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ABSTRACT

Learning to control a safety-critical system with latent dynamics (e.g. for deep
brain stimulation) requires judiciously taking calculated risks to gain information.
We present a probabilistically-safe, meta-active learning approach to efficiently
learn system dynamics and optimal configurations. The key to our approach is a
novel integration of meta-learning and chance-constrained optimization in which
we 1) meta-learn an LSTM-based embedding of the active learning sample history,
2) encode a deep learning-based acquisition function with this embedding into a
mixed-integer linear program (MILP), and 3) solve the MILP to find the optimal
action trajectory, trading off the predicted information gain from the acquisition
function and the likelihood of safe control. We set a new state-of-the-art in active
learning to control a high-dimensional system with latent dynamics, achieving a
46% increase in information gain and a 20% speedup in computation time. We
then outperform baseline methods in learning the optimal parameter settings for
deep brain stimulation in rats to enhance the rats’ performance on a cognitive task
while safely avoiding unwanted side effects (i.e., triggering seizures).

1 INTRODUCTION

Safe and efficient control of a novel systems with latent dynamics is an important objective in domains
from healthcare to robotics. In healthcare, deep brain stimulation devices implanted in the brain
can improve memory deficits in patients with Alzheimers (Posporelis et al., 2018) and responsive
neurostimulators (RNS) can counter epileptiform activity to mitigate seizures. Yet, the surgeon’s
trial-and-error process of finding effective RNS parameters for each patient is time-consuming and
risky, with poor device settings possibly damaging the brain.

Researchers studying active learning and Bayesian optimization have sought to develop algorithms
to efficiently and safely learn a systems’ dynamics, e.g. learning a brain’s dynamics for RNS
configuration (Ashmaig et al., 2018; Sui et al., 2018). However, because these algorithms fail to scale
up to higher-dimensional state-action spaces, researchers utilize only simple voltage and frequency
controls rather than all 32 channels of the RNS waveform (Ashmaig et al., 2018). Similarly, tasks
in robotics, e.g. learning the dynamics of novel robotic systems (e.g., an autopilot learning to fly a
damaged aircraft), require active learning methods that succeed in higher-dimensional domains.

In this paper, we develop a probabilistically-safe, meta-active learning approach to tackle these
challenging tasks to efficiently learn system dynamics and optimal configurations. We draw inspi-
ration from recent contributions in meta-learning (Finn et al., 2017; Nagabandi et al., 2019; Wang
et al., 2016; Andrychowicz et al., 2016) that seek to leverage a distribution over training tasks to
optimize the parameters of a neural network for efficient, online adaptation. Researchers have previ-
ously investigated meta-learning for active learning, e.g. learning a Bayesian prior over a Gaussian
Process (Wang et al., 2018b) for learning an acquisition function. However, these approaches do
not consider the important problem of safely and actively learning to control a system with altered
dynamics, which is a requirement for safety-critical robotic applications. Furthermore, as we show in
Section 5, on challenging control tasks for healthcare and robotics, the performance of prior active
learning approaches (Kirsch et al., 2019; Hastie et al., 2017) leaves much to be desired.

We seek to overcome these key limitations of prior work by harnessing the power of meta-learning
for active learning in a chance-constrained optimization framework for safe, online adaptation by
encoding a learned representation of sample history. Instead of hand-engineering an acquisition

1



Under review as a conference paper at ICLR 2021

function for our specific domains, our approach employs a data-drive, meta-learning approach, which
results in better performance than prior approaches, as shown in Section 5. Furthermore, our approach
has the unique ability to impose analytical safety constraints over a sample trajectory.

Contributions – We develop a probabilistically safe, meta-learning approach for active learning
(”meta-active learning”) that sets a new state-of-the-art. Our acquisition function (i.e., the function
that predicts the expected information gain of a data point) is meta-learned offline, allowing the
policy to benefit from past experience and provide a more robust measure of the value of an action.
The key to our approach is a novel interweaving of our deep, meta-learned acquisition function
as a Long-Short Term Memory Network (Gers et al., 1999) (LSTM) within a chance-constrained,
mixed-integer linear program (MILP) (Schrijver, 1998). By encoding the LSTM’s linear, piece-wise
output layers into the MILP, we directly optimize an action trajectory that best ensures the safety of
the system while also maximizing the information learned about the system. In this paper, we describe
our novel architecture which uniquely combines the power of a learned acquisition function with
chance-constrained optimization and evaluate its performance against state-of-the-art baselines in
several relevant domains. To the best of our knowledge, this is the only architecture which meta-learns
an acquisition function for optimization tasks and is capable of embedding this acquisition function
in a chance-constrained linear program to guarantee a minimum level of safe operation.

The contributions of this paper are as follows:
1. Meta-active learning for autonomously synthesizing an acquisition function to efficiently

infer altered or unknown system dynamics and optimize system parameters.
2. Probabilistically-safe control combined with an active-learning framework through the

integration of our deep learning-based acquisition function and integer linear programming.
3. State-of-the art results for safe, active learning. We achieve a 46% increase in information

gain in a high-dimensional environment of controlling a damaged aircraft, and we achieve a
58% increase in information gain in our deep brain stimulation against our baselines.

2 PRELIMINARIES

In this section, we review the foundations of our work in active, meta-, and reinforcement learning.

