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Abstract

Flow matching has recently emerged as a promising alternative to diffusion-based generative
models, offering faster sampling and simpler training by learning continuous flows governed
by ordinary differential equations. Despite growing empirical success, the theoretical
understanding of flow matching remains limited, particularly in terms of sample complexity
results. In this work, we provide the first analysis of the sample complexity for flow-matching
based generative models without assuming access to the empirical risk minimizer (ERM)
of the loss function for estimating the velocity field. Under standard assumptions on the
loss function for velocity field estimation and boundedness of the data distribution, we show
that a sufficiently expressive neural network can learn a velocity field such that with O(e~4)
samples, such that the Wasserstein-2 distance between the learned and the true distribution
is less than O(¢). The key technical idea is to decompose the velocity field estimation error
into neural-network approximation error, statistical error due to the finite sample size, and
optimization error due to the finite number of optimization steps for estimating the velocity
field. Each of these terms are then handled via techniques that may be of independent
interest.

1 Introduction

Generative models have recently gained significant attention due to their broad applicability in domains
such as image synthesis, computational biology, and reinforcement learning. A common framework among
the generative models is diffusion models (Song et all 2021)) that demonstrated the state-of-the-art results
in many applications. These models define a generative process by gradually reversing a diffusion process,
typically modeled using the framework of Stochastic Differential Equation (SDE). However, training of
such models involve learning the score function of the data distribution via score matching, often requiring
denoising score estimators and large amounts of compute. Moreover, sampling from diffusion models is
computationally intensive, as it typically involves hundreds to thousands of discretization steps, making
real-time generation challenging.

Recently, a promising alternative has emerged in the form of flow-matching based generative models (Lipman
et all [2023)), which replace the stochastic diffusion process with a deterministic Ordinary Differential
Equation (ODE). Instead of estimating scores, these models directly learn a continuous flow that maps noise
to data by matching the trajectories of the ODE to an idealized probability flow. This approach circumvents
the difficulties associated with score estimation and SDE integration, leading to faster sampling, simpler
training objectives, and improved stability. As a result, flow matching provides a compelling and efficient
paradigm for generative modeling.

In the diffusion setting, numerous works have analyzed the sample complexity of score matching, establishing
conditions under which accurate score estimation is possible (Gupta et all 2024; |Gaur et al., |2025). In
particular, the theoretical questions such as: ‘how many samples are required for a sufficiently expressive
neural network to estimate the score function well enough to generate high-quality samples using a
DDPM-type algorithm’ are well studied in the diffusion models.
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In contrast, flow matching, despite its growing empirical success (Shifeng et all [2025), lacks analogous
theoretical results. In particular, existing works such as|Zhou & Liu/(2025)) obtain sample complexity results,
but do so by assuming access to the ERM of the loss function used to estimate the velocity field, which is an
unrealistic assumption in practice. This gap between theory and practice limits our understanding of when
and why flow-matching-based models generalize well, and what governs their data efficiency. Addressing this
gap is essential for developing a comprehensive theoretical understanding of flow matching.

To address this shortcoming, we provide the first theoretical results on the sample complexity of flow matching
without assuming access to the ERM of the loss function used to estimate the velocity field. We ask the
following question:

How many samples are required by a fully expressive neural network to learn a velocity field that enables
high-quality sample generation via flow matching, without assuming access to the ERM of the loss function
used to estimate the velocity field?

We answer this question by showing that flow-matching-based methods can achieve a sample complexity of
O(e~*), where O(e) is the desired Wasserstein-2 distance between the true and generated distribution. This
is achieved by first establishing that the Wasserstein distance between the generated and target distributions
can be bounded by a constant multiple of the velocity function estimation error using results from [Benton
et al.| (2024]). We then decompose this error into three distinct components, the approximation error that
arises due to limited expressiveness of the neural network function class used to approximate the velocity
field, the statistical error due to the use of a finite training dataset, and the optimization error, resulting from
not reaching the global minimum of the loss function during training due to a finite number of optimization
steps. Our analysis achieves a O(e~*) sample complexity bound, doing so without assuming access to the
ERM of the loss function used to estimate the velocity field.

To summarize, the main contributions of our work are as follows:

o Finite-time sample complexity bounds. We derive a sample complexity bound of O(e~*) for
flow-matching based generative models.

e Principled error decomposition. We introduce a decomposition of the velocity field estimation
error into three components: approximation error, statistical error, and optimization error. This
framework allows us to isolate and analyze the contribution of each component to the overall sample
complexity.

o First sample complexity bounds for flow matching without assuming access to the ERM
of the velocity field estimation loss This is in contrast to prior works such as|Zhou & Liu| (2025)
where ERM access is assumed.

1.1 Related Work

Theoretical Guarantees and Limitations of Flow Matching. Recently, [Benton et al.| (2024]) presented
error bounds for the generative process using flow matching, assuming that the true velocity field lies within
an €2 neighborhood of the learned velocity field. Their analysis provides error bounds under the assumption of
upper bounded Ly approximation error and certain regularity conditions on the data distribution. However,
their results do not address sample complexity, a crucial aspect for understanding the number of training
samples required for estimating the velocity field, and no such result currently exists.

Zhou & Liul (2025)) performed a sample complexity analysis for flow matching models wherein the Wasserstein
distance between the true and estimated distributions is bounded by decomposing the error in calculating the
velocity function into errors incurred due to the limited approximation power of the neural network function
class, as well as the finite sample size. As stated earlier, this work assumes access to the ERM of the velocity
estimation loss. Additionally, the sample complexity result obtained in [Zhou & Liuf (2025) is exponential
in the data dimension. Our result avoids this exponential dependence by assuming a constant error due to
the limited approximation power of the class of neural networks used to approximate the velocity function.
We do this since the focus of our work is to analyze the statistical and optimization errors incurred in flow
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matching. Similar assumptions have been used in previous works on diffusion modeling, such as|Gupta et al.
(2024) and |Guan et al.| (2025)).

Sample Complexity in Diffusion Models. Works such as|Chen et al.| (2023)) proved iteration complexity
bounds for diffusion models. More recent work, such as|Guan et al.| (2025), provides convergence analysis
for generative modeling in convex domains. Several recent works have analyzed the sample complexity of
score-based diffusion models. (Gupta et al., 2024]) derives a sample complexity bound assuming access to
ERM, and (Gaur et all 2025 relaxes this assumption, not requiring access to ERM.

2 Preliminaries and Problem Formulation

We begin by reviewing the foundations of flow matching models, which aim to learn vector fields that
generate smooth transformations between probability distributions over time. Specifically, we set up the
formal problem of learning time-dependent velocity functions from finite data samples, under the framework
of continuous-time dynamics.

Our approach adopts the ordinary differential equation (ODE) formulation, which serves as a natural setting
for describing continuous-time trajectories in space. We conclude this section by precisely formulating our
learning objective and articulating the main research question addressed in this work.

A trajectory in this context is a continuous mapping from time ¢ € [0, 1] to a point in R?, representing the
position of a particle as it evolves over time

X:[0,1] = R4t X, (1)

The time evolution of this trajectory is governed by a velocity field u;, which is a time-dependent vector field
defined as the mapping

ug : RY % [0,1] — RE, (2)

That is, for each time ¢ and z, the function u;(x) € R? specifies the instantaneous velocity of a particle
located at x at time t.

