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Abstract

Interpretable machine learning is essential in high-stakes domains like health-
care. Rule lists are a popular choice due to their transparency and accuracy, but
learning them effectively remains a challenge. Existing methods require feature
pre-discretization, constrain rule complexity or ordering, or struggle to scale. We
present NEURULES, a novel end-to-end framework that overcomes these limita-
tions. At its core, NEURULES transforms the inherently combinatorial task of rule
list learning into a differentiable optimization problem, enabling gradient-based
learning. It simultaneously discovers feature conditions, assembles them into
conjunctive rules, and determines their order—without pre-processing or manual
constraints. A key contribution here is a gradient shaping technique that steers
learning toward sparse rules with strong predictive performance. To produce
ordered lists, we introduce a differentiable relaxation that, through simulated an-
nealing, converges to a strict rule list. Extensive experiments show that NEURULES
consistently outperforms combinatorial and neural baselines on binary as well as
multi-class classification tasks across a wide range of datasets.

1 Introduction

Rule lists [Cohen, 1995] are conceptually simple classifiers that are inherently interpretable and
surprisingly effective [Rudin, 2019]. As the name implies, rule lists are ordered lists of rules of the
kind “if Thalassemia = normal and Resting BP < 151 then predict yes”. Each rule consists of
a set of conditions, when met, trigger a specific prediction. The model evaluates the rules in order
and applies the first one whose conditions are satisfied, yielding a simple and interpretable decision
path. We give an example rule list in Fig. 1. Because of their transparency requirements, rule lists
are often used in high-stakes applications, e.g. stroke prediction [Letham et al., 2015], credit risk
evaluation [Bhatore et al., 2020], and criminal justice [Lakkaraju and Rudin, 2017].

Inferring rule lists is a challenging combinatorial problem in which we face a super-exponential search
space with little exploitable structure. First, there is the problem of which atomic rule conditions, or
predicates, to use. Existing strategies rely on pre-discretization, which incurs a loss of information.
Second, there is the problem of combining these predicates into rule-heads, i.e. the set of conditions
that specify when a rule triggers. Existing approaches are either combinatorial, and have to restrict
the search space in favor of runtime [Cohen, 1995, Yang et al., 2017, Proenca and van Leeuwen, 2020,
Angelino et al., 2018], or use differentiable relaxations that often lead to verbose rule-heads [Wang
et al., 2021, Qiao et al., 2021, Dierckx et al., 2023]. Third, there is the order of the list. Except for
Angelino et al. [2018], existing methods learn rules greedily or consider a fixed list order [Dierckx
et al., 2023], either of which can result in subpar accuracy.

∗Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



if not (Chest pain) and not (Exercise chest pain) and (0.88 < ST depression < 5.24)
then predict yes

else if not (Chest pain) and (45.5 < Age < 66.4) and (Sex = female)
then predict yes

else if (Resting BP < 151) and (ST depression < 2.65) and (Thal = normal)
then predict no
· · ·

else predict yes

Figure 1: First three rules of the rule list learned with NEURULES on the Heart Disease dataset.
NEURULES jointly optimizes thresholds, rule aggregation, and list order.

In this paper, we propose a novel approach that jointly addresses all of the above challenges. We
introduce NEURULES, a differentiable end-to-end architecture that learns predicates, conjunctive
rules, and the order of the rule list in a single unified framework—without manual pre-processing or
structural constraints. Unlike prior work, we relax the discretization of features, the construction of
rules, and the ordering of the rule list, allowing all components to be learned jointly. To overcome the
limitations of existing methods, NEURULES builds on four key innovations:

(i) Soft predicate learning. Instead of relying on fixed discretization, we learn soft predicates
that converge to crisp thresholds via simulated annealing.

(ii) Differentiable rule composition. We use a conjunction layer that supports robust composition
of predicates while mitigating vanishing gradients.

(iii) Gradient shaping for sparsity. A targeted mechanism promotes the learning of rule heads
that are both sparse and accurate.

(iv) Learned rule ordering. We model rule order as a soft priority, which is annealed into a strict
ordering by the end of training.

Together, these elements yield a crisp and succinct rule list upon convergence. NEURULES thus
provides a holistic differentiable analog of rule lists that scales well and natively supports binary and
multi-class classification. Extensive experiments show that NEURULES consistently outperforms
combinatorial and neuro-symbolic baselines developed over the past 30 years.

2 Preliminaries

We consider a dataset of n pairs {(x, y)}nk=1 consisting of a descriptive feature vector x ∈ Rd of d
real-valued features and a discrete-valued target label y ∈ Y . We assume each sample (x, y) to be a
realization of a pair of random variables (X, Y ) ∼ PX,Y , drawn iid.

Rules. We consider predictive rules r : X → Y that consist of a rule head h : X → {0, 1} and a
consequent c ∈ Y . A rule head consists of (a logical conjunction of) binary predicates π : R → {0, 1}
that represent the presence of a characteristic, e.g. “18 < Age < 65”. We consider predicates π to be
threshold functions on a feature x ∈ R parameterized by a lower and upper bound, a, b ∈ R, as

π (x; a, b) = 1[a < x < b] , (1)

where a = −∞ resp. b = +∞ are interpreted as no condition. Our formulation also works on binary
features, so that we can accommodate both categorical features through one-hot encoding and learned
predicates with more complex structure [Wang et al., 2015]. We allow every rule its own predicates.
That is, every rule ri has its own thresholds aij , bij per feature xj . We use the shorthand πij to denote
π(xj ; aij , bij). We write πi to denote all predicates for rule ri, i.e. πi = {πij}dj=1.

We say a rule head holds iff hi(x; θi) =
∧

j πij(xj ; aij , bij) = 1, where θi = {(aij , bij)}dj=1 are the
parameters of the predicates. A rule r maps input x to label c if the rule head holds, otherwise, its
output is undefined (c̄). Formally,

r(x; c, θ) =

{
c if h(x; θ) = 1

c̄ else
(2)
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argmax ĥi(x; θi) · pi

Differentiable Rule-List

r̂l(x) =
∑
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else if ĥσ(2)(x) then cσ(2)...
else cdefault

w1

w2

wk

p1

p2

pk

c1

c2

ck

Figure 2: NEURULES architecture: We learn binary predicates π̂(xj , aij , bij) per feature j and rule i.
We combine these into k rules ĥi(x; θi), turning off unnecessary predicates through sparse weights
wi. We predict the label of a sample x as ci using the rule that has highest priority pi and is active,
i.e. argmaxi ĥi(x; θi) · pi. NEURULES is end-to-end differentiably optimizable.

Rule Lists. [Cohen, 1995] are if-then-else classifiers made out of rules. A rule list rl is an ordered
set of k rules {(hi, ci)}ki=1 with parameters Θ = {θi}ki=1. To predict the label for input x, we traverse
the list from top to bot and return the consequent ci of the first rule hi that holds, with the final rule
hk serving as an "else" case to ensure every sample can be assigned a label. Formally,

rl(x; Θ) =


c1 if h1(x; θ1) = 1

c2 else if h2(x; θ2) = 1
...
ck else

(3)

In the following, we will refer to binary-valued predicates π and rule heads h as strict, and to their
differentiable relaxations π̂ and ĥ to the interval [0, 1] as soft.

3 Differentiable Rule Lists

We now introduce NEURULES, short for Neural Rule Lists. We show its architecture in Fig. 2.
The first module learns binary predicates π̂(xj ; aij , bij) for each feature xj and rule i. This gives
NEURULES the freedom to discretize the same feature differently for each rule according to its needs,
e.g. “18 < Age < 30” for one and “16 < Age < 24” for another.

The second module combines these into sparse rules ĥi(x; θi). These are differentiable functions
that, for all practical purposes, behave like a logical conjunction. By learning a weight vector wi per
rule, we turn off unnecessary predicates which functions as implicit feature selection.

The third module orders these into a rule list r̂l(x; Θ,p). We learn a priority pi per rule to govern
the order in the rule list. We use the Gumbel-Softmax [Jang et al., 2017] to approximate the strict
indicator Ii(x) that is 1 iff rule i is the highest priority rule that is active, i.e. ĥi(x; θi) · pi is maximal.

Next, we describe each of these modules in detail. Together, they form a differentiable relaxation that
allows us to jointly optimize a rule list from predicates, rules, up to rule list order. We show that all
our approximations converge towards strict logical operators at the end of training, i.e. NEURULES
converges to a strict rule list, and that through gradient shaping we achieve sparse rules.

