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ABSTRACT

Autoregressive large language models (LLMs) have achieved notable success in
natural language generation. However, their direct application to natural language
understanding (NLU) tasks presents challenges due to reliance on fixed label vocab-
ularies and task-specific output structures. Although instruction-following tuning
can adapt LLMs for these tasks, the autoregressive architecture often leads to
error propagation and significant time costs from uncontrollable output lengths,
particularly in token-level tagging tasks. In this paper, we introduce a bidirectional
LLM framework (BMLM) for multi-task spoken language understanding, which
eliminates the need for training from scratch and seamlessly integrates with ex-
isting LLMs, bridging the gap between extensive pre-trained knowledge and the
requirements of understanding tasks. Our evaluation on multiple datasets demon-
strates that BMLM significantly outperforms state-of-the-art pre-trained language
models and autoregressive LLM baselines. Specifically, on the MixATIS and
MixSNIPS datasets, BMLM achieves notable improvements of +3.9% and +4.1%
in overall semantic accuracy compared to autoregressive baselines. Additionally,
we observe a 123x improvement in inference speed for the MixATIS dataset and
a 189x enhancement for the MixSNIPS dataset compared to existing generative
LLM baselines. We anticipate that this work will provide a new perspective and
foundational support for LLM applications in the NLU domain.

1 INTRODUCTION

Benefiting from extensive training datasets, Large language models (LLMs) (Jiang et al., 2023;
Peng et al., 2023; Touvron et al., 2023) have notably accelerated progress in the field of natural
language processing (NLP) (Geogle., 2023) tasks by effectively leveraging in-context learning (Hu
et al., 2022b; Kavumba et al., 2023). However, many LL.Ms applications within the NLP domain
predominantly focus on natural language generation (NLG). Though natural language understanding
(NLU) applications do exist, they primarily employ end-to-end instruction tuning or prompt-based few-
shot frameworks (Pan et al., 2023; Yin et al., 2024b). These methodologies encounter challenges in
supervised NLU settings, which demand task-specific output structures with fixed label vocabularies.
Prompt-based few-shot approaches are limited by input length constraints, while instruction tuning
often suffers from catastrophic forgetting. Moreover, effectively managing multi-tasking in NLU with
autoregressive LLMs through end-to-end generation is particularly difficult. This difficulty arises
from the inability of these methods to generate cohesive outputs across multiple tasks, primarily due
to their inherently sequential nature.

Spoken Language Understanding (SLU) is a subset of NLU, and plays a crucial role in task-oriented
dialog systems, with the primary goal of constructing a semantic frame that encapsulates the user’s
request. This semantic frame is meticulously crafted through intent detection, identifying the
user’s intentions, and slot filling, extracting pertinent semantic elements. Considering the inherent
interrelation between these two sub tasks (Tur & Mori, 2011), premier SLU systems employ joint
models to effectively capture this correlation (Goo et al., 2018; Qin et al., 2019). In practical
scenarios, it is common for users to convey multiple intents within one utterance (Gangadharaiah &

'Our code and data is included in the supplementary material.
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Narayanaswamy, 2019), which has steered an increasing volume of research to tackle the intricacies
of multi-intent SLU. Xu & Sarikaya (2013) and Kim et al. (2017) first established the platform for
this investigation. Subsequent works by Qin et al. (2020; 2021b) exploited graph attention networks
to model the complex intent-slot interactions, while Huang et al. (2022) introduced chunk-level intent
detection framework (CLID) to segment multi-intent utterances at transition points. Furthermore,
Yin et al. (2024a) proposed an innovative joint multi-view intent-slot interaction framework (Uni-
MIS) to further focus on the role of fine-grained intent in guiding slot filling. Although pre-trained
language model (Devlin et al., 2019; Liu et al., 2019b) (PLM)-based frameworks (e.g., Uni-MIS)
have demonstrated promising results. However, due to their relatively restricted scale, there exists
a compelling case for enlarging the model size and incorporating LLMs that carry a wealth of
pre-training knowledge. More recently, Yin et al. (2024b) have developed entity slots explicitly
designed to fine-tune LLMs for SLU tasks, although the approach still relies predominantly on
autoregressive generation, which may lead to error propagation and increased inference time. In
response to these challenges, we introduce a uniquely devised bidirectional large Language model
multi-task framework (BMLM) for multi-task SLU applications. Our exhaustive evaluation using
4 widely used multi-task SLU datasets demonstrates that our approach significantly outperforms
existing state-of-the-art (SOTA) models, including traditional PLM-based baselines and end-to-end
LLM generative baselines. Our model not only reaches superior performance levels but also assures
quicker inference times compared to prevailing end-to-end generation LLM methodologies.

