard scale normalization and Giga-SSL embeddings an L2 unit normalization. All
Giga-SSL models are trained for 1000 epochs. More details about training parameters are given in
the appendix.

4.2 RESULTS

Classification results on benchmarked tasks Table [2] synthesizes the results on all tasks for 5
models i.e. average, an attention-based MIL [IIse et al.| (2018)) on top of a ResNet18 pretrained with
MoCo , DeepSMILE |Schirris et al.| (2021) and HIPT/Chen et al.| (2022). Results from HIPT and
DeepSMILE are taken from their respective articles, and constitute the SOTA on the task on which
they are cited. Both Giga-SSL and Average are linear: a logistic regression is used on top of the
frozen embeddings extracted respectively through Giga-SSL or averaging the MoCo embeddings of
the tiles over the WSI. (Chen et al.| (2022)) made available the train/test split used to benchmark the
3 subtyping tasks when using 100% of the available data. We used these splits when available and
created new ones when none were provided. We provide these splits in order to allow future fair
benchmarking.

Method name  Giga-SSL Average AttnDeepMIL HIPT DeepSMILE
From proposed  proposed  |llse et al.[(2018)  |Chen et al.|(2022)  |Schirris et al.|(2021)
linear probing? v v X X X
Task % of train set
. 100 0.952 0913 0.948 0.952
NSCLC Subtyping 25 0.939 0.885 0.922 0.92
. 100 0.905 0.859 0.874 0.874
BRCA Subltyping 25 0.890 0.825 0.860 0.821
. 100 0.982 0.973 0.986 0.98
RCC Subtyping 25 0.975 0.959 0.97 0.974
. 100 0.938 0.920 0.924 -
BRCA Molecular Profiling 25 0.853 0.799 0810 B }
100 0.756 0.706 0.736 - 0.727
BRCA mHRD 25 0.743 0.643 0.660 - -
100 0.855 0.799 0.836 - 0.838
BRCA tHRD 25 0.781 0.698 0.721 ; -

Table 2: Benchmark study reporting the 10-fold cross-validated AUC performances of a logistic
regression fed by Giga-SSL features and other WSI classification models. For each task, we evaluate
the methods with two data budgets: the training set contains either 100% or 25% of the available
data.

Using 100% of the available training labels, the proposed approach achieved SOTA performance on
2 of the 3 tasks benchmarked in (Chen et al.| (2022))), i.e. for NSCLC, BRCA subtyping, increas-
ing the AUC by 3 points for BRCA subtyping, and obtained a slightly lower performance for RCC
subtyping with AUC of 0.982 vs 0.986 for the attention-based MIL architecture. The proposed ap-
proach achieves superior performances for all the other remaining tasks (mHRD, tHRD and BRCA
molecular profiling). Notwithstanding these promising results on datasets with more than 500 la-
bels, the power of the proposed approach seems to be in the low data regime, as highlighted by the
results obtained by using only 25% of available labels. Indeed, the proposed approach obtained the
best results on all tasks in this semi-supervised regime. While this finding may be expected when
comparing Giga-SSL to methods without pretraining , Giga-SSL obtained superior results compared
to the other SSL-based approach HIPT e.g. with a gain of 6.9 AUC points for BRCA subtyping.

Besides the overall gain of performance of Giga-SSL over attention-based MIL and HIPT, the pro-
posed approach works in a linear regime, while HIPT and attention-based are respectively fine-tuned
and learned from scratch. Consequently, their training pipeline is extremely intensive compared to
the proposed approach. For instance, training for BRCA subtyping with 100% of the training data on
10 bootstrapped splits took 1.25 CPU-seconds for the proposed approach versus 150 GPU-minutes
for attention-based MIL, i.e. 7200 times less time for the proposed approach — while obtaining
superior performances.

Training a linear model on the learned representations reduces the risk of overfitting, which is par-
ticularly critical for small dataset regimes. We think that this explains the favourable comparison
of the Giga-SSL approach w.r.t. Sota approaches. We also observe that the results obtained from
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the Average model encodings (also in combination with logistic regression) do not show the same
favourable tendency, which is a strong indication of the power of the Giga-SSL encodings. Our
proposed strategy, therefore, avoids both overfitting and underfitting.

Tiny datasets In practice, pathological datasets can be tiny for treatment response prediction
datasets. For instance, phase II clinical trials typically involve 50 patients. A significant propor-
tion of drugs are discarded during phase II trials since the proportion of responding patients is not
judged enough for a subsequent phase III trial. Training a model to better select responding patients
is therefore challenging due to the low number of labels.

We challenged the Giga-SSL method in training settings with extremely low data budgets (from
250 slides down to 50) by randomly subsampling the training set of each classification dataset.
We compare Giga-SSL to the DeepAttnMIL model, which performances are on par with SOTA
algorithms (Table [2)).