Our goal is to find a trajectory X; that flows consistently with this velocity field, starting from a known
initial condition z. This leads us to the following ODE

d
%Xt = ut(Xt), XO = Z. (3)

This formalism underpins many recent advances in generative modeling, including neural ODEs and flow
models, where learning an appropriate velocity field is crucial for generating samples that follow a desired
probabilistic path (Lipman et al.l |2023; |Klein et al. 2023]). The central challenge we now address is how to
learn such a velocity field from empirical data in a principled and data-efficient manner.

Construction of a generative model via an ODE. Following flow matching (Lipman et al., 2023]), we
begin with the construction of a generative model that transforms a simple initial distribution, denoted by 7
(e.g., a standard Gaussian), into a more complex target distribution 71, which represents the true unknown
data distribution. We assume the data distribution 7; has an absolutely continuous CDF supported on set
[0,1]¢. A natural and powerful approach to achieve this is by simulating a continuous-time flow using an
ordinary differential equation (ODE). This flow is modeled by a time-dependent velocity field through the
following ODE:

d 0
%Xt = ut (Xt,Xo), XQ ~ T, (4)
where uf : R? x [0,1] — R? is a vector field parameterized by a neural network with parameters § € ©. The
trajectory X; evolves over time according to this learned field, with the aim that the learned distribution
closely approximates the target .
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To this end, a general technique (Benton et al., |2024; [Lipman et al., 2023)) is to minimize the velocity
estimation loss function given by

LO)=E;;. [Hua(a:,t, z) — ug(z, z)\ﬂ dt, (5)

where z ~ my,t ~ U[0,1] and x ~ X;|z . This loss encourages u’ to match the target velocity field across the
entire time horizon.

A result from Benton et al. (2024]). The authors in Benton et al.| (2024) analyze the error of the flow
matching procedure in terms of the TV between the terminal distributions of the true and learned flows.
Their analysis is based on a set of assumptions that provide theoretical guarantees for the quality of the
learned flow. We restate their main result for completeness.

Theorem 2.1 (Theorem 1 [Benton et al.| (2024)) Suppose that m,m are initial and target probability
distributions respectively on R |'Y is the flow starting in my with velocity field ug, and 1 is the law of Y;.
Also, suppose the following assumptions hold.
e (Bound on L? approzimation error). The true and estimated velocity u.(x) and uf(x) satisfy
Eytz [Hue(x,t,z) — ut(amz)HQ} < €2 (6)
where € is a positive real number.

o (Ezistence and uniqueness of smooth flows). For each x € R? and s € [0,1] there exist unique flows
(Y tes,) and (Z5 ) ie(s,1) starting in Y = x and Zg ; = x with velocity fields ul(x,t,2) and uy(x)
respectively. Moreover, Y, and Zg, are continuously differentiable in z, z, and t.

o (Regularity of approzimate velocity field). The approzimate flow u®(x,t,z) is differentiable in all
inputs. Also, for each t € (0,1) there is a constant L; such that u®(z,t,z) is L;-Lipschitz in x.

Under the above assumptions, we have
1
Wz(ﬁ17W1)§€eXP{/ Ltdt}- (7)
0

Wasserstein distance and its relation to velocity estimation. Since 7y, 7 are the source and target
probability distributions on R?, respectively. For the notational simplicity we use Y; as the solution of the
learned flow governed by u’ with initial condition Yy ~ mp, and #; = Law(Y7) be the resulting terminal
distribution. Similarly, let Z; be the solution of the true flow with velocity field w, such that Zy ~ 7y and
m1 = Law(Z;). Using the standard definition of 2-Wasserstein distance, we have

W2(7AT177T1) = WQ(L&W(Yl), LaW(Zl)) (8)
< (B[|v; — za|2)) """ ()

To bound the expected squared deviation E[||Y; — Z1||?], we have the following from Theorem 1 of |[Benton
et al.| (2024))

E[[Y1 = Z1|”] < K2E[|[u’ (¢, 2) — us(x, 2)||?] (10)
< K2€2, (11)

where the constant K depends exponentially on the Lipschitz constants of the learned velocity field, and is

defined as:
1
K :=exp (/ L, dt) . (12)
0

This result provides a theoretical justification for the flow matching framework: if the learned vector field
u? closely approximates the true field u; in an Lo sense, and maintains smoothness and Lipschitz continuity,
then the resulting generative distribution 7 is guaranteed to be close to the target 7m; in Wasserstein distance.
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Problem statement. In this work, we investigate the sample complexity required to guarantee that the
learned velocity field u?, parameterized by a neural network, approximates the true conditional field wu;(z)
with small integrated error, i.e.,

L(0) =Eyy. [|u(2,t,2) —ue(z,2)|]?] dt < €. (13)

Note that here z ~ mo,t ~ U|0, 1], 2 ~ X¢|z,. Our goal is to understand how the number of training samples
influences this error. To this end, we develop a novel theoretical bound by decomposing the total error in the
learned velocity field into statistical, approximation, and optimization errors. This decomposition provides
insight into the learning dynamics of flow-based generative models. We formalize our framework and main
results in the following section.

3 Our Approach

In order to bound the total error given in learned velocity field as given in Equation equation [10] we
decompose this error into three components. We decompose the loss function in Equation equation [f] as
follows.

EHUG((E,t,Z) - ut(x7z)||2 = EHUG(x,t,Z) - ueb(xatvz)
+u (x,t,2) — u?” (x,t, 2)

—i—uga(m,t,z) —ug(z, 2)|? (14)

E Hue(x,t,z) - u,g(av,z)”2 <2E [Hut(%z) _ uea(:v,t,z)Hz]

Eapprox

—

Estat
2

+4EHu9(x,t,z) —ueb(m,t,z) ) (15)

gopt

We get Equation equation (15| from Equation equation [14] by applying the identity ||a — b||? < 2||a||* + 2||b]|?
twice. The parameters ¢ and 6 are defined as

9° = in £ O(x,t,2) — 2 16
argmin . (| (2, 1,2) — il 2)|”] (16)
1 & 2
0" = in — E (i ti, 2:) — i 1
argrorgg "2 Hu (T4, b, 2i) — we(x )H , (17)

and we denote u?" and ¢ as the neural networks associated with the parameters 6% and 6°, respectively.

In the above the parameters 6 defines the ideal or population-level parameters. It is the value of 6 that
minimizes the expected squared error between the model velocity field u?(z, ¢, z) and the true velocity field
ut(z, z), averaged over the entire data distribution. Moreover, 6° defines the empirical minimzer. It is the
value of 6 that minimizes the empirical average of the squared error between the model and true velocity
fields, based on a finite set of n samples {x;, t;, z; }_;.

In the above, the approximation error E;FP™ captures the error due to the limited expressiveness of the

velocity field {u’}gco. The statistical error £t is the error from using a finite sample size. Finally, the
. . . opt . . o . . . .
optimization error £ is due to not reaching the global minimum during training.