To summarize, our contributions can be outlined as follows: (1) We introduce a bidirectional
large language model framework for multi-task spoken language understanding. Unlike traditional
autoregressive frameworks, BMLM enhances the utilization of whole-context information and
learning dynamics in fixed-label vocabulary tasks. (2) Comprehensive tests on 4 widely-used multi-
task SLU datasets demonstrated significant improvements of our model over existing SOTA models,
including PLM-based and end-to-end generative LLM baseline. (3) BMLM ensures faster inference
times compared to current generative LLM methods, increasing the efficiency and practical utility of
our LLM-based frameworks.

2 RELATED WORK
2.1 JOINT INTENT DETECTION AND SLOT FILLING

Joint intent detection and slot filling form the cornerstone of multi-task SLU frameworks, with
their notable interdependence catalyzing the development of integrated models to foster synergistic
dynamics. Learning paradigms that concurrently address intents and slots have consistently yielded
exemplary outcomes. Some methodologies advocating for simultaneous slot filling and intent
detection have adopted parameter sharing strategies (Liu & Lane, 2016a; Wang et al., 2018; Zhang &
Wang, 2016), while additional approaches explore unidirectional or bidirectional interaction flows
(Qin et al., 2021c). Models engaging in unidirectional interaction pathways (Goo et al., 2018; Li
et al., 2018; Qin et al., 2019) feature a predominant flow from intent to slot, often utilizing gating
mechanisms intricately fashioned for slot filling tasks (Goo et al., 2018; Li et al., 2018). A novel
approach by Qin et al. (2019) presents a token-centric intent detection methodology specifically
designed to curtail error transmission. On the other hand, bidirectional-flow interaction paradigms (E
et al., 2019; Zhang et al., 2019; Liu et al., 2019a; Qin et al., 2021a) consider the reciprocal influences
between intent detection and slot filling. A distinguishing study by E et al. (2019) engineered
a method that iteratively reinforces both aspects, evidencing mutually beneficial advancements.
Ongoing advancements in refining fine-grained intent detection and the interplay of intent-slot
interactions have marked a significant progression. Chen et al. (2022) probed into a novel Self-
distillation Joint SLU model within a multi-task learning environment, deeming multiple intent
detection a weakly supervised problem and tackling it through Multiple Instance Learning (MIL).
Meanwhile, Huang et al. (2022) fashioned a chunk-level intent detection technique coupled with an
ancillary task to identify intent transition points, thereby optimizing multi-intent recognition accuracy.
A noteworthy contribution by Cheng et al. (2023) involved leveraging the transformer architecture to
alleviate the intricacies of multi-intent SLU detection tasks. Additionally, the recent efforts by Yin
et al. (2024a) presented a joint multi-view intent-slot interaction framework, which emphasizes the
guidance of fine-grained intent on slot filling efficacy.
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Figure 1: Comparison between BMLM and autoregressive LLMs using a two-intent SLU example. In
this context, B-WT represents ”B-Weather”, B-LOC stands for "B-Location”, WI denotes ”Weather
Inquiry”, and NA indicates “Navigation”.

2.2 LARGE LANGUAGE MODEL FOR NLU TASKS

It is widely observed that the evaluation of LLMs’ understanding capabilities frequently utilizes
datasets like MMLU (Hendrycks et al., 2021). Although this approach is adequate for assessing the
general comprehension abilities of LLMs, it becomes less effective when dealing with label-sensitive
NLU tasks that rely on a fixed-label vocabulary. Recent innovations, including the label-supervised
Llama framework by Li et al. (2023), have significantly improved the fine-tuning of LLMs for tasks
such as named entity recognition (NER). However, these advancements primarily focus on refining
LLM capabilities for single, specific tasks. In contrast, multi-task understanding strategies developed
by Yin et al. (2024b) leverage LLMs as end-to-end generative models by reshaping the data format
used in NLU tasks. This approach presents several benefits. Yet, these models frequently encounter
obstacles related to error propagation and prolonged inference times, which are chiefly attributed to
their autoregressive configurations.