NSCLC CRC BRCA BRCA_, mHRD tHRD
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Figure 2: Difference between the average AUC performances of Giga-SSL and AttnDeepMIL (in
%) as a function of the training set size. The red line represents equal performance. Above the red
line, the advantage is given to Giga-SSL

Figure [2] shows that the performance gap between the proposed approach and the standard WSI
classification method strengthens as the number of samples shrinks. The average improvement over
all tasks brought by Giga-SSL features is of 5.1 AUC points when using 100 WSI and up to 6.3
AUC points when using only 50 WSI.

5 ABLATION STUDY AND SENSITIVITY ANALYSES

To better understand the success conditions of Giga-SSL, we led extensive experiments. In this
section, we aim to understand the impact of some of Giga-SSL design choices over the predictive
power of the learned representations. For all subsequent experiments, the models were trained with
the same conditions (including hyperparameters, epochs, and training dataset) as in the previous
experiments, except when explicitly mentioned.

Sharing tile augmentations within views improves performance Table [3| reports the perfor-
mance of Giga-SSL when removing one component at a time, i.e. (i) with a tile embedder pre-
trained on ImageNet rather than pre-trained with MoCo on histopathological data (Giga-SSL;,,)), (ii)
without slide-level augmentation during the WSI-level SSL pretraining including rotations, flips and
scaling; (iii) without shared augmentations across all tiles of a view, i.e. each tile is transformed by
a randomly and independently sampled augmentation.

Using a tile-level SSL algorithm to pretrain the tile encoder eg, brings improvement to the WSI-level
representations: the Giga-SSL trained with MoCo features outperforms its ImageNet (Giga-SSL; )
counter part on all tasks.

The slide-level augmentation, on the contrary, does not seem to be extremely important for the SSL
task, as removing it has a small to no impact on performances.
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100% data 50 WSI
NSCLC CRC BRCA  NSCLC CRC  BRCA
Giga-SSL 0.95 0.98 0.906 0.892  0.960 0.793
Giga-SSL - no slide aug. 0935  0.973 0.894 0.86  0.951 0.80
Giga-SSL - aug. tiles not shared 0.933 0.971 0.875 0.847  0.939 0.774
Giga-SSL; | 0922 0978 0.888 0.813  0.952 0.751
Giga-SSL;, - aug. tiles not shared 0.897  0.975 0.853 0.777  0.935 0.707

Table 3: 10-fold cross-validated AUC performances of ablated Giga-SSL models. Giga-SSL;
stands for a Giga-SSL model trained with tiles embeddings transfered from an ImageNet pretraining.

However, applying independent transformations to each tile (not shared) degrades substantially the
performances with an average decrease of 1.9 AUC points using 100% of the data down to 2.8 AUC
points when using only 50 WSI. When ablating the shared transformations from a Giga-SSL model
trained with ImageNet tiles features, the drop of performances compared to a Giga-SSL; is even
more important: 2.1 AUC points with 100% of the data, 3.2 AUC points with 50 WSI.

Using shared augmentation thus allows the learning of useful features in abundant and scarce data
regimes. We hypothesize key features linked to the slide preparation and shared by all the tiles on
the slide are still available for shortcut learning if the tile-level augmentations are not shared. It
seems that these shortcut features may be more present in ImageNet than in MoCo. Highlighting
such features and finding even more stringent ways to hide them when learning Giga-SSL would
improve even more its performances.
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Figure 3: Experiments on key parameters of Giga-SSL. Each point is a 10-fold cross-validated AUC
performance of a logistic regression fed with Giga-SSL features. The classification task is NSCLC
subtyping for the three experiments. A. Effect of the number of sampled tiles 7' per WSI during
training. B. Effect of the number R of bootstrapped non-augmented views of WSI to feed Giga-SSL
at inference time (see appendix figure ). C. Evolution of the performances of a Giga-SSL with a
sparse CNN (blue line, normal situation) or an attention-MIL network (orange line) as an aggregator.

The fewer tiles, the better Figure[3|B presents the performances of 5 G-SSL models trained with
different numbers of sampled tiles per view. The fewer tiles we sample, the better the resulting WSI
representations. This behaviour strengthens when the downstream problem has a smaller training set
and is comparable among all the downstream classification tasks. Interestingly, we can observe the
opposite effect when using a DeepAttnMIL to classify a WSI: the fewer tiles used at training time,
the worse the performances. A very small number 7' of sampled tiles per view when training Giga-
SSL can be seen as an aggressive augmentation. It has been reported (Chen et al.|(2020a))) that SSL
benefits from stronger augmentations more than classification tasks, and (Tian et al.| (2020)) showed
that there is an optimal strength of augmentation for each downstream task. This optimum trading-
off between keeping enough information to solve the downstream task and minimizing irrelevant
features.
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As sampling 5 tiles per WSI is enough to learn useful information to solve all the proposed down-
stream tasks, we can deduce that the signal relative to these problems is distributed among most
of the tiles of the WSI. It would be very interesting to test the performances of Giga-SSL on a
classification task for which we know that the signal is highly concentrated on a few instances.

