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Abstract
Self-Supervised Learning (SSL) has become a
very active area of Deep Learning research where
it is heavily used as a pre-training method for
classification and other tasks. However, the rapid
pace of advancements in this area comes at a price:
training pipelines vary significantly across papers,
which presents a potentially crucial confounding
factor. Here, we show that, indeed, the choice
of hyperparameters and data augmentation strate-
gies can have a dramatic impact on performance.
To shed light on these neglected factors and help
maximize the power of SSL, we hyperparame-
terize these components and optimize them with
Bayesian optimization, showing improvements
across multiple datasets for the SimSiam SSL ap-
proach. Realizing the importance of data augmen-
tations for SSL, we also introduce a new auto-
mated data augmentation algorithm, GroupAug-
ment, which considers groups of augmentations
and optimizes the sampling across groups. In
contrast to algorithms designed for supervised
learning, GroupAugment achieved consistently
high linear evaluation accuracy across all datasets
we considered. Overall, our results indicate the
importance and likely underestimated role of data
augmentation for SSL.

1. Introduction
Self-supervised learning (SSL) has seen an explosion of
research interest in recent years, with significant progress
using SSL as a pre-training method for classification (Grill
et al., 2020; Chen & He, 2021; Chen et al., 2020a; He
et al., 2020; Chen et al., 2020b). A large variety of SSL
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methods have been developed, for example using different
optimization paradigms (van den Oord et al., 2018; Pathak
et al., 2016), different objective functions (Giradis et al.,
2018; Doersch et al., 2015; Zhang et al., 2016), or different
data modalities (Radford et al., 2021).

An aspect of SSL performance that is less researched is the
effect of other choices, such as the training hyperparame-
ters or the augmentation strategy. To shed light on these
neglected factors, we use Bayesian optimization (Mockus
et al., 1978; Shahriari et al., 2016) to search for configura-
tions of the SimSiam SSL algorithm (Chen & He, 2021) on
CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and the medical
dataset DermaMNIST (Yang et al., 2021a;b). We consider,
on the one hand, a search over training hyperparameters
and, on the other hand, a search over data augmentation
strategies. Among other findings, our results suggest the
importance of data augmentation for SSL.

Motivated by the apparent importance of data augmenta-
tion for SSL, we then develop a new automated data aug-
mentation algorithm, GroupAugment, that covers a more
diverse space of augmentation strategies than existing meth-
ods and can, e.g., design augmentation strategies that resem-
ble manually-designed SSL augmentation strategies.

In summary, our main contributions are:

• We study the effect of training hyperparameters and
augmentation strategies for the SimSiam SSL approach
(Section 3). Our results indicate the importance of data
augmentation for SSL.

• We introduce the automated data augmentation algo-
rithm GroupAugment and demonstrate its high perfor-
mance for SSL (Section 4).

2. Background and Related Work
Self-Supervised Learning The most cited works in Self-
Supervised Learning, such as SimCLR, BYOL, SimSiam,
MoCo, or DINO (Grill et al., 2020; Chen & He, 2021; Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b) all apply
a similar or identical data augmentation protocol (random
horizontal flip, color distortion, and nowadays also Gaus-
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sian blur and solarization). Most relevant to our work are
the findings of Grill et al. (2020) and Chen et al. (2020a),
who identify and address the sensitivity to choosing color
distortions in their methods. Moreover, Chen et al. (2020a)
identified that a sophisticated supervised data augmentation
strategy does not perform better than simple cropping with
strong color distortion in the self-supervised setting. These
observations motivate the contributions regarding data aug-
mentation for SSL, which we will revisit next.