Active Learning – Labelled training data is often difficult to obtain due either to tight time con-
straints or lack of expert resources. Active learning attempts to address this problem by utilizing
an “acquisition function” to quantify the amount of information an unlabelled training sample,
x ∈ DU = 〈xi〉ni=1, would provide a base learner, T̂ψ , if that sample were given a label, y and added
to a labeled dataset, DL = 〈xj , yj〉mj=1, i.e., DL ← DL ∪ 〈x, y〉. The active learning algorithm
queries its acquisition function, H(DU , DL, Tψ), to select which x ∈ DU should be labeled and
added to DL; then, a label is queried (e.g., by taking an action in an environment and observing the
effect) for x, and the new labeled sample is added to DL (Muslea et al., 2006; Pang et al., 2018).

Meta-Learning – Meta-learning approaches attempt to learn a method to quickly adapt to new tasks
online. In contrast to active learning, meta-learning attempts to learn a skill or learning method, e.g.
learning an active learning function, which can be transferable to novel tasks or scenarios. These
tasks or skills are trained offline, and a common assumption is that the tasks selected at test time are
drawn from the same distribution used for training (Hospedales et al., 2020).

Reinforcement Learning and Q-Learning – A Markov decision process (MDP) is a stochastic
control process for decision making and can be defined by the 5-tuple 〈X ,U , T ,R, γ〉. X represents
the set of states and U the set of actions. T : X × U × X ′ → [0, 1] is the transition function that
returns the probability of transitioning to state x′ from state x applying action, u. R : X × U → R is
a reward function that maps a state and action to a reward, and γ weights the discounting of future
rewards. Reinforcement learning seeks to synthesize a policy, π : X → U , mapping states to actions
to maximize the future expected reward. When π is the optimal policy, π∗, the following Bellman
condition holds: Qπ

∗
(x, u) := Ex′∼T

[
R(x, u) + γQπ

∗
(x′, π∗(x))

]
(Sutton & Barto, 2018).

2.1 PROBLEM SET-UP

Our work is at the unique nexus of active learning, meta-learning and deep reinforcement learning
with the objective of learning the Q-function as an acquisition function to describe the expected future
information gained when taking action, u, in state, x, given a set of previously experienced states
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Figure 1: This figure depicts our framework. Previously collected state-action pairs are fed into an
LSTM embedding layer. Mean and variance statistics are also calculated for each state and action.
The concatenated vector is fed through a fully connected layer to create the ~Z embedding. Our
Q-function consists of two, fully-connected, ReLU layers. All blue elements are neural network
layers of our acquisition function; the green element is the dynamics model; and the components of
the MILP are housed in the yellow box.

and actions. We define information gain as the percent decrease in the error of the objective (e.g.,
decrease in model error). A formal definition is provided in the Appendix. The Q-function is trained
via a meta-learning strategy in which an agent interacts in environments sampled from a distribution
of different scenarios to distill the most effective acquisition function for active learning of system
dynamics. In our context, the state, X, of the active learning system is given by X : 〈DU , DL, T̂ψ〉,
where DU consists of all possible state-action pairs, DL is the set of state-action pairs that the agent
has already experienced, and T̂ψ is a neural network function approximator of the transition dynamics,
which is parameterized by ψ and updated online as samples are collected. We note that this state, X,
is distinct from the state, X , of the robotic (or other) system we are controlling. The reward, R(i), is
proportional to the reduction of the mean squared error (MSE) loss of T̂ψ at time step, i.

3 SAFE META-LEARNING ARCHITECTURE

Several key components are vital for learning about an unknown system in a timely manner. First,
an encoded representation of the context of the new dynamics is important for determining where
exploration should be focused and which actions may be beneficial for gaining information of
unknown dynamics. Second, a range of prior experiences in active learning should be leveraged
to best inform which actions elicit the most information in a novel context within a distribution
of tasks. We seek to develop a framework with these key attributes to enable sample-efficient and
computationally light-weight active learning. An overview of our system is shown in Fig. 1.

3.1 META-LEARNING ALGORITHM

To infer the Q-function for an action (i.e. the acquisition function), we meta-learn over a distribution
of altered dynamics as described in Algorithm 1. For each episode, we sample from this distribution
of altered dynamics and limit each episode to the number of time steps, M , tuned to collect enough
data to accurately learn our approximate dynamics, T̂ψ , as a neural network with parameters, ψ. We
utilize Q-learning to infer the Q-function which is represented by a DQN. In our training scheme we
search over the action space via a MILP, as described in Section 3.2 and select the action set, ~U (t:T ),
which maximizes the Q-function while satisfying safety constraints.

The acquisition Q-function, Qθ, as described in Eq. 1 is trained via Deep Q-Learning (Ganger et al.,
2016) with target network, Qφ. During training, our Deep Q-Learning framework is augmented to
account for safety . The learned acquisition function, Qθ, is utilized by our policy (Eq. 1), which
is solved via a safety-constrained MILP solver. The reward, R(t), for taking a set of actions in a
given state is defined as the percent decrease in the MSE error of the model, T̂ψ . This Bellman loss is
backpropagated through the Q-value linear and (ReLU) output layers through the LSTM encoding
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Figure 2: This figure depicts the d-dimensional hyper-ellipsoid of safety. ~xr denotes the safest state
for the system and the shaded region is the set of all safe states. Action, ~u(t), is an exploratory action,
which may bring the system outside of the hyper-ellipsoid of safety. Action, ~u(t+1), estimates that
the system returns to a safe state with probability 1− ε.

layers. π(~Z(t+1)) is the set of actions, ~U (t+1), determined by maximizing Eq. 1, which we describe
in Section 3.2. The dynamics model, T̂ψ , is retrained with each new set of state-action pairs.