3 APPROACH

This section details the implementation of our proposed methodology. As illustrated in Figure 1,
we compare the differences between BMLM and autoregressive LLMs, and we will explain each
component of BMLM in the following sections.

3.1 PROBLEM DEFINITION

Intent Detection: The task of intent detection, given an input sequence x = (z1, ..., Z,), is framed as
a multi-label classification challenge. The goal is to produce a set of intent labels o7 = (of, ..., 0% ),

where m represents the count of distinct intents within a particular discourse, and n reflects the length
of the utterance.

Slot Filling: The process of slot filling is akin to a sequence labeling task, which entails mapping the
input sequence x to corresponding slot annotations og = (07, ..., 0).

Y n

3.2 POST-TRAINING CONTEXT-SENSITIVE ATTENTION

In our approach, we introduce a novel modification to the vanilla attention mechanism used in existing
LLMs by incorporating context-sensitive attention. This allows the model to retain rich pretrained
knowledge and facilitates unrestricted information exchange among all sequence tokens.
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Conventional LLMs typically employ a causal mask M in autoregressive frameworks to prevent future
tokens from influencing the generation of present tokens, enforcing a strict left-to-right progression
of information flow. In a standard masked attention mechanism, the attention scores A are computed
as follows:

QK™
ven

where (), K, and V represent the query, key, and value matrices, respectively, dy, is the dimension of
the key vectors, and M is the causal mask.

A = softmax ( + M) |4 (1)

Traditionally, the causal mask M is defined as:
0 ifi > j
- = 2
M {—oo ifi <j @
where ¢ represents the position of the token currently attending, and j represents the position of the
token being attended to in the sequence.

This limitation can hinder performance in token filling tasks, where understanding the context from
both preceding and following tokens is crucial. To address this, we propose an attention mechanism
by setting all elements of M to zero:

Mij:() Vi,jG{l,...,n} 3)
where n is the length of the input sequence.

Consequently, the attention computation becomes:

KT
Acontext-sensitive = softmax (Cf/@ ) 174 @

This adjustment enables the attention mechanism to leverage the entire sequence’s context, signifi-
cantly enhancing token-level representation and addressing limitations imposed by unidirectional
flows. By allowing bidirectional context understanding, our approach contributes to a more compre-
hensive processing of sequences, particularly beneficial for tasks requiring consideration of both past
and future contexts.

3.3 INTENT DETECTION

Intent detection is treated as a multilabel classification task. After training the model with context-
sensitive attention, we employ a linear classifier at the final layer to decode the intent tokens, rather
than using an autoregressive generation function. This classifier assigns potential intents to each
token in the input sequence, which are then selected based on their probability scores to identify the
most likely intents, as delineated by the equations:

y; = Intent-Classifier(H), 5)
or = Topg (y1), (©6)

where H = {hy, ha, ..., h,} represents the hidden states of the input tokens, yr = {y1,v2, ..., Yn}
denotes the intermediate intent logits generated by the intent classifier, / is the number of intents,
and oy = {01, 09, ..., 01} signifies the final predicted intent labels.

3.4 SLOT FILLING

Slot filling is approached as a sequence labeling task. Within the context of the BIO (Begin, Inside,
Outside) tagging scheme, a linear classifier is similarly utilized to tag each input token. This
approach accelerates decoding speed and mitigates error propagation during the classification process.
This process is succinctly captured by the equation:

os = Slot-Classifier(H), @)
where H = {hy, ha,...,h,} denotes the per-token hidden states derived from the model, and
os = {s1, $2, ..., sn } represents the sequence of slot label predictions for each token.
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3.5 JOINT TRAINING

Unlike autoregressive LLMs, which function as black boxes and do not allow for direct weighting of
different tasks, BMLM enables joint optimization for the dual tasks of intent detection and slot filling.

For intent detection, the intent 10ss Liyeene employs the binary cross-entropy formula:

M

Linent = — »_[yk log(o(g1)) + (1 — yi) log(1 — o (4))], ®)
k=1

where M is the total number of intents, y; is a binary flag indicating the actual presence of the k-th
intent, gy, is the corresponding predictive logit, and o denotes the sigmoid function.