Data Augmentation Algorithms In supervised learning,
data augmentation algorithms usually outperform manually
selected augmentation strategies: Three algorithms that rely
on randomly sampling augmentations from a fixed set of
augmentations are TrivialAugment (Müller & Hutter, 2021)
and SmartSamplingAugment (Negassi et al., 2022). Other
algorithms, such as AutoAugment (Cubuk et al., 2019),
RandAugment (Cubuk et al., 2020), and SmartAugment
(Negassi et al., 2022) perform a gradient-free search in the
space of augmentation policies. It is also possible to ap-
ply gradient-based optimization to meta-learn pre-training
hyperparameters (Raghu et al., 2021) for ECG data. In Self-
Augment (Reed et al., 2021), the authors bootstrap from
the correlation between supervised and self-supervised eval-
uation performance to incorporate a rotation task for gen-
erating augmentation policies efficiently. SelfAugment is
qualitatively different from the previous approaches in that
it does not optimize for general downstream performance
but rotation task performance. Additionally, it will likely
not include rotations into the selected augmentation policy.

In contrast to these, our approach GroupAugment (Section 4)
covers a more diverse space of augmentation strategies than
existing methods and can, e.g., design augmentation strate-
gies that resemble manually-designed SSL augmentation
strategies. It generalizes existing approaches by optimiz-
ing group-specific sampling probabilities, the number of
group-specific augmentations, and the total number of aug-
mentations applied while imposing no limitations on the set
of augmentations such as SelfAugment.

3. Study on the Importance of
Hyperparameters and Data Augmentation

We study the following research questions:

• What role does data augmentation play in SSL, and
can better data augmentation strategies lead to better
performance?

• Which hyperparameters may be notorious for resulting
in model collapse when set incorrectly?

• Which hyperparameters are important to optimize in
SSL to achieve good performance and outperform base-
lines?

3.1. Study Design

To answer the presented questions, we conducted the study
described below.

Models, Datasets and Hyperparameter Search Spaces
We perform all our experiments on the CIFAR-10, CIFAR-
100 and DermaMNIST datasets (Krizhevsky, 2009; Yang
et al., 2021a;b) and use the SimSiam (Chen & He, 2021)
approach with the ResNet-18 (He et al., 2016) architecture.
We optimize a wide range of training pipeline hyperparam-
eters (which we refer to as Training Hypers) such as the
learning rate, warmup and weight decay, and optimizer, as
well as data augmentation hyperparameters (which we refer
to as Augmentations) involving magnitudes and probabili-
ties of image distortions. Please see Appendix A for more
details on our search spaces. We point out that all hyperpa-
rameter search spaces of the baselines are chosen identically
across all datasets except for the pre-training epochs, where
we used 800 for CIFAR-10/100 and 100 for DermaMNIST.
Lastly, we report how the train, validation, and test splits
were chosen in Appendix B.

Search Algorithm To optimize over the search spaces
listed above, we use Bayesian optimization (BO) (Mockus
et al., 1978) with expert priors (Hvarfner et al., 2021) as
implemented by Stoll et al. (2022). For details on the chosen
priors see Appendix B.

Performance Evaluation All reported performance val-
ues are based on the standard linear evaluation protocol
(Dalal & Triggs, 2005; Grill et al., 2020) from the SSL lit-
erature that trains a linear classifier on top of the frozen
ResNet backbone weights.

3.2. Results

Hyperparameters vs Data Augmentation Strategy Ta-
ble 1 shows that (a) optimizing six training hyperparameters
(detailed in Table 5 in the appendix) of SimSiam only lead
to marginal improvements or even deterioration of perfor-
mance (due to differences in validation and test split); (b)
optimizing the data augmentation strategy lead to consis-
tent significant performance improvements (at least 1%, and
up to 2.3% for CIFAR-100). This shows that SimSiam’s
training hyperparameters were already very well-tuned.