Algorithm 1 Meta-learning for training
1: Randomly initialize Qθ and Qφ with weights θ = φ
2: Initialize replay buffer, D
3: for episode=1 to N do
4: Initialize T̂ψ based on meta-learning distribution
5: Collect small initial set of state-action pairs, U (0), X(0)

6: Train T̂ψ on initial set
7: for t=1 to M do
8: Forward pass on encoder to obtain ~Z(t)

9: Select U (t) from Eq. 1
10: Execute actions U (t) + N according to exploration noise, N ;

observe states X(t+1)

11: Retrain T̂ψ on X(0:t), U (0:t) and observe reward R(t)

12: D ← D ∪ 〈U (t),X(t),X(t+1), R(t)〉
13: Sample a batch of transitions from D
14: Perform forward pass through encoder to obtain ~Z(t+1)

15: Calculate y(t) = R(t) + γQφ
(
π(~Z(t+1)), ~Z(t+1)

)
16: Update Qθ according to

(
y(t) −Qθ(~U (t), ~Z(t))

)
17: Qφ ← τQθ + τ(1−Qφ)
18: end for
19: end for;

Algorithm 2 Meta-
learning for testing

1: Draw test example from dis-
tribution

2: Initialize T̂ψ
3: for t=1 to M do
4: Do forward pass through

encoder to get ~Z(t)

5: Select actions, U (t), ac-
cording to Eq. 1

6: Execute actions, U (t); ob-
serve states X(t+1) and
reward R(t)

7: Retrain T̂ψ on X(0:t+1),
U (0:t+1)

8: end for

3.2 MIXED-INTEGER LINEAR PROGRAM

Our objective (Eq. 1) is to maximize both the probability of the system remaining in a safe configura-
tion and the information gained along the finite trajectory horizon from [t, t+ T ).

~U (t:t+T )∗ = argmax
~U(t:t+T )∈~U(t:t+T )

λ1

[
Qφ(~U (t:t+T ), ~Z)− Q̄θ(·, ~Z)

]
+ Pr

{∥∥∥~x(t+T ) − ~xr
∥∥∥
1
≤ r
}

(1)

Qφ(~U (t:t+T ), ~Z) describes the expected information gained along the trajectory when the set of
actions ~U (t:t+T ) is taken in the context of the embedding ~Z, and Q̄θ(·, ~Z) is the expected Q-value in
state ~Z, which we discuss further in Section 3.3. λ1 is a hyper-parameter that can be tuned to adjust
the tradeoff between safety and information gain. Pr

{∥∥~x(t+T ) − ~xr
∥∥
1
≤ r
}

defines the probability
of remaining within the hyper-ellipsoid of safety. We derive a linearization of this equation based on
an assumption of Gaussian dynamics which can then be solved via MILP.

Definition of Safety - We define a hyper-ellipsoid of safety, parameterized by the safe state xr and
radius ~r encompassing all known safe system states. In the case of an aircraft, ~xr would be straight
and level flight and the hyper-ellipsoid would include deviations considered safe. Additionally, we
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assume that our model error comes from a Gaussian distribution with known mean and variance. This
assumption allows us to impose safety constraints which can either be enforced with a probability of
one, or this requirement can be relaxed to increase the potential for information gain.

By assuming that our model error originates from a Gaussian distribution, we can linearize our
probability constraints described in Eq. 9 to include in the MILP (See Appendix for full derivation).
Here, Φ−1 is the inverse cumulative distribution function for the standard normal distribution and
1− εd denotes the probability level. σ represents the uncertainty in the dynamics network parameters.
d represents the dth row and j represents the jth column. ∆

(t:t+T )
d = xrd − [βx(t)]d where β defines

the evolution of a state (See Appendix A.4.1 for more detail). We compute the uncertainty, σ, of our
network via bootstrapping (Efron, 2020; Franke & Nuemann, 1998), which we describe further in the
Appendix. We guarantee a minimum probability of safety by selecting the minimum risk value, εd, to
be at or above our minimum desired probability of safety. This procedure ensure that our algorithm
must select a safety constraint that exceeds this minimum safety requirement. Note: the hyper-ellipse,
when linearized, is a hyper-rectangle.

Pr
{ ∥∥∥~x(t+T ) − ~xr

∥∥∥
1
≤ r

}
−→

∥∥∥Φ−1
(1− εd)

√√√√∑
j

σ2
d,j
x
(t)2

j +
∑
j

σ
2
d,j
U(t:t+T )2

j + Γt
~U(t:t+T )2 −∆

(t:t+T )
d

∥∥∥
1
< rd, ∀d

(2)

Our policy takes a set of information rich actions at time t, potentially out of the d-dimensional
hyper-ellipsoid of safety, guaranteeing with probability 1− ε that the system will return to a safe state
after T time steps. Thus, our T -step propagation allows the system to deviate from the safe region, if
desired, to focus on actively learning so long as it can return to the safe region with high confidence.

3.3 AN LSTM Q-FUNCTION AS A LINEAR PROGRAM

We leverage an LSTM as a function approximator for Q-learning. To blend our Q-function with
the MILP, we pass the LSTM output embedding, which serves as a learned representation of the
sample history, through a fully connected layer with ReLU activations.1 This design enables us
to backprop the Bellman residual through the output layers encoded in the MILP all the way to
the LSTM inputs. Thus we can leverage the power of an LSTM and mathematical programming
in a seamless framework.2 Given our meta-learned acquisition function and chance-constrained
optimization framework, we can now perform probabilistically-safe active learning. Algorithm 2
describes how we perform our online, safe and active learning. Intuitively, our algorithm initializes
a new dynamics model to represent the unknown or altered dynamics, and we iteratively sample
information rich, safe actions via our MILP policy, update our dynamics model, and repeat.