To formally prove the sample complexity results, we make the following assumptions that are commonly
used in previous works on the sample complexity of diffusion models (Block et al.,|2020; |Gupta et al., 2024).
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Assumption 3.1 ((PL) condition.) The loss L(0) for all t € [0,1] satisfies the Polyak—Lojasiewicz
condition, i.e., there exists a constant p > 0 such that

1
SIVEO)® = 1 (£(0) = £,(67)), ¥ O€8, (18)
where 6* = argmingeco L£(0) denotes the global minimizer of the population loss.

The Polyak-Lojasiewicz (PL) condition is much weaker than strong convexity and often holds in non-convex
settings, including overparameterized neural networks trained with mean squared error (Liu et al., [2022;
Gaur et al.l [2025). Prior work on diffusion model sample complexity (Gupta et al., 2024; Block et al.l |2020])
as well as flow matching (Zhou & Liul [2025) assumes access to an exact empirical risk minimizer (ERM)
for the score estimation loss. However, this assumption is limiting in practice, as exact ERM solutions are
rarely attainable.

Assumption 3.2 (Smoothness,bounded variance) For all t € [0,1], the population loss L(0) is
a-smooth with respect to the parameters 0, i.e., for all 0,0 € ©

IVL(0) = VL) < | — 6] (19)

We assume that we have access to unbiased estimators VoL (0) of the gradients ¥V L£(6) which have bounded
variance, i.e.,

E||VL,(0) — VLO)|? < o2, (20)

The bounded gradient variance assumption is standard in SGD analysis (Koloskova et al., [2022} |Ajalloeian
& Stichl [2020) and holds under mild conditions such as Lipschitz activations (e.g., GELU), bounded inputs,
and standard initialization (Allen-Zhu et al., 2019; |Du et al., |2019). Smoothness further stabilizes gradients,
improving convergence for methods like SGD and Adam.

Assumption 3.3 (Approximation error) There exists a neural network parameter 6 € © such that

Eryt,ZHu@(xatv Z) - ut(xvz)HQ < €approx (21)

The approximation error assumptiom describes the error due to neural network parametrization. In learning
theory, it is common to treat the approximation error of a class of functions as a constant so that analysis
can focus on the estimation/ optimization terms dependent on the sample. In PAC-Bayesian analyses,
approximation errors are denoted by a constant once the class is fixed (Mai, [2025). In (NTK/RKHS)
analyses of neural networks, where it is assumed the target function lies in, or is well approximated by
the specified function class, the misspecification error is represented as a constant term (Bing et al.l 2025)).
Note that diffusion model analyses such as|Gupta et al.| (2024) and |Guan et al.| (2025) also make the same
assumptions.

Assumption 3.4 (Smoothness of velocity field) For each x € R? and s € [0,1], there exist unique
flows (Y )iefs,1) and (Z2,)iers,1) satisfying Y, = Z7 = x,with respective velocity fields vg(x,t) and v (x,1).
Moreover, Y, and Z7, are continuously differentiable in z, s, andt. Additionally, the velocity field ul(z,t, 2)
is Lipschitz in 0, that is, there exists a constant L > 0 such that for all 01,605 € © and x,t, z we have

lu® (2, t, 2) — u (., 2)|| < L[|61 — boll. (22)

The assumption regarding the smoothness of the velocity field ensures the well-posedness of the associated
flow dynamics governed by uf(x). Specifically, Lipschitz continuity in 2 guarantees the existence and
uniqueness of solutions to the corresponding ordinary differential equation (ODE). Moreover, it implies
stability of the flow with respect to perturbations in the initial condition, which is crucial for both theoretical
analysis and practical implementations involving generative modeling.
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Gaussian Probability Path. We use the Gaussian probability path as the time-indexed marginal
distribution u; as a Gaussian conditional path, such that for a given latent variable z ~ my sampled from
the initial distribution,

X~ N(tz, (1 —t)%1,). (23)

This specification defines a smooth Gaussian probability path {1 }+c[o,1], continuously interpolating between
the base distribution 7wy and the target data distribution ;.

This construction follows the idea of probability flows, where intermediate distributions are designed to be
simple and analytically tractable, ensuring a smooth and monotonic transformation from 7y to 7y. Similar
to the linear conditional flow in [Liu et al. (2023]), the Gaussian path allows closed-form expressions for the
velocity field and supports stable training without stochastic score matching. Hence, the Gaussian path
serves as a constructive prior, a design choice that promotes smoothness, clarity, and differentiability in the
probability flow.

Furthermore, under this construction, the dynamics of the probability flow can be fully characterized by the
evolution of the mean and covariance enabling efficient computation and theoretical analysis. The associated
velocity field u;(x, z) has the form (Lipman et al., 2023)

A
1—t°

ug(x, z) = (24)

Smoothness and bounded gradient variance both implied by sub-Gaussianity are mild assumptions and
typically hold for standard networks with ReLU or GELU activations trained on well-behaved data. These
assumptions are widely used in recent studies on the optimization landscape of generative and diffusion
models (Salimans & Ho| 2022} [Liu et al., 2022).

4 Theoretical Results

This section presents a comprehensive sample complexity result for flow matching.

Theorem 4.1 Let assumptions hold. Suppose that the velocity field u?(x,t, z) is parameterized by a
neural network with width W and depth D and € is a positive real number.. Then for any confidence level
0 € (0,1), if the number of i.i.d. training samples n satisfies

2D—2 32

and the learning rate for the ith SDG step with one sample per step, satisfies n; = % where a.pp > 1 and
v > a.k. Then with probability at least 1 — 40, the learned velocity field satisfies

Ew,t,z Hu9<x7taz) - ut(xaz)HQ < 62 + €approx (26)

and the Wasserstein distance between the learned and true distribution satisfies

W2 (ﬁla 771) < 0(6) + €approx- (27)

The proof of this theorem relies on bounding each of the errors given in Equation equation Below, we
bound each of these in the following lemmas.

Lemma 4.1 (Approximation Error) Let W and D denote the width and depth of the neural network
architecture, respectively, and let d represent the input data dimension. Then, under Assumption we
have

EapPProx L €approx (28)
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This result directly follows from Assumption [3.3]and the definition of £2PPro¥,

Lemma 4.2 (Statistical Error) Let n denote the number of samples used to estimate the velocity field
and € a positive real number. Then, under assumptions and [34) with probability at least 1 — 26, we have

log 2
gt <o [ (W)Pld |22 | (29)
n

Proof Outline We present the outline of the proof, full details are deferred to the Appendix.
Recall the population loss at time ¢ € [0, 1] is

2
L(O)=EFEyzy. ||u9(m7t, z) — ut(x)H , (30)
The corresponding empirical loss over n samples {z;,t;, ;, }7_; is given by
~ 1 & 2
E(@) = E;HUG(.’L‘%Q,Z@) —Uti(.fﬁi)H (31)

Here x; denotes the i*" data point where z; sampled from 7, ¢; is sampled from U[0, 1] and x; is sampled
from x; ~ Xy, |2;. From equations equation |16/ and equation 17| we have that % and #° are the minimizers
0 0°

of L£(#) and E(G), respectively. We denote the corresponding velocity fields as u® := u?" and u® := u

respectively. Thus, we have

L(0%) — L(0%) < L(6°) — L(8%) + L(6%) — L(8"), (32)

We get the inequality by adding the term E(Ga) — E@b) to the right hand side of Equation equation this
is a positive quantity since #° is the minimizer of £(f), where the added term is non-negative due to the
empirical optimality of 6°.