How to Avoid Collapsing Chen & He (2021) already
analyzed which factors, e.g., stop-gradient, can cause col-
lapsing solutions for SimSiam. A collapsing solution is
an undesired solution where all the outputs collapse to a
constant vector. We continue this study and give insights
into which hyperparameters may cause collapsing if chosen
suboptimally. While we observed collapsing solutions in
some of our experiments on the CIFAR-10 and CIFAR-100
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Table 1. Mean test accuracy [%] for SimSiam and its tuned variants in the linear evaluation protocol. We report the mean and standard
error across five seeds. (†) The original SimSiam result of 91.8% was achieved using early stopping on the test set.

Approach DermaMNIST CIFAR-10 CIFAR-100

SimSiam (Chen & He, 2021) 66.2 ±0.3 91.6 ±0.1† 65.6 ±0.2
SimSiam Tuned Training Hypers 66.5 ±0.1 91.6 ±0.1 64.9 ±0.2
SimSiam Tuned Augmentations 67.2 ±0.4 92.7 ±0.1 67.9 ±0.3

datasets, for DermaMNIST, we surprisingly observed no
collapsing solutions. We show violin plots in Appendix D
giving some insights on which hyperparameters may be re-
sponsible for collapsing solutions. For example, Figure 1,
an excerpt from Appendix D, indicates that a probability of
applying grayscale to CIFAR-100 around 0.5 might cause
collapsing solutions.
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Figure 1. Density estimates for the probability of applying a
grayscale augmentation as sampled in our optimization for Sim-
Siam’s augmentation strategy on CIFAR-100. We show density
estimates for the best and worst-performing configurations (top
and bad), all configurations (all), and configurations leading to
collapsing.

Importance of Hyperparameters In the following, we
study the importance of individual hyperparameters for
achieving good performance. First, we compare the man-
ually designed hyperparameter settings from Chen & He
(2021) to the optimized settings found in our study. As
Chen & He (2021) do not report results on CIFAR-100 and
DermaMNIST, we focus on CIFAR-10 here. For training
hyperparameters, we do not observe significant differences
in performance (cf. Table 1), and the settings found by
(Chen & He, 2021) seem to be quite optimal. For the param-
eterized data augmentation config space, we observe that
the grayscale probability hyperparameter should be set half
as high as in the baseline and that the saturation strength
from the color jitter needs to be higher than in the base-
line. Further, adding solarize seems important, which is
also observed by Grill et al. (2020). The hyperparameter

importance study in Table 2 also supports the importance
of the above parameters. Additionally, Figure 2 suggests
that for the above parameters, good and bad configurations
differ, supporting our findings. Moreover, our results also
give insights into how individual hyperparameters should be
optimally set. As an example, Figure 1 shows how the prob-
ability of applying grayscale should be optimally set for the
CIFAR-100 dataset. In the best-performing configurations,
this probability hyperparameter has been sampled below 0.1
and in bad-performing configurations above 0.3. We show
violin plots of all the other individual hyperparameters of
the different config spaces and datasets in Appendix D.

Table 2. Hyperparameter importances for the SimSiam data aug-
mentation space for CIFAR-10. We utilized fANOVA (Hutter
et al., 2014), which quantifies the contribution of individual hyper-
parameters to the overall variance in performance. We distinguish
between the general importance and the importance of best config-
urations. Higher importance values denote a higher performance
responsibility.

Hyperparameter Across all Across best

brightness strength 1 2
contrast strength 2 2
hue strength 8 3
p colorjitter 2 2
p grayscale 16 32
p horizontal flip 8 2
p solarize 30 26
saturation strength 23 7
solarize threshold 5 2

4. GroupAugment
In this section, we introduce GroupAugment, an automated
data augmentation algorithm that operates on groups of
augmentations (such as color or quality transformations)
and designs sampling strategies over these groups. Further,
we present an empirical study where we find that, in contrast
to the data augmentation algorithms designed for supervised
learning, GroupAugment robustly outperforms the baseline
in all the settings we analyzed.
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Table 3. Mean test accuracy for different algorithms in the linear evaluation protocol. We report the mean and standard error across five
seeds for methods we ran. For each dataset, we bold the two best accuracies and underline scores that outperform the SimSiam baseline.
(†) The original SimSiam result of 91.8% was achieved using early stopping on the test set. (‡) SelfAugment and SelfRandAugment were
evaluated using Resnet50 and not Resnet18 as other methods. Reed et al. (2021) report results for multiple instantiations of SelfAugment.

