
Under review as submission to TMLR

Generative Modeling with Continuous Flows: Sample
Complexity of Flow Matching

Anonymous authors
Paper under double-blind review

Abstract

Flow matching has recently emerged as a promising alternative to diffusion-based generative
models, offering faster sampling and simpler training by learning continuous flows governed
by ordinary differential equations. Despite growing empirical success, the theoretical
understanding of flow matching remains limited, particularly in terms of sample complexity
results. In this work, we provide the first analysis of the sample complexity for flow-matching
based generative models without assuming access to the empirical risk minimizer (ERM)
of the loss function for estimating the velocity field. Under standard assumptions on the
loss function for velocity field estimation and boundedness of the data distribution, we show
that a sufficiently expressive neural network can learn a velocity field such that with O(ϵ−4)
samples, such that the Wasserstein-2 distance between the learned and the true distribution
is less than O(ϵ). The key technical idea is to decompose the velocity field estimation error
into neural-network approximation error, statistical error due to the finite sample size, and
optimization error due to the finite number of optimization steps for estimating the velocity
field. Each of these terms are then handled via techniques that may be of independent
interest.

1 Introduction

Generative models have recently gained significant attention due to their broad applicability in domains
such as image synthesis, computational biology, and reinforcement learning. A common framework among
the generative models is diffusion models (Song et al., 2021) that demonstrated the state-of-the-art results
in many applications. These models define a generative process by gradually reversing a diffusion process,
typically modeled using the framework of Stochastic Differential Equation (SDE). However, training of
such models involve learning the score function of the data distribution via score matching, often requiring
denoising score estimators and large amounts of compute. Moreover, sampling from diffusion models is
computationally intensive, as it typically involves hundreds to thousands of discretization steps, making
real-time generation challenging.

Recently, a promising alternative has emerged in the form of flow-matching based generative models (Lipman
et al., 2023), which replace the stochastic diffusion process with a deterministic Ordinary Differential
Equation (ODE). Instead of estimating scores, these models directly learn a continuous flow that maps noise
to data by matching the trajectories of the ODE to an idealized probability flow. This approach circumvents
the difficulties associated with score estimation and SDE integration, leading to faster sampling, simpler
training objectives, and improved stability. As a result, flow matching provides a compelling and efficient
paradigm for generative modeling.

In the diffusion setting, numerous works have analyzed the sample complexity of score matching, establishing
conditions under which accurate score estimation is possible (Gupta et al., 2024; Gaur et al., 2025). In
particular, the theoretical questions such as: ‘how many samples are required for a sufficiently expressive
neural network to estimate the score function well enough to generate high-quality samples using a
DDPM-type algorithm’ are well studied in the diffusion models.

1

Under review as submission to TMLR

In contrast, flow matching, despite its growing empirical success (Shifeng et al., 2025), lacks analogous
theoretical results. In particular, existing works such as Zhou & Liu (2025) obtain sample complexity results,
but do so by assuming access to the ERM of the loss function used to estimate the velocity field, which is an
unrealistic assumption in practice. This gap between theory and practice limits our understanding of when
and why flow-matching-based models generalize well, and what governs their data efficiency. Addressing this
gap is essential for developing a comprehensive theoretical understanding of flow matching.

To address this shortcoming, we provide the first theoretical results on the sample complexity of flow matching
without assuming access to the ERM of the loss function used to estimate the velocity field. We ask the
following question:

How many samples are required by a fully expressive neural network to learn a velocity field that enables
high-quality sample generation via flow matching, without assuming access to the ERM of the loss function
used to estimate the velocity field?

We answer this question by showing that flow-matching-based methods can achieve a sample complexity of
O(ϵ−4), where O(ϵ) is the desired Wasserstein-2 distance between the true and generated distribution. This
is achieved by first establishing that the Wasserstein distance between the generated and target distributions
can be bounded by a constant multiple of the velocity function estimation error using results from Benton
et al. (2024). We then decompose this error into three distinct components, the approximation error that
arises due to limited expressiveness of the neural network function class used to approximate the velocity
field, the statistical error due to the use of a finite training dataset, and the optimization error, resulting from
not reaching the global minimum of the loss function during training due to a finite number of optimization
steps. Our analysis achieves a O(ϵ−4) sample complexity bound, doing so without assuming access to the
ERM of the loss function used to estimate the velocity field.

To summarize, the main contributions of our work are as follows:

• Finite-time sample complexity bounds. We derive a sample complexity bound of O(ϵ−4) for
flow-matching based generative models.

• Principled error decomposition. We introduce a decomposition of the velocity field estimation
error into three components: approximation error, statistical error, and optimization error. This
framework allows us to isolate and analyze the contribution of each component to the overall sample
complexity.

• First sample complexity bounds for flow matching without assuming access to the ERM
of the velocity field estimation loss This is in contrast to prior works such as Zhou & Liu (2025)
where ERM access is assumed.

1.1 Related Work

Theoretical Guarantees and Limitations of Flow Matching. Recently, Benton et al. (2024) presented
error bounds for the generative process using flow matching, assuming that the true velocity field lies within
an ϵ2 neighborhood of the learned velocity field. Their analysis provides error bounds under the assumption of
upper bounded L2 approximation error and certain regularity conditions on the data distribution. However,
their results do not address sample complexity, a crucial aspect for understanding the number of training
samples required for estimating the velocity field, and no such result currently exists.

Zhou & Liu (2025) performed a sample complexity analysis for flow matching models wherein the Wasserstein
distance between the true and estimated distributions is bounded by decomposing the error in calculating the
velocity function into errors incurred due to the limited approximation power of the neural network function
class, as well as the finite sample size. As stated earlier, this work assumes access to the ERM of the velocity
estimation loss. Additionally, the sample complexity result obtained in Zhou & Liu (2025) is exponential
in the data dimension. Our result avoids this exponential dependence by assuming a constant error due to
the limited approximation power of the class of neural networks used to approximate the velocity function.
We do this since the focus of our work is to analyze the statistical and optimization errors incurred in flow

2

Under review as submission to TMLR

matching. Similar assumptions have been used in previous works on diffusion modeling, such as Gupta et al.
(2024) and Guan et al. (2025).

Sample Complexity in Diffusion Models. Works such as Chen et al. (2023) proved iteration complexity
bounds for diffusion models. More recent work, such as Guan et al. (2025), provides convergence analysis
for generative modeling in convex domains. Several recent works have analyzed the sample complexity of
score-based diffusion models. (Gupta et al., 2024) derives a sample complexity bound assuming access to
ERM, and (Gaur et al., 2025) relaxes this assumption, not requiring access to ERM.

2 Preliminaries and Problem Formulation

We begin by reviewing the foundations of flow matching models, which aim to learn vector fields that
generate smooth transformations between probability distributions over time. Specifically, we set up the
formal problem of learning time-dependent velocity functions from finite data samples, under the framework
of continuous-time dynamics.

Our approach adopts the ordinary differential equation (ODE) formulation, which serves as a natural setting
for describing continuous-time trajectories in space. We conclude this section by precisely formulating our
learning objective and articulating the main research question addressed in this work.

A trajectory in this context is a continuous mapping from time t ∈ [0, 1] to a point in Rd, representing the
position of a particle as it evolves over time

X : [0, 1] → Rd, t 7→ Xt. (1)

The time evolution of this trajectory is governed by a velocity field ut, which is a time-dependent vector field
defined as the mapping

ut : Rd × [0, 1] → Rd. (2)

That is, for each time t and x, the function ut(x) ∈ Rd specifies the instantaneous velocity of a particle
located at x at time t.

Our goal is to find a trajectory Xt that flows consistently with this velocity field, starting from a known
initial condition z. This leads us to the following ODE

d

dt
Xt = ut(Xt), X0 = z. (3)

This formalism underpins many recent advances in generative modeling, including neural ODEs and flow
models, where learning an appropriate velocity field is crucial for generating samples that follow a desired
probabilistic path (Lipman et al., 2023; Klein et al., 2023). The central challenge we now address is how to
learn such a velocity field from empirical data in a principled and data-efficient manner.

Construction of a generative model via an ODE. Following flow matching (Lipman et al., 2023), we
begin with the construction of a generative model that transforms a simple initial distribution, denoted by π0
(e.g., a standard Gaussian), into a more complex target distribution π1, which represents the true unknown
data distribution. We assume the data distribution π1 has an absolutely continuous CDF supported on set
[0, 1]d. A natural and powerful approach to achieve this is by simulating a continuous-time flow using an
ordinary differential equation (ODE). This flow is modeled by a time-dependent velocity field through the
following ODE:

d

dt
Xt = uθ

t (Xt, X0), X0 ∼ π0, (4)

where uθ
t : Rd × [0, 1] → Rd is a vector field parameterized by a neural network with parameters θ ∈ Θ. The

trajectory Xt evolves over time according to this learned field, with the aim that the learned distribution
closely approximates the target π1.

3

Under review as submission to TMLR

To this end, a general technique (Benton et al., 2024; Lipman et al., 2023) is to minimize the velocity
estimation loss function given by

L(θ) = Ex,t,z

[
∥uθ(x, t, z) − ut(x, z)∥2] dt, (5)

where z ∼ π0,t ∼ U [0, 1] and x ∼ Xt|z . This loss encourages uθ to match the target velocity field across the
entire time horizon.