The slot loss Ly, uses the cross-entropy formulation:

N C
Lgo = — Z Z Yij log(Pij). )

i=1 j=1

where IV represents the total number of tokens in the sequence, C' is the number of possible slot
classes, y;; indicates the correct classification of token i for slot class j, and p;; is the model-derived
probability that token ¢ belongs to slot class j.

The composite loss L synergizes these components, enabling concurrent optimization of both subtasks
within a cohesive training algorithm. Additionally, different weight configurations are presented in
Appendix A.3:

L = Linent + Lslot- (10)

4 EXPERIMENTS

4.1 DATASETS

Our evaluation extensively utilized two benchmark multi-intent SLU datasets—MixATIS and MixS-
NIPS (Qin et al., 2021b). MixATIS consists of 13,162 training instances, 756 validation instances,
and 828 test instances, primarily focusing on airline-centric queries. In contrast, MixSNIPS spans a
broader range of domains, including restaurants and entertainment, comprising 39,776 training in-
stances, 2,198 validation instances, and 2,199 test instances. Both datasets capture realistic complexity
in utterances, featuring one to three intents with a 3:5:2 proportional representation. Additionally, ex-
periments were conducted on single-intent datasets, ATIS and SNIPS Coucke et al. (2018); Hemphill
et al. (1990), to further validate our model’s performance across various settings. The ATIS training
set contains 4478 instances, while the test set consists of around 893 instances. In contrast, the SNIPS
training set includes about 13,084 instances, and the test set comprises 700 instances.

4.2 EXPERIMENTAL SETTINGS

Our experimental setups were carefully designed to maximize training efficiency with the results of
the parameter search detailed in the Appendix A.2. We employed Mistral-7B-Instruct-v0.1 (Jiang
et al., 2023) as the foundational backbone model for our BMLM model. For fine-tuning, we utilized
LoRA (Hu et al., 2022a), setting the LoRA rank at 16 with an alpha scaling parameter of 32, and
implemented a dropout rate of 0.05. The optimization regime involved a learning rate of 2 x 10~* and
a weight decay of 0.05. Parameter optimization was conducted using the Adam optimizer (Kingma &
Ba, 2015). Training steps were adjusted based on dataset size, with 13,162 steps for MixATIS and
39,116 for MixSNIPS.

4.3 BASELINES

In the realm of single-intent SLU, notable methodologies include Joint Seq., which offers a multi-
task learning architecture integrating domain detection, intent detection, and slot filling within
a singular RNN framework (Hakkani-Tiir et al., 2016). The Atten.-Based model capitalizes on
the attention mechanism to learn correlational dynamics between slots and intents (Liu & Lane,
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2016b). Slot-Gated architectures prioritize the mutual dependencies between intent detection and
slot filling tasks (Goo et al., 2018). Advanced models such as SF-ID and Stack-Propagation further
evolve these principles, with SF-ID introducing explicit connections between slot filling and intent
detection, and Stack-Propagation promoting synergetic slot filling guided by intent context (E et al.,
2019; Qin et al., 2019). Within the multi-intent SLU landscape, our analysis traversed from the
application of the AGIF network in adaptive intent-slot integration to the GL-GIN modules designed
for global and local information fusion. We also considered SDJN’s multi-task learning strategies
and CLID’s novel strategy for segmenting complex utterances. Significantly, SSRAN introduced a
graph-based approach to deftly navigate the intricate relationships between intents and slots (Qin
et al., 2020; 2021b; Chen et al., 2022; Huang et al., 2022; Cheng et al., 2023). Finally, PLM-based
methods, such as Uni-MIS (Yin et al., 2024a), along with extensions like Stack-Propagation(Bert),
SDJN(Bert) and CLID(Roberta), and generative LLM approach En-Mistral (Yin et al., 2024b), were
included to compare the performance of our model against implementations backed by PLM and
LLM capabilities.