4 EXPERIMENTAL EVALUATION

We design two experiments to validate our approach’s ability to safely and actively learn altered
or unknown dynamics in real time. We compare our approach to several baseline approaches and
demonstrate that our approach is superior in terms of both information gain and computation time.
More details on the experimental domains can be found in the Appendix.

4.1 ASYNCHRONOUS DISTRIBUTED MICROELECTRODE THETA

Asynchronous distributed microelectrode theta stimulation (ADMETS) is a cutting edge deep brain
stimulation approach to treating seizure conditions that cannot be controlled via pharmacological
methods. In ADMETS, a neuro-stimulator is implanted in the brain to deliver continuous electrical
pulses to reduce seizures. However, there is no clear mapping from parameter values to reduction in
seizures that applies to all patients, as the optimal parameter settings can depend on the placement
of the device, the anatomy of an individual’s brain and other confounding factors. Further, a latent
subset of parameters can cause negative side-effects.

1We include the mean and standard deviation of previously collected states and actions as we find the first
and second moments of the data to be helpful, additional features.

2Details on the hyperparameter settings including learning rates and layer sizes can be found in the Appendix
along with the derivation for the linearization of the Q-function for inclusion in the linear program.

5



Under review as a conference paper at ICLR 2021

(a) ADMETS Implantation. (b) High-dimensional Domain; Courtesy: Flightgear.

Figure 3: Fig. 3a depicts a surgical ADMETS device implanted in a rat brain (Ashmaig et al., 2018)
(Section 4.1). Fig. 3b depicts the high-dimensional domain for dynamical control (Section 4.2).

As a surrogate task for evaluating how well an algorithm can find the optimal paremeters of an
ADMETS device for in vivo epilepsy therapy, researchers have proposed leveraging experimental
data collected from parameter sweeps of ADMETS devices in rats. In keeping with Ashmaig et al.
(2018), we create simulation environments for six rats where, at each ADMETS parameter setting,
the cognitive function of a rat was tested (i.e., the rats ability to recall where a treat was located in
a maze), as measured by a “memory score.” The task for safe, active learning task is to determine
the ADMETS parameters (i.e., signal amplitude) in the simulation environments that maximize each
rat’s memory scores without causing unwanted side effects (e.g., seizures), which can arise when
the memory score drops below zero. The reward signal utilized by our meta-learner is the percent
decrease in error between the predicted and actual optimal parameters.

4.2 HIGH-DIMENSIONAL DOMAIN (RECOVERING DYNAMICS OF A DAMAGED AIRCRAFT)

Active learning algorithms can be ineffective in high-dimensional domains. As such, we seek to
stress-test our algorithms in just such a domain: Learning the nonlinear dynamics of a damaged
aircraft online before the system enters an unrecoverable configuration (e.g., a spin or crashing). We
base our simulation on theoretical damage models from prior work describing the full equations of
motion (Watkiss, 1994; Zhang et al., 2017; Ouellette, 2010) within the Flightgear virtual environment.
The objective of this domain is to learn the difference between the altered dynamics that result
from the damage and to maintain safe flight. We consider safe flight to be our designated safe state,
~xr. The aircraft takes an information rich action potentially resulting in a deviation outside of the
d-dimensional hyper-ellipsoid of safety. The next action is constrained to guarantee that the plane
returns to the hyper-ellipsoid of safety with probability 1− ε via action u(t+1).

4.3 BASELINE COMPARISONS

We evaluate against the following baselines in active learning and Bayesian optimization. The
acquisition function baselines, Epistemic Uncertainty (Hastie et al., 2017) and Maximizing Diversity
(Schrum & Gombolay, 2020) are embedded in our safety framework, therefore providing a head-to-
head comparison between our meta-learned acquisition function and these active learning heuristics.

• Epistemic Uncertainty (Hastie et al., 2017) - This active learning metric selects the action that
maximizes uncertainty.

• Maximizing Diversity (Schrum & Gombolay, 2020) - This acquisition function selects actions
which maximize the difference between previously seen states and actions.
• Bayesian Optimization (BaO) (Ashmaig et al., 2018) - This algorithm was developed for the

ADMETS domain (Section 4.1) and is based upon a Gaussian Process model.
• Meta Bayesian Optimization (Meta BO) (Wang et al., 2018a) - This approach meta-learns a

Gaussian process prior offline over previously sampled data.
• Learning Active Learning (LAL) (Konyushkova et al., 2017) - This approach meta-learns an

acquisition function leveraging hand-engineered features.

We benchmark against each of the above algorithms in both the ADMETS and high-dimensional
domains. We do not compare to MAML (Finn et al., 2017) or Nagabandi et al. (2019) as these
algorithms have no notion of safety or active learning.
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5 RESULTS

We empirically validate that in the our meta-active learning approach outperforms baselines across
both the ADMETS and high-dimensional domains in terms of its ability to actively learn latent
parameters and its ability to safely perform these tasks. In contrast to our approach, even though
BaO, Meta BO, and LAL do not consider safety, we are able to outperform those baselines across all
metrics.

(a) (b) (c)

Figure 4: This figure depicts our empirical validation in the ADMETS domain, benchmarking
algorithm accuracy per time step (Fig. 4a), overall (Fig. 4b), and vs. computation time (Fig. 4c).