(6" — £(o%)] < ‘c(eb) - E(eb)‘ n ‘c(ea) —Z(6v). (33)

@ (I

We get the inequality in Equation equation [33| by taking the absolute value on both sides of the Equation
equation [32| and applying the triangle inequality on the right-hand side of the resulting Equation. We now
bound each of the terms I and II separately as follows. To bound (I) and (II),we need to apply results
which require the loss function £(0). However, note that x is unbounded, which in turn implies that £(9) is
unbounded. Thus,we first define truncated versions of the velocity fields as

(i), i |(525) | <x

0 otherwise,

(ug(x,t,z))k if (f”lit:)k‘gm,

0 otherwise.

(ve(2))), = {

(ve(x, t, z))k = {

Here (vy(x)),, (v%(z,t,2)), and (”’litt‘z)k represent the k" co-ordinates of wv;(z), v%(x,t,2) and (%)
respectively where k € {1,---,d}.

We define the corresponding loss functions as

L(0) =By |0 (2., 2) — vr(2)]”, (34)
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~ 1 <& 2
L) = EZHUH(:Ehti,zi) — vy, ()| (35)
i=1
Note that the bounded velocity filed is defined as v;(z, 2) = 5=%, this can be decomposed as
we,z) = |20 < |28 (36)
AR IR el

Since |f’“’1’_ttz| is upper bounded by construction and z is defined over a bounded set, this implies that the

input 2=2 to the loss function £'(#) and £'(6) is bounded. Thus, for a fixed value of § both £'(6) and £'(6)

are bounded. Now consider the function class ©” := {#%,6°}. For a bounded input v¢(z, z), £/(6) and £'(6)
are bounded for all § € © . Therfore from Lemma we have with probability at least 1 — §

o) -2 <o (Pt ),

Voeo” (37)

Applying this to the terms (I) and (II), equation equation [33| now becomes

|£(6") — £(6*)| <O (W)D’ld-\/% . (38)

Using the quadratic growth property of Polyak—Lojasiewicz (PL) functions (Karimi et al.l |2020), we have
169 — 6°11* < pu- |£(0%) — L(6°)], (39)
where p is the PL constant. Also, Lipschitz continuity of the velocity fields in 8 leads to

0% (2,8, 2) — 0" (z,t, 2)||2
<L-[o" -6 (40)
< L-p-|L(0%) — L£(6)] (41)

<0 (W)D‘ldw/% : (42)

Since v?° (x,t) = u’" (x,t) and v? (z,t) = ut” (z,t) for all z in the truncated domain (which dominates the
mass under p;), by taking expectation over x,t, z we finally obtain

. 2
Eyi.- u? (z,t,2) — u?’ (x,t,z)H

<0 (W)Dfld-\/% ) (43)

This completes the proof. For a more detailed version of this proof see Appendix

Next we bound the optimization error in the following lemma. The detailed proof is deferred to the Appendix

Al
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Lemma 4.3 (Optimization Error) Let n be the number of samples used to estimate the velocity field
and € a positive real number. If the learning rate for the it SDG step with one sample per step, satisfies

n; = 755 where a.p>1 and v > a.k, then under Assumptions cmd the optimization error due
bability a

to imperfect minimization of the training loss satisfies with pro t leas

log 1
gt <o w)yP—ta. [ 28] (44)
n
Proof Outline

By the smoothness of £(§) (Assumption [3.2)), we get
L(0i1) < L(0:) + (VL(6;), 0311 — 0;)
K
+ 51051 — 0; 1. (45)

Taking expectation and using unbiasedness of the stochastic gradient, along with bounded variance and
gradient norm assumptions (Assumption [3.3)), we get

(60 < 26— (= "0 ) IVE@IP

2 2
4 T (46)
2
From the Polyak-Lojasiewicz (PL) property and the fact that 0 < 7; < =, we then obtain
. . m?rﬂ
[£i1) = £ < (1= pma) [£(0:) = L] + —5— (47)

Further, in Appendix [B] we show that with the chosen step sizes 7, we obtain the following

n

£(0,) - £] <O (1) . (48)

Noting that we are using a single sample at each SGD step, the sample complexity is O (%) Next, using
the Lipschitz continuity of the velocity field and the quadratic growth property of PL functions Karimi et al.
(2020) we get

Bl (2,1, 2) — " (2,1, P < o[ £(6h) — £
go(i). (49)

Also note that u’ corresponds to the parameter 6,, since 6,, our estimate of  obtained from SGD. Now,
using the triangle inequality, we have that

E|u’(z,t, 2) — u (2,1, 2)|?
< 2E|u’ (2,1, 2) — u”" (z,¢,2)|?
+2E|[u? (2,1, 2) — u?” (2,1, 2)|2 (50)

Now from equation 49 and equation [43] we obtain with probability at least 1 — ¢

Ellu’(z,t,2) — u” (2,1, 2)|?

10
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<0 (W)D‘ldw/% : (51)

The details of the proof are given in Appendix [B}
Now, to complete the proof of our main result (Theorem [4.1]), we combine Lemmas to obtain

{Hu x,t,2) —w(x H}

< €approx
+0 ((W)Dld log(j/5)> . (52)
Choosing n = O (M 10g(2/6)) gives
Eyi.z [Hu x,t,2) —ug(x H ] < é? + €appros- (53)

The bound on the Wasserstein distance between the true and the learned distribution follows from Equations
equation [§] equation [I0] and equation ie.,

W2 (7/'1'1, 771) S O(G) + €approx - (54)

This completes the proof.

5 Conclusion

In this paper, we analyze the sample complexity of training flow matching models via neural network-based
velocity estimation. We establish a sample complexity bound of notably avoiding exponential dependence
on the data dimension. To the best of our knowledge, this is the first formal sample complexity result for
flow matching methods, and uniquely, it is derived under the realistic setting where exact empirical risk
minimization is not assumed.
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Appendix

In this appendix, we provide the missing proofs and additional theoretical results referenced in the main
paper. We also include the flow matching algorithm used for training the generative model.

A Proof of Lemma

Proof A.1 Let us define the population loss at time t for t € [0,1] as

L(O) =By [0 (2,8, 2) — ue(2))?, (55)

where ul denotes the velocity estimated by a neural network parameterized by 6 € ©.