5 EVALUTION

Model MixATIS MixSNIPS
Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

AGIF (Qin et al., 2020) 86.9 722 39.2 93.8 95.1 72.7
GL-GIN (Qin et al., 2021b) 87.2 75.6 41.6 93.7 95.2 72.4
SDIN (Chen et al., 2022) 88.2 77.1 44.6 94.4 96.5 75.7
CLID (Huang et al., 2022) 88.2 71.5 49.0 94.3 96.6 75.0
SSRAN Cheng et al. (2023) 89.4 71.9 48.9 95.8 98.4 71.5
SDIN + Bert 87.5 78.0 46.3 95.4 96.7 79.3
RoBERTa+Linear 86.0 80.3 48.4 96.0 97.4 82.1
CLID + Roberta 85.9 80.5 49.4 96.0 97.0 82.2
Uni-MIS Yin et al. (2024a) 88.3 78.5 52.5 96.4 97.2 83.4
En-Mistral (Yin et al., 2024b) 88.7 80.6 53.4 95.6 97.6 79.8
BMLM (Ours) 87.4 90.5 57.3* 97.2 96.1 83.9"

Table 1: SLU performance on MixATIS and MixSNIPS datasets. The most important metric is
Overall(Acc). Values with * indicate that the improvement from our model is statistically significant
over all baselines (p < 0.05 under t-test).

Model ATIS SNIPS
Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

Joint Seq (Hakkani-Tiir et al., 2016) 94.3 92.6 80.7 87.3 96.9 73.2
Atten.-Based (Liu & Lane, 2016b) 94.2 91.1 78.9 87.8 96.7 74.1
Sloted-Gated (Goo et al., 2018) 95.4 95.4 83.7 89.3 96.9 76.4
SF-ID (E et al., 2019) 95.8 97.1 86.9 92.2 97.3 80.4
Stack-Propagation (Qin et al., 2019) 95.9 96.9 86.5 94.2 98.0 86.9
Stack-Propagation + BERT 94.8 97.4 85.7 94.1 98.3 87.0
En-Mistral 95.7 97.5 86.9 95.6 97.7 89.6
BMLM(Ours) 95.9 95.7 88.6" 98.6 98.7 91.7*

Table 2: SLU performance on ATIS and SNIPS datasets. Values with * indicate that the improvement
from our model is statistically significant over all baselines (p < 0.05 under t-test).

5.1 MAIN RESULTS

The evaluation metrics included slot F1 score, intent accuracy and semantic accuracy to compre-
hensively assess the sentence-level semantic frame parsing capabilities. These metrics, adhering to
the methodologies delineated by Qin et al. (2021b) and Huang et al. (2022), facilitate a nuanced
evaluation of SLU systems. The paramount metric, semantic overall accuracy, quantifies the system’s
proficiency in simultaneously and correctly predicting both intents and slots within a single sen-
tence. Our results underscore the superior performance of the BMLM, which demonstrates marked
improvements in comparison to the autoregressive LLM baseline En-Mistral and other baselines:

(1) As shown in Table 1, on the MixATIS dataset, BMLM achieved a Slot (F1) score of 87.4%, an
Intent (Acc) of 90.5%, and an Overall (Acc) of 57.3%. In comparison, the best baseline, En-Mistral,
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Model MixATIS _Half MixSNIPS _Half
Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

Stack-Propagation 86.0 423 24.5 93.3 66.9 50.8
AGIF 86.4 67.9 37.0 93.1 93.8 68.9
GL-GIN 86.7 75.1 40.6 93.0 94.3 69.3
AGIF + Bert 87.0 77.5 475 95.5 95.3 79.6
GL-GIN + Bert 84.6 81.8 48.9 95.5 94.1 80.1
En-Mistral 84.6 78.1 46.7 95.2 96.5 77.4
BMLM(Ours) 89.2 79.9 51.1 96.0 97.4 81.9

Table 3: SLU performance on the MixATIS_Half and MixSNIPS_Half datasets. The Half datasets
were constructed based on specific rules, maintaining the label vocabulary from the training set while
reducing the data volume by half for analysis.