A result from Benton et al. (2024). The authors in Benton et al. (2024) analyze the error of the flow
matching procedure in terms of the TV between the terminal distributions of the true and learned flows.
Their analysis is based on a set of assumptions that provide theoretical guarantees for the quality of the
learned flow. We restate their main result for completeness.

Theorem 2.1 (Theorem 1 Benton et al. (2024)) Suppose that π0, π1 are initial and target probability
distributions respectively on Rd , Y is the flow starting in π0 with velocity field uθ, and π̂1 is the law of Y1.
Also, suppose the following assumptions hold.

• (Bound on L2 approximation error). The true and estimated velocity ut(x) and uθ
t (x) satisfy

Ex,t,z

[
∥uθ(x, t, z) − ut(x, z)∥2] ≤ ε2. (6)

where ϵ is a positive real number.

• (Existence and uniqueness of smooth flows). For each x ∈ Rd and s ∈ [0, 1] there exist unique flows
(Y x

s,t)t∈[s,1] and (Zx
s,t)t∈[s,1] starting in Y x

s,s = x and Zx
s,s = x with velocity fields uθ(x, t, z) and ut(x)

respectively. Moreover, Y x
s,t and Zx

s,t are continuously differentiable in x, z, and t.

• (Regularity of approximate velocity field). The approximate flow uθ(x, t, z) is differentiable in all
inputs. Also, for each t ∈ (0, 1) there is a constant Lt such that uθ(x, t, z) is Lt-Lipschitz in x.

Under the above assumptions, we have

W2(π̂1, π1) ≤ ε exp
{∫ 1

0
Lt dt

}
. (7)

Wasserstein distance and its relation to velocity estimation. Since π0, π1 are the source and target
probability distributions on Rd, respectively. For the notational simplicity we use Yt as the solution of the
learned flow governed by uθ with initial condition Y0 ∼ π0, and π̂1 = Law(Y1) be the resulting terminal
distribution. Similarly, let Zt be the solution of the true flow with velocity field u, such that Z0 ∼ π0 and
π1 = Law(Z1). Using the standard definition of 2-Wasserstein distance, we have

W2(π̂1, π1) = W2(Law(Y1), Law(Z1)) (8)

≤
(
E[∥Y1 − Z1∥2]

)1/2
. (9)

To bound the expected squared deviation E[∥Y1 − Z1∥2], we have the following from Theorem 1 of Benton
et al. (2024)

E[∥Y1 − Z1∥2] ≤ K2E[∥uθ(x, t, z) − ut(x, z)∥2] (10)
≤ K2ϵ2, (11)

where the constant K depends exponentially on the Lipschitz constants of the learned velocity field, and is
defined as:

K := exp
(∫ 1

0
Lt dt

)
. (12)

This result provides a theoretical justification for the flow matching framework: if the learned vector field
uθ closely approximates the true field ut in an L2 sense, and maintains smoothness and Lipschitz continuity,
then the resulting generative distribution π̂1 is guaranteed to be close to the target π1 in Wasserstein distance.

4

Under review as submission to TMLR

Problem statement. In this work, we investigate the sample complexity required to guarantee that the
learned velocity field uθ, parameterized by a neural network, approximates the true conditional field ut(x)
with small integrated error, i.e.,

L(θ) = Ex,t,z

[
∥uθ(x, t, z) − ut(x, z)∥2] dt ≤ ϵ2. (13)

Note that here z ∼ π0, t ∼ U [0, 1], x ∼ Xt|z,. Our goal is to understand how the number of training samples
influences this error. To this end, we develop a novel theoretical bound by decomposing the total error in the
learned velocity field into statistical, approximation, and optimization errors. This decomposition provides
insight into the learning dynamics of flow-based generative models. We formalize our framework and main
results in the following section.

3 Our Approach

In order to bound the total error given in learned velocity field as given in Equation equation 10, we
decompose this error into three components. We decompose the loss function in Equation equation 6 as
follows.

E||uθ(x, t, z) − ut(x, z)||2 = E||uθ(x, t, z) − uθb

(x, t, z)

+ uθb

(x, t, z) − uθa

(x, t, z)
+ uθa

(x, t, z) − ut(x, z)||2 (14)

E
∥∥uθ(x, t, z) − ut(x, z)

∥∥2 ≤ 2E
[∥∥∥ut(x, z) − uθa

(x, t, z)
∥∥∥2
]

︸ ︷︷ ︸
Eapprox

+ 4E
[∥∥∥uθa

(x, t, z) − uθb

(x, t, z)
∥∥∥2
]

︸ ︷︷ ︸
Estat

+ 4E
∥∥∥uθ(x, t, z) − uθb

(x, t, z)
∥∥∥2

︸ ︷︷ ︸
Eopt

, (15)

We get Equation equation 15 from Equation equation 14 by applying the identity ||a − b||2 ≤ 2||a||2 + 2||b||2
twice. The parameters θa and θb are defined as

θa = arg min
θ∈Θ

Ex,t

[
∥uθ(x, t, z) − ut(x, z)∥2] , (16)

θb = arg min
θ∈Θ

1
n

n∑
i=1

∥∥uθ(xi, ti, zi) − ut(xi)
∥∥2

, (17)

and we denote uθa and uθb as the neural networks associated with the parameters θa and θb, respectively.

In the above the parameters θa defines the ideal or population-level parameters. It is the value of θ that
minimizes the expected squared error between the model velocity field uθ(x, t, z) and the true velocity field
ut(x, z), averaged over the entire data distribution. Moreover, θb defines the empirical minimzer. It is the
value of θ that minimizes the empirical average of the squared error between the model and true velocity
fields, based on a finite set of n samples {xi, ti, zi}n

i=1.

In the above, the approximation error Eapprox
t captures the error due to the limited expressiveness of the

velocity field {uθ}θ∈Θ. The statistical error Estat
t is the error from using a finite sample size. Finally, the

optimization error Eopt
t is due to not reaching the global minimum during training.

To formally prove the sample complexity results, we make the following assumptions that are commonly
used in previous works on the sample complexity of diffusion models (Block et al., 2020; Gupta et al., 2024).

5

Under review as submission to TMLR

Assumption 3.1 ((PL) condition.) The loss L(θ) for all t ∈ [0, 1] satisfies the Polyak–Łojasiewicz
condition, i.e., there exists a constant µ > 0 such that

1
2∥∇L(θ)∥2 ≥ µ (L(θ) − Lt(θ∗)) , ∀ θ ∈ Θ, (18)

where θ∗ = arg minθ∈Θ L(θ) denotes the global minimizer of the population loss.

The Polyak-Łojasiewicz (PL) condition is much weaker than strong convexity and often holds in non-convex
settings, including overparameterized neural networks trained with mean squared error (Liu et al., 2022;
Gaur et al., 2025). Prior work on diffusion model sample complexity (Gupta et al., 2024; Block et al., 2020)
as well as flow matching (Zhou & Liu, 2025) assumes access to an exact empirical risk minimizer (ERM)
for the score estimation loss. However, this assumption is limiting in practice, as exact ERM solutions are
rarely attainable.

Assumption 3.2 (Smoothness,bounded variance) For all t ∈ [0, 1], the population loss Lt(θ) is
α-smooth with respect to the parameters θ, i.e., for all θ, θ′ ∈ Θ

∥∇L(θ) − ∇Lt(θ′)∥ ≤ α∥θ − θ′∥. (19)

We assume that we have access to unbiased estimators ∇θL̂t(θ) of the gradients ∇L(θ) which have bounded
variance, i.e.,

E∥∇L̂t(θ) − ∇L(θ)∥2 ≤ σ2. (20)

The bounded gradient variance assumption is standard in SGD analysis (Koloskova et al., 2022; Ajalloeian
& Stich, 2020) and holds under mild conditions such as Lipschitz activations (e.g., GELU), bounded inputs,
and standard initialization (Allen-Zhu et al., 2019; Du et al., 2019). Smoothness further stabilizes gradients,
improving convergence for methods like SGD and Adam.

Assumption 3.3 (Approximation error) There exists a neural network parameter θ ∈ Θ such that

Ex,t,z||uθ(x, t, z) − ut(x, z)||2 ≤ ϵapprox (21)

The approximation error assumptiom describes the error due to neural network parametrization. In learning
theory, it is common to treat the approximation error of a class of functions as a constant so that analysis
can focus on the estimation/ optimization terms dependent on the sample. In PAC-Bayesian analyses,
approximation errors are denoted by a constant once the class is fixed (Mai, 2025). In (NTK/RKHS)
analyses of neural networks, where it is assumed the target function lies in, or is well approximated by
the specified function class, the misspecification error is represented as a constant term (Bing et al., 2025).
Note that diffusion model analyses such as Gupta et al. (2024) and Guan et al. (2025) also make the same
assumptions.

Assumption 3.4 (Smoothness of velocity field) For each x ∈ Rd and s ∈ [0, 1], there exist unique
flows (Y x

s,t)t∈[s,1] and (Zx
s,t)t∈[s,1] satisfying Y x

s,s = Zx
s,s = x,with respective velocity fields vθ(x, t) and vX(x, t).