Active Learning – Results from both the ADMETS and the high-dimensional domains empirically
validate that our algorithm more efficiently and safely learns the optimal control parameters (Fig. 4)
and system dynamics (Fig. 5). In Fig. 4b-5b, we report the mean (standard deviation) for each
measure and baseline where possible. In the ADMETS domain, our model selects an action which
results in a 58% higher information gain than BaO and 87% higher information gain than Meta BO
on average. When compared to the state-of-the-art active learning baselines, our method performs
41% better than Maximizing Diversity and 98% better than Uncertainty in terms of information gain.

In the high-dimensional domain, we achieve a 49% improvement over Hastie et al. (2017) and
a 46% improvement over both Schrum & Gombolay (2020) and Konyushkova et al. (2017). We
point out that our approach outperforms active learning heuristics (i.e., Maximizing Diversity and
Epistemic Uncertainty) when run inside our chance-constrained framework for a direct comparison.
This result validates meta-learning an acquisition function is a necessary and beneficial component of
our framework.

Computation Time – We demonstrate that our method also outperforms previous work in terms
of computation time. Across both domains, our approach not only achieves a more efficient reduction
in model error and improvement in information gain, we are also faster than all baselines in the
more challenging, high-dimensional (Fig. 5c) environment. In the lower-dimensional, ADMETS

(a) (b) (c)

Figure 5: This figure depicts our empirical validation in the high-dimensional domain benchmarking
algorithm accuracy per time step (Fig. 5a), overall (Fig. 5b), and vs. computation time (Fig. 5c).
Error is calculated in batches of three time steps, enabling the robot to deviate from the safe region
temporarily to gain information. Our algorithm outperforms baselines in both safety and information
gain. We do not report full results for MetaBO in the high-dimensional domain as the high dimensional
state space made this baseline computationally intractable.
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environment (Fig. 4c), BaO has a slight advantage in computation time, but our algorithm trades the
time for a 58% information gain over BaO. Additionally, we are 68x faster than LAL and 61x faster
than Meta BO, the two other meta-learning approaches we benchmark against.

(a) (b)

Figure 6: This figure shows the results of our ablation analysis. In the above plots, we set λ = 0,
meaning there is no active learning and only safety is maximized in our objective function. Fig. 6a
shows the results in the ADMETS domain and Fig. 5b the results in the high-dimensional domain. In
both domains, our meta-learned acquisition function is clearly an important component to achieve
efficient learning.

Safety – In the high-dimensional domain, we empirically validate that, for the information results we
report in Fig. 5 we can achieve an 87% probability the aircraft will return to the safe region 5a. As
shown in Fig 5b, only Maximizing Diversity (85% safe) and Epistemic Uncertainty (78% safe) allow
for safety constraints to be imposed. Our algorithm thus outperforms the baselines in safety as well
as information gain. When we maximize for safety (i.e., λ = 0), our algorithm is able to achieve a
99.9% safe return to the hyper-ellipsoid even without a ground-truth dynamics model.

In the ADMETS domain, we find that our algorithm achieves a 2.3% higher guarantee of safety
compared to Maximizing Diversity. Our baseline Uncertainty achieves an equivalent safety guarantee
to our algorithm, yet our algorithm achieves a 98% greater information gain comparatively, placing it
at the Pareto front in terms of safety and information gain. We outperform LAL, BaO, and MetaBo in
information gain and computation time under our safety constraints even though these algorithms are
unconstrained.

We show in Fig 6 the results of our algorithm in both domains when maximizing only safety and
removing the active learning component from our objective. Without the meta-learned active learning
function, our algorithm does not explore as efficiently and therefore achieves a lower model accuracy
at each time step, demonstrating that our meta-learned acquisition function is an important component
of our architecture.

5.1 DISCUSSION

Through our empirical investigation, we have demonstrated that our meta-learned acquisition function
operating within a chance-constrained optimization framework outperforms prior work in active
learning, meta-learning, and Bayesian optimization (Hastie et al., 2017; Schrum & Gombolay, 2020;
Ashmaig et al., 2018; Konyushkova et al., 2017; Wang et al., 2018a). Specifically, we are able to
simultaneously achieve an improvement in information gain via increased sample efficiency and
decreased computation time. We achieve a 46% increase in information gain while still achieving
a 20% speedup in computation compared to active learning baselines and 60x faster computation
time compared to our meta learning baseline. Our novel, deep learning architecture, demonstrates a
unique ability to leverage the power of feature learning across time-series data within a LSTM neural
network and the utility of deep Q-learning, within mathematical optimization with chance constraints
to explicitly tradeoff safety and active learning. Our approach allows for minimum safety guarantees
while also maximizing the information gained based on a learned representation of sample history.
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6 RELATED WORK

Our work lies at the crossroads of active learning, meta-learning and safe learning. We discuss the
contributions of our work and why our approach is novel in light of prior work.

Active Learning - Active learning acquisition functions provide heuristics to selecting the candidate
unlabeled training data sample that, if the label were known, would provide the most information to
the model being learned (Burbidge et al., 2007; Hasenjager & Ritter, 1998; Cai et al., 2017; Hastie
et al., 2017). For example, in Hastie et al. (2017) the action is selected that the learner is least
certain about. In work by Ashmaig et al. (2018), the authors utilize the acquisition function Expected
Improvement (EI) to balance exploration versus exploitation to determine the optimal stimulation
parameters in ADMETS.