3.1 Learning Predicates

We begin with how to learn the predicates that act as the building blocks of the “if . . . ” condition
of a rule. In particular, we consider thresholding functions π(x; a, b) = 1 [a < x < b] on individual
features xj . To avoid the need for pre-discretization, we seek to differentiably optimize per rule
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Figure 3: The soft predicate approaches the true thresholding with decreasing temperature tπ → 0
(a). Multiple soft predicates are combined into a conjunctive rule (b). Decreasing the temperature tπ
results in increasingly strict, binary rules where ĥ(x; θ) ≈ h(x; θ) (c).

i respectively feature j the thresholds aij and bij as part of the model. To this end, we require a
differentiable equivalent of the thresholding function, as it is non-continuous at the bounds and hence
unsuitable for gradient based optimization. In its place, we use an approximation that is differentiable,
but yields soft predicates π̂ : R → [0, 1] [Yang et al., 2018]. For a single feature xj , we have

π̂(xj ; aij , bij , tπ) =
1

1 + e
1
tπ

(aij−xj) + e
1
tπ

(xj−bij)
, (4)

where the temperature tπ controls the smoothness of the approximation. In Fig. 3a we show π̂ using
different temperatures tπ . As we can see, in the limit tπ → 0 the soft predicate converges to the true
thresholding function π(xj ; aij , bij) (see Appx. A.1), i.e.

lim
tπ→0

π̂(xj ; aij , bij , tπ) = π(xj ; aij , bij) . (5)

We start training with a high temperature tπ, resulting in smoother predicates π̂ and avoids explod-
ing/vanishing gradients with respect to aij and bij . To obtain a strict predicates at the end of training,
we use temperature annealing to continuously decrease the temperature tπ as the training progresses.
In the limit, this leaves us strict predicates where ∀i, j : π̂ij ∈ {0, 1}, where we write π̂ij for
π̂(xj ; aij , bij , tπ) whenever clear from context.

In sum, by using soft, differentiable predicates π̂ with temperature annealing instead of static pre-
processing, we are able to learn the rule and feature-specific predicates through backpropagation.

3.2 Learning Logical Conjunctions

Effectively, we need the soft ĥi to behave like a logical conjunction that is differentiable, while at the
same time rewarding sparsity. Formally, we require

ĥi : X → [0, 1], ∀j ∈ [d] : π̂ij = 1 ⇒ ĥi(x; θi) = 1 , ∃j ∈ [d] : π̂ij = 0 ⇒ ĥi(x; θi) = 0 .
(6)

This means the differentiable conjunction evaluates to 1 if all predicates are active, and to 0
if at least one predicate is inactive. At first glance, the weighted harmonic mean ĥi(x; θi) =∑d

j=1 wij∑d
j=1 wij π̂

−1
ij

, wij ∈ R+
0 introduced by [Xu et al., 2024] is a promising candidate as it fulfills the

outlined criteria. If any predicate π̂ij = 0, then the reciprocal π̂−1
ij → ∞ and the rule evaluates to 0.

If all predicates are active, i.e. ∀j ∈ [d] : π̂ij = 1, then ĥi(x; θi) = 1. The weights wij ∈ R+
0 control

predicate inclusion, where setting wij = 0 disables the predicate π̂ij . However, this formulation leads
to vanishing gradients when predicates become inactive. Specifically, when any predicate π̂ik → 0
with wik > 0, the gradients with respect to predicates and their weights approach zero, hindering
learning. Thus predicates evaluating to 0 cannot be deactivated, leading to verbose rules and poor
performance, as the inactive predicate zeros out the entire conjunction.
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Relaxed Conjunctions. To overcome this, we propose an elegant trick that resolves vanishing
gradients while simultaneously acting as a gradient shaping mechanism that promotes sparse rules.
To do so, we introduce a dynamic slack ηi per rule,

ĥi(x; θi) =

∑d
j=1 wij∑d

j=1 wij
1+ηi

π̂ij+ηi

, ηi =
ϵ∑d

j=1 wij

, (7)

where ϵ determines the slack magnitude. With the above, the conjunction no longer collapses to zero
when a predicate is inactive but assumes a value in ĥi(x; θi) ∈ [0, C]. Thus, a gradient gate remains
open. The value C depends on ϵ and the associated weight. In the worst case, it is bounded by

ĥi(x; θi) ≤
ϵ

wil + ϵ
. (8)

For example, with ϵ = 10−3 and wil ≥ 0.099, then C ≤ 0.01. More generally, for a desired level of
slack C, we require wil = 0 or wil > ϵ/C. We provide a formal derivation in Appx. A.3.

The slack formulation also guarantees stable gradients. The term wij(1 + ηi)/(π̂ij + ηi) is always
bounded and non-zero and as a result, the gradient ∂ĥi/∂wij remains well-defined. More importantly,
it induces a gradient shaping effect that promotes sparse rules. If π̂ij = 0, the gradient is strictly
negative, and the corresponding weight is reduced. If π̂ij = 1, the gradient is strictly positive,
increasing the weight. For intermediate values of π̂ij between 0 and 1, the gradient balances both
effects: weakly activated predicates are discouraged while more strongly activated ones are reinforced.
We give a detailed derivation in Appx. B.2.

This relaxation not only enables reliable gradient flow but also introduces a principled, self-
regularizing mechanism for differentiable rule learning. By implicitly pruning unused predicates
and amplifying relevant ones, it yields shorter rules than other neural approaches without the need
for any explicit regularization term. We evaluate this in Section 5.3 where we find that the relaxed
conjunction leads to consistent improvements in performance.

Differentiable Rules. With the predicates and the logical conjunction in place, the entire rule head

lim
tπ→0

ĥi(x; θi) =

{
1 if ∀j : wij = 0 ∨ π̂ij = 1

0+ else
(9)

can be differentiably learned, where 0+ denotes a value slightly bigger than 0 due to the slack.
However, this does not matter in practice since the activations of the rules only depend on ĥ(x) = 1,
which is exactly met. As the rule consequent, which is the “then . . . ” part of a rule, we use a logit
vector ci ∈ Rm in the classification setting with m classes. A single rule is then learned as

if ĥi(x; θi) = 1 then argmax
l∈{1,...,m}

ci,l . (10)

Next, we describe how the model learns the order of individual rules.

3.3 Learning Rule List Order

To complete NEURULES, we learn the order in which the rules should be applied, rather than
assuming a fixed sequence or relying on greedy construction. We achieve this by introducing a
learnable priority vector p ∈ Rk

>0, where each pj defines the position of rule j in the list. A sample
x is classified using the prediction ci of the first applicable rule with the highest priority, i.e.

rl(x; Θ,p) = ci , such that hi(x; θi) = 1 ∧ (∀j ̸= i : hj(x) = 0 ∨ pi > pj) . (11)

To cast this combinatorial problem into a differentiable form, we rewrite the rule list as a linear
combination of the rule consequents ci, using the product of hi(x; θi) · pi to determine which ci to
select. Under mild conditions, this formulation is equivalent to the original rule list (see Appx. A.4).

Proposition 1 Given binary rule heads hi(x; θi) ∈ {0, 1} and unique priorities pi ∈ R>0, i.e. ∀i ̸=
j : pi ̸= pj , the rule list rl(x; Θ,p) from Eq. 11 is equivalent to weighted sum of

rl(x; Θ,p) =

k∑
i=1

ci · 1
[
i = argmax

j
(hj(x; θj) · pj)

]
.
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Differentiable Relaxation. While argmax can be used with gradient routing, it produces zero
gradients for all but the selected rule, hindering learning. Moreover, relying solely on the current top
rule can cause the model to converge prematurely to suboptimal solutions. To address both issues, we
relax the indicator function using the Gumbel-Softmax as

Îi(x; Θ,p, trl) = softmaxi

(
ĥ(x; Θ) ◦ p+ g

trl

)
, g ∼ Gumbel(0, 1)k . (12)

The Gumbel-Softmax yields a differentiable approximation to the argmax and converges to it with
high probability as trl → 0. We anneal trl during training to gradually sharpen rule selection. This
relaxation allows gradients to flow to multiple rules early in training, improving stability and enabling
exploration of different rule configurations. Even rules with low current priority continue to receive
updates and can become active later. Altogether, NEURULES models a differentiable rule list as

r̂l(x; Θ,p, trl) =

k∑
i=1

Îi(x; Θ,p, trl) · ĉi , (13)

At convergence, we convert the model into a strict rule list by fixing the learned discretization
parameters aij and bij , and construct each rule ri(x; θi) as a conjunction over all predicates with
wij > 0. We then order the rules by their learned priorities pi, and compute predictions using
ci = softmax(ĉi) over learned class logits, yielding the final discrete rule list rl(x; Θ,p).

3.4 Overall Objective

We train NEURULES in a supervised learning setting, optimizing parameters based on labeled data
samples {(xi, yi)}ni=1 from the data distribution PX,Y . We minimize a classification loss ℓ(ŷ, y),
for which we choose the cross-entropy loss. Formally, we minimize the classification loss l and
regularization term with respect to all rule list parameters Θ = (a1, b1, . . . , ak, bk,w1, . . . ,wk) and
p, where trl and tπ are controlled by an annealing schedule. The overall objective is given by

argmin
Θ,p

;
1

n

n∑
i=1

ℓ(r̂l(xi; Θ,p, trl), yi) + λR(Θ,p, trl). (14)

To avoid overfitting and encourage meaningful rules, we add a coverage-based regularizer akin to the
minimum support criterion in decision trees. To this end, we define the soft coverage of each rule j

as the average activation over the training set, using the soft rule selection indicator Îj(xi; Θ,p, trl).
Formally, we define it as cov j =

1
n

∑n
i=1 Îj(xi; Θ,p, trl).

We then construct a regularizer R(Θ,p, trl) out of a user-specified minimum and maximum coverage
covmin and covmax that discourages rules that are only rarely or too frequently active as per

R(Θ,p, trl) =
1

k

k∑
j=1

max (0, covmin − cov j)
2
+max (0, cov j − covmax)

2
, (15)

where we use the max(·) operator to ensure that rules whose coverage is within the interval
[covmin, covmax] incur no penalty. The regularizer activates only when coverage moves outside
this desired range, applying a quadratic penalty that encourages rule coverage to return to the targeted
interval. This ensures minimal interference while effectively promoting the desired behavior.