Moreover, Y x
s,t and Zx

s,t are continuously differentiable in x, s, and t. Additionally, the velocity field uθ(x, t, z)
is Lipschitz in θ, that is, there exists a constant L > 0 such that for all θ1, θ2 ∈ Θ and x, t, z we have

∥uθ1(x, t, z) − uθ2(x, t, z)∥ ≤ L∥θ1 − θ2∥. (22)

The assumption regarding the smoothness of the velocity field ensures the well-posedness of the associated
flow dynamics governed by uθ

t (x). Specifically, Lipschitz continuity in x guarantees the existence and
uniqueness of solutions to the corresponding ordinary differential equation (ODE). Moreover, it implies
stability of the flow with respect to perturbations in the initial condition, which is crucial for both theoretical
analysis and practical implementations involving generative modeling.

6

Under review as submission to TMLR

Gaussian Probability Path. We use the Gaussian probability path as the time-indexed marginal
distribution µt as a Gaussian conditional path, such that for a given latent variable z ∼ π0 sampled from
the initial distribution,

Xt ∼ N (tz, (1 − t)2Id). (23)

This specification defines a smooth Gaussian probability path {µt}t∈[0,1], continuously interpolating between
the base distribution π0 and the target data distribution π1.

This construction follows the idea of probability flows, where intermediate distributions are designed to be
simple and analytically tractable, ensuring a smooth and monotonic transformation from π0 to π1. Similar
to the linear conditional flow in Liu et al. (2023), the Gaussian path allows closed-form expressions for the
velocity field and supports stable training without stochastic score matching. Hence, the Gaussian path
serves as a constructive prior, a design choice that promotes smoothness, clarity, and differentiability in the
probability flow.

Furthermore, under this construction, the dynamics of the probability flow can be fully characterized by the
evolution of the mean and covariance enabling efficient computation and theoretical analysis. The associated
velocity field ut(x, z) has the form (Lipman et al., 2023)

ut(x, z) = z − x

1 − t
. (24)

Smoothness and bounded gradient variance both implied by sub-Gaussianity are mild assumptions and
typically hold for standard networks with ReLU or GELU activations trained on well-behaved data. These
assumptions are widely used in recent studies on the optimization landscape of generative and diffusion
models (Salimans & Ho, 2022; Liu et al., 2022).

4 Theoretical Results

This section presents a comprehensive sample complexity result for flow matching.

Theorem 4.1 Let assumptions 3.1–3.4 hold. Suppose that the velocity field uθ
t (x, t, z) is parameterized by a

neural network with width W and depth D and ϵ is a positive real number.. Then for any confidence level
δ ∈ (0, 1), if the number of i.i.d. training samples n satisfies

n = Ω
(

(W)2D−2d2

ϵ4 log 2
δ

)
, (25)

and the learning rate for the ith SDG step with one sample per step, satisfies ηi = α
i+γ where α.µ > 1 and

γ > α.κ. Then with probability at least 1 − 4δ, the learned velocity field satisfies

Ex,t,z

∥∥uθ(x, t, z) − ut(x, z)
∥∥2 ≤ ϵ2 + ϵapprox, (26)

and the Wasserstein distance between the learned and true distribution satisfies

W2(π̂1, π1) ≤ O(ϵ) + ϵapprox. (27)

The proof of this theorem relies on bounding each of the errors given in Equation equation 15. Below, we
bound each of these in the following lemmas.

Lemma 4.1 (Approximation Error) Let W and D denote the width and depth of the neural network
architecture, respectively, and let d represent the input data dimension. Then, under Assumption 3.3, we
have

Eapprox ≤ ϵapprox (28)

7

Under review as submission to TMLR

This result directly follows from Assumption 3.3 and the definition of Eapprox.

Lemma 4.2 (Statistical Error) Let n denote the number of samples used to estimate the velocity field
and ϵ a positive real number. Then, under assumptions 3.1 and 3.4 with probability at least 1 − 2δ, we have

Estat ≤ O

(W)D−1d ·

√
log 2

δ

n

 . (29)

Proof Outline We present the outline of the proof, full details are deferred to the Appendix.

Recall the population loss at time t ∈ [0, 1] is

L(θ) = Ex,t,z

∥∥uθ(x, t, z) − ut(x)
∥∥2

, (30)

The corresponding empirical loss over n samples {zi, ti, xi, }n
i=1 is given by

L̂(θ) = 1
n

n∑
i=1

∥∥uθ(xi, ti, zi) − uti
(xi)

∥∥2
. (31)

Here xi denotes the ith data point where zi sampled from π0, ti is sampled from U [0, 1] and xi is sampled
from xi ∼ Xti

|zi. From equations equation 16 and equation 17 we have that θa and θb are the minimizers
of L(θ) and L̂(θ), respectively. We denote the corresponding velocity fields as ua := uθa and ub := uθb

respectively. Thus, we have

L(θb) − L(θa) ≤ L(θb) − L(θa) + L̂(θa) − L̂(θb), (32)

We get the inequality by adding the term L̂(θa) − L̂(θb) to the right hand side of Equation equation 32, this
is a positive quantity since θb is the minimizer of L̂(θ), where the added term is non-negative due to the
empirical optimality of θb.

∣∣L(θb) − L(θa)
∣∣ ≤

∣∣∣L(θb) − L̂(θb)
∣∣∣︸ ︷︷ ︸

(I)

+
∣∣∣L(θa) − L̂(θa)

∣∣∣︸ ︷︷ ︸
(II)

. (33)

We get the inequality in Equation equation 33 by taking the absolute value on both sides of the Equation
equation 32 and applying the triangle inequality on the right-hand side of the resulting Equation. We now
bound each of the terms I and II separately as follows. To bound (I) and (II),we need to apply results
which require the loss function L(θ). However, note that x is unbounded, which in turn implies that L(θ) is
unbounded. Thus,we first define truncated versions of the velocity fields as

(vt(x))k =
{

(ut(x))k if
∣∣∣(x−tz

1−t

)
k

∣∣∣ ≤ κ,

0 otherwise,

(
vθ(x, t, z)

)
k

=
{(

uθ(x, t, z)
)

k
if
∣∣∣(x−tz

1−t

)
k

∣∣∣ ≤ κ,

0 otherwise.

Here (vt(x))k,
(
vθ(x, t, z)

)
k

and
(

x−tz
1−t

)
k

represent the kth co-ordinates of vt(x), vθ(x, t, z) and
(

x−tz
1−t

)
respectively where k ∈ {1, · · ·, d}.

We define the corresponding loss functions as

L′(θ) = Ex,t,z

∥∥vθ(x, t, z) − vt(x)
∥∥2

, (34)

8

Under review as submission to TMLR

L̂′(θ) = 1
n

n∑
i=1

∥∥vθ(xi, ti, zi) − vti
(xi)

∥∥2
. (35)

Note that the bounded velocity filed is defined as vt(x, z) = z−x
1−t , this can be decomposed as

vt(x, z) =
∣∣∣∣∣z − x

1 − t

∣∣∣∣∣ ≤

∣∣∣∣∣x − tz

1 − t

∣∣∣∣∣+ |z| (36)

Since | x−tz
1−t | is upper bounded by construction and z is defined over a bounded set, this implies that the

input z−x
1−t to the loss function L′(θ) and L̂′(θ) is bounded. Thus, for a fixed value of θ both L′(θ) and L̂′(θ)

are bounded. Now consider the function class Θ′′ := {θa, θb}. For a bounded input vt(x, z), L′(θ) and L̂′(θ)
are bounded for all θ ∈ Θ′′ . Therfore from Lemma D.1 we have with probability at least 1 − δ

∣∣∣L′(θ) − L̂′(θ)
∣∣∣ ≤ O

(W)D−1d ·

√
log 1

δ

n

 ,

∀ θ ∈ Θ′′. (37)

Applying this to the terms (I) and (II), equation equation 33 now becomes

∣∣L(θb) − L(θa)
∣∣ ≤ O

(W)D−1d ·

√
log 1

δ

n

 . (38)

Using the quadratic growth property of Polyak–Łojasiewicz (PL) functions (Karimi et al., 2020), we have

∥θa − θb∥2 ≤ µ ·
∣∣L(θa) − L(θb)

∣∣ , (39)

where µ is the PL constant. Also, Lipschitz continuity of the velocity fields in θ leads to

∥vθa

(x, t, z) − vθb

(x, t, z)∥2

≤ L · ∥θa − θb∥2 (40)
≤ L · µ ·

∣∣L(θa) − L(θb)
∣∣ (41)

≤ O

(W)D−1d ·

√
log 1

δ

n

 . (42)

Since vθa(x, t) = uθa(x, t) and vθb(x, t) = uθb(x, t) for all x in the truncated domain (which dominates the
mass under µt), by taking expectation over x, t, z we finally obtain

Ex,t,z

∥∥∥uθa

(x, t, z) − uθb

(x, t, z)
∥∥∥2

≤ O

(W)D−1d ·

√
log 1

δ

n

 . (43)

This completes the proof. For a more detailed version of this proof see Appendix 4.2.