Ensembling representations brings improvement We show in appendix (6) that a Giga-SSL
model with a sparse-CNN aggregation module must use the same number of tiles-per-WSI at in-
ference and training. We therefore decided to bootstrap R views of a WSI at inference time before
averaging the Giga-SSL embeddings of these R views. Figure 3B investigates the effect of R on
the downstream performances of the Giga-SSL representations. It shows that without this ensem-
bling strategy, Giga-SSL lose up to 4 AUC points on NSCLC subtyping. The gain in performance
saturates around R = 50.

Attention-deep-MIL unlearns when trained with SSL.  Instead of using a sparse-CNN as a tiles
features aggregator, one could choose any other MIL model. We trained a Giga-SSL model with a
AttnDeepMIL aggregation module and evaluated its downstream linear performances on the NSCLC
dataset. Figure [3]C shows that the performances of such a model decrease while the SSL training
is in progress. While the AttnDeepMIL shows SOTA classification performances [2| when trained
from scratch, this architecture seems not suitable for Giga-SSL pretraining. We suspect that the
DeepAttnMIL has too easily access to shortcuts features to learn the WSI identity. Understanding
what causes its collapse may highlight key pitfall for Giga-SSL training and therefore allow to
improve it.

6 CONCLUSION

Limitations Our work shares part of the limitations of the HIPT model from (Chen et al|(2022)).
Namely, the Giga-SSL models have been trained on the whole TCGA dataset, and downstream
classification tasks are also taken from the TCGA. In the future, we will validate these results on
in-house datasets. Also, an obvious drawback of working with frozen embeddings of WSI removes
any possibility of building explainable models.

To conclude We have explored self-supervised learning for whole slide images with a versatile
design based on specific data augmentation tailored for the multiple instance learning framework.
Our proposed approach achieves or beats state-of-the-art performance over a wide range of clini-
cally impactful tasks in both high and low data regimes. Ablation study and sensitivity analyses
highlighted the key components of our approach — including tile encoder pretraining and how to
apply augmentations to tiles — to better understand the pitfalls of self-supervised whole slide image
representation learning.

The public release of the learned representations for all diagnostic slides of The Cancer Genome At-
las in a manageable size has the potential to unlock new knowledge about cancer and to develop new
tools for diagnosis assistance and treatment response prediction towards improved patient survival.
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A APPENDIX

A.1 LEARNING AND ARCHITECTURAL PARAMETERS.

Tile-embedder pre-training We used the official MoCo repository with default parameters. Aug-
mentations used are the augmentations detailed in MoCoV2 (Chen et al.| (2020c)). We used a
ResNet18 as encoder. At inference, tiles features are averages of the activation map before, after
the third residual block, they result in embeddings of dimensions 256. During training as well as
during inference of tiles embeddings, the tiles are normalized with the Macenko (Macenko et al.
(2009)) normalization. The model was trained on a subset of 6 million tiles extracted from a random
set of 3000 slides from the TCGA at a magnification of 10x for 200 epochs, on 4 Nvidia P100 during
2 weeks.
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Linear classification The Average and Giga-SSL embeddings are classified both with a logistic
regression, implemented with Scikit-learn, as well as the pre-processing applied to WSI representa-
tions -StandardScaler and Normalizer- (Pedregosa et al.).

DeepAttnMIL architecture We use the architecture defined in ?, adding a classification head
after the pooling operation. This classification head contains 3 layers, each layer being a fully-
connected layer with 128 neurons, a batch-normalisation[Toffe & Szegedy|(2015)) layer and a dropout
layer.

Logistic Regression is set with C' = 10, and class weight=balanced.

A.2 ENSEMBLING AT INFERENCE
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Figure 4: TIllustration of the ensembling strategy at inference, to tackle the fact that the sparse-CNN
cannot take more tokens at training and inference.

A.3 PRE-COMPUTATION OF A DATASET WITH SHARED AUGMENTATION
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Figure 5: Visual explanation of the constitution of an embedded dataset with shared augmentation
for the Giga-SSL training. For each WSI, 50 random augmentations are sampled. We augment with
each of these augmentation 256 tiles, encode them, and store them in an augmentation subfolder.
This discrete approximation of online shared augmentation is enough to train Giga-SSL and reduce
by a factor of 20 the training computation time.
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A.4 EFFECTS OF THE NTILES PARAMETER

We study here the impact of the number of sampled tiles at inference. The same Giga-SSL model
has been tested, trained with the default settings and therefore with ntiles = 5, and stopped at epoch =
1000. At inference time, we investigate the impact of increasing this parameter to take into account
a bigger context of the WSI.
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Figure 6: Linear performances of embeddings from the same Giga-SSL model, used at inference
with different 7" sampled tiles per WSI. Results are 10-fold cross-validated.
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