Approach DermaMNIST CIFAR-10 CIFAR-100

SimSiam (Chen & He, 2021) 66.2 ±0.3 91.6 ±0.1† 65.6 ±0.2

SelfRandAugment (Reed et al., 2021) - 90.3‡ -
SelfAugment (Reed et al., 2021) - 87.5− 92.6‡ -
RandAugment (Cubuk et al., 2020) 68.8 ±0.3 89.9± 0.0 59.3± 0.5
SmartAugment (Negassi et al., 2022) 67.5 ±0.1 89.8± 0.1 59.8± 0.1
TrivialAugment (Müller & Hutter, 2021) 67.7 ±0.5 89.4± 0.1 59.1± 0.2

Tuned SimSiam Augmentations (our) 67.2 ±0.4 92.7 ±0.1 67.9 ±0.3
GroupAugment (our) 68.0 ±0.3 93.0 ±0.1 66.3 ±0.4

4.1. Algorithm

Augmentation Sampling Given some groups of data aug-
mentations {gi}, GroupAugment uses one global hyperpa-
rameter and two sets of group-specific hyperparameters to
create a list of augmentation sequences that will be consec-
utively applied to an image. The global hyperparameter T
determines the number of augmentation sequences in that
list. The group-specific hyperparameter Pgi determines the
probability that augmentation group gi is chosen to create
the following augmentation sequence. Ngi determines the
number of augmentations to sample uniformly without re-
placement to form an augmentation sequence for augmenta-
tion group gi. We provide pseudocode for a GroupAugment
policy in Algorithm 1.

Algorithm 1 A GroupAugment policy applied to an image.

Input: Image I , augmentation groups {gi},
group-specific sampling probabilities {Pgi},
group-specific #augmentations {Ngi},
total #group-samples T

Initialize empty list of augmentation sequences A
for augmentation sequence 1, . . . , T do

Sample group g according to {Pgi}
Sample Ng augmentations from group g
Append augmentations to A

end for
Apply sampled augmentation sequences A to I

Novelty of Group Sampling While Negassi et al. (2022)
explored optimizing the parameters of color and geometric
augmentation groups, GroupAugment generalizes this no-
tion to any set of augmentation groups and searches over
more general spaces of sampling strategies. In our study,
we instantiate GroupAugment with five groups: color, ge-
ometric, non-rigid, quality, and exotic. See Table 9 in Ap-
pendix C for the specific augmentations we used and Table 6

in Appendix A for a detailed description of GroupAug-
ment’s search space.

Search Algorithm To optimize over the resulting search
space, we use the same Bayesian optimization (BO) ap-
proach with expert priors as above. Further, we normalize
the sampled probabilities, as BO samples each group prob-
ability individually, and therefore, they do not necessarily
add up to 1.

4.2. Comparisons and Results

We compare GroupAugment to several automated data aug-
mentation algorithms. On the one hand, we observe that
applying standard automated data augmentation algorithms,
e.g., RandAugment, to the self-supervised learning setting
worsens the results for most of our analyzed datasets, al-
though those algorithms perform well in the supervised-
learning setting (see Table 3). This observation is in line
with the finding of Chen et al. (2020a) that a sophisticated
supervised data augmentation strategy did not perform better
than simple cropping with strong color distortion in the SSL
setting. On the other hand, contrary to standard supervised-
learning data augmentation algorithms, GroupAugment ro-
bustly outperforms the baseline in all the settings we ana-
lyzed. We give more details on the experimental settings in
Appendix B.
Further, we observe a performance improvement over the
baseline when tuning its data augmentation strategy’s mag-
nitudes and application probabilities with the same com-
putational budget we used for the GroupAugment search
space. However, as GroupAugment outperforms the tuned
SimSiam data augmentation for most of our results, allow-
ing stronger parameterization, we recommend optimizing
the data augmentation with GroupAugment, especially for
datasets having no intuition about which data augmentation
might be helpful.
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5. Conclusion and Limitations
While SimCLR and BYOL have analyzed the role of data
augmentation, our results show that it is beneficial to analyze
it in much greater detail. In summary, we provide evidence
for the underestimated role of data augmentation for SSL
and present a novel automated data augmentation algorithm,
GroupAugment, which outperforms vanilla-SimSiam across
all datasets we study.