4 Related Work

Rule lists were introduced by Cohen [1995] and often used in practice, e.g. in healthcare [Deo, 2015],
criminal justice [Angelino et al., 2018], and credit risk evaluation [Bhatore et al., 2020], based on
their competitive performance and inherent interpretability [Rudin, 2019]. Rule lists are closely
related to decision rule learners for unordered DNF rule sets [Dash et al., 2018]. The main difference
is the inclusion of an order that makes rule lists more compact and thus easier to grasp.

Combinatorial Optimization. Rule lists are typically optimized using heuristic, combinatorial
search [Cohen, 1995]. Wang et al. [2017] propose Bayesian rule lists—probabilistic models whose
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complexity is controlled by user-defined priors. These priors typically yield compact rule lists but
may degrade performance if poorly chosen. Proenca and van Leeuwen [2020] and Papagianni and
van Leeuwen [2023] propose to use MDL to address the trade-off between complexity and accuracy.
Other approaches use branch-and-bound or ILP to learn optimal rule lists [Angelino et al., 2018,
Aivodji et al., 2022], but these exact methods are computationally costly and limited to small datasets.
In general, combinatorial methods explicitly limit rule length and rule count to prevent exponential
explosion of the search space. Moreover, they rely on pre-discretizing continuous features, which is
prone to remove important signal from the data.

Differentiable Optimization. Recently, neural methods have been proposed for learning rule-based
classifiers. Qiao et al. [2021] introduced the first end-to-end approach, using a neural architecture
with continuous relaxations of logical operators. Drawing from fuzzy logic, this allows differentiable
optimization of operations like negation, disjunction, and conjunction [van Krieken et al., 2022]. After
training, rules are extracted from the network. Wang et al. [2021] extend this to deeper architectures
capable of learning more complex rules. For binary data, Walter et al. [2024] use a binary autoencoder
to optimize both predictive and descriptive strength. Unlike NEURULES, none of these are equipped
with a mechanism that removes unnecessary predicates and hence often return overly complex rules.

To learn rule lists, Dierckx et al. [2023] build on Qiao et al. [2021] by imposing a fixed rule hierarchy,
but their approach requires feature pre-discretization—a limitation shared with combinatorial methods.
Kusters et al. [2022] propose a differentiable rule learning method based on linear decision boundaries,
but these cannot be directly interpreted as threshold-based rules. In contrast, NEURULES jointly
learns threshold-based predicates per rule and feature, learns sparse rule heads that are strict logical
conjunctions after training, and optimizes the order of the rules in the list, all in one go.

NEURULES RLNET RRL DRNET GREEDY CLASSY RIPPER CORELS SBRL

Adult 0.80± 0.01 0.76± 0.01 0.77± 0.03 0.78± 0.01 0.75± 0.0 0.81± 0.0 0.80± 0.0 0.80± 0.0 0.82 ± 0.0

Android Malware 0.93± 0.01 0.95 ± 0.01 0.92± 0.03 0.95 ± 0.0 0.86± 0.0 0.94± 0.0 0.86± 0.03 0.33± 0.01 n/a ± n/a
COMPAS 0.67 ± 0.02 0.65± 0.02 0.59± 0.02 0.58± 0.03 0.66± 0.02 0.67 ± 0.02 0.65± 0.01 0.65± 0.01 0.67 ± 0.01

Covid ICU 0.57± 0.08 0.60± 0.05 0.63± 0.03 0.48± 0.07 0.63± 0.02 0.60± 0.06 0.64 ± 0.02 0.63± 0.03 0.64 ± 0.04

Credit Card 0.79± 0.01 0.77± 0.02 0.75± 0.05 0.76± 0.01 0.79± 0.01 0.79± 0.01 0.76± 0.05 n/a ± n/a 0.80 ± 0.0

German Credit 0.72 ± 0.04 0.71± 0.04 0.71± 0.03 0.15± 0.02 0.67± 0.04 0.67± 0.06 0.71± 0.04 0.54± 0.2 0.59± 0.01

Credit Screening 0.86 ± 0.02 0.84± 0.02 0.82± 0.03 0.43± 0.04 0.86 ± 0.02 0.85± 0.02 0.86 ± 0.02 0.72± 0.04 0.75± 0.05

Diabetes 0.71± 0.05 0.70± 0.03 0.73± 0.07 0.44± 0.14 0.71± 0.04 0.70± 0.04 0.74 ± 0.07 0.71± 0.06 0.71± 0.04

Drug Response 0.73± 0.04 0.74± 0.03 0.76 ± 0.01 0.65± 0.03 0.67± 0.04 0.70± 0.04 0.69± 0.02 n/a ± n/a n/a ± n/a
Electricity 0.75± 0.01 0.69± 0.03 0.63± 0.09 0.61± 0.01 0.75± 0.0 0.59± 0.01 0.75± 0.01 0.73± 0.0 0.78 ± 0.01

FICO 0.70 ± 0.01 0.67± 0.02 0.64± 0.03 0.56± 0.02 0.69± 0.01 0.67± 0.02 0.70 ± 0.01 n/a ± n/a 0.70 ± 0.01

Heart Disease 0.80 ± 0.03 0.74± 0.02 0.72± 0.04 0.51± 0.1 0.71± 0.05 0.77± 0.09 0.80 ± 0.05 0.65± 0.05 0.64± 0.04

Hepatitis 0.81 ± 0.06 0.77± 0.07 0.78± 0.08 0.18± 0.04 0.73± 0.08 0.74± 0.07 0.75± 0.09 0.74± 0.1 0.73± 0.1

Juvenile 0.89 ± 0.02 0.87± 0.01 0.88± 0.01 0.89 ± 0.01 0.83± 0.04 0.88± 0.01 0.03± 0.01 n/a ± n/a n/a ± n/a
Magic 0.81± 0.01 0.77± 0.01 0.72± 0.03 0.73± 0.05 0.75± 0.01 0.74± 0.01 0.77± 0.0 0.69± 0.0 0.82 ± 0.0

Phishing 0.90± 0.03 0.93 ± 0.0 0.83± 0.06 0.93 ± 0.01 0.89± 0.0 0.92± 0.01 0.89± 0.0 0.27± 0.01 0.40± 0.01

Phoneme 0.80± 0.01 0.71± 0.01 0.72± 0.03 0.64± 0.02 0.76± 0.01 0.79± 0.02 0.77± 0.01 0.73± 0.01 0.81 ± 0.01

QSAR 0.81± 0.02 0.83 ± 0.02 0.80± 0.01 0.52± 0.02 0.74± 0.03 0.82± 0.03 0.79± 0.03 n/a ± n/a 0.81± 0.01

Ring 0.92 ± 0.01 0.81± 0.01 0.83± 0.04 0.33± 0.02 0.56± 0.02 0.65± 0.03 0.74± 0.04 n/a ± n/a 0.83± 0.01

Titanic 0.75± 0.02 0.74± 0.03 0.69± 0.06 0.45± 0.09 0.78 ± 0.02 0.77± 0.02 0.75± 0.03 0.66± 0.03 0.66± 0.04

Tokyo 0.92 ± 0.02 0.91± 0.02 0.91± 0.01 0.25± 0.09 0.88± 0.01 0.92 ± 0.02 0.92 ± 0.03 n/a ± n/a 0.90± 0.02

TuanDromd 0.96± 0.01 0.98± 0.01 0.97± 0.01 0.99 ± 0.0 0.92± 0.01 0.98± 0.0 0.92± 0.01 0.07± 0.0 n/a ± n/a

Avg. F1 0.79 ± 0.02 0.77± 0.02 0.75± 0.04 0.56± 0.04 0.75± 0.02 0.76± 0.03 0.73± 0.03 0.63± 0.04 0.73± 0.02

Rank 2.59 4.50 5.18 7.00 5.34 4.14 4.07 6.53 4.06

Table 1: Binary Classification. F1 scores for 22 real-world datasets. Timed-out experiments (>24h)
are indicated by n/a. NEURULES consistently achieves the best or close to the best performance,
obtaining the highest overall F1 (0.79) and rank (2.59).

5 Experiments

In this section, we empirically evaluate the performance of NEURULES by comparing it against
a range of rule-based and neuro-symbolic baselines, including both classical and state-of-the-art
models. These include optimal rule lists (CORELS, Angelino et al. 2018), scalable Bayesian rule lists
(SBRL, Yang et al. 2017), MDL-based rule lists (CLASSY, Proenca and van Leeuwen 2020), RIPPER
(RIPPER, Cohen 1995), and greedily constructed rule lists (GREEDY). We also consider the state-of-
the-art neural rule list model RLNET [Dierckx et al., 2023], as well as two recent neuro-symbolic
rule set methods—RRL [Wang et al., 2021] and DRNET [Qiao et al., 2021].

As implementations, we use the imodels library [Singh et al., 2021] for CORELS, SBRL, and GREEDY;
Weka [Hall et al., 2009] for RIPPER; and the original implementations by the authors for CLASSY,
RLNET, RRL, and DRNET. We tune hyperparameters for all methods using grid search on held-out
datasets (see Appx. E). All results are averaged over five-fold cross-validation. All source code and
datasets used in our experiments are included in the Supplementary Material.
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Figure 4: NEURULES is accurate for both short and long rule lists (a). The learned rules lists (b),
mostly succinct and some detailed rules. The relaxed conjunction ĥ(x) is always better (blue area)
and improves the F1 score on average by 0.35 (c). We report the avg. runtime in (d).