The corresponding empirical loss is defined as
1 < p )
= 30 2 [ iz t) = wn, )| (56)
i=1

Here x; denotes the it data point where z; sampled from my, t; is sampled from U[0,1] and x; is sampled
from x ~ Xy, (.|2;). Since 8% and 6° are the minimizers of L(0) and L'(0), respectively, with corresponding
velocity fields u® and u®. By the definitions of minimizers, we can write

L(O%) — L(0%) < L(0°) — L(8) + L(6%) — L(6") (57)

Note that the right-hand side of the above equation is less than the left-hand side since we have added the
quantity E’(@“) E’(@b) which is strictly positive as 6° is the minimizer of the function E’( ) by definition.
We then take the absolute value on both sides of the equation to get

~

1£(6) - £(6°)] < |£(6") - £(6")| + | (6%) — £(6%)| (58)

(1) (11)

We now bound terms (I) and (II) using generalization results. From Lemma (Theorem 26.5 of
Shalev-Shwartz & Ben-David (2014)), if the loss function L(0) is uniformly bounded over the parameter
space ©" = {0,0°}, then with probability at least 1 — &, we have

. ~ log +
LO)-L'(O)|<RO)+0 ﬁ ., Voeco (59)

where E(G)”) denotes the empirical Rademacher complezity of the function class restricted to ©".

Now since x is not bounded, this result does not hold. We then define the following two functions

(ut (x‘z)) ) < Ky
(ve(2)), = g .
0, otherwise,
0 t —tz <
(v9($7t))k == (u (x’ ,Z))k7 1-¢ k - H,
0, otherwise.

Here (vi(x|z2)), and (ve(x,t))k represent the k" co-ordinates of v(z,t) and v?(x,t), respectively where k €
{1,--d}.

Using above we have

13
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L£0) = Eppz [0 (2,1, 2) — wi(@)| (60)
L) = %vae(o:i,ti,zi) fvti(xi)HQ (61)

Here (vy(x)),,, (ue())y, (ve(x,t,z))k and (ue(x,t,z))k denote the k' co-ordinate of vy(x), uy(x), v (x,t, 2)
and u?(x,t, 2) respectively, where we have k € {1,--- ,d}.

Note that the functions vi(x) and v¥(x) are uniformly bounded.

Now using Lemma we have with probability at least 1 — 4,

~ ~ log £
cO -0 <Ro)+o[[22], veeo (62)
n

Since ©" = {0,,0p} is a finite class (just two functions). We apply Lemma to bound the empirical
Rademacher complexity R(0) and thus, with probability at least 1 — § we have that

o)~ L) <o (W) +0 (\/1‘%) . voeo (63)

This yields that with probability at least 1 — 0 we have

~ log 4
L'(0) — [,/(9)’ <0 ((W)Dldm o8 5) , vV 60eo (64)
Now consider the probability of the event

Aip = {’ <($i)1—_t;(zi)>k

We have the probability of this event to be upper-bounded as

o] o) (| (92) o))
<E.4 <eXp <—;;)> (67)

< exp (;‘;) (63)

(zi)-ti(2i)

>
1—¢ =F

Setting k = 1/2C - log (dT"), we have

P <‘ ((m)il—_t;(z)i ) k

If we denote the event A = U; A, i, then by union bound we have P(A) = P(U; xA; k) < sz P(A; ) <6.

0

14
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Let event B denote the failure of the generalization bound, i.e.,

B:= { L£'(0) - L'(0)| > R(®") + O (m } : (70)

From above, we know P(B) < & under the boundedness condition. Therefore, by the union bound, we have

P(AUB) <P(A) +P(B) < 24, (71)
= P(A°NB°)=1-P(AUB)>1-20. (72)

On this event (AN B°), we have L' (8) = L(6).

Now consider the following,

1£(6%) — £(07)] < |£(0") — E(0")| + | £(0) — Zu(07) (73)
= |c(0") — £1(0") + £1(0") ~ £(0")|
+ e - 26 + £ 60 - (6% (74)
< |8 = £uen)| + |2 @) - £'8")
+ |£1(0%) = £1(0")| + 1£(0%) ~ £/(6)] (75)

The first equation |79 is the same as equation |58 with 2(9) replaces by Z’(@). We obtain equation |74 from
equation by adding the terms L1(0%)+ £'(0%) and L', (6) + L'(07) to the two terms on the right-hand side
of Equation equation [73. Equation equation [73 follows from Equation equation by applying the triangle
inequality to both the term on the right-hand side of Equation equation [7})

Note that the terms ’ﬁ'(ga) —L'(6%)| and ’L,(Hb) —2’,5(91’)‘ can be upper bounded using the result in
Equation equation |64 to get the following with probability at least 1 — 2.0

£(68") — (67| < O ((W)D-ldm- 155) ") - 20|+ 1£(6m) - £'(6) (76)

In order to bound terms of the form |L(0) — L'(0)| we have the following

d
1£(0) = £'0)] = Y Eaptyzn (@ (@, 8, 2))1 = (ue(@)r]? = Baty | (0% (2,8 2))1c = (00(@))i] (77)

N ) (78)
)

d
>K> + ,; 2B, 1.2 ((u‘g(x, t, z))il

x>
—_

[
M=~

1 ( mlittz )k

2
zZ—X
Eoy t,2 (' ( 1_ t) - (ue(x7t>z))k
1 k
2
zZ—x
Ex,,t,z ( )

k

Eop b2 (I(ue(%t,fc‘))k — (us(2))i| 1

1

[
M=~

('J;ftz)
=t )i

k

IA
[\
M=~

1 z—t
(5=42),

(:Eftz)
=t )

b
Il
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d 2 d
Yy z—x\ |?
S 9 Ew 1 ( ) + CCI>//E;E~¢,Z ’ < ) ‘ 1
2 Fontes ‘ A R A USE R
(81)
d T —z 2
S (2 + C,I>fl) Z Ewk,t%k ‘ ( 1—¢ ) ‘ 1 z—tz (82)
1 k (ﬁ)k zn
d T —z itz tz 2
S(2+C¢),/)ZE$k,t7zk ‘ 1_t+1—t_1—t ‘ 1 z—tz) |> (83)
P k ( 1—t );., =r
d x—tz tz—2z\ |2
< (2 + C@”) Z Cq;./’Emk,t7zk ‘ 1—¢ + 1—t¢ ) 1 z—tz (84)
Pt k (%), |2
d t 2
r — 1z
<(A+2050)> By, ‘ ( )
— 1—t ), (), |2
d tz — 2z
=+ (4 + ZCq)/') Z Ewk7t72k ‘ ( 1—t¢ ) ‘1 z—tz (85)
—1 k (ﬁ)k 2k
d t 2
r — 1z
< (4 + QC@N) ZErk,tk,Zk ‘ < 1 t > 1 z—tz +]Ezk’t7zk |Zk|21 r—tz
k=1 vk (%), |25 (5=2) |2
) II
(86)

We get the left-hand side of Equation equatz’on by expanding the definition of L(6) and EI(G) and writing
the Iy term as a component-wise sum. We get Equation equation |78 from Equation equation by moting

that (uf)r, = (V)i and (uf(z))r = (v)(x))) in the region where | <=2 . < k. We get Equation equation E

from Equation equation by using the identity |la — b|[* < 2||a||* + 2||b||2. We get Equation equation
from Equation equation [80 by using Lemma[D.]} We get Equation equation [85 from Equation equation
by using the identity ||a — b||* < 2||al|* + 2||b]|* again.