scored a Slot (F1) of 88.7%, an Intent (Acc) of 80.6%, and an Overall (Acc) of 53.4%. For the
MixSNIPS dataset, BMLM attained a Slot (F1) score of 97.2%, an Intent (Acc) of 96.1%, and an
Overall (Acc) of 83.9%, surpassing SOTA model Uni-MIS in Overall (Acc), which recorded 83.4%.
(2) As shown in Table 2, in the single-intent ATIS dataset, BMLM secured an Overall (Acc) of
88.6%, which is higher than En-Mistral’s 86.9%. In the SNIPS dataset, BMLM exhibited robust
performance with an Overall (Acc) of 91.7%, also surpassing En-Mistral’s 89.6%. (3) As detailed
in Table 3, to assess model efficacy under reduced data conditions, we utilized half-sized training
datasets—specifically, MixATIS_Half and MixSNIPS_Half. In these constrained environments,
BMLM demonstrated resilience, attaining a semantic accuracy of 51.1% on MixATIS_Half and 81.9%
on MixSNIPS _Half. Compared to En-Mistral, which achieved Overall (Acc) scores of 46.7% and
77.4% on the respective datasets, BMLM showed a significant improvement in performance.
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Figure 2: A comparison of the performance of the models on the MixATIS and MixSNIPS datasets,
with the data segregated by the number of test instances classified according to the intent.

5.2 INFLUENCE OF VARIABLE INTENT NUMBERS

A significant factor impacting model performance in multi-intent SLU tasks is the varying number
of intents present within utterances. To gauge this influence, an in-depth evaluation was conducted,
segregating instances based on intent number within the MixATIS and MixSNIPS datasets. The
details of this categorization are delineated in Figure 2.

Within the MixATIS dataset, EN-Mistral achieved overall accuracies of 77.6%, 55.2%, and 31.5% for
utterances with one, two, and three intents, respectively. In contrast, the BMLM model demonstrated
superior performance for utterances with two and three intents, recording accuracies of 57.9% and
40.0%. It also slightly outperformed EN-Mistral for single-intent utterances, achieving an accuracy
of 79.0%. For the MixSNIPS dataset, the EN-Mistral model reported accuracy scores of 90.4%,
81.4%, and 66.0% for utterances with one, two, and three intents, respectively. In comparison, the
BMLM model matched EN-Mistral’s performance for single-intent utterances with an accuracy of
90.4%. However, it exhibited modest variations for utterances with two and three intents, achieving
accuracies of 83.6% and 76.2%, respectively. This analysis highlights the nuanced performance
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characteristics of the BMLM model, particularly its enhanced capabilities in managing complex,
multi-intent scenarios within the MixATIS dataset. These comparative assessments underscore the
BMLM model’s effectiveness in addressing multi-intent SLU tasks, especially in complex scenarios.

5.3 IMPACT OF TRAINING DATA PROPORTION

To further investigate the impact of training data proportion, we conducted a comprehensive evaluation,
whereby the volume of training data was methodically varied at gradient proportions of 0.2, 0.4, 0.6,
0.8, and 1.0.
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Figure 3: Performance comparison of BMLM and EN-Mistral models on the MixATIS and MixSNIPS
datasets at different training data proportions. Semantic accuracy is the focal performance metric in
this evaluation.

As shown in Figure 3, in the context of the MixATIS dataset, our assessments distinguished the
BMLM model as outperforming the EN-Mistral framework across all proportions of training data.
For a randomized data ratio of 20%, BMLM attains a semantic accuracy of 46.3%, significantly
outpacing EN-Mistral’s performance of 30.3%. This performance advantage persists even as we
expand the dataset scope, with BMLM reporting 57.3% semantic accuracy against EN-Mistral’s
53.4% upon utilizing the complete training dataset. Regarding the more diverse MixSNIPS dataset,
both models exhibit a substantial improvement in semantic accuracy with an increasing volume of
training data and BMLM surpasses EN-Mistral across all proportions, initiating at 77.3% versus
51.3% for a 20% data subset and culminating at 83.9% versus 79.8% when leveraging the full dataset.