Prior literature has also investigated on-the-fly active learning and meta-active learning (Bachman
et al., 2016; Konyushkova et al., 2017). Konyushkova et al. (2017) describes the algorithm Learning
Active Learning (LAL). The authors present a meta-learning method for learning an acquisition
function in which a regressor is trained to predict the reduction in model error of candidate samples
via hand engineered features. Wang et al. (2018a) alternatively considers a Gaussian Process based
method to meta-train an acquisition function on a distribution of tasks. They show that their method
is capable of extracting structural properties of the objective function for improved data-efficiency.
Work by Geifman & El-Yaniv (2018) attempts to actively learn the neural network architecture that is
most appropriate for a given task, e.g. active learning. Pang et al. (2018) additionally proposed a
method to learn an acquisition function that generalizes to a variety of classification tasks. Yet, this
work has only been demonstrated for classification.

Meta-Learning for Dynamics - Prior work has attempted to address the problem of learning altered
dynamics via a meta-learning (Clavera et al., 2009). Belkhale et al. (2020) investigate a meta-learning
approach to learn the altered dynamics of an aircraft carrying a payload; the authors train a neural
network on prior data to predict environmental and task factors to inform how to adapt to new
payloads. Finn et al. (2018) present a meta-learning approach to quickly learning a control policy.
In this approach, a distribution over prior model parameters that are most conducive to learning the
new dynamics is meta-learned offline. While this approach provides fast policies for learning new
dynamics, it does not explicitly reason about sample efficiency or safety.

Safe Learning - Prior work has investigated safe learning in the context of safe Bayesian optimization
and safe reinforcement learning. For example, Sui et al. (2015) develop the algorithm SafeOpt which
balances exploration and exploitation to learn an unknown function; however, this approach has
significant limiting assumptions about the underlying nature of the task. Turchetta et al. (2016)
address the problem of safely exploring an MDP by defining an a priori unknown safety constraint
updated during exploration, and Zimmer et al. (2018) utilizes a Gaussian process for safely learning
time series data. However, these approaches do not incorporate knowledge from prior data to increase
sample efficiency, limiting their ability to choose the optimal action. Schrum & Gombolay (2020)
attempt to overcome this problem by employing a novel acquisition function, Maximizing Diversity,
which is utilized to quickly learn altered system dynamics in a chance constrained framework. Yet,
the hand engineered acquisition function limits the capabilities of this approach.

7 CONCLUSION

In this paper we demonstrate a state of the art meta-learning approach to active learning for control.
By encoding the context of the dynamics via an LSTM and learning a Q-function – which we encode
into a mixed-integer optimization framework – that predicts the expected information gain of taking a
given action, our framework is able to efficiently and safely learn the nature of the altered dynamics.
We compare our approach to baseline acquisition functions and demonstrate that ours is superior in
both computation time and information gain, achieving a 46% increase in information gain while still
achieving a 20% speedup in computation time compared to state-of-the-art acquisition functions and
more than a 58% higher information compared to Bayesian approaches.
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A APPENDIX

A.1 DETAILS ON DOMAINS

Here we describe in more detail the input and output spaces of the ADMETS and high-dimensional
domains as well as other details relevant to implementation.

A.1.1 AIRCRAFT

Our simulation consists of ten states, i.e., forward velocity (u), vertical velocity (w), pitch rate (q),
pitch angle (θ), sideslip angle (β), roll rate (p), yaw rate (r), roll angle (ψ), yaw angle (φ), and altitude
(Z). The control inputs are elevator (∆e), thrust (∆(t)), aileron (∆a), and rudder (∆r). Our sampling
rate is 20 Hz.

A.1.2 ADMETS

The input parameter space is one-dimensional and consists of the voltage amplitude (va). The output
space is a score quantifying memory, referred to as the discrimination score (ds). The objective of
this domain is to maximize discrimination area, which is defined as da := ds ∗ va. More detail on
this domain and the data on which the simulation is based can be found at Ashmaig et al. (2018).

A.2 DEFINITION OF INFORMATION GAIN

We define information gain, I , at time step t as the percent decrease in the error of the objective as
described in Eq. 3. e(t) is the error of the objective at time step t. In the high-dimensional domain,
e(t) is defined as the mean squared error of the model, e(t) = 1

N

∑N
i−1(x(i) − ˆx(i))2. x is the ground

truth state and x̂ is the state predicted by the model. In the ADMETS domain e(t) is defined as the L1

norm of the predicted optimal parameter and the ground truth optimal parameter (e(t) = ||da− d̂a||1).
During offline training, the ground truth can be obtained from the known model.

I(t+1) =
e(t) − e(t+1)

e(t)
(3)

A.3 BASELINE ACQUISITION FUNCTIONS

A.3.1 MAXIMIZING DIVERSITY

We compare our method to the acquisition function, maximizing diversity, presented by (Schrum &
Gombolay, 2020). Here, u(i) and x(i) are states and actions that the robot has previously experienced,
and f is the current dynamics model.

u∗ = argmax
u∈U

N∑
i=1

∥∥∥u− u(i)∥∥∥
1

+ β
∥∥∥T̂ψ (x, u)− x(i)

∥∥∥
1

(4)

A.3.2 MAXIMIZING UNCERTAINTY

This active learning metric described by (Hastie et al., 2017) quantifies the uncertainty in the output
of the model for each training example as described in Eq. 5. Here, T̂z(u)) is the zth dynamics model
and T̄ is the average across models z.