5.1 Binary Classification

We start with a comprehensive evaluation on 22 real-world binary classification datasets that span a
variety of domains. We provide characteristics and sources in Appx. C, report weighted F1 scores
(accounting for class imbalance) for a budget of 10 rules in Table 1, accuracies in Appx. Table 5, and
average runtimes in Fig. 4d.

Overall. NEURULES demonstrates consistently strong performance, achieving the best overall
average F1 of 0.79 and best overall average rank of 2.59. In terms of F1, its closest competitors are
RLNET and CLASSY (0.76), and in terms of rank SBRL (4.06). Despite extensive hyperparameter
tuning, CORELS underperforms and does not terminate within a reasonable time for 6 datasets. In
terms of runtime, NEURULES is the 4-th fastest with 46s on average. On the same hardware, it
compares favorably to RLNET (228s), in spite of RLNET neither learning list order nor predicates.
NEURULES outperforms the next best method on the Ring dataset by 0.09 F1 points. Ring consists
entirely of continuous features, highlighting the advantage of NEURULES in optimizing thresholds.

Number of Rules. Next, we evaluate how each method performs under a varying rule budget. We
compare their results across increasing limits (n = 10, . . . , 30) and show the results in Fig. 4a. We
see that NEURULES consistently performs best across all budget settings, maintaining a comfortable
lead over the best neural approach, RLNET. The greedy methods, RIPPER and CLASSY, show
increasing performance for larger budgets; CLASSY needs three times as many rules as NEURULES
to match its performance in terms of F1, showing the advantage of jointly optimizing the rule list.

Rule Length. Finally, we analyze the lengths of the rule heads NEURULES learns, i.e. the number of
predicates. We give the histogram of the lengths of the rules NEURULES learned over all datasets
in Fig. 4b, showing both those with and without gradient shaping. We see that the vast majority of
rules consist of few predicates, i.e. they are sparse, and that gradient shaping plays an essential role
in doing so. In Appx. Table 7 we see that gradient shaping also strongly improves performance, and
reduces average rule length compared to other neural methods (Appx. Table 6).

5.2 Multi-Class Classification
NEURULES RLNET CLASSY

Car 0.83± 0.03 0.84 ± 0.02 0.83± 0.03

Ecoli 0.84 ± 0.04 0.78± 0.05 0.75± 0.04

Iris 0.95 ± 0.04 0.81± 0.08 0.94± 0.03

Penguins 0.99 ± 0.01 0.99 ± 0.01 0.96± 0.03

Sat. image 0.81 ± 0.01 0.68± 0.04 0.43± 0.11

Yeast 0.55 ± 0.02 0.39± 0.04 0.52± 0.03

Avg. F1 0.88 ± 0.02 0.82± 0.04 0.78± 0.04

Avg. Rank 1.17 2.33 2.50

Table 2: Multi-class classification. F1

scores for six real-world datasets.

Next, we evaluate NEURULES on 6 real-world multi-class
classification datasets (see Appx. C), for which we set the
dimension of the consequent c ∈ Rm to the number of
classes m. We compare to RLNET and CLASSY as they
are strong competitors that support multi-class classification,
with CLASSY being combinatorial and RLNET continuous.
We allocate each method a budget of 5 rules per class, i.e.
5m rules in total for m-class classification.

We give the results in Table 2. We find that NEURULES obtains the best average F1 of 0.88 and best
average rank of 1.17, giving it a comfortable lead over its closest competitor, RLNET, which achieves
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an average F1 of 0.82 and average rank of 2.33. The results demonstrate that NEURULES handles
multi-class problems with ease whilst delivering state-of-the-art performance.

5.3 Ablation Studies

To show the necessity and impact of the core components of NEURULES, i.e. learned predicates,
relaxed conjunction, and learned rule ordering, we perform an ablation study.

Learned Discretization. We first examine the effect of learning thresholds as opposed to pre-defining
them. To this end, we re-run the experiments from Section 5.1 with pre-discretized data. We provide
the results on all datasets in Table 7 in the Appendix. On average, we find that the F1 of NEURULES
is degraded by 0.04 and 0.03 resp. for a uniform and k-means-based threshold selection. Furthermore,
the difference is highly dataset and discretization dependent. For example, the performance on
the Credit Card dataset drops by 0.05 using k-means, but by 0.08 for uniform thresholding. In
general, while fixed binning can sometimes achieve reasonable results, it requires users to tune the
discretization manually. On the other hand, the learned discretization by NEURULES performs at
least as well or better as the fixed binning on most datasets.

Relaxed Conjunctions. Next, to test the efficacy of the relaxation of the logical conjunction, we
re-run NEURULES without slack, i.e. ϵ = 0 in Eq. (7). We plot the difference in F1 score in Figure
4c. On most datasets, the relaxed conjunction outperforms the strict one by a large margin, and
on average by 0.35 F1 points. In addition, the strict conjunction performs worse on every tested
dataset. Using the strict conjunction leads at best to a drop in performance, and in the worst case to
numerical instability resulting in overflows. The extent of improvement stresses the importance of
non-vanishing gradients and shows the necessity of relaxing the logical conjunction.

Rule Ordering. Lastly, we examine the impact of NEURULES’s flexible rule ordering, by using fixed
priorities pi, i.e. they are not updated, which is similar to RLNET. We provide the results in Table 7
in the Appendix. We find that the F1 of NEURULES degrades by 0.05 on average, with the largest
drop on the Credit Card and Adult datasets. These datasets contain many samples (n > 30 000)
and likely allow to learn many rules with sufficient coverage. Based on this evidence, we postulate
that learning the order of the rules is especially important for large datasets.

6 Conclusion

We propose NEURULES, a differentiable relaxation of the rule list learning problem that converges to
a strict rule list through temperature annealing. NEURULES jointly learns feature discretization, the
construction of conjunctive rules, and their ordering without requiring any pre-processing or manual
constraints. By assigning a learnable priority score to each rule, NEURULES learns the ordering as
part of the end-to-end training process. This enables it to flexibly learn both simple and complex
rules, and arrange them to maximize predictive performance. As a result, NEURULES produces rule
lists that are succinct and accurate, supporting trustworthy decision-making across a wide range
of applications. Extensive experiments on real-world datasets show that NEURULES consistently
outperforms both combinatorial and neuro-symbolic baselines.

Limitations. NEURULES requires the rule list length to be specified in advance. Learning this
length differentiably is not trivial as adding or removing a rule would require a gradient signal that
captures how such a change influences the ordering and the selection of predicates across the list.
Additionally, learning rule lists is an inherently combinatorial problem. Addressing it through a
differentiable and scalable approach necessarily introduces a set of hyperparameters, including those
controlling the temperature schedule used to produce discrete rule lists. NEURULES shares standard
hyperparameters common to deep learning models, such as learning rate and batch size. While these
parameters must be set, our ablations in Appendix E.1 show NEURULES is robust to their variation.

Future Work. Extending NEURULES to regression tasks opens up a wide range of new applications
to benefit from interpretable rule lists. In that context, we also plan to derive a non-conformity score
from the rule list model for conformal prediction. Another exciting direction of future work is the
adaptation of NEURULES to other data types, such as images or graphs. With appropriate predicate
functions that extract meaningful concepts in those domains, rule list models could be used as more
interpretable and accountable deep learning models.
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A Convergence of Continuous Relaxations

We show that our continuous relaxations for predicate, logical conjunction, and rule list converge to
their discrete counterparts.

A.1 Predicate

We restate the proof of Xu et al. [2024]. The soft predicate for a single feature xi is defined as

π̂(xj ; aij , bij , tπ) =
1

1 + e
1
tπ

(aij−xj) + e
1
tπ

(xj−bij)
, (16)

We now show that the soft predicate converges to the hard predicate as tπ → 0, which is defined as

π(xi; a, b) =

{
1 if xi ∈ [aij , bij ]

0 otherwise
(17)

Proof: Consider the following four cases:

1. xi < aij: Then for the lower bound it holds that

lim
tπ→0

e
1
tπ

(aij−xi) = e∞ = ∞ , (18)

while for the upper bound it, which must be bij > aij > xi, it holds that

lim
tπ→0

e
1
tπ

(xi−bij) = e−∞ = 0 . (19)

Hence, in the limit of tπ → 0, we have

lim
tπ→0

1

1 + e
1
tπ

(aij−xj) + e
1
tπ

(xj−bij)
= 0 .
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2. xi > bij: Then for the lower bound it holds that

lim
tπ→0

e
1
tπ

(aij−xi) = e−∞ = 0 , (20)

while for the upper bound it, which must be bij < xi, it holds that

lim
tπ→0

e
1
tπ

(xi−bij) = e∞ = ∞ . (21)

Hence, in the limit of tπ → 0, we have

lim
tπ→0

1

1 + e
1
tπ

(aij−xj) + e
1
tπ

(xj−bij)
= 0 .

3. aij < xi < bij: Then for the lower bound it holds that

lim
tπ→0

e
1
tπ

(aij−xi) = e−∞ = 0 , (22)

while for the upper bound it, which must be bij > xi, it holds that

lim
tπ→0

e
1
tπ

(xi−bij) = e−∞ = 0 . (23)

Hence, in the limit of tπ → 0, we have

lim
tπ→0

1

1 + e
1
tπ

(aij−xj) + e
1
tπ

(xj−bij)
= 1 .