Limitations We conducted our study on CIFAR-10,
CIFAR-100 (Krizhevsky, 2009), and DermaMNIST (Yang
et al., 2021a;b). More datasets should be considered to
gather more insights and strengthen our experimental con-
clusions. In particular, results on ImageNet (Deng et al.,
2009) and more medical datasets are of interest. Further,
as automated data augmentation (e.g., our GroupAugment)
optimizes the augmentation strategy on a validation set, out-
of-distribution test sets can pose a challenge if the validation
set is in-distribution.
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A. Search Spaces

Table 4. SimSiam data augmentation search space.

Hyperparameter Type Range Log-Prior Default

p colorjitter Float [0, 1] False 0.8
p grayscale Float [0, 1] False 0.2
p horizontal flip Float [0, 1] False 0.5
p solarize Float [0, 1] False 0.2
brightness strength Float [0, 1.5] False 0.4
contrast strength Float [0, 1.5] False 0.4
saturation strength Float [0, 1.5] False 0.4
hue strength Float [0, 0.5] False 0.1
solarize threshold Integer [0, 255] False 127

Table 5. SimSiam training hyperparameters search space.

Hyperparameter Type Range Log-Prior Default

learning rate Float [0.003, 0.3] True 0.03
warmup epochs Integer [0, 80] False 0
warmup multiplier Float [1.0, 3.0] False 1.0
optimizer Categorical {AdamW, SGD, LARS} False SGD
weight decay start Float [5 · 10−6, 5 · 10−2] True 5 · 10−4

weight decay end Float [5 · 10−6, 5 · 10−2] True 5 · 10−4

Table 6. GroupAugment search space.

Hyperparameter Type Range Log-Prior Default

p color transformations Float [0, 1] False 0.5
p geometric transformations Float [0, 1] False 0.5
p non rigid transformations Float [0, 1] False 0.0
p quality transformations Float [0, 1] False 0.0
p exotic transformations Float [0, 1] False 0.0
num color transformations Integer [1, 5] False 1
num geometric transformations Integer [1, 2] False 1
num non rigid transformations Integer [1, 3] False 1
num quality transformations Integer [1, 2] False 1
num exotic transformations Integer [1, 2] False 1
num total group samples Integer [1, 5] False 1

Table 7. RandAugment search space.

Hyperparameter Type Range Log-Prior Default

num ops Integer [1, 15] False 3
magnitude Integer [0, 30] False 4
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Table 8. SmartAugment search space.

Hyperparameter Type Range Log-Prior Default

num col ops Integer [1, 9] False 2
num geo ops Integer [1, 5] False 1
col magnitude Integer [0, 30] False 4
geo magnitude Integer [0, 30] False 4
p apply ops Float [0, 1] False 1

B. Experimental Details
B.1. Expert Priors

We use Bayesian optimization (BO) (Mockus et al., 1978) with expert priors (Hvarfner et al., 2021) as implemented in the
NePS python package (Stoll et al., 2022). Therefore, we set expert priors to guide the search. The priors in NePS are, in the
continuous case, Gaussian distributions centered at a default value with the standard deviation determined via a confidential
setting. We always use a “medium” confidence and set the default value as described below.