Now we separately obtain upper bounds for the terms I and II as follows.

d ; 2 d ; 2
T —tz T —tz
ZEwk,t,zk ‘ ( ) 1 - ZEt,zk Ez |t,z | ( ) 1 (87)
= L=t )] =) S TN ] ), 2
A
Now we evaluate A as follows
. 2
T —tz
Eaylt,z | ( 1—¢ )k (z222) |5 =E.n0,1) (1‘21$2H) (88)
1—t k|=
I
= EmNN(O,l) (xQ‘lmzn)'P(1x2n)~ (89)
< EQZN./\/(O,I) (-772‘ IxZR) €xp (_’12) (90)
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< <2 + K20 <exp <;;>>) (92)
<0 (exp <;;)> (93)

We get the right hand side of Equation equation [87 by using the tower expectation property on the left
hand side. We get the right-hand side of Equation equation by using the fact that x|z,t ~ M(tz, (1 —

t)2). Therefore, (zf_ttz> ~ N(0,1) conditioned on z and t. We get Equation equation ﬁ from Equation

equation [88 by using Lemma[D.5 We get Equation equation [9]] from Equation equation [9( by using Lemma
[D:3 We get Equation equation[93 from Equation equation [9]] b@using the upper bound on the Mill’s ratio

which implies that 1?&5"()&) <K+ % Plugging Fquation equation

in to equation E we obtain

1

] =o(ew (50)) (94)

2
d T —tz
Z Exk,t,zk 1—¢
k=1 k

(rr,—tz)
T—t )1

We now evaluate (II) as follows

d d
ZEmk,t,zk |Z|%1 tn :ZEzk,tExMzk,t |Zk|21 ts Zkvt (95)
k=1 ‘( =), |2x k=1 (7)), |25
d
- ZEZk1t Exk|zk,t |Zk|21 R Zk»,t (96)
k=1 ’(ﬁ)k =r

We get right hand side of Equation equation[95] by using tower property of expectation.

Now we evaluate B as follows

Zks t (97)

]E;ck\zk,t |Zk|21‘ ot
>k

_ 2
2k, t —|Zk| ']E:ck\zk,t 1 L
=t )

—tz
<lzuPP( (2 >
< il ((lt)k_m

2 K2
< _
< |z exp( 20) (99)

We get right hand side of Equation equation [97 by the fact that zy is constant since the expectation is
conditioned on zi,t. We get Equation equation@fmm equation@ by using the fact that@z, t~ M(tz, (1=

Zks t) (98)

t)2). Therefore, (’”;?) L N(0,1) conditioned on z and t. Plugging in Fquation equation
we get

into equation

d
Z]Ewk:t’zk |Z‘i1
k=1

d 5 K2 K2
< E K | < _
>k | P wustozn ] exp ( 20) =0 (eXp < 20)) (100)

Plugging Equation equatz’on and equation into Equation equation and setting k = 1/2C - log (dT”),
we have

(zftz)
—t )i
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£0) - L0 <0 (7). o= 16t.00) (101

Now plugging Equation equation [I01] into Equation equation[70 we get with probability at least 1 — 2§

126 - 269 < 0 [ (w)P 1 (102

Finally, using the Polyak-Lojasiewicz (PL) condition for L(6), from Assumption we have from the
quadratic growth condition Karimi et al| (2020) of PL functions the following,

167 — 6°|* < p| (o) — £(6%)], (103)

and applying Lipschitz continuity of the velocity fields with respect to parameter 6 from Assumption|3.4, we
get

10" (.1, 2) = o (2,1, )| < L [|6° — 6] (104)
< Lo |L(6%) — £(0) (105)

log 1
<o mw)Pr-ta. |22, (106)
n

Taking expectation with respect to x,t,z on both sides we get

Bt 0" (2,8, 2) —0” (2,8, 2)|* < L+ [0 — 6| (107)

log L
<0 (W)D*1d~\/% . (108)

El|u® (z,t,z) — " (z,t,2)||? < 2E|[u® (x,t,2) — u?” (z,t,2) — 0" (x,t,2) + v‘gb(amt, 2) + 07 (x,t, 2) — veb(sc, t,2)|?

We then obtain the following.

(109)
< AE||u’ (z,t,2) — v (2,8, 2)||2 + 4E[[u?’ (¢, 2) — v (2, ¢, 2)||?
+ 8E| (,t,2) — 0" (2,1, 2)|2 (110)
< AE|[u? (2,1, 2) — 0" (2,1, 2)||2 + 4E[|u’" (2,1, 2) — v* (2, ¢, 2)]|2

log 1
+0 | (w)P=1g. [ 22 (111)
n

We get Equation equation[110] from equation[109 by using the identity ||a—b||* < 2||a||?>+2|[b]|> Note that the
quantities 4E|||u9b (x,t,2) — v‘gb(x,t,z)||2 and 4Ew~ut\||u9b(aﬁ,t,z) - v(’)b(av,t,z)H2 in Equation equation
can be written as follows.
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2

E||u9(a:,t,z,)fve(x,t,z)||2:IE ue(x,t,z) -1

Using the same analysis as is done from equation downwards, we get E||u’(z,t,2,) — v¥(z,t,2)|]* <
O (ﬁ). Plugging this result into equation we get with probability at least 1 — 2.6

. [log 1
| (2,1, 2) — u® (2,8, 2)|]? < O | (W)P~1d. | 225 (112)
n

which is the required result.

B Proof of Lemma 4.3

Proof B.1 Consider stochastic gradient descent (SGD) iterates indexed by i =1,2,... n:
Oiv1 = 0 —mi Vﬁ(ei),

with diminishing stepsizes

o
= —, a>0, v>0, 113
K 1+ 7 (113)
chosen so that 1
ap>1 and n < 7 for alli (e.g. take v > aL). (114)

Define the expected suboptimality e; := [5(91») — E*].
By Assumption for L gives, for y = 0;41 = 0; —n;VL(6,),
L 2
L(0i41) < L)+ (VLEO), 01— 01) + 5 101 — 61 (115)
A L, A 2
= £(0) = m( VLO), VL) ) + 5[ VL0, (116)
Using unbiasedness and the variance bound from Assumnption[3.3, we obtain,
E[[VLO)I?] = IVLO)I* + E[IVL(0:) — VLG ] < VLG + o2,

Taking expectation with respect to (z,t,z) on both sides of Equation equation and plugging Fquation
equation[131] into Equation equation gives us

L
[£(0141)] < £(6:) =il VLO) |2 + 50 (IVL@)I? +02). (117)
Ifn; < % then —n; + %7712 < =, hence
i 2, L 5 o
[£(0:41)] < £(8:) = TIVLEO)|? + Fnio™, (118)

By Assumption we have that ||VL(0;)||> > 2u (L£(6;) — L*), so

[£(0i1) — £7] < (1= ) E(L(0;) — £*) + %n502~
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Substituting n; = o/ (i + ) yields