Next we bound the optimization error in the following lemma. The detailed proof is deferred to the Appendix
A.

9

Under review as submission to TMLR

Lemma 4.3 (Optimization Error) Let n be the number of samples used to estimate the velocity field
and ϵ a positive real number. If the learning rate for the ith SDG step with one sample per step, satisfies
ηi = α

i+γ where α.µ > 1 and γ > α.κ, then under Assumptions 3.1, 3.2, and 3.4, the optimization error due
to imperfect minimization of the training loss satisfies with probability at least 1 − 2δ

Eopt ≤ O

(W)D−1d ·

√
log 1

δ

n

 . (44)

Proof Outline

By the smoothness of L(θ) (Assumption 3.2), we get

L(θi+1) ≤ L(θi) + ⟨∇L(θi), θi+1 − θi⟩

+ κ

2 ∥θi+1 − θi∥2. (45)

Taking expectation and using unbiasedness of the stochastic gradient, along with bounded variance and
gradient norm assumptions (Assumption 3.3), we get

[L(θi+1)] ≤ L(θi) −
(

ηi − κη2
i

2

)
∥∇L(θi)∥2

+ κη2
i σ2

2 . (46)

From the Polyak-Łojasiewicz (PL) property and the fact that 0 < ηi < 1
κ , we then obtain

[L(θi+1) − L∗] ≤ (1 − µηi)[L(θi) − L∗] + κη2
i σ2

2 . (47)

Further, in Appendix B, we show that with the chosen step sizes ηk, we obtain the following

[L(θn) − L∗] ≤ O
(

1
n

)
. (48)

Noting that we are using a single sample at each SGD step, the sample complexity is O
(1

n

)
. Next, using

the Lipschitz continuity of the velocity field and the quadratic growth property of PL functions Karimi et al.
(2020) we get

E∥uθ(x, t, z) − uθa

(x, t, z)∥2 ≤ µ |L(θn) − L∗|

≤ O
(

1
n

)
. (49)

Also note that uθ corresponds to the parameter θn since θn our estimate of θ obtained from SGD. Now,
using the triangle inequality, we have that

E∥uθ(x, t, z) − uθb

(x, t, z)∥2

≤ 2E∥uθ(x, t, z) − uθa

(x, t, z)∥2

+ 2E∥uθb

(x, t, z) − uθa

(x, t, z)∥2 (50)

Now from equation 49 and equation 43, we obtain with probability at least 1 − δ

E∥uθ(x, t, z) − uθb

(x, t, z)∥2

10

Under review as submission to TMLR

≤ O

(W)D−1d ·

√
log 1

δ

n

 . (51)

The details of the proof are given in Appendix B.

Now, to complete the proof of our main result (Theorem 4.1), we combine Lemmas 4.1–4.3 to obtain

E
[∥∥uθ(x, t, z) − ut(x)

∥∥2]
≤ ϵapprox

+ O

(
(W)D−1d

√
log(2/δ)

n

)
. (52)

Choosing n = O
(

(W)2D−2d2

ϵ4 log(2/δ)
)

gives

Ex,t,z

[∥∥uθ(x, t, z) − ut(x)
∥∥2] ≤ ϵ2 + ϵapprox. (53)

The bound on the Wasserstein distance between the true and the learned distribution follows from Equations
equation 8, equation 10 and equation 12, i.e.,

W2(π̂1, π1) ≤ O(ϵ) + ϵapprox. (54)

This completes the proof.

5 Conclusion

In this paper, we analyze the sample complexity of training flow matching models via neural network-based
velocity estimation. We establish a sample complexity bound of notably avoiding exponential dependence
on the data dimension. To the best of our knowledge, this is the first formal sample complexity result for
flow matching methods, and uniquely, it is derived under the realistic setting where exact empirical risk
minimization is not assumed.

References
Ahmad Ajalloeian and Sebastian U Stich. On the convergence of sgd with biased gradients. arXiv preprint

arXiv:2008.00051, 2020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

J Benton, G Deligiannidis, and A Doucet. Error bounds for flow matching methods. Transactions on
Machine Learning Research, 2024.

Xin Bing, Xin He, and Chao Wang. Kernel ridge regression with predicted feature inputs and applications
to factor-based nonparametric regression. arXiv preprint arXiv:2505.20022, 2025.

Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-encoders
and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory. In
Summer school on machine learning, pp. 169–207. Springer, 2003.

Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions: A
non-asymptotic analysis for ddim-type samplers. In International Conference on Machine Learning, pp.
4462–4484. PMLR, 2023.

11

Under review as submission to TMLR

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent finds global minima of deep
neural networks. In International Conference on Machine Learning, pp. 1675–1685. PMLR, 2019.

Mudit Gaur, Prashant Trivedi, Sasidhar Kunapuli, Amrit Singh Bedi, and Vaneet Aggarwal. Sample
complexity of diffusion model training without empirical risk minimizer access. arXiv preprint
arXiv:2505.18344, 2025.

Yunrui Guan, Krishnakumar Balasubramanian, and Shiqian Ma. Mirror flow matching with heavy-tailed
priors for generative modeling on convex domains. arXiv preprint arXiv:2510.08929, 2025.

Shivam Gupta, Aditya Parulekar, Eric Price, and Zhiyang Xun. Improved sample complexity bounds for
diffusion model training. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems. PMLR, 2024.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition, 2020. URL https://arxiv.org/abs/1608.04636.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. In Advances in Neural Information
Processing Systems, volume 36, pp. 59886–59910, 2023.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for asynchronous
sgd for distributed and federated learning. Advances in Neural Information Processing Systems, 35:
17202–17215, 2022.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for
generative modeling. In The Eleventh International Conference on Learning Representations, 2023.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–116, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations, 2023.

The Tien Mai. Pac-bayesian risk bounds for fully connected deep neural network with gaussian priors. arXiv
preprint arXiv:2505.04341, 2025.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In International
Conference on Learning Representations, 2022.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Xu Shifeng, Yanzhu Liu, and Adams Wai-Kin Kong. Easing training process of rectified flow models via
lengthening inter-path distance. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=RaR3ETzyKp.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

Zhengyu Zhou and Weiwei Liu. An error analysis of flow matching for deep generative modeling. In
Forty-second International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=vES22INUKm.

12

https://arxiv.org/abs/1608.04636
https://openreview.net/forum?id=RaR3ETzyKp
https://openreview.net/forum?id=vES22INUKm
https://openreview.net/forum?id=vES22INUKm

Under review as submission to TMLR

Appendix

In this appendix, we provide the missing proofs and additional theoretical results referenced in the main
paper. We also include the flow matching algorithm used for training the generative model.

A Proof of Lemma 4.2

Proof A.1 Let us define the population loss at time t for t ∈ [0, 1] as

L(θ) = Ex,t,z

∥∥uθ(x, t, z) − ut(x)
∥∥2

, (55)

where uθ
t denotes the velocity estimated by a neural network parameterized by θ ∈ Θ.

The corresponding empirical loss is defined as

L̂(θ) = 1
n

n∑
i=1

∥∥uθ(xi, zi, ti) − uti
(xi)

∥∥2
. (56)

Here xi denotes the ith data point where zi sampled from π0, ti is sampled from U [0, 1] and xi is sampled
from x ∼ Xti

(.|zi). Since θa and θb are the minimizers of L(θ) and L̂′(θ), respectively, with corresponding
velocity fields ua and ub. By the definitions of minimizers, we can write

L(θb) − L(θa) ≤ L(θb) − L(θa) + L̂(θa) − L̂(θb) (57)

Note that the right-hand side of the above equation is less than the left-hand side since we have added the
quantity L̂′(θa) − L̂′(θb) which is strictly positive as θb is the minimizer of the function L̂′(θ) by definition.
We then take the absolute value on both sides of the equation to get

|L(θb) − L(θa)| ≤
∣∣∣L(θb) − L̂(θb)

∣∣∣︸ ︷︷ ︸
(I)

+
∣∣∣L(θa) − L̂(θa)

∣∣∣︸ ︷︷ ︸
(II)

. (58)

We now bound terms (I) and (II) using generalization results. From Lemma D.1 (Theorem 26.5 of
Shalev-Shwartz & Ben-David (2014)), if the loss function L̂(θ) is uniformly bounded over the parameter
space Θ′′ = {θa, θb}, then with probability at least 1 − δ, we have

∣∣∣L(θ) − L̂′(θ)
∣∣∣ ≤ R̂(Θ

′′
) + O

√ log 1
δ

n

 , ∀ θ ∈ Θ′′ (59)

where R̂(Θ′′) denotes the empirical Rademacher complexity of the function class restricted to Θ′′.

Now since x is not bounded, this result does not hold. We then define the following two functions

(vt(x))k =
{

(ut(x|z))k , if
∣∣∣x−tz

1−t

∣∣∣
k

≤ κ,

0, otherwise,

(
vθ(x, t)

)
k

=
{(

uθ(x, t, z)
)

k
, if

∣∣∣x−tz
1−t

∣∣∣
k

≤ κ,

0, otherwise.

Here (vt(x|z))k and
(
vθ(x, t)

)
k

represent the kth co-ordinates of v(x, t) and vθ(x, t), respectively where k ∈
{1, · · ·, d}.