4. xi = aij or xi = bij: If xi = aij , then

lim
tπ→0

e
1
tπ

(aij−xi) = e0 = 1 and lim
tπ→0

e
1
tπ

(xi−bij) = e−∞ = 0 , (24)

whereas if xi = bij , then

lim
tπ→0

e
1
tπ

(aij−xi) = e−∞ = 0 and lim
tπ→0

e
1
tπ

(xi−bij) = e0 = 1 . (25)

In both cases, we have

lim
tπ→0

1

1 + e
1
tπ

(aij−xj) + e
1
tπ

(xj−bij)
=

1

1 + 1
=

1

2
. (26)

To obtain the desired behavior at the boundaries, i.e. π̂(xi) = 1 or π̂(xi) = 0, the output
must thus be either ceiled or floored, which corresponds to choosing strict or non-strict
inequalities (aij < xi < bij or aij ≤ xi ≤ bij).

□

A.2 Logical Conjunction

The soft logical conjunction for a set of predicates (π̂i1, . . . , π̂id), where π̂ij = π̂(xj ; aij , bij), is
defined as

ĥi(x; θi) =

∑d
j=1 wij∑d

j=1 wij π̂
−1
ij

. (27)

Given a set of non-negative weights wi ∈ [0,∞)d, with at least one weight wij being positive, we
first show that the soft logical conjunction takes values in [0, 1] given d predicates π̂ij ∈ [0, 1].

The domain of the reciprocal is π̂−1
ij ∈ [1,∞). This implies for the weighted sum of reciprocals

that
∑d

j=1 wij π̂
−1
ij ≥

∑d
j=1 wij > 0, since there exists a weight wij > 0, Then the soft logical

conjunction is bounded by

0 ≤
∑d

j=1 wij∑d
j=1 wij π̂

−1
ij

= ĥi(x; θi) ≤ 1 . (28)
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In particular, if and only if all active predicates are 1, i.e. ∀j, wij > 0 : π̂ij = 1, the rule ĥi(x; θi) = 1.
In that case, π̂−1

ij = 1 such that
∑d

j=1 wij π̂
−1
ij =

∑d
j=1 wij , hence showing that ĥi(x; θi) = 1.

On the other hand, if there exists an index j where wij > 0, then π̂−1
ij = ∞ ↔ π̂ij = 0 and the rule

ĥi(x; θi) = 0 .

Let us now consider the limit tπ → 0, for which in Appendix A.1 we have shown that π̂ij ∈ {0, 1}
for all j, i.e. the predicates are binary. Above, we have shown that

1. ∀j ∈ [d] : π̂ij = 1 ∨ wij = 0 =⇒ ĥi(x; θi) = 1

2. ∃j ∈ [d] : wij > 0 ∧ π̂ij = 0 =⇒ ĥi(x; θi) = 0

Then, ĥi(x; θi) ∈ {0, 1}, as either all predicates are 1 or at least one predicate is 0, and ĥi mimics
the logical conjunction of the predicates, i.e. ĥi(x; θi) =

∧d
j=1,wij>0 πij .

A.3 Relaxed Conjunction

The relaxed conjunction ĥi(x; θi) is defined as

ηi =
ϵ∑d

j=1 wij

, ĥi(x; θi) =

∑d
j=1 wij∑d

j=1 wij
1+ηi

π̂ij+ηi

. (29)

We first show that for π̂il = 0 the resulting soft conjunction is upper bounded by ϵ
ϵ+wil

.

Proof: Let π̂il = 0. Then the relaxed conjunction is

ĥi(x; θi) =

∑d
j=1 wij∑

j ̸=l wij
1+ηi

π̂ij+ηi
+ wil

1+ηi

π̂il+ηi

(30)

ĥi(x; θi) =

∑d
j=1 wij∑

j ̸=l wij
1+ηi

π̂ij+ηi
+ wil

1+ηi

ηi

(31)

(32)

To upper bound ĥi(x), we lower bound the denominator. Consider the minimum value of the
denominator, which is obtained when all other predicates are active, i.e. π̂ij = 1 for all j ̸= l, where∑

j ̸=l

wij
1 + ηi
π̂ij + ηi

+ wil
1 + ηi
ηi

≥
∑
j ̸=l

wij
1 + ηi
1 + ηi

+ wil
1 + ηi
ηi

=
∑
j ̸=l

wij + wil
1 + ηi
ηi

. (33)

Using this lower bound, we can upper bound the relaxed conjunction as

ĥi(x; θi) ≤
∑d

j=1 wij∑
j ̸=l wij + wil

1+ηi

ηi

(34)

=
ηi
∑d

j=1 wij

ηi
∑

j ̸=l wij + wil(1 + ηi)
(35)

=
ηi
∑d

j=1 wij

ηi
∑d

i=1 wij + wil

(36)

=

ϵ∑d
j=1 wij

∑d
j=1 wij(

ϵ∑d
j=1 wij

∑d
i=1 wij

)
+ wil

(37)

=
ϵ

ϵ+ wil
. (38)

□
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A.4 Proof of Proposition 1

Proposition 1 Given binary rule heads hi(x; θi) ∈ {0, 1} and unique priorities pi ∈ R>0, i.e. ∀i ̸=
j : pi ̸= pj , the rule list rl(x; Θ,p) from Eq. 11 is equivalent to weighted sum of

rl(x; Θ,p) =

k∑
i=1

ci · 1
[
i = argmax

j
(hj(x; θj) · pj)

]
.

Proof: The rule list rl(x; Θ,p) uses the rule active rule hi(x; θi) = 1 with the highest priority pi
to determine the output, i.e.

rl(x; Θ,p) = ci (39)
s.t. hi(x; θi) = 1 ∧ ∀j ̸= i : hj(x; θj) = 0 ∨ pi > pj . (40)

Let i be the index of argmaxj(hj(x; θj) · pj), and assume that there exist a further active rule l with
pl > pi and hl(x; θl) = 1. Then hl(x; θl) · pl > hi(x; θi) · pi, which contradicts that i is the index
of argmaxj(hj(x; θj) · pj). □

B Gradient Shaping of ĥ

We analyze the proposed relaxed conjunction from Eq. 7 in terms of its gradient with respect to the
predicate π̂il and the weight wil.

B.1 Derivative with respect to π̂ij

To compute its derivatives, we will use the quotient rule for differentiation, i.e. d
dx

f(x)
g(x) =

f ′(x)g(x)−f(x)g′(x)
g(x)2 , where

f(x,w) =

d∑
j=1

wij ,
∂f

∂wil
= 1 ,

∂f

∂π̂il
= 0 (41)

g(x,w) =

d∑
j=1

wij
1 + ηi
π̂ij + ηi

,
∂g

∂wil
=

1 + ηi
π̂il + ηi

,
∂g

∂π̂il
= −wil(1 + ηi)

(π̂il + ηi)2
(42)

Then, the partial derivative of the relaxed conjunction with respect to the predicate π̂il is

∂ĥi

∂π̂il
=

0(
∑d

j=1 wij
1+ηi

π̂ij+ηi
) + (

∑d
j=1 wij)

wil(1+ηi)
(π̂il+ηi)2(∑d

j=1 wij
1+ηi

π̂ij+ηi

)2 (43)

=
(
∑d

j=1 wij)wil(1 + ηi)

(π̂il + ηi)2
(∑d

j=1 wij
1+ηi

π̂ij+ηi

)2 . (44)

Consider now the case where there exists a predicate k included rule i that is not active for sample x,
i.e. wik > 0 and π̂ik = 0. Then the derivative for any predicate π̂il, l ∈ [d] is

lim
π̂ik→0

∂ĥi

∂π̂il
=

(
∑d

j=1 wij)wil(1 + ηi)

(π̂il + ηi)2
(
wik

1+ηi

ηi
+
∑

j ̸=k wij
1+ηi

π̂ij+ηi

)2 . (45)

The term wik
1+ηi

ηi
is finite and positive so that the gradient does not vanish if a predicate is off. In

the worst case that all predicates are off, i.e. π̂ij = 0 for all j, the derivative is

(
∑d

j=1 wij)wil(1 + ηi)

η2i

(∑d
j=1 wij

1+ηi

ηi

)2 (46)
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We note that 1 + ηi ≈ 1 for small ηi, so that approximately the gradient is

lim
∀j∈[d]:π̂ij→0

∂ĥi

∂π̂il
≈

(
∑d

j=1 wij)wil

η2i

(∑d
j=1 wil

1
ηi

)2 =
wij∑d
j=1 wij

. (47)

That is, the gradient is only zero if the predicate is not active, i.e. wil = 0, and otherwise finite and
positive, scaled by the weight of the predicate.

B.2 Derivative with respect to wil.

To compute the derivative with respect to the weight wil, we additionally need to consider the
dependence between ηi and wil. Hence, we rewrite the expressions as

ĥi(x) =
f

g
, f =

d∑
j=1

wij , g =

d∑
j=1

wij
1 + ηi
π̂ij + ηi

, ηi =
ε

f
.

Step 1: the ηi-term introduced by the chain rule. Since ηi depends on every wij ,
∂ηi
∂wil

= − ε

f2
= −ηi

f
.

For the inner fraction set

Aj :=
1 + ηi
π̂ij + ηi

,
∂Aj

∂ηi
=

1 · (π̂ij + ηi)− (1 + ηi) · 1
(π̂ij + ηi)2

=
π̂ij − 1

(π̂ij + ηi)2
.