27 2
ap a*Lo
e < (1= S )er + 0 119
S E) A TG )
Set 0 o
L
pi=au>1, b::a 7.
2
We now prove that any sequence (e;) satisfying
ei+1§(1—.p >€i+ - ) p>1 v=>1, (120)
i+ (i +7)?
obeys, for alli > 1,
P b 1
e < L4 L (121)
i+  p—1 ity
Define v; := (i + v)Pe;. Multiply equation by (i 4+ 1+7)P:
vip1 = (i +1+7) e
. p .
<E+14+79P(1— e, + (i+1+~)P— . 122
R (o) CER R T e (122)
Lett =i+~ (>~v>1). Then
. p p
L+ (1- ) = @1y (1-2).
i1y (1- 2 ) =@rrr(i-
By Bernoulli’s inequality, for w € [0,1], (1 —w)? > 1 — pu. With u = %,
P _1\P
TR P PR R b A
t t t
Hence
t—1\"  [t2-1\"
(t+1)p(1—]§) <(t+1)P (t) - ( ; ) <, (123)
since t2 — 1 < t2. Plugging equatz’on into equation gives
b b
viyr < tPe; + (t+1)"t—2 = v + (t+1)pt—2. (124)
Using the binomial expansion (or the mean-value form), fort > 1 andp > 1,
-1 -1
(t+1)p§tp+ptp_1+p(p ) o2 < 4P p AY
2 t 2t2
Therefore
(t+1)P —2 3, plp=1) , 4 p, pe—1)Y\ 2
<tP tP — 2P < (1+=4+———= |t 125
o STt < (1454755 , (125)

where in the last inequality we used t > ~ to factor out t?~2 and bound the lower powers by constants
depending only on v and p. Combining equation[12]] and equation

(p—1)

Vi1 < v + Cpy bPTE Cpy =1+ % + P AT (126)
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Sum equationfromj =1toi—1 (witht; =j+7):
i—1
vi < vt Cpm/bZ(j‘f'V)p_Q-

j=1
Since p > 1, the sum is bounded by an integral:

1 ity ; p—1 _ Ap—1 : p—1
(G +7)P2 </ w2 g~ 17) o )

i

o ~ p—1 - p—1
Therefore
b
v < APer + 2 ()L,
p—1
Dividing by (i + )P yields
P
o < XAy Gab 1 (127)
T (i+y)P p—1 ity
The O(1/i) rate follows since o.pu > 1.
Thus, we obtain
1
(L(B,)— L)< O () (128)
n

Note that 0,, or the parameter obtained after the n'" iteration of SGD is the estimated parameter denoted as
0 in Equation equation using that same notation, and applying the Lipschitz property from assumption
followed by the quadratic growth inequality implied by Assumption and|Karimi et al| (2020), we have

Jo(at.2) = o (0,217 < L[ = 671 < Loalote) - £ <0 () (129)

Taking Fxpectation with respect x,t,z we get
1
E|uf(x,t, 2) — u® (a?tz)||2<(’)< ) (130)
n

Thus, we have with probability at least 1 — 20

E||[u’(z,t, z) — u’ (a: t,2)])? <2-E|luf(x,t,2) —u (2,1, 2)|> + 2 - E|ju’ (2, 2) —u‘gb(a:,t,z)H2 (131)

<O (;) +O | (W)Pd -y % (132)
1, [log2
<O | wW)P-1la. Té (133)

We use the upper bound on E|[u®" (x,t,2) —u b(x t,2)||? from Lemma 4 and upper bound on E||u®(z,t,z) —
u? (2,1, 2)||? from Equation equation to go from Equation equatzon to equatzon-

C Final Theoretical Result
Recall Theorem Under the assumptions and let the velocity field uf(z) be

parameterized by a neural network with width W and depth D,. Then,, if the number of i.i.d. training
samples n satisfies

2
n =9 ((VV)QD_dee4 log 6) , (134)
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it follows with probability at least 1 — 2§ that the learned velocity field satisfies the error guarantee
Esp,2 {Hu? — g (z)| } dt < 2. (135)

Furthermore, the Wasserstein distance between the true distribution 7 and the leaned distribution 7 is
bounded as

Wz(ﬁ'l, 7T1) S O(E) + Eap;m“oac (136)

Proof C.1 Recall, from Equation equation[I5, the velocity field is decomposed into three terms follows

. 2 . 2
Ey¢ . {Hu z,t,2) —u(z)|| } <4E;;. [Hue (z,t, 2) fut(x)H } +4E; 4. {Hue (x,t, 2) fueb(x,t,z)H ]

approx stat
gt, gt

2
+4E,.. [Hu%,t, 2) = (,t,2)| ] ,

£ppe
(137)
Now using the Lemmas [£-3, and[{.3, with probability at least 1 — 45 we have
0 D-1 log 3 D-1 log 3
Eo [[0(2) = w:@)[’] < eappron + O [ 1)1 |5 ) 10 | (W) 1ay [ (138)

log 2
= Cappros + O | (W)P71d- [ 225 (139)

Setting n = Q) (w log 6), , we have that

Eyi- [Hu x,t,2) —u(x H ] < 62—|—6app7.01. (140)

This completes the sample complexity results.

Finally the bound on the Wasserstein distance between the true and the learned distribution follows from
Equations equation[8, equation[I0 and equation[I3

D Intermediate Lemmas

Lemma D.1 (Theorem 26.5 of |[Shalev-Shwartz & Ben-David| (2014)) Consider data z € Z, the
parametrized hypothesis class hg,0 € ©, and the loss function £(hg,z) : RY — R, where |((hg,2)| < c.
We also define the following terms

Lp(0) =ELl(hg, 2) (141)
_ 2 i((h ; 142
= 3ty ) (142
=1
which denote the expected and empirical loss functions respectively.
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Then, with probability of at least 1 — 0, for all h € H,

L) — Ls(0) < R(O) + O < 1“<1m/5)> . (143)

where R(0) = 1B, [maxycqr Yoty f(8)0i] denotes the empirical Radamacher complexity over the loss
function £, hypothesis parameter set © and the dataset of size n.

Lemma D.2 (Extension of Massart’s Lemma Bousquet et al.| (2003)) Let " be a finite function
class of cardinality K. Then, for any 0 € © |, we have

E, | max wa)o—i] < VIog K[| £(8)||oe < log K2(BW)P 1B dx (144)
0ce’ *
=1
where o; are i.i.d random variables such that P(o; = 1) = P(o; = —1) = 1, D is the number of layers in

the neural network, W is the width and B a constant such all parameters of the neural network are upper
bounded by B. k is a constant such that inputs to the neural network are upper bounded by k.

Proof D.1 The first inequality in equation [IZ4) follows from the Massart’s Lemma.
We work with the loo norm. o is 1-Dipschitz and o(0) = 0. Thus

[hetilloo = [lo(Wehe + be)lloo < [[Wehe + belloo < [[Welloo |l oo + [[belloo-

FEach entry of by has magnitude < B. Hence ||by]lc < B.

Each entry of Wy has magnitude < B. If a matriz has m columns, then || Al < Bm. Therefore ||Wploo <
Bd (first layer has d inputs). And for £ > 1, |[Willee < BW = a.

The input satisfies ||z||co < k. Hence

[Palloe < [WollcollBolloo + llbollce < (Bd)k + B = B(dk +1).