u∗ = argmax
u∈U

1

Z

Z∑
z=1

∥∥∥T̄ − T̂z(u))
∥∥∥
1

(5)

A.4 ADDITIONAL DETAILS ON MIXED-INTEGER LINEAR PROGRAM FORMULATION

In this section we provide additional details on the linearization of our probability constraints and
objective function for integration into a linear programming formulation.
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A.4.1 DYNAMICS MODEL REPRESENTATION

In practice, in the high-dimensional domain we find that T̂ψ can be represented as a single-layer
perceptron (i.e. linear regression) which advantageously is computationally efficient in domains that
require fast computation times. We adopt a multi-layer perceptron with ReLU activations in the
ADMETS domain. Our inferred dynamics therefore evolve according Γ. A describes the evolution of
a state with no input, B the change in the state due to an action at time t, ~u(t), and I is the identity
matrix.

~X(t+1:t+T ) = β~x(t) + Γ~U (t:t+T ) (6)

β =
[
A2 A3 . . . AT

]
(7)

Γ =


AB B 0 0 . . . 0
A2B AB B 0 . . . 0

...
. . .

AT−1B AT−2B AT−3 . . . . . . B

 (8)

A.4.2 LINEARIZATION OF PROBABILITY CONSTRAINTS

To include our safety constraints in a mixed-integer linear programming formulation, we remove
the non-linearities via conservative assumptions and other techniques. Our safety constraints are
defined in Eq. 9 and the dynamics evolve according to equations 6-8. d represents the dth row and j
represents the columns.

∥∥∥Φ−1(1− εd)
√∑

j

σ2
d,jx

(t)2

j +
∑
j

σ
2

d,jU
(t:t+T )2

j + Γ~U (t:t+T )2 −∆
(t:t+T )
d

∥∥∥
1
< rd (9)

The following conservative assumption is made to linearize the sum of squares in Eq. 9.

0 ≤
√∑

j

σ2
d,jx

2
j ≤

∑
j

σd,j |xj | (10)

We utilize the binary decision variable, δε ∈ {0, 1} as a probability selector variable to linearize
the absolute value in Eq. 9. M represents a large positive number and Γ̄ is the point estimate of
the dynamics. This linearization technique combined with the conservative assumption in Eq. 10
results in the following linear equations (Eq. 11-13) which can be integrated into a mixed-integer
linear programming formulation. E is the set of “probability levels”, e.g., E = {0.75, 0.8, ...} where
minE defines the minimum enforced probability of safety.

−Mδε − Φ−1(1− εp)
∑
j

σd,jŨ (t:t+T )
j − Γ̄~U (t:t+T ) < ~rd + ∆

(t:t+T )
d +

∑
j

σd,j |x(t)j | (11)

−Mδε + Φ−1(1− εp)
∑
j

σd,jŨ (t:t+T )
j + Γ̄~U (t:t+T ) < rd −∆

(t:t+T )
d −

∑
j

σd,j |x(t)j | (12)

∑
p∈E

δεp,d = |E| − 1,∀d ∈ D (13)

A.4.3 VARIANCE ESTIMATION

We compute uncertainty of our network via bootstrapping. We follow the method proposed in Efron
(2020) and randomly redraw bootstrap training samples with replacement from our set of training
data. This technique has been verified by Franke & Nuemann (1998) to be an effective method for

13



Under review as a conference paper at ICLR 2021

approximating the uncertainty of neural networks. The components of σ are calculated according to
Eq. 14. Here x̄ is the average of the bootstrapped networks and x(b)d,j a single bootstrapped network.
B is the number of bootstrapped networks.

σd,j =

√∑B
b=1(x̄d,j − x(b)d,j)2

B − 1
(14)

A.4.4 LINEARIZATION OF Q-FUNCTION

Our Q-function includes a non-linear relu activation function which is linearized to be included in the
mixed-integer linear programming formulation. Equations 15-17 define the equations for a neural

network with relu activation. ξ =
[[
U (t:T )

]ᵀ
,
[
~Z
]ᵀ]

is the input to the Q-function and ω
(l)

j,i is the
connection between neurons j and i between layers l and l + 1.

Q(~U (t:T ), ~Z) =
∑
j

ω
(2)

j,d o
(2)

j ,∀d ∈ D (15)

o
(2)

i =
∑
j

ω
(1)

j,i o
(1)

j1
(

o
(1)

j≥0
),∀i (16)

o
(1)

i =
∑
j

ω
(0)

j,iξ
(t)
j (17)

This formulation is linearized in Eq. 18-20. ki ∈ {0, 1} is a binary indicator variable and M
represents a large positive number.

Mki −M +
∑
j

ω
(0)

j,iξ
(t)
j ≤ 0 ≤Mki +

∑
j

ω
(0)

j,iξ
(t)
j (18)

∑
j

ω
(0)

j,iξ
(t)
j −M ≤ o

(1)
i ≤

∑
j

ω
(0)

j,iξ
(t)
j +Mki (19)

M −Mki ≥ o
(1)

i ≥ 0,∀i (20)

A.4.5 LINEARIZATION OF “RESETTING” TERM

In practice, we find that taking a final, “resetting” action at time t+ T by adding z3 =
∥∥~x(T ) − ~xr

∥∥
to minimize the distance between the aircraft’s state and ~xr helps to ensure the aircraft does not loiter
along the boundary of safe operation until where a random perturbation could result in failure the
aircraft. We linearize the resetting term in our objective function, i.e. the difference between our
designated safe state, ~xr and the final state xT by maximizing −(z+ + z−) subject to the constraint
in Eq. 21. z+ and z− are both positive continuous variables.