Hence, the derivative of Aj with respect to wil is
∂Aj

∂wil
=

∂Aj

∂ηi
· ∂ηi
∂wil

= −ηi
f

· 1− π̂ij

(π̂ij + ηi)2
.

Step 2 : ∂g/∂wil. We re-write g as
∑d

j=1 wijAj . Then we have that ∂g
∂wil

=
∑d

j=1
∂

∂wil
(wijAj).

For each individual wijAj , we use the product rule. For j = l we obtain
∂

∂wil
(wilAl) = Al + wil

∂Al

∂wil

while for j ̸= l the derivative is
∂

∂wil
(wijAj) = wij

∂Aj

∂wil

Hence, summing up overall j gives

∂g

∂wil
= Al +

d∑
j=1

wij
∂Aj

∂ηi

∂ηi
∂wil

=
1 + ηi
π̂il + ηi

+
ηi
f

 d∑
j=1

wij
1− π̂ij

(π̂ij + ηi)2

 .

Step 3: quotient rule for ∂ĥi/∂wil. Because ∂f/∂wil = 1,

∂ĥi

∂wil
=

g − f Al − ηi

 d∑
j=1

wij
1− π̂ij

(π̂ij + ηi)2


g 2

.

Step 4: sign of the gradient. Write

g =
∑
j

wijAj =
∑
j

wij(Aj −Al) +
∑
j

wij Al =
∑
j

wij(Aj −Al) + f Al

so the numerator splits naturally into
d∑

j=1

wij(Aj −Al)︸ ︷︷ ︸
T1

+ − ηi

 d∑
j=1

wij
1− π̂ij

(π̂ij + ηi)2


︸ ︷︷ ︸

T2 (< 0)

.

We make a case analysis (CA) on whether the predicate fires or not.
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Case A — π̂il = 0 (predicate l is inactive). For Al =
1 + ηi
ηi

, it holds that ∀j ∈ [d] : Aj ≤ Al,

T1 =
∑
j

wij(Aj −Al) ≤ 0, T2 < 0,

hence N = T1 + T2 < 0 for every inactive predicate:

π̂il = 0 =⇒ ∂ĥi

∂wil
< 0

Case B — π̂il = 1 (predicate l is active). We re-write the partial derivative as

∂ĥi

∂wil
=

d∑
j=1

wij

(
Aj −Al − ηi

1− π̂ij

(π̂ij + ηi)2

)
(48)

=

d∑
j=1

wij

(
1 + ηi
π̂ij + ηi

− 1 + ηi
π̂il + ηi

− ηi − ηiπ̂ij

(π̂ij + ηi)2

)
(49)

=

d∑
j=1

wij

(
(1 + ηi)(π̂ij + ηi)

(π̂ij + ηi)2
− 1 + ηi

1 + ηi
− ηi − ηiπ̂ij

(π̂ij + ηi)2

)
(50)

=

d∑
j=1

wij

(
(π̂ij + ηi + π̂ijηi + η2i )− (ηi − ηiπ̂ij)

(π̂ij + ηi)2
− 1

)
(51)

=

d∑
j=1

wij

(
π̂ij + 2π̂ijηi + η2i
π̂2
ij + 2π̂ijηi + η2i

− 1

)
(52)

≥ 0 (53)

Since π̂ij ∈ [0, 1], π̂ij ≥ π̂2
ij , such that each term π̂ij+2π̂ijηi+η2

i

π̂2
ij+2π̂ijηi+η2

i
− 1 ≥ 0. In particular, ∂ĥi

∂wil
= 0 if

and only if ∀j ∈ [d] : wij = 0 ∨ π̂ij = 1 ∨ π̂ij = 0, i.e. the predicates are strictly binary.

π̂il = 1 =⇒ ∂ĥi

∂wil
≥ 0

Case C — 0 < π̂il < 1 (predicate l is active).

1. How large can Aj −Al be? Because the mapping z 7→ A(z) =
1 + ηi
z + ηi

is strictly decreasing on

z ∈ [0, 1],
sgn
(
Aj −Al

)
= sgn

(
π̂ij − π̂il

)
.

Hence it is positive if π̂ij < π̂il, zero if π̂ij = π̂il, and negative if π̂ij > π̂il.

2. Splitting the index set Let

L = {j | π̂ij < π̂il}, G = {j | π̂ij > π̂il}, f =
∑
j

wij .

Then

T1 =
∑
j∈L

wij

(
Aj −Al

)
+
∑
j∈G

wij

(
Aj −Al

)
= (1 + ηi)

∑
j∈L

wij
π̂il − π̂ij

(π̂ij + ηi)(π̂il + ηi)
− (1 + ηi)

∑
j∈G

wij
π̂ij − π̂il

(π̂ij + ηi)(π̂il + ηi)
.

16



3. Bounding the negative term |T2| Because 0 ≤ π̂ij ≤ 1, 0 ≤ 1−π̂ij

(π̂ij+ηi)2
≤ 1/η2i , so

0 ≤ |T2| ≤ f

ηi
.

4. Condition for N > 0 or N < 0

N = (1 + ηi)
∑
j∈L

wij
π̂il − π̂ij

(π̂ij + ηi)(π̂il + ηi)︸ ︷︷ ︸
positive “support”

− (1 + ηi)
∑
j∈G

wij
π̂ij − π̂il

(π̂ij + ηi)(π̂il + ηi)︸ ︷︷ ︸
negative “drag”

− |T2|.

N > 0 ⇐⇒ support > drag + |T2|
i.e. the positive help from less-active literals must exceed both the drag from more-active ones and
the extra penalty |T2|.

5. What the sign of N means in practice.

• N > 0 (weight is increased). This occurs exactly when

support > drag+|T2| ⇐⇒
∑

j∈L wij(Aj−Al) >
∑

j∈G wij(Al−Aj)+ηi
∑

j wij
1− π̂ij

(π̂ij + ηi)2
.

1. Small ηi (ε≪1) makes the penalty |T2| tiny, so the inequality is easier to satisfy.
2. A literal that often fires (large set L) quickly accumulates support and its weight is

pushed up.
3. If no other literal is more active (G = ∅) the drag term vanishes and the weight always

grows.
• N < 0 (weight is decreased). Happens when either

1. one or more more–active predicates already carry substantial weight (large drag), or
2. the literal fires only rarely, so the support term is too small to beat drag+|T2|.

In that case, the optimization gradually suppresses the weight, allowing “competing” literals
to dominate the conjunction.

Interpretation (gradient shaping).

1. Selective amplification. For a predicate that fires (π̂il > 0), the gradient is positive iff the
support from less-active literals outweighs both the drag from more-active ones and the
small |T2|-penalty:

support > drag + |T2|.
This is easiest to satisfy when ηi is tiny or when the literal fires frequently, so those literals
grow and become the dominant parts of the rule.

2. Automatic pruning. Predicates that stay inactive (π̂il = 0) always get a negative gradient
(N < 0); their weights shrink on every update, driving irrelevant features to zero.

3. Self-balancing dynamics. Because both support and drag depend on the current weights, a
literal can switch from negative to positive feedback (or vice versa) during training, letting
the model continually re-allocate capacity toward the most informative predicates.

The optimisation therefore performs an implicit feature-selection: irrelevant literals are pruned while
relevant ones are reinforced, producing sparse, interpretable rules without any explicit ℓ1 penalty.

C Dataset Statistics

We retrieve the datasets from the UCI repository [Dheeru and Efi, 2017], the imodels-data repository
[Singh et al., 2021], and the pmlb repository [Romano et al., 2016]. We give the base statistics for
the 22 real-world binary classification datasets in Table 3 and those for the 6 real-world multi-class
classification datasets in Table 4.
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Samples Features

Dataset Total Positive Negative Ratio Total Discrete Continuous Ratio

Adult 32561 7841 24720 0.24 14 5 9 0.64
Android Malware 29332 14700 14632 0.50 86 86 0 0.00
COMPAS 6172 2990 3182 0.48 20 16 4 0.20
Covid ICU 1494 809 685 0.54 16 15 1 0.06
Credit Card 30000 6636 23364 0.22 33 15 18 0.55
Credit Screening 690 307 383 0.44 15 8 7 0.47
Diabetes 768 268 500 0.35 8 0 8 1.00
Drug Response 597 148 449 0.25 196 104 92 0.47
Electricity 45312 19237 26075 0.42 8 1 7 0.88
FICO 10459 5459 5000 0.52 23 2 21 0.91
German Credit 1000 700 300 0.70 60 57 3 0.05
Heart Disease 270 120 150 0.44 15 10 5 0.33
Hepatitis 155 123 32 0.79 19 13 6 0.32
Juvenile 3640 487 3153 0.13 286 284 2 0.01
Magic 19020 6688 12332 0.35 10 0 10 1.00
Phishing 11055 6157 4898 0.56 30 30 0 0.00
Phoneme 5404 1586 3818 0.29 5 0 5 1.00
QSAR 1055 356 699 0.34 41 12 29 0.71
Ring 7400 3736 3664 0.50 20 0 20 1.00
Titanic 2099 681 1418 0.32 8 5 3 0.38
Tokyo 959 613 346 0.64 44 7 37 0.84
TuanDromd 4464 3565 899 0.80 241 241 0 0.00

Table 3: Dataset statistics for the 22 real-world datasets used in our experiments. We say a feature is
numerical if it has more than 10 unique values.