Using above we have

13

Under review as submission to TMLR

L′(θ) = Ex,t,z

∥∥vθ(x, t, z) − vt(x)
∥∥2

, (60)

L̂′(θ) = 1
n

n∑
i=1

∥∥vθ(xi, ti, zi) − vti(xi)
∥∥2

. (61)

Here (vt(x))k, (ut(x))k,
(
vθ(x, t, z)

)
k

and
(
uθ(x, t, z)

)
k

denote the kth co-ordinate of vt(x), ut(x), vθ(x, t, z)
and uθ(x, t, z) respectively, where we have k ∈ {1, · · · , d}.

Note that the functions vt(x) and vθ
t (x) are uniformly bounded.

Now using Lemma D.1 we have with probability at least 1 − δ,

∣∣∣L′(θ) − L̂′(θ)
∣∣∣ ≤ R̂(θ) + O

√ log 1
δ

n

 , ∀ θ ∈ Θ′′. (62)

Since Θ′′ = {θa, θb} is a finite class (just two functions). We apply Lemma D.2 to bound the empirical
Rademacher complexity R̂(θ) and thus, with probability at least 1 − δ we have that

∣∣∣L′(θ) − L̂′(θ)
∣∣∣ ≤ O

(
(W)D−1dκ

n

)
+ O

√ log 1
δ

n

 , ∀ θ ∈ Θ′′. (63)

This yields that with probability at least 1 − δ we have

∣∣∣L′(θ) − L̂′(θ)
∣∣∣ ≤ O

(W)D−1dκ ·

√
log 1

δ

n

 , ∀ θ ∈ Θ′′ (64)

Now consider the probability of the event

Ai,k =
{∣∣∣∣∣
(

(xi) − ti(zi)
1 − t

)
k

∣∣∣∣∣ ≥ κ

}
(65)

We have the probability of this event to be upper-bounded as

P

(∣∣∣∣∣ (xi)−ti(zi)
1 − t

∣∣∣∣∣
k

≥ κ

)
= Ezi,ti

(
P

(∣∣∣∣∣
(

(xi) − ti(zi)
1 − t

)
k

∣∣∣∣∣ ≥ κ

∣∣∣∣∣zi, ti

))
(66)

≤ Ezi,ti

(
exp

(
− κ2

2C

))
(67)

≤ exp
(

− κ2

2C

)
(68)

Setting κ =
√

2C · log
(

dn
δ

)
, we have

P

(∣∣∣∣∣
(

(x)i − ti(z)i

1 − t

)
k

∣∣∣∣∣ ≥ κ

)
≤ δ

dn
(69)

If we denote the event A = ∪i,kAi,k, then by union bound we have P (A) = P (∪i,kAi,k) ≤
∑

i,k P (Ai,k) ≤ δ.

14

Under review as submission to TMLR

Let event B denote the failure of the generalization bound, i.e.,

B :=

∣∣∣L′(θ) − L̂′(θ)
∣∣∣ > R̂(Θ′′) + O

√ log 1
δ

n

 . (70)

From above, we know P(B) ≤ δ under the boundedness condition. Therefore, by the union bound, we have

P(A ∪ B) ≤ P(A) + P(B) ≤ 2δ, (71)
=⇒ P(Ac ∩ Bc) = 1 − P (A ∪ B) ≥ 1 − 2δ. (72)

On this event (Ac ∩ Bc), we have L̂′(θ) = L̂(θ).

Now consider the following,

|L(θb) − L(θa)| ≤
∣∣∣L(θb) − L̂′

t(θb)
∣∣∣+
∣∣∣L(θa) − L̂′

t(θa)
∣∣∣ (73)

=
∣∣∣L(θb) − L̂′

t(θb) + L′(θb) − L′(θb)
∣∣∣

+
∣∣∣L(θa) − L̂′

t(θa) + L′(θa) − L′(θa)
∣∣∣ (74)

≤
∣∣∣L′

(θb) − L̂′
t(θb)

∣∣∣+
∣∣L(θb) − L′(θb)

∣∣
+
∣∣∣L′

(θa) − L̂′
t(θa)

∣∣∣+ |L(θa) − L′(θa)| (75)

The first equation 73 is the same as equation 58 with L̂(θ) replaces by L̂′(θ). We obtain equation 74 from
equation 73 by adding the terms L̂′

t(θa)+L′(θa) and L̂′
t(θb)+L′(θb) to the two terms on the right-hand side

of Equation equation 73. Equation equation 75 follows from Equation equation 74 by applying the triangle
inequality to both the term on the right-hand side of Equation equation 74.

Note that the terms
∣∣∣L′(θa) − L̂′

t(θa)
∣∣∣ and

∣∣∣L′(θb) − L̂′
t(θb)

∣∣∣ can be upper bounded using the result in
Equation equation 64 to get the following with probability at least 1 − 2.δ

|L(θb) − L(θa)| ≤ O

(W)D−1dκ ·

√
log 1

δ

n

+
∣∣L(θb) − L′(θb)

∣∣+ |L(θa) − L′(θa)| (76)

In order to bound terms of the form |L(θ) − L′(θ)| we have the following

|L(θ) − L′(θ)| =
d∑

k=1
Exk,t,zk

|(uθ(x, t, z))k − (ut(x))k|2 − Exk,t,zk
|(vθ(x, t, z))k − (vt(x))k|2 (77)

=
d∑

k=1
Exk,t,zk

|(uθ(x, t, z))k − (ut(x))k|21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 (78)

=
d∑

k=1
Exk,t,zk

∣∣∣∣∣
(

z − x

1 − t

)
k

− (uθ(x, t, z))k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 (79)

≤ 2
d∑

k=1
Exk,t,zk

∣∣∣∣∣
(

z − x

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

+
d∑

k=1
2Exk,t,zk

(uθ(x, t, z))2
k1∣∣∣(x−tz

1−t)
k

∣∣∣≥κ


(80)

15

Under review as submission to TMLR

≤ 2
d∑

k=1
Exk,t,zk

∣∣∣∣∣
(

z − x

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

+
d∑

k=1
CΦ′′Exk,t,zk

∣∣∣(z − x

1 − t

)
k

∣∣∣21∣∣∣(x−tz
1−t)

∣∣∣≥κ


(81)

≤ (2 + CΦ′′)
d∑

k=1
Exk,t,zk

∣∣∣(x − z

1 − t

)
k

∣∣∣21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 (82)

≤ (2 + CΦ′′)
d∑

k=1
Exk,t,zk

∣∣∣(x − z

1 − t
+ tz

1 − t
− tz

1 − t

)
k

∣∣∣21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 (83)

≤ (2 + CΦ′′)
d∑

k=1
CΦ′′Exk,t,zk

∣∣∣(x − tz

1 − t
+ tz − z

1 − t

)
k

∣∣∣21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 (84)

≤ (4 + 2CΦ′′)
d∑

k=1
Exk,t,zk

∣∣∣∣∣
(

x − tz

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ


+ (4 + 2CΦ′′)

d∑
k=1

Exk,t,zk

∣∣∣(tz − z

1 − t

)
k

∣∣∣1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 (85)

≤ (4 + 2CΦ′′)


d∑

k=1
Exk,tk,zk

∣∣∣∣∣
(

x − tz

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ


︸ ︷︷ ︸

I

+Exk,t,zk

|zk|21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ


︸ ︷︷ ︸

II


(86)

We get the left-hand side of Equation equation 77 by expanding the definition of L(θ) and L′(θ) and writing
the l2 term as a component-wise sum. We get Equation equation 78 from Equation equation 77 by noting
that (uθ

t)k = (vθ
t)k and (uθ

t (x))k = (vθ
t (x))k in the region where

∣∣∣x−tz
1−t

∣∣∣
k

≤ κ. We get Equation equation 80
from Equation equation 79 by using the identity ||a − b||2 ≤ 2||a||2 + 2||b||2. We get Equation equation 81
from Equation equation 80 by using Lemma D.4. We get Equation equation 85 from Equation equation 84
by using the identity ||a − b||2 ≤ 2||a||2 + 2||b||2 again.

Now we separately obtain upper bounds for the terms I and II as follows.

d∑
k=1

Exk,t,zk

∣∣∣∣∣
(

x − tz

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 =
d∑

k=1
Et,zk

Exk|t,zk

∣∣∣∣∣
(

x − tz

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ


︸ ︷︷ ︸

A

(87)

Now we evaluate A as follows

Exk|t,zk

∣∣∣∣∣
(

x − tz

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ


︸ ︷︷ ︸

I

= Ex∼N (0,1)
(
x21x≥κ

)
(88)

= Ex∼N (0,1)
(
x2|1x≥κ)·P (1x≥κ

)
. (89)

≤ Ex∼N (0,1)
(
x2|1x≥κ

)
exp

(
−κ2) (90)

≤
(

1 + ϕ(κ)
1 − Φ(κ)

)
exp

(
− κ2

2C

)
(91)

16

Under review as submission to TMLR

≤
(

2 + κ2O
(

exp
(

− κ2

2C

)))
(92)

≤ O
(

exp
(

− κ2

2C

))
(93)

We get the right hand side of Equation equation 87 by using the tower expectation property on the left
hand side. We get the right-hand side of Equation equation 88 by using the fact that x|z, t ∼ M(tz, (1 −
t)2). Therefore,

(
x−tz
1−t

)
k

∼ N (0, 1) conditioned on z and t. We get Equation equation 89 from Equation
equation 88 by using Lemma D.5. We get Equation equation 91 from Equation equation 90 by using Lemma
D.3. We get Equation equation 92 from Equation equation 91 by using the upper bound on the Mill’s ratio
which implies that ϕ(κ)

1−Φ(κ) ≤ κ + 1
κ . Plugging Equation equation 93 in to equation 87 we obtain

d∑
k=1

Exk,t,zk

∣∣∣∣∣
(

x − tz

1 − t

)
k

∣∣∣∣∣
2

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 = O
(

exp
(

− κ2

2C

))
(94)

We now evaluate (II) as follows

d∑
k=1

Exk,t,zk

|z|2k1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 =
d∑

k=1
Ezk,tExk|zk,t

|zk|21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

∣∣∣zk, t

 (95)

=
d∑

k=1
Ezk,t Exk|zk,t

|zk|21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

∣∣∣zk, t


︸ ︷︷ ︸

B

(96)

We get right hand side of Equation equation 95 by using tower property of expectation.

Now we evaluate B as follows

Exk|zk,t

|zk|21∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

∣∣∣zk, t

 = |zk|2.Exk|zk,t

1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

∣∣∣zk, t

 (97)

≤ |zk|2P

((
x − tz

1 − t

)
k

≥ κ

∣∣∣∣∣zk, t

)
(98)

≤ |zk|2exp
(

− κ2

2C

)
(99)

We get right hand side of Equation equation 97 by the fact that zk is constant since the expectation is
conditioned on zk, t. We get Equation equation 99 from equation 98 by using the fact that x|z, t ∼ M(tz, (1−
t)2). Therefore,

(
x−tz
1−t

)
k

∼ N (0, 1) conditioned on z and t. Plugging in Equation equation 99 into equation 96
we get

d∑
k=1

Exk,t,zk

|z|2k1∣∣∣(x−tz
1−t)

k

∣∣∣≥κ

 ≤
d∑

k=1
Exk,t,zk

|zk|2exp
(

− κ2

2C

)
≤ O

(
exp

(
− κ2

2C

))
(100)

Plugging Equation equation 94 and equation 100 into Equation equation 86 and setting κ =
√

2C · log
(

dn
δ

)
,

we have

17

Under review as submission to TMLR

|L(θ) − L′(θ)| ≤O
(

δ

d·n

)
, ∀θ = {θa

t , θb
t } (101)

Now plugging Equation equation 101 into Equation equation 76 we get with probability at least 1 − 2δ

|L(θa) − L(θb)| ≤ O

(W)D−1d ·

√
log 1

δ

n

 (102)

Finally, using the Polyak-Łojasiewicz (PL) condition for L(θ), from Assumption 3.1, we have from the
quadratic growth condition Karimi et al. (2020) of PL functions the following,

∥θa − θb∥2 ≤ µ
∣∣L(θa) − L(θb)

∣∣ , (103)

and applying Lipschitz continuity of the velocity fields with respect to parameter θ from Assumption 3.2, we
get

∥vθa

(x, t, z) − vθb

(x, t, z)∥2 ≤ L · ∥θa − θb∥2 (104)
≤ L · µ

∣∣L(θa) − L(θb)
∣∣ (105)

≤ O

(W)D−1d ·

√
log 1

δ

n

 . (106)

Taking expectation with respect to x, t, z on both sides we get

Ex,t,z∥vθa

(x, t, z) − vθb

(x, t, z)∥2 ≤ L · ∥θa − θb∥2 (107)

≤ O

(W)D−1d ·

√
log 1

δ

n

 . (108)

We then obtain the following.

E||uθa

(x, t, z) − uθb

(x, t, z)||2 ≤ 2E||uθa

(x, t, z) − uθb

(x, t, z) − vθa

(x, t, z) + vθb

(x, t, z) + vθa

(x, t, z) − vθb

(x, t, z)||2

(109)

≤ 4E||uθa

(x, t, z) − vθa

(x, t, z)||2 + 4E||uθb

(x, t, z) − vθb

(x, t, z)||2

+ 8E||vθa

(x, t, z) − vθb

(x, t, z)||2 (110)

≤ 4E||uθa

(x, t, z) − vθa

(x, t, z)||2 + 4E||uθb

(x, t, z) − vθb

(x, t, z)||2

+ O

(W)D−1d ·

√
log 1

δ

n

 (111)

We get Equation equation 110 from equation 109 by using the identity ||a−b||2 ≤ 2||a||2 +2||b||2 Note that the
quantities 4E∥|uθb(x, t, z) − vθb(x, t, z)||2 and 4Ex∼ut∥|uθb(x, t, z) − vθb(x, t, z)||2 in Equation equation 111
can be written as follows.

18

Under review as submission to TMLR

E||uθ(x, t, z,) − vθ(x, t, z)||2 = E

∣∣∣∣∣
∣∣∣∣∣uθ(x, t, z)

∣∣∣∣∣
∣∣∣∣∣
2

·1∣∣∣∣∣
∣∣∣∣∣(z−x

1−t)
k

∣∣∣∣∣
∣∣∣∣∣≥κ

≤ E

∣∣∣∣∣
∣∣∣∣∣
(

z − x

1 − t

) ∣∣∣∣∣
∣∣∣∣∣
2

1∣∣∣∣∣
∣∣∣∣∣(z−x

1−t)
k

∣∣∣∣∣
∣∣∣∣∣≥κ

Using the same analysis as is done from equation 78 downwards, we get E||uθ(x, t, z,) − vθ(x, t, z)||2 ≤
O
(

δ
d·n
)
. Plugging this result into equation 111, we get with probability at least 1 − 2.δ

E||uθa

(x, t, z) − uθb

(x, t, z)||2 ≤ O

(W)D−1d ·

√
log 1

δ

n

 (112)

which is the required result.

B Proof of Lemma 4.3

Proof B.1 Consider stochastic gradient descent (SGD) iterates indexed by i = 1, 2, . . . , n:

θi+1 = θi − ηi ∇L̂(θi),

with diminishing stepsizes
ηi = α

i + γ
, α > 0, γ > 0, (113)

chosen so that
αµ > 1 and ηi ≤ 1

L
for all i (e.g. take γ ≥ αL). (114)

Define the expected suboptimality ei :=
[
L(θi) − L⋆

]
.

By Assumption 3.2 for L gives, for y = θi+1 = θi − ηi∇L̂(θi),

L(θi+1) ≤ L(θi) +
〈

∇L(θi), θi+1 − θi

〉
+ L

2 ∥θi+1 − θi∥2 (115)

= L(θi) − ηi

〈
∇L(θi), ∇L̂(θi)

〉
+ L

2 η2
i

∥∥∇L̂(θi)
∥∥2

. (116)

Using unbiasedness and the variance bound from Assumnption 3.2, we obtain,

E
[
∥∇L̂(θi)∥2] = ∥∇L(θi)∥2 + E

[
∥∇L̂(θi) − ∇L(θi)∥2] ≤ ∥∇L(θi)∥2 + σ2,

Taking expectation with respect to (x, t, z) on both sides of Equation equation 116 and plugging Equation
equation 131 into Equation equation B.1 gives us

[L(θi+1)] ≤ L(θi) − ηi∥∇L(θi)∥2 + L

2 η2
i

(
∥∇L(θi)∥2 + σ2

)
. (117)

If ηi ≤ 1
L then −ηi + L

2 η2
i ≤ − ηi

2 , hence

[L(θi+1)] ≤ L(θi) − ηi

2 ∥∇L(θi)∥2 + L

2 η2
i σ2. (118)

By Assumption 3.1, we have that ∥∇L(θi)∥2 ≥ 2µ (L(θi) − L⋆), so

[L(θi+1) − L⋆] ≤
(
1 − µηi

)
E
(
L(θi) − L⋆

)
+ L

2 η2
i σ2.

19

Under review as submission to TMLR

Substituting ηi = α/(i + γ) yields

ei+1 ≤
(

1 − αµ

i + γ

)
ei + α2Lσ2

2 (i + γ)2 . (119)

Set
p := αµ > 1, b := α2Lσ2

2 .

We now prove that any sequence (ei) satisfying

ei+1 ≤
(

1 − p

i + γ

)
ei + b

(i + γ)2 , p > 1, γ ≥ 1, (120)

obeys, for all i ≥ 1,
ei ≤ γpe1

(i + γ)p
+ b

p − 1 · 1
i + γ

. (121)

Define vi := (i + γ)pei. Multiply equation 120 by (i + 1 + γ)p:

vi+1 = (i + 1 + γ)pei+1

≤ (i + 1 + γ)p

(
1 − p

i + γ

)
ei + (i + 1 + γ)p b

(i + γ)2 . (122)

Let t := i + γ (≥ γ ≥ 1). Then

(i + 1 + γ)p

(
1 − p

i + γ

)
= (t + 1)p

(
1 − p

t

)
.

By Bernoulli’s inequality, for u ∈ [0, 1], (1 − u)p ≥ 1 − pu. With u = 1
t ,

1 − p

t
≤
(

1 − 1
t

)p

=
(

t − 1
t

)p

.

Hence

(t + 1)p
(

1 − p

t

)
≤ (t + 1)p

(
t − 1

t

)p

=
(

t2 − 1
t

)p

≤ tp, (123)

since t2 − 1 ≤ t2. Plugging equation 123 into equation 122 gives

vi+1 ≤ tpei + (t + 1)p b

t2 = vi + (t + 1)p b

t2 . (124)

Using the binomial expansion (or the mean-value form), for t ≥ 1 and p ≥ 1,

(t + 1)p ≤ tp + ptp−1 + p(p − 1)
2 tp−2 ≤ tp

(
1 + p

t
+ p(p − 1)

2t2

)
.

Therefore

(t + 1)p

t2 ≤ tp−2 + p tp−3 + p(p − 1)
2 tp−4 ≤

(
1 + p

γ
+ p(p − 1)

2γ2

)
tp−2, (125)

where in the last inequality we used t ≥ γ to factor out tp−2 and bound the lower powers by constants
depending only on γ and p. Combining equation 124 and equation 125,

vi+1 ≤ vi + cp,γ b tp−2, cp,γ := 1 + p

γ
+ p(p − 1)

2γ2 . (126)

20

Under review as submission to TMLR

Sum equation 126 from j = 1 to i − 1 (with tj = j + γ):

vi ≤ v1 + cp,γ b

i−1∑
j=1

(j + γ)p−2.

Since p > 1, the sum is bounded by an integral:
i−1∑
j=1

(j + γ)p−2 ≤
∫ i+γ

γ

tp−2 dt = (i + γ)p−1 − γp−1

p − 1 ≤ (i + γ)p−1

p − 1 .

Therefore
vi ≤ γpe1 + cp,γ b

p − 1 (i + γ)p−1.

Dividing by (i + γ)p yields
ei ≤ γpe1

(i + γ)p
+ cp,γ b

p − 1 · 1
i + γ

. (127)

The O(1/i) rate follows since α.µ ≥ 1.

Thus, we obtain

(L(θn) − L∗) ≤ O
(

1
n

)
(128)

Note that θn or the parameter obtained after the nth iteration of SGD is the estimated parameter denoted as
θ in Equation equation 15, using that same notation, and applying the Lipschitz property from assumption
3.4 followed by the quadratic growth inequality implied by Assumption 3.1 and Karimi et al. (2020), we have

∥uθ(x, t, z) − uθa

(x, t, z)∥2 ≤ L · ||θ − θa||2 ≤ L·µ||L(θ) − L∗|| ≤ O
(

1
n

)
(129)

Taking Expectation with respect x, t, z we get

E∥uθ(x, t, z) − uθa

(x, t, z)∥2 ≤ O
(

1
n

)
(130)

Thus, we have with probability at least 1 − 2δ

E||uθ(x, t, z) − uθb

(x, t, z)||2 ≤ 2 · E||uθ(x, t, z) − uθa

(x, t, z)||2 + 2 · E||uθa

(x, t, z) − uθb

(x, t, z)||2 (131)

≤ O
(

1
n

)
+ O

(W)D−1d ·

√
log 2

δ

n

 (132)

≤ O

(W)D−1d ·

√
log 2

δ

n

 (133)

We use the upper bound on E||uθa(x, t, z)−uθb(x, t, z)||2 from Lemma 4.2 and upper bound on E||uθ(x, t, z)−
uθa(x, t, z)||2 from Equation equation 129, to go from Equation equation 132 to equation 133.

C Final Theoretical Result

Recall Theorem 4.1: Under the assumptions 3.1, 3.2, 3.3 and 3.4, let the velocity field uθ
t (x) be

parameterized by a neural network with width W and depth D,. Then„ if the number of i.i.d. training
samples n satisfies

n = Ω
(

(W)2D−2d2ϵ4 log 2
δ

)
, (134)

21

Under review as submission to TMLR

it follows with probability at least 1 − 2δ that the learned velocity field satisfies the error guarantee

Ex,t,z

[∥∥uθ
t (x) − ut(x)

∥∥2]
dt ≤ ϵ2. (135)

Furthermore, the Wasserstein distance between the true distribution π and the leaned distribution π̂ is
bounded as

W2(π̂1, π1) ≤ O(ϵ) + ϵapprox (136)

Proof C.1 Recall, from Equation equation 15, the velocity field is decomposed into three terms follows

Ex,t,z

[∥∥uθ(x, t, z) − ut(x)
∥∥2] ≤ 4Ex,t,z

[∥∥∥uθa

(x, t, z) − ut(x)
∥∥∥2
]

︸ ︷︷ ︸
Eapprox

t

+4Ex,t,z

[∥∥∥uθa

(x, t, z) − uθb

(x, t, z)
∥∥∥2
]

︸ ︷︷ ︸
Estat

t

+ 4Ex,t,z

[∥∥∥uθ(x, t, z) − uθb

(x, t, z)
∥∥∥2
]

︸ ︷︷ ︸
Eopt

t

,

(137)

Now using the Lemmas 4.1, 4.2, and 4.3, with probability at least 1 − 4δ we have

Ex∼µt

[∥∥uθ
t (x) − ut(x)

∥∥2] ≤ ϵapprox + O

(W)D−1d ·

√
log 2

δ

n

+ O

(W)D−1d ·

√
log 2

δ

n

 (138)

= ϵapprox + O

(W)D−1d ·

√
log 2

δ

n

 (139)

Setting n = Ω
(

(W)2D−2d2

ϵ4 log 2
δ

)
, , we have that

Ex,t,z

[∥∥uθ(x, t, z) − ut(x)
∥∥2] ≤ ϵ2 + ϵapprox (140)

This completes the sample complexity results.

Finally the bound on the Wasserstein distance between the true and the learned distribution follows from
Equations equation 8, equation 10 and equation 12.

D Intermediate Lemmas

Lemma D.1 (Theorem 26.5 of Shalev-Shwartz & Ben-David (2014)) Consider data z ∈ Z, the
parametrized hypothesis class hθ, θ ∈ Θ, and the loss function ℓ(hθ, z) : Rd → R, where |ℓ(hθ, z)| ≤ c.
We also define the following terms

LD(θ) = Eℓ(hθ, z) (141)

LS(θ) = 1
m

n∑
i=1

ℓ(hθ, zi) (142)

which denote the expected and empirical loss functions respectively.

22

Under review as submission to TMLR

Then, with probability of at least 1 − δ, for all h ∈ H,

LD(θ) − LS(θ) ≤ R̂(θ) + O

(√
ln(1/δ)

m

)
. (143)

where R̂(θ) = 1
nEσ

[
maxθ∈Θ′′

∑n
i=1 f(θ)σi

]
denotes the empirical Radamacher complexity over the loss

function ℓ, hypothesis parameter set Θ and the dataset of size n.

Lemma D.2 (Extension of Massart’s Lemma Bousquet et al. (2003)) Let Θ′′ be a finite function
class of cardinality K. Then, for any θ ∈ Θ′′ , we have

Eσ

[
max
θ∈Θ′′

n∑
i=1

f(θ)σi

]
≤
√

log K||f(θ)||∞ ≤
√

log K2 (BW)D−1B dκ (144)

where σi are i.i.d random variables such that P(σi = 1) = P(σi = −1) = 1
2 , D is the number of layers in

the neural network, W is the width and B a constant such all parameters of the neural network are upper
bounded by B. κ is a constant such that inputs to the neural network are upper bounded by κ.

Proof D.1 The first inequality in equation 144 follows from the Massart’s Lemma.

We work with the ℓ∞ norm. σ is 1-Dipschitz and σ(0) = 0. Thus

∥hℓ+1∥∞ = ∥σ(Wℓhℓ + bℓ)∥∞ ≤ ∥Wℓhℓ + bℓ∥∞ ≤ ∥Wℓ∥∞∥hℓ∥∞ + ∥bℓ∥∞.

Each entry of bℓ has magnitude ≤ B. Hence ∥bℓ∥∞ ≤ B.

Each entry of Wℓ has magnitude ≤ B. If a matrix has m columns, then ∥A∥∞ ≤ Bm. Therefore ∥W0∥∞ ≤
Bd (first layer has d inputs). And for ℓ ≥ 1, ∥Wℓ∥∞ ≤ BW = α.

The input satisfies ∥x∥∞ ≤ κ. Hence

∥h1∥∞ ≤ ∥W0∥∞∥h0∥∞ + ∥b0∥∞ ≤ (Bd)κ + B = B(dκ + 1).

For ℓ ≥ 1 we have the affine recursion

∥hℓ+1∥∞ ≤ α ∥hℓ∥∞ + B.

Unroll it for D − 1 steps starting at h1. We get

∥hD∥∞ ≤ αD−1∥h1∥∞ + B

D−2∑
i=0

α i.

Insert the bound on ∥h1∥∞. This gives

∥hD∥∞ ≤ αD−1B(dκ + 1) + B

D−2∑
i=0

α i.

If α ̸= 1, use the geometric sum. Namely
∑D−2

i=0 α i = αD−1 − 1
α − 1 . This yields the stated closed form.

If α > 1, then
D−2∑
i=0

α i ≤ (D − 1)αD−2.

23

Under review as submission to TMLR

Hence
∥hD∥∞ ≤ αD−1B(dκ + 1) + B(D − 1)αD−2 = αD−1B

(
dκ + 1 + D − 1

α

)
.

If also dκ ≥ 1 + D − 1
α

, then

dκ + 1 + D − 1
α

≤ 2dκ.

Therefore
∥hD∥∞ ≤ 2 αD−1B dκ = 2 (BW)D−1B dκ.

If α = 1, the recursion is simpler. We have ∥hℓ+1∥∞ ≤ ∥hℓ∥∞ + B. Thus ∥hD∥∞ ≤ ∥h1∥∞ + B(D − 1).
Insert ∥h1∥∞ ≤ B(dκ + 1). Obtain ∥hD∥∞ ≤ B(dκ + D).

Lemma D.3 (Second Moment of a Symmetrically Truncated Normal) Let X ∼ N (µ, σ2), and let
a > 0. Then the second moment of X conditioned on being outside the symmetric interval [µ − a, µ + a] is
given by

E[X2 | |X − µ| > a] = µ2 + σ2 + σa ·
ϕ
(

a
σ

)
1 − Φ

(
a
σ

) ,

where ϕ(z) = 1√
2π

e−z2/2 is the standard normal probability density function (PDF), and Φ(z) is the standard
normal cumulative distribution function (CDF).

Proof D.2 Let X ∼ N (µ, σ2). We aim to compute the second moment of X conditioned on the event that
it lies outside an interval centered at its mean

E[X2 | |X − µ| > a]

This represents the expected squared value of X, given that X is in the tails of the distribution (i.e., more
than a units away from the mean).

By definition, the conditional expectation is

E[X2 | |X − µ| > a] =
E[X2 · 1{|X−µ|>a}]
P(|X − µ| > a)

The numerator integrates X2 over the tail regions (−∞, µ − a) ∪ (µ + a, ∞), while the denominator is the
probability mass in those same regions.

To simplify the integrals, we standardize X. Define the standard normal variable

Z = X − µ

σ
∼ N (0, 1) ⇒ X = µ + σZ

Define α = a
σ . Then

|X − µ| > a ⇔ |Z| > α

Our conditional second moment becomes

E[X2 | |X − µ| > a] = E[(µ + σZ)2 | |Z| > α]

Expanding the square inside the expectation

24

Under review as submission to TMLR

(µ + σZ)2 = µ2 + 2µσZ + σ2Z2

Taking the conditional expectation

E[(µ + σZ)2 | |Z| > α] = µ2 + 2µσE[Z | |Z| > α] + σ2E[Z2 | |Z| > α]

Since the standard normal distribution is symmetric and the region |Z| > α is also symmetric, we have

E[Z | |Z| > α] = 0

Thus, the expression simplifies to

E[X2 | |X − µ| > a] = µ2 + σ2E[Z2 | |Z| > α]

By definition

E[Z2 | |Z| > α] =
∫

|z|>α
z2ϕ(z) dz

P(|Z| > α) =
2
∫∞

α
z2ϕ(z) dz

2(1 − Φ(α)) =
∫∞

α
z2ϕ(z) dz

1 − Φ(α)

Using Intergration by Parts we get,

∫ ∞

α

z2ϕ(z) dz = ϕ(α)α + 1 − Φ(α)

Let ϕ(z) = 1√
2π

e−z2/2 be the standard normal pdf and Φ its CDF. Define

I(a) =
∫ ∞

a

z2 ϕ(z) dz.

Since ϕ′(z) = −zϕ(z), we have
∫

zϕ(z) dz = −ϕ(z). Using integration by parts with u = z and dv = zϕ(z) dz,

I(a) =
∫ ∞

a

z2ϕ(z) dz =
[

− zϕ(z)
]∞

a
+
∫ ∞

a

ϕ(z) dz

= a ϕ(a) +
(
1 − Φ(a)

)
.∫ ∞

a

z2ϕ(z) dz = a ϕ(a) + 1 − Φ(a) .

Therefore

E[Z2 | |Z| > α] = ϕ(α)α + 1 − Φ(α)
1 − Φ(α) = 1 + αϕ(α)

1 − Φ(α)

Substitute back into the expression for E[X2 | |X − µ| > a]

E[X2 | |X − µ| > a] = µ2 + σ2
(

1 + αϕ(α)
1 − Φ(α)

)
Recall that α = a

σ , so the final expression becomes

E[X2 | |X − µ| > a] = µ2 + σ2 + σa ·
ϕ
(

a
σ

)
1 − Φ

(
a
σ

)
25

Under review as submission to TMLR

Lemma D.4 (Linear Growth of Finite Neural Networks) Let fθ : Rd → R be the output of a
feedforward neural network with a finite number of layers and parameters and θ ∈ Θ where Θ has a finite
number of elements. Suppose that each activation function σ : R → R satisfies the growth condition

|σ(z)| ≤ A + B|z|, for all z ∈ R,

for constants A, B ≥ 0. Then there exists a constant CΘ > 0 such that for all x ∈ Rd,

|f(x)| ≤ CΘ(1 + ∥x∥).

Proof D.3 We proceed by induction on the number of layers in the network.

Base case: One-layer network. Let the network be a single-layer function

f(x) =
k∑

i=1
ai σ(w⊤

i x + bi),

where wi ∈ Rd, bi ∈ R, and ai ∈ R. Then

|f(x)| ≤
k∑

i=1
|ai| · |σ(w⊤

i x + bi)|.

Using the growth condition on σ, we get

|σ(w⊤
i x + bi)| ≤ A + B|w⊤

i x + bi| ≤ A + B(∥wi∥∥x∥ + |bi|).

Hence

|f(x)| ≤
k∑

i=1
|ai| (A + B(∥wi∥∥x∥ + |bi|)) = C0 + C1∥x∥,

where C0, C1 are constants depending only on the network parameters. Therefore

|f(x)| ≤ C(1 + ∥x∥) with C = max{C0, C1}.

Inductive step. Assume the result holds for all networks with L layers, i.e., for any such network fL(x),

|fL(x)| ≤ CL(1 + ∥x∥).

Now consider a network with L + 1 layers, defined by

fL+1(x) =
k∑

j=1
aj σ(f (j)

L (x)),

where each f
(j)
L (x) is an output of a depth-L subnetwork. By the inductive hypothesis

|f (j)
L (x)| ≤ Cj(1 + ∥x∥).

Applying the activation bound

|σ(f (j)
L (x))| ≤ A + B|f (j)

L (x)| ≤ A + BCj(1 + ∥x∥).

Then

|fL+1(x)| ≤
k∑

j=1
|aj | · |σ(f (j)

L (x))| ≤
k∑

j=1
|aj |(A + BCj(1 + ∥x∥)) = CL+1(1 + ∥x∥),

for some constant CL+1 > 0. This completes the induction.

26

Under review as submission to TMLR

Examples of Valid Activation Functions

The condition |σ(z)| ≤ A + B|z| holds for most common activations

• ReLU: σ(z) = max(0, z) ⇒ |σ(z)| ≤ |z|

• Leaky ReLU: bounded by linear function of |z|

• Tanh: bounded by 1 ⇒ A = 1, B = 0

• Sigmoid: bounded by 1

Lemma D.5 Let X be a real-valued random variable with probability density function fX . Fix k ∈ R and
set A := {X > k}. Assume

0 ≤ p := P(X > k) =
∫ ∞

k

fX(x) dx ≤ 1 and
∫ ∞

k

|x| fX(x) dx < ∞.

Then
E
[
X 1{X>k}

]
= P(X > k)E[X | X > k].

Proof D.4 By the definition of expectation via a density,

E
[
X 1{X>k}

]
=
∫ ∞

k

x fX(x) dx,

which is finite by the hypothesis
∫∞

k
|x| fX(x) dx < ∞.

We derive the conditional density of X given X > k. For any Borel set B ⊂ R with p = P(X > k) > 0,

P(X ∈ B | X > k) = P(X ∈ B, X > k)
P(X > k) = 1

p
P
(
X ∈ B ∩ (k, ∞)

)
.

Since X has density fX ,

P(X ∈ B | X > k) = 1
p

∫
B∩(k,∞)

fX(x) dx =
∫

B

(
fX(x)

p
1(k,∞)(x)

)
dx.

Therefore the conditional density is

fX|X>k(x) =


fX(x)

p
, x > k,

0, x ≤ k.

Hence,
E[X | X > k] =

∫ ∞

−∞
x fX|X>k(x) dx = 1

p

∫ ∞

k

x fX(x) dx.

Multiplying both sides by p yields

P(X > k)E[X | X > k] =
∫ ∞

k

x fX(x) dx = E
[
X 1{X>k}

]
.

27

	Introduction
	Related Work

	Preliminaries and Problem Formulation
	Our Approach
	Theoretical Results
	Conclusion
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Final Theoretical Result
	Intermediate Lemmas