Training Hyperparameters and Data Augmentation Strategy We set the defaults to the baseline for the training
hyperparameters and data augmentation strategy. As no solarization is used in the SimSiam baseline and Chen & He (2021)
shows that adding solarize might improve the performance, we add solarize to the search space and set the user prior default
to the values reported by Chen & He (2021).

RandAugment For the RandAugment search space, we set the defaults according to the optimal data augmentation policy
for CIFAR-10 following Cubuk et al. (2020).

SmartAugment As we are the first applying SmartAugment to classification, we set the user prior defaults based on the
optimal data augmentation policy for CIFAR-10 following Cubuk et al. (2020).

GroupAugment For the GroupAugment config space, we set the default user priors to one augmentation per group. As
only color and geometric augmentations occur in the baseline, we set the user prior defaults for these group probabilities to
0.5 and the other group probabilities user prior defaults to 0.

B.2. Resources and Compute Budget

For our Bayesian optimization runs, we allowed a budget of 50 evaluations. For CIFAR-10 and CIFAR-100, one configuration
evaluation took ≈ 8h with one GeForce RTX 2080 Ti GPU, for DermaMNIST ≈ 10min with 1 GPU. We used 10 GPUs in
parallel for CIFAR-10, 20 GPUs in parallel for CIFAR-100, and 5 GPUs in parallel for DermaMNIST. In order to take noise
on the validation set during our HPO into account, we evaluate the best-performing configurations multiple times on the
validation set.

B.3. GroupAugment Comparative Study: RandAugment Search Space

While SmartAugment and GroupAugment were designed with BO in mind, for RandAugment, which originally used Grid
Search, we follow Negassi et al. (2022) and consider an extended search space for the number of operations between 1 and
15. Negassi et al. (2022) showed that a larger number of operations than 3 can be beneficial for the performance. See also
Table 7.

B.4. Dataset Splits

Since CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) do not provide a validation set, we split the training set and randomly
sample a fixed validation set containing 10% of the training data for our hyperparameter optimization. We use the entire
training set for training for our final test evaluations of the best-performing validation configurations. For DermaMNIST
(Yang et al., 2021a;b), we have adopted the provided training, validation, and test split.
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C. GroupAugment Details

Table 9. Details concerning the data augmentations from the groups. In our implementation, we use the data augmentations from the
albumentations library (Buslaev et al., 2020).

Group Augmentation

color ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
ToGray()
Solarize()
Equalize()
ChannelShuffle()

geometric ShiftScaleRotate(interpolation=cv2.INTER CUBIC)
HorizontalFlip()

non-rigid ElasticTransform(alpha=0.5, sigma=10, alpha affine=5, interpolation=cv2.INTER CUBIC)
GridDistortion(interpolation=cv2.INTER CUBIC)
OpticalDistortion(distort limit=0.5, shift limit=0.5, interpolation=cv2.INTER CUBIC)

quality GaussianBlur()
GaussNoise()

exotic RandomGridShuffle()
Cutout(num holes=4)
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D. Individual Hyperparameter Analysis
Here, we individually analyze each hyperparameter and augmentation strategy parameter considered in Section 3. In
particular, we plot density estimates for the values sampled in our search. We show density estimates for the best and
worst-performing configurations (top and bad), all configurations (all), and configurations leading to collapsing. For
categorical values, we show the sample distribution.

D.1. Tuned SimSiam Data Augmentation Strategy
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Figure 2. CIFAR-10 with SimSiam data augmentation search space.
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Figure 3. CIFAR-100 with SimSiam data augmentation search space.
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Figure 4. DermaMNIST with SimSiam data augmentation search space.
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D.2. Tuned SimSiam Training Hyperparameters
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Figure 5. CIFAR-10 with SimSiam training hyperparameters search space.
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Figure 6. CIFAR-100 with SimSiam training hyperparameters search space.
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Figure 7. DermaMNIST with SimSiam training hyperparameters search space.