5.4 IMPACT OF DIFFERENT BMLM BACKBONES

As shown in Table 4, the effect of backbone selection is evident across both the MixATIS and MixS-
NIPS datasets, with distinct model backbones influencing the datasets differently. For the MixATIS
dataset, the PLM backbone RoBERTa achieves a semantic accuracy of 48.4%. In contrast, the
Mistral-7B-Base-v0.1 and Mistral-7B-Instruct-v0.1 (default) configurations demonstrate significant
improvements, with accuracies of 57.0% and 57.3%, respectively. Notably, the Llama3.1-8B-Instruct
configuration outperforms all others, attaining a score of 58.7%. In the context of the MixSNIPS
dataset, all tested BMLM backbones exhibit robust performance. The RoOBERTa backbone secures a
semantic accuracy of 82.1%, while the Vicuna-7B and Mistral-7B-Base-v0.1 structures show slight
deficits with accuracies of 80.5% and 84.2%, respectively. The Mistral-7B-Instruct-v0.1 (default)
structure follows closely with an accuracy of 83.9%, and the Llama3.1-8B-Instruct achieves an
accuracy of 84.4%.

5.5 COMPARISON OF INFERENCE EFFICIENCY: BMLM VERSUS EN-MISTRAL

As shown in Figure 4, the inference times for the BMLM and En-Mistral models across the MixATIS
and MixSNIPS datasets reveal significant differences in efficiency. Specifically, the En-Mistral model
demonstrates inference times of 6653 seconds for MixATIS and 17963 seconds for MixSNIPS, while
the BMLM model operates at markedly lower times of 54 seconds and 95 seconds, respectively.
This results in an impressive speedup factor of approximately 123.6x for MixATIS and 188.0x
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Model MixATIS MixSNIPS
RoBERTa 48.4 82.1
Vicuna-7B - 80.5
Mistral-7B-Base-v0.1 57.0 84.2
Mistral-7B-Instruct-v0.1 (default) 57.3 83.9
Llama3.1-8B-Instruct 58.7 84.4

Table 4: Performance comparison of models with different BMLM backbones on MixATIS and
MixSNIPS datasets, measured in terms of semantic accuracy.
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Figure 4: Comparison of inference time with a batch size of 1 on a single RTX 3090 Ti GPU.

for MixSNIPS when comparing BMLM to En-Mistral. Such results highlight BMLM’s superior
efficiency, making it a compelling choice for real-time applications in spoken language understanding.

5.6 CASE STUDIES

To illuminate our framework’s efficacy, we delve into a specific instance, as depicted in Figure 6
The scenario “’List the Arizona airport and list LA” serves as a prime example. The BMLM hits
the mark precisely for both the intents ("atis_airport’, ’atis_city’) and slots, identifying ’Arizona’ as
’B-state_name’ and LA’ as ’B-city_name’, perfectly aligning with the ground truth. Conversely, the
EN-Mistral model, while precisely predicting the intents, faltered with slots’ prediction making an
error by categorizing ’Arizona’ as part of an “airport_name’. This implies that the BMLM exhibits
more accurate slot tagging in cases where the utterances necessitate attention to a multi-intent
scenario. Conversely, the EN-Mistral model evidenced a discrepancy in recognizing the appropriate
slots, likely due to its autoregressive nature that may cause it to overlook the necessary clarity required
in distinguishing between multi-intent scenarios.

6 CONCLUSION

In this study, we have introduced a bidirectional large language model (BMLM) framework aimed at
enhancing the performance of multi-task spoken language understanding. This framework represents
a significant advancement over traditional pre-trained language models (PLMs) and generative LLM
architectures. Through systematic experimentation on four widely-used multi-task SLU datasets,
BMLM has achieved state-of-the-art performance, demonstrating a 123x improvement in inference
speed on the MixATIS dataset and a 189x enhancement on the MixSNIPS dataset compared to existing
generative LLM baselines. Furthermore, BMLM effectively utilizes whole-context information and
refines learning processes within fixed-label vocabularies, capitalizing on the extensive knowledge
inherent in large language models. These capabilities underscore BMLM'’s potential for broader
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Utterance: list the arizona airport and list la

EN-Mistral ['O','0', 'B-airport_name', 'lI-airport_name', '0', '0', 'B-city_name']
\ Slot: /
\

‘ N
/" BMLM L .
[ Intent: atis_airport’ , 'atis_city @ \I
|

|
| EN-Mistral  “atis_airport’ , 'atis_city @ :
| Intent: |
|
|
|
|
| BMLM  10','0', 'B-state_name’, ', '0','0", 'B-city_name'] @ |
Slot: |
i |
| |
i |
| !