For £ > 1 we have the affine recursion

hesilloo < @ lhelloo + B-

Unroll it for D — 1 steps starting at h1. We get

D—2
[hpllec < aD_lnthoo + B Z a.
i=0
Insert the bound on ||h||co. This gives
D-2
Ihpllee < @P7'B(ds+1)+ B Y a'.
i=0
Deo OéD_l -1
If a # 1, use the geometric sum. Namely > ;" "o’ = —_1 This yields the stated closed form.
o —

If a > 1, then

D-2
Z a’ < (D—-1)aP2
i=0
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Hence
D—1
|hp|lee < P 1B(dr +1) + B(D —1)aP 2 = aDlB<d,.i 1+ a) _

D-1
If also dk > 14+ ——, then
«

dr + 1+

< 2dk.

Therefore
|hplleo < 2aP Bdr = 2(BW)P~1Bdk.

If a = 1, the recursion is simpler. We have ||het1]loo < ||helloo + B. Thus ||hpllec < |[P1]lee + B(D — 1).
Insert ||hi||oo < B(dk +1). Obtain |hplle < B(dk + D).

Lemma D.3 (Second Moment of a Symmetrically Truncated Normal) Let X ~ N(u,02), and let
a > 0. Then the second moment of X conditioned on being outside the symmetric interval [ — a, pn + a) is

given by
¢(3)

o

E[X?||X —pu| >a] =p* +0*+oa-

where ¢(z) = \/%6_22/2 is the standard normal probability density function (PDF), and ®(z) is the standard

normal cumulative distribution function (CDF).

Proof D.2 Let X ~ N (p,0?). We aim to compute the second moment of X conditioned on the event that
it lies outside an interval centered at its mean

E[X? [ |X — | >

This represents the expected squared value of X, given that X is in the tails of the distribution (i.e., more
than a units away from the mean).

By definition, the conditional expectation is

E[X? - 1{x—u>a}]
P(X — 1] > a)

E[X? | |X —pu| > a] =

The numerator integrates X2 over the tail regions (—oo, i — a) U (u + a,00), while the denominator is the
probability mass in those same regions.

To simplify the integrals, we standardize X. Define the standard normal variable

X—p
g

7 =

~N(0,1) = X=pu+oz
Define a = &. Then

X —pul>a < |Z]>«

Our conditional second moment becomes
E[X?||X —pul >al =E[(u+02)*[]Z] > o]
Ezxpanding the square inside the expectation
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(p+02)? = p* +2uoZ + o 7>

Taking the conditional expectation

E[(u+02)* | |Z] > o] = p* + 2u0R[Z | |Z] > o] + 0°E[Z* | |Z] > ]

Since the standard normal distribution is symmetric and the region |Z| > « is also symmetric, we have

E[Z||Z]>a]=0
Thus, the expression simplifies to

E[X? [ |X — p| > a] = p* + 0*E[Z* | |Z] > o

By definition

f\z\>a 22¢(z) dz _ 2 [ 22¢(z) dz _ [ 220(2) dz
P(Z]> a) 2(1— a(a)) 1= ()

E[Z? | |Z]| > a] =

Using Intergration by Parts we get,

/Oo 22¢(2)dz = p(a)a+ 1 — &(a)

1 2
Let ¢(z) = \/76_2 /2 be the standard normal pdf and ® its CDF. Define

T
I(a) = / T 2 () de.
Since ¢/(z) = —26(2), we have [ z$(2) dz = (). aUsing integration by parts with u = 2 and dv = 24(2) dz,
I(a) = /;o 29(2)d = | - zqs(z)}zo + /aoo (=) dz
=ag¢(a) + (1 — ®(a)).

/00 2¢(2)dz = ap(a) +1—®(a) |

Therefore

dla)a+1—d(a)
1-9(a) 1—9(a)

E[Z?||Z| > o] =

Substitute back into the expression for E[X? | | X — u| > d

E[X2 | |X — | > a] = g + 0 <1+a@~>>

Recall that o = %, so the final expression becomes

E[X? | |X —p| >a] = p? + 0% +0a-
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Lemma D.4 (Linear Growth of Finite Neural Networks) Let fy : R? — R be the output of a
feedforward neural network with a finite number of layers and parameters and 0 € © where © has a finite
number of elements. Suppose that each activation function o : R — R satisfies the growth condition

lo(z)| < A+ Blz|, forallzeR,
for constants A, B > 0. Then there exists a constant Cg > 0 such that for all x € RY,
|f(@)] < Co(l + |z]).

Proof D.3 We proceed by induction on the number of layers in the network.

Base case: One-layer network. Let the network be a single-layer function
k
fx) =) aio(w] e +by),
i=1
where w; € R%, b; € R, and a; € R. Then

k
(@) < Jail - lo(wi @ + b))
i=1

Using the growth condition on o, we get
lo(w;] @ +b;)| < A+ Blw/ @ + b < A+ B(||wi|[|«]| + [bi])-
Hence

k
[f(@)] <Y lail (A+ B(Jwillllz]| +[b:])) = Co + Cial.
=1

where Cy, Cy are constants depending only on the network parameters. Therefore

[f(@)] < CA+|z|) with C = max{Cqy, C1}.

Inductive step. Assume the result holds for all networks with L layers, i.e., for any such network fr(x),

[fo(@)| < CL(1 + |=])).

Now consider a network with L + 1 layers, defined by
k .
fr(@) =) aj0(f1 (@),
j=1

where each fg)(:c) is an output of a depth-L subnetwork. By the inductive hypothesis
@) < O+ ).
Applying the activation bound
(£ @) < A+ Bf (@) < A+ BC; (1 + |«])).
Then

k k
@) < 3 layl - (@) < 3 lagl(A+ BE, 1+ fal)) = Crn (1 + o).

j=1

for some constant Cp1 > 0. This completes the induction.
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Examples of Valid Activation Functions

The condition |o(z)| < A+ B|z| holds for most common activations

ReLU: o(z) = max(0, z) = |o(2)] < ||

Leaky ReLU: bounded by linear function of |z|

Tanh: bounded by 1 = A=1,B=0

Sigmotid: bounded by 1

Lemma D.5 Let X be a real-valued random variable with probability density function fx. Fiz k € R and
set A:={X > k}. Assume

0§p::]P’(X>k)=/DOfX(a:)dx§1 and /Oo\m|fx(ac)dx<oo.
k k

Then
E[X 1{X>k}] = ]P(X > k)E[X | X > k?]

Proof D.4 By the definition of expectation via a density,

E[X 1{X>k}} :/k Z‘fx(l‘) da?,

which is finite by the hypothesis fkoo || fx (z) dx < oc.
We derive the conditional density of X given X > k. For any Borel set B C R with p =P(X > k) > 0,

P(X€B|X>k) = P(Xpe(f;if k) _ %IP’(X € BN (k,)).

Since X has density fx,

P(XE€B|X>k) = ;/Bm(m) Fx(z)da = /B (fxlfx) 1(,6700)(@) dz.

Therefore the conditional density is

fx(x)

, x>k,

0, z <k.

Hence,
o0

E[X|X>k]:/

1 o0
T fx|x>k(x)dr = 5/ z fx(x)dx.
o k
Multiplying both sides by p yields
P(X > k)E[X | X > k] = / v fx(@)de = E[X 1ixom] -
k
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