~xT − ~xr = z+ − z− (21)

z+, z− > 0 (22)

A.4.6 LINEARIZED OBJECTIVE

The resultant linearized objective is defined in Eq. 23. In the ADMETS domain λ3 is set to 0.

~U (t:T )∗ = argmax
~U(t:T )∈~U(t:T )

(
λ1

H∑
j

( ω
(2)

j,d ∗ o
(2)

j − Q̄θ(·, ~Z))

+ λ2
∑
p∈E

(1− δεp,d)εp,d − λ3(z−d + z+d )
)

(23)
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B SAFETY

B.0.1 ADMETS DOMAIN

The baselines used in the ADMETS domain did not have built in safety guarantees. Therefore, when
comparing against these baselines, we removed the safety constraints in our algorithm to make the
comparison fair.

B.0.2 HIGH-DIMENSIONAL DOMAIN

Safety constraints are necessary in the high-dimensional domain because without these constraints,
the aircraft would quickly go into an unrecoverable configuration. The epistemic uncertainty Hastie
et al. (2017) and diversity Schrum & Gombolay (2020) baselines can be integrated into our safety
framework by linearizing the acquisition functions. Therefore, in our comparison of our algorithm
versus the baselines, we enforced the safety constraints.

LAL Konyushkova et al. (2017), however, is not an inherently safe method of active learning. To
fairly compare this baseline to our method in the high-dimensional domain, we simulate the possible
actions that can be selected by LAL and discard those that are not safe (i.e., the actions that take the
aircraft out of the cylinder of safety). Therefore, LAL can only select an action considered safe by
our definition of safety.

B.1 SENSITIVITY ANALYSIS

To robustly evaluate our method compared to the baselines, we vary the hyperparameters of the
approach by (Schrum & Gombolay, 2020) for maximizing diversity and our meta-learned function to
show that our function is robust and is still superior despite changes in hyperparameters. The results
of this hyperparameter sweep are shown in Table 1. The hyper-parameter we vary for maximizing
diversity is the number of previous training samples that we compare to. The information gain
increases as the number of samples increases up to a point at which the selected sample tends to
converge to the mean of the previously collected samples, causing the information gain to fall. We
vary the number of hidden neurons in our Q-function as the hyper-parameter of interest as it governs
the trade-off between computational speed and function approximation power.

In our approach, the addition of a hidden neuron adds an additional integer variable, resulting in
an increase in computation time as demonstrated in Table 1. However, an addition of 25 neurons
only increase the computation time by 3.7% and provides a 50% increase in information gain. In
comparison, Schrum & Gombolay (2020)’s approach results in increase in information gain 4% while
trading off a 6% loss in computation time. Likewise, increasing the number of bootstrapped models
in Hastie et al. (2017)’s approach results in a 35% increase in information gain and a 37.5% increase
in computation time. Therefore, in our approach we are able to gain more information without large
increases in computation time.

Our Diversity Uncertainty
Approach (Schrum & Gombolay, 2020) (Hastie et al., 2017)

Parameter Setting 5 30 1 2 3 4 5 2 3 4
Average Information

Gain (SD)
.196
(.37)

.39
(.23)

.29
(.44)

.30
(.30)

.31
(.30)

.26
(.22)

.26
(.22)

.22
(.45)

.25
(.17)

.33
(.17)

Average Computation
Time (s) (SD)

.12
(.03)

.146
(.01)

.17
(.03)

.18
(.04)

.19
(.04)

.21
(.04)

0.22
(.03)

.16
(.04)

.21
(.05)

.26
(.05)

Table 1: Average information gain for our approach compared to that by (Schrum & Gombolay, 2020)
and (Hastie et al., 2017). We vary the number of previous samples in the diversity maximization
problem from one to five and the number of bootstrapped models from two to four in maximizing
uncertainty heuristic. We vary the number of hidden neurons in our meta-learned Q-function. We
bold the setting of our algorithm that outperforms our baselines across all hyperparameter settings
tested.
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B.2 ADDITIONAL RESULTS

We present results for each damage condition in the high-dimensional domain comparing our approach
to the baseline acquisition functions diversity Schrum & Gombolay (2020) and epistemic uncertainty
Hastie et al. (2017). Our approach outperforms the baselines for each damage condition.

Ours Diversity Uncertainty
Loss of Stabilizer .371 (.18) .207 (.11) .189 (.09)

Wing Damage .223 (.14) .133 (.11) .200 (.07)
Loss of Aileron .380 (.12) .215 (.07) .312 (.005)

Table 2: We report average information gain and standard deviation for
the canonical altered dynamics conditions loss of vertical stabilizer, wing
damage, and loss of aileron control for the best parameter settings for each
approach. Our approach outperforms both heuristics.

B.3 HYPERPARAMETERS

The hyperparameters employed for each domain are listed in the Table 3. We show the learning rates
for each domain which were determined via experimentation to be effective values. The size of the
LSTM hidden layer and each of the two layers of the Q-function is also presented. τ is the soft update
coefficient for updating the target network.

ADMETS Aircraft
Learning Rate 1e-4 1e-3

LSTM Hidden Layer Size 20 100
Q function Layer 1 Size 64 50
Q function Layer 2 Size 16 30

Soft Update (τ ) .001 .001
Exploration noise Gaussian Ornstein-Uhlenbeck

Table 3: Hyperparameters for the ADMETS and high-dimensional domains.
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