Figure 5: Exemplary comparison of ground truth, BMLM and EN-Mistral’s intent and slot predictions
for utterance: “List the Arizona airport and list LA”. More examples can be found in Appendix A.4.

applications in various natural language understanding tasks, paving the way for future developments
in the field.
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A APPENDIX

A.1 LIMITATIONS

The scalability of our model is constrained by computational resources, limiting the BMLM architec-
ture to fewer than 10 billion parameters. This restriction hinders the exploration of larger architectures
that may offer improved performance. Additionally, we have not considered the influence of data pro-
portion; specifically, the selection of a representative dataset for training the model. We acknowledge
this as an area for future work.

A.2 PARAMETER SEARCH

Parameter Setting Semantic Accuracy (%)
MixATIS MixSNIPS

LoRA Rank =8 56.5 81.4
LoRA Rank =16 57.3 83.9
LoRA Rank =32 53.6 81.6

Learning Rate = 0.01 51.2 81.9
Learning Rate = 0.02 57.3 83.9
Learning Rate = 0.03 51.6 80.9

Table 5: Impact of LoRA Rank and Learning Rate on Semantic Accuracy in MixATIS and MixSNIPS
datasets.

A.3 IMPACT OF LOSS WEIGHTING

Loss Weighting (o)  Semantic Accuracy (%)
MixATIS  MixSNIPS

Default 57.3 83.9
a=0.9 54.0 82.2
a=0.7 52.4 83.4
a=0.5 56.0 84.0
a=0.3 50.7 81.9
a=0.1 50.1 81.7

Table 6: Impact of different loss weighting factors («r) on Semantic Accuracy in MixATIS and
MixSNIPS datasets. The loss is calculated as L = aL;ptent + (1 — @) Lgior-
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A.4 MORE EXAMPLES

Utterance: list the arizona airport and also how many canadian airlines international flights use aircraft 320
S
/ BMLM e I I A\
{ T — atis_airport’, 'atis_quantity' @ \I
| I
{ EN-Mistral ‘atis_airport', 'atis_capacity" !
| Intent: :
| I
| I
| BMLM ['0', 'O', 'B-state_name', 'O', '0', '0’, '0', 'O, 'B-airline_name’, 'l-airline_name’, |
: Slot: ‘l-airline_name', '0', '0', '0", 'B-aircraft_code'] :
| I
[\ EN-Mistral ['O','0', 'B-airport_name’, 'l-airport_name', '0', '0', '0', '0', 'B-airline_name', |
\ Slot: 'l-airline_name’, 'l-airline_name', '0', '0', '0', 'B-aircraft_code'] /
N
Utterance:  what days of the week do flights from san jose to nashville fly on and then how much is a limousine service in la guardia
e e s .
ey 'atis_flight_days', 'atis_ground_fare' Correct: atis_airport', ‘atis_quantity
: EN-Mistral  atis_flight_day", ‘atis_ground_fare
| Intent:
|
|
| BMLM ['0','0', "0, '0', '0','0", '0', '0', 'B-fromloc.city_name', 'I-fromloc.city_name',
| Slot: '0', 'B-toloc.city_name', '0','0', '0', '0','0', '0', '0', '0', 'B-transport_type', 'O’, @
: '0', 'B-airport_name', 'l-airport_name']
|
: EN-Mistral ['0', 'B-flight_days"', 'I-flight_days"', 'I-flight_days', 'I-flight_days', '0', '0', '0',
| Slot: 'B-fromloc.city_name', 'l-fromloc.city_name', '0', 'B-toloc.city_name', '0', 'O',
| : '‘o','0','0','0','0', '0', 'B-transport_type', '0', '0', 'B-airport_name', 'I-
|\ airport_name']
N /
N e
Utterance:  how long does a flight from baltimore to san francisco take
P S
/7 BMLM \
{ " atis_distance @ \I
| I
| EN-Mistral atis flight_time' !
0 Intent: :
| I
| |
| BMLM ['0','0', '0', 'O, '0', '0', 'B-fromloc.city_name', 'O', 'B-toloc.city_name', |
: Slot: ‘-toloc.city_name', '0'] :
I |
[\ EN-Mistral ['O','0','0’, 'O', 'B-flight_time', 'I-flight_time', 'I-flight_time', 'I-flight_time', |
\\ Slot: 'I-flight_time', 'I-flight_time', '0'] /

Figure 6: Examples of case studies.
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