Features

Dataset Samples Classes Total Discrete Continuous % Ratio

Car 1 728 4 6 6 0 0.00
Ecoli 327 5 7 2 5 0.71
Iris 150 3 4 0 4 1.00
Penguins 333 3 7 3 4 0.57
Sat. Image 6 435 6 36 0 36 1.00
Yeast 1 479 9 8 2 6 0.75

Table 4: Dataset statistics for the 6 real-world datasets used in our experiments. We say a feature is
numerical if it has more than 10 unique values.

D Hardware

For the hyperparameter tuning and the comparison, we used machines equipped with 2x AMD Epyc
7773x 2.2GHz (base), 3.5GHz (max Boost) with 128 real cores and 2TB of memory. For RRL, we
used an A100-40GB, since the code of the authors can only be run on GPU. For the ablation studies,
we additionally used machines with Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz with 32 real cores
and 256GB of memory.

E Hyperparameters

We optimize the hyperparameters of each method using grid search, for each choosing that con-
figuration that achieves the best average F1 score on the validation datasets (eeg_eye_state,
horse_colic, ozone-level, pc1, and breast_cancer). We extend the default setting from the
respective papers for the hyperparameters we test. We allow a maximum runtime of 24 hours per run.
For the combinatorial methods, we use equal height binning with 5 cutpoints. For the neural methods
we use their inbuild discretization according to the paper.

For SBRL, we performed a grid search for the following hyperparameters: listlengthprior ∈ [2, 3, 4];
for listwidthprior ∈ [1, 2, 3]; for maxcardinality ∈ [1, 2, 3] and for minsupport, we fixed the value
at 0.05. The number of monte-carlo sampling chains is set to 5 or 10. The best configuration is
listlengthprior = 10, listwidthprior = 2, maxcardinality = 3, minsupport = 0.05, and n_chains =
10.
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For DRNET, we tested the following hyperparameters: lr ∈ [0.001, 0.01, 0.1]; and_lam ∈
[0.0001, 0.001, 0.01]; epochs ∈ [1000, 2000, 3000]; and or_lam ∈ [0.0001, 0.001, 0.01]. We ob-
tained lr = 0.01, and_lam = 0.0001, epochs = 3000, and or_lam = 0.0001.

As GREEDY has only one hyperparameter, we optimized max_depth ∈ [3, 5, 7, 10]. The optimal
setting is max_depth = 5.

For CLASSY, we tested the following hyperparameters: beam_width ∈ [50, 100, 150, 200];
n_cutpoints ∈ [3, 5, 10]; and max_depth ∈ [3, 5, 10]. The best parameters are beam_width = 100,
n_cutpoints = 5, and max_depth = 5.

For RIPPER, we set -N to n/(2k) and varied the -F parameter in [1, 2, 3] and -O in [1, 2, 3].

For CORELS, we performed a grid search with the following hyperparameters: c ∈ [0.005, 0.01, 0.02];
n_iter ∈ [5000, 10000, 15000]; max_card ∈ [2, 3, 4, 5]; and min_support ∈ [0.01, 0.02, 0.05]. Grid
search selected c = 0.01, n_iter = 10 000, max_card = 5, and min_support = 0.01.

For NEURULES, we performed a grid search with the following hyperparameters: n_epochs ∈
[250, 500]; min_support ∈ [0.1, 0.2, 0.3]; max_support ∈ [0.8, 0.9]; lambd ∈ [0.4, 0.5, 0.6];
bs ∈ [25610242048] and lr ∈ [0.002, 0.025, 0.05]. We use n_epochs = 500, min_support = 0.2,
max_support = 0.9, lambd = 0.4, bs = 2048, and lr = 0.01.

For RLNET, we conducted a grid search with the following hyperparameters: lr ∈ [0.010.020.025];
lambda_and ∈ [0.0001, 0.001, 0.01]; n_epochs ∈ [1000, 2000, 3000]; and l2_lambda ∈
[0, 0.001, 0.01]. The optimal configuration is lr = 0.01, lambda_and = 0.001, n_epochs = 3000,
and l2_lambda = 0.001.

E.1 Hyperparameter Sensitivity

We re-run NEURULES on all tested datasets and vary one parameter at a time. We provide the results
in Figure 5. The only noticeable impact on performance is observed when increasing the learning
rate to 0.5, which adversely affects the performance of NEURULES. All other parameters, using our
default values otherwise, do not significantly affect the performance of NEURULES on the tested
datasets.
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Figure 5: Average F1 score over all datasets for different hyperparameters.

E.2 Temperature Schedules

Temperature schedules are crucial in optimization problems involving soft approximations of discrete
functions. They help in gradually transitioning from a soft to a hard decision boundary, which can
improve convergence and performance. By adjusting the temperature parameter, we control the
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smoothness of the approximations, allowing the model to explore the solution space more effectively
during the initial stages of training and then refine the solutions as training progresses.

We use a linear temperature decay during the second half of training for both temperatures. The
temperature starts at 1.0 and linearly decreases to 0.1 for the rule priority temperature trl and
ranges from 0.2 to 0.05 for the predicate temperature tπ. These values were determined through
hyperparameter optimization and are unchanged across all experiments. The temperature is updated
at each epoch as follows:

temp_start = 1.0
temp_end = 0.1
temp = temp_start
step_size = (temp_start - temp_end)/(total_epochs*2)
If epoch >= total_epochs/2:

temp = temp - step_size

This schedule allows the model to maintain a high level of flexibility during the first half of training
with multiple active rules and gradually focus on only a single rule per sample in the latter half.
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Figure 6: Weight of highest priority rule
for decreasing trl (variance in grey) for a
training run on the Heart Disease dataset.

We plot the impact of the relaxation with regard to differ-
ent temperatures trl in Figure 6. We start training with a
positive temperature trl = 1.0, where the rule with highest
active priority has on average 0.75 of the weight, whilst
the other rules contribute the remaining 0.25. We contin-
uously decrease the temperature trl towards zero, so that
in the end the indicator Î(x; Θ,p, trl) of the actual rule
dominates with a weight of 0.99. Using our appropriate
annealing schedule NEURULES starts training using a re-
laxed rule list, which it can optimize, and continuously
moves towards a strict rule list.

F Real World: Accuracy

We report the accuracy of the methods on the real-world datasets in Table 5. The conclusions about
the performance of the methods are consistent with the results obtained using the weighted F1 score.
Nonetheless, we report the weighted F1 score as the main evaluation metric, as it is more informative
about the performance of the methods in the presence of class imbalance.

G Real World: Runtime
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(a) CORELS on HEART.
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Figure 7: Runtime (blue, left axis) and F1 score (red, right axis) versus number of cut-points (CP) on
the Heart dataset for CORELS (a) and SBRL (b).

Lastly, we examine the scalability of NEURULES in contrast to other rule lists. We provide the average
runtime of each method across all benchmarks in Figure 4d. NEURULES on average takes 75s per
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NEURULES RLNET RRL DRNET GREEDY CLASSY RIPPER CORELS SBRL

Adult 0.81± 0.01 0.81± 0.0 0.77± 0.04 0.82± 0.0 0.80± 0.0 0.82± 0.0 0.82± 0.0 0.82± 0.0 0.83 ± 0.0

Android Malware 0.93± 0.01 0.95 ± 0.01 0.92± 0.03 0.95 ± 0.0 0.87± 0.0 0.94± 0.0 0.87± 0.03 0.50± 0.0 n/a ± n/a
COMPAS 0.68 ± 0.01 0.66± 0.01 0.60± 0.02 0.62± 0.02 0.66± 0.02 0.68 ± 0.02 0.65± 0.01 0.65± 0.01 0.67± 0.01

Covid ICU 0.60± 0.05 0.61± 0.05 0.63± 0.03 0.49± 0.07 0.63± 0.02 0.61± 0.04 0.64 ± 0.02 0.63± 0.03 0.64 ± 0.04

Credit Card 0.81± 0.0 0.81± 0.01 0.75± 0.07 0.80± 0.01 0.82 ± 0.0 0.81± 0.01 0.78± 0.01 n/a ± n/a 0.81± 0.01

German Credit 0.73 ± 0.04 0.72± 0.04 0.72± 0.03 0.30± 0.02 0.72± 0.04 0.71± 0.04 0.72± 0.05 0.62± 0.16 0.70± 0.03

Credit Screening 0.86 ± 0.02 0.84± 0.03 0.82± 0.03 0.50± 0.05 0.86 ± 0.02 0.85± 0.02 0.86 ± 0.02 0.73± 0.04 0.75± 0.05

Diabetes 0.74± 0.03 0.73± 0.03 0.75 ± 0.05 0.45± 0.12 0.72± 0.03 0.73± 0.04 0.75 ± 0.06 0.74± 0.05 0.71± 0.03

Drug Response 0.77 ± 0.03 0.77 ± 0.03 0.76± 0.01 0.75± 0.02 0.73± 0.04 0.76± 0.02 0.72± 0.03 n/a ± n/a n/a ± n/a
Electricity 0.76± 0.01 0.71± 0.01 0.65± 0.08 0.67± 0.01 0.76± 0.0 0.66± 0.0 0.76± 0.01 0.73± 0.0 0.78 ± 0.0

FICO 0.71 ± 0.01 0.68± 0.01 0.65± 0.02 0.59± 0.02 0.70± 0.01 0.68± 0.02 0.70± 0.01 n/a ± n/a 0.70± 0.01

