
Clustered Policy Decision Ranking

Mark Levin1, Hana Chockler2

1University of Maryland, College Park, MD, US
2King’s College, London, UK

mlevin12@umd.edu, hana.chockler@kcl.ac.uk

Abstract
Policies trained via reinforcement learning (RL) are often
very complex even for simple tasks. In an episode with n time
steps, a policy will make n decisions on actions to take, many
of which may appear non-intuitive to the observer. Moreover,
it is not clear which of these decisions directly contribute to-
wards achieving the reward and how significant their con-
tribution is. Given a trained policy, we propose a black-box
method based on statistical covariance estimation that clus-
ters the states of the environment and ranks each cluster ac-
cording to the importance of decisions made in its states. We
compare our measure against a previous statistical fault local-
ization based ranking procedure.

Introduction
Reinforcement learning is a powerful method for training
policies that complete tasks in complex environments via se-
quential action selection (Sutton and Barto 2018). The poli-
cies produced are optimized to maximize the expected cu-
mulative reward provided by the environment. While reward
maximization is clearly an important goal, this single mea-
sure may not reflect other objectives that an engineer or sci-
entist may desire in training RL agents. Focusing solely on
performance risks overlooking the demand for models that
are easier to analyse, predict and interpret (Lewis, Li, and
Sycara 2020). Our hypothesis is that many trained policies
are needlessly complex, i.e., that there exist alternative poli-
cies that perform just as well or nearly as well but that are
significantly simpler.

The starting point for our definition of simplicity is the
assumption that there exists a way to make a simpler choice
based on repeating the most recent action taken. We argue
that this may be the case for many environments in which RL
is applied. That is, there may be states or clusters of states in
which the most recent action can be repeated without a dras-
tic drop in expected reward obtained. The tension between
performance and simplicity is central to the field of explain-
able AI (XAI), and machine learning as a whole (Gunning
and Aha 2019).

Ranking policy decisions according to their importance
was introduced by (Pouget et al. 2021), who use spectrum-
based fault localization (SBFL) techniques to approximate

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the contribution of decisions to reward attainment. This ap-
proach constitutes a statistical ranking of individual states.

We theorize however that a single state cannot have par-
ticularly notable importance, especially in more complex
environments. As discussed in (McNamee and Chockler
2022), another exploration of policy simplification, previ-
ous work treats actions independently, whereas it is often
the case that action sequences, or even non-contiguous com-
binations of actions, may synergize to have a large effect
on reward acquisition (Sutton, Precup, and Singh 1999). Ex-
tending SBFL-based and causality-based policy ranking into
the multi-action domain may result in qualitatively distinct
policy ranking results compared to single-action methods.

The key contribution of this paper is a novel method for
clustering policy decisions according to their co-variable
correlation with significant impact on the attainment of the
goal, and subsequent ranking of those clusters. We argue that
the clustered decisions grant insight into the operation of the
policy, and that this clustered ranking method describes the
importance of states more accurately than an individual sta-
tistical ranking. We evaluate our clustering method by us-
ing the clusters to simplify policies without compromising
performance, hence addressing one of the main hurdles for
wide adoption of deep RL: the high complexity of trained
policies.

We use the same proxy measure for evaluating the quality
of our ranking as (Pouget et al. 2021): we construct new,
simpler policies (“pruned policies”) that only use the top-
ranked clusters, without retraining, and compare the reward
achieved by these policies to the original policy’s reward.

Our experiments with agents for MiniGrid (Cheva-
lier Boisvert, Willems, and Pal 2018) and environments from
Atari Zoo (Brockman et al. 2016) including Bowling, Krull,
and Hero demonstrate that pruned policies can maintain high
performance and also that performance monotonically ap-
proaches that of the original policy as more highly ranked
decisions are included from the original policy. As pruned
policies are much easier to understand than the original poli-
cies, we consider this a potentially useful method in the con-
text of explainable RL. As pruning a given policy does not
require re-training, the procedure is relatively lightweight.
Furthermore, the clustering of states itself provides an im-
portant insight into the relationships of particular decisions
to the performance of the policy overall.

The code for the experiments and full experimental
results are available at https://anonymous.4open.science/r/
Clustered-Policy-Decision-Ranking.

Background
Reinforcement Learning
We use a standard reinforcement learning (RL) setup and as-
sume that the reader is familiar with the basic concepts. An
environment in RL is defined as a Markov decision process
(MDP) with components {S,A, P,R, γ}, where S is the set
of states s, A is the set of actions a, P is the transition func-
tion, R is the reward function, and γ is the discount factor.
An agent seeks to learn a policy π : S → A that maxi-
mizes the total discounted reward. Starting from the initial
state s0 and given the policy π, the state-value function is
the expected future discounted reward as follows:

Vπ(s0) = E

(∞∑
t=0

γtR(st, π(st), st+1)

)
. (1)

A policy π : S