Heart Disease 0.80 ± 0.03 0.75± 0.01 0.72± 0.04 0.52± 0.11 0.71± 0.05 0.78± 0.09 0.80 ± 0.05 0.66± 0.05 0.66± 0.03

Hepatitis 0.81 ± 0.05 0.79± 0.06 0.79± 0.07 0.24± 0.05 0.80± 0.05 0.78± 0.03 0.78± 0.07 0.77± 0.07 0.74± 0.1

Juvenile 0.90 ± 0.02 0.89± 0.01 0.88± 0.01 0.89± 0.01 0.86± 0.01 0.89± 0.01 0.13± 0.01 n/a ± n/a n/a ± n/a
Magic 0.82± 0.01 0.79± 0.01 0.74± 0.02 0.77± 0.03 0.74± 0.01 0.77± 0.0 0.78± 0.01 0.74± 0.0 0.83 ± 0.0

Phishing 0.90± 0.03 0.93 ± 0.01 0.83± 0.06 0.93 ± 0.01 0.89± 0.0 0.92± 0.01 0.89± 0.0 0.44± 0.01 0.56± 0.01

Phoneme 0.79± 0.01 0.74± 0.01 0.74± 0.02 0.73± 0.01 0.76± 0.01 0.81 ± 0.01 0.77± 0.02 0.76± 0.01 0.81 ± 0.01

QSAR 0.82± 0.02 0.84 ± 0.01 0.80± 0.02 0.64± 0.02 0.74± 0.03 0.82± 0.03 0.79± 0.03 n/a ± n/a 0.82± 0.01

Ring 0.92 ± 0.01 0.81± 0.01 0.83± 0.04 0.50± 0.02 0.61± 0.02 0.68± 0.02 0.75± 0.04 n/a ± n/a 0.83± 0.01

Titanic 0.78± 0.02 0.77± 0.02 0.72± 0.05 0.45± 0.08 0.79 ± 0.02 0.79 ± 0.02 0.78± 0.02 0.71± 0.03 0.71± 0.03

Tokyo 0.92 ± 0.02 0.91± 0.02 0.91± 0.01 0.37± 0.05 0.88± 0.01 0.92 ± 0.02 0.92 ± 0.03 n/a ± n/a 0.91± 0.02

TuanDromd 0.96± 0.01 0.98± 0.01 0.97± 0.01 0.99 ± 0.0 0.93± 0.01 0.98± 0.0 0.93± 0.01 0.20± 0.01 n/a ± n/a

Avg. Acc 0.8 ± 0.02 0.79± 0.02 0.76± 0.03 0.62± 0.03 0.76± 0.02 0.78± 0.02 0.75± 0.02 0.68± 0.03 0.75± 0.02

Rank 2.59 4.16 5.77 6.73 5.02 3.70 4.59 6.63 4.28

Table 5: We report the results on 22 real-world datasets stemming from domains such as
medicine,finance, and criminal justice. We compare NEURULES against CORELS, SBRL, CLASSY,
GREEDY, RLNET, RRL, DRNET, and XGBOOST. We report the accuracy averaged over 5-fold
cross validation. The experiments were terminated after 24 hours, indicated by n/a. NEURULES
performs the best with respect to the Acc score, indicated by the lowest rank.

dataset. This is faster than DRNET, RLNET, and SBRL, but significantly slower than the greedy
approaches GREEDY, CLASSY and the neural RRL, which all take below 10s per dataset. In general,
NEURULES incurs a computational overhead compared to the greedy methods but compensates for it
in terms of classification accuracy. RRL optimizes only a rule set instead of a rule list and avoids the
more costly rule list optimization, which explains its faster runtime.

H Rule Complexity

The sparsity of the discovered rules is interesting due to its correlation with the interpretability of a
rule. We provide summary statistics for all methods in Table 6. NEURULES learns more succinct
rules than other neural approaches (RLNET, DRNET), showing the efficacy of our gradient shaping
in that regard. Compared to combinatorial methods that impose a limit on maximum cardinality, the
rules we find are longer. We do not think this is necessarily a weakness; there may exist datasets
where rules with longer clauses make sense. In general, we observe a power law-like trend of rule
lengths learned by NEURULES, where the majority of rules have four or fewer clauses.

I Ablation Studies

Method Median Mean Std.

NEURULES 4.00 7.85 13.45
RLNET 6.00 9.65 15.16
DRNET 21.00 53.96 97.02
CORELS 2.00 1.83 0.86
CLASSY 3.00 2.89 0.90
RIPPER 2.00 1.94 1.37
SBRL 2.00 1.91 0.71

Table 6: Rule length statistics (number of predi-
cates per rule) across datasets.

We perform an ablation study to investigate
the impact of the different components of our
method. We provide the F1 score when using
uniform, k-means pre-processing of continuous
features, a fixed rule priority p and with a strict
conjunction respectively in Table 7. We re-run
NEURULES on the same datasets as in the main
experiments, using the same hyperparameters
as in the main experiments, but with the respec-
tive components removed. We report the 5-fold
cross-validated F1 score for each dataset in Ta-
ble 7.
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Thresholding

Dataset Original Strict Conjunction Fixed Order Uniform k-means Quantile

Adult 0.80 0.66 0.66 0.71 0.79 0.79
Android Malware 0.93 0.33 0.92 0.94 0.33 0.33
COMPAS 0.67 0.35 0.66 0.50 0.62 0.62
Covid ICU 0.57 0.29 0.63 0.56 0.58 0.58
Credit Card 0.79 0.68 0.68 0.71 0.68 0.68
German Credit 0.72 0.14 0.70 0.72 0.58 0.58
Credit Screening 0.86 0.76 0.86 0.86 0.68 0.68
Diabetes 0.71 0.51 0.69 0.54 0.63 0.63
Electricity 0.75 0.42 0.75 0.63 0.70 0.70
FICO 0.70 0.31 0.69 0.58 0.70 0.70
Heart Disease 0.80 0.40 0.80 0.78 0.66 0.66
Hepatitis 0.81 0.07 0.78 0.81 0.70 0.70
Juvenile 0.89 0.80 0.80 0.88 0.80 0.80
Magic 0.81 0.51 0.77 0.75 0.76 0.76
Phishing 0.90 0.90 0.91 0.90 0.40 0.40
Phoneme 0.80 0.59 0.59 0.76 0.65 0.65
QSAR 0.81 0.53 0.80 0.77 0.79 0.79
Ring 0.92 0.33 0.56 0.75 0.63 0.63
Titanic 0.75 0.59 0.77 0.77 0.54 0.54
Tokyo 0.92 0.19 0.92 0.92 0.88 0.88

Avg. Diff. 0.00 -0.33 -0.05 -0.05 -0.14 -0.14

Table 7: Ablation study comparing the obtained F1 scores using a strict conjunction, fixed rule
priority, uniform, kmeans and quantile based binning. NEURULES accuracy is negatively impacted
by each’s components removal.

Table 8: F1 scores across CORELS regularization λ; NEURULES column shows our method. Best per
row in bold.

CORELS
Dataset NEURULES λ=0 0.001 0.005 0.01 0.02 0.03 0.04 0.1

Android Malware 0.93 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
FICO 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.68
Heart Disease 0.80 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.07
Hepatitis 0.81 0.76 0.76 0.76 0.76 0.76 0.76 0.48 0.63
Rin 0.92 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.54
Titanic 0.75 0.68 0.66 0.66 0.66 0.62 0.54 0.54 0.54

Avg. F1 0.82 0.63 0.62 0.62 0.62 0.62 0.61 0.56 0.47

Sensitivity of CORELS. Across a wide sweep of regularization values λ ∈
{0, 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.1}, CORELS shows largely stable performance:
per–dataset F1 varies little for λ ≤ 0.04 (e.g., FICO stays at 0.69 across nearly all settings; Hepatitis
remains 0.76; Android Malware stays 0.33). Only very strong regularization (λ = 0.1) causes
notable degradation on some datasets (e.g., Heart Disease drops to 0.07). Despite this stability,
CORELS consistently underperforms our method: NEURULES achieves higher F1 on every dataset in
the table (e.g., 0.93 vs. 0.33 on Android Malware, 0.70 vs. 0.69 on FICO, 0.81 vs. 0.76 on Hepatitis,
0.92 vs. 0.63 on Rin, 0.75 vs. ≤ 0.68 on Titanic). On average, NEURULES attains 0.82 F1, whereas
CORELS ranges from 0.47 (λ = 0.1) to 0.63 (λ = 0), never matching NEURULES.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As stated, we introduce the first differentiable rule list learning algorithm that
jointly learns the discretization of features, the rules, and their order.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the conclusion section and state all assumptions in
the main text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We prove all statements in the Appendix and provide all assumptions in the
main text. To the best of our knowledge, the proofs are complete and correct.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the source code with which the experimental results were obtained
in the Supplemental Material. We use a fixed random seed and clearly describe how our
architecture is implemented.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code in the Supplemental Material. We provide
references to the external datasets and their sources.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe our evaluation procedure in the main text and hyperparameter
search in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use 5-fold cross validation in all our experiments and provide standard
deviation in the main tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the compute resources used in the Appendix and provide runtimes
in the Experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and our research conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We propose a new architecture for rule list learning. The model class itself is
well established, so that there is no new societal impact to discuss that extends beyond the
scope of the existing model class.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all respective authors for method code and datasets used in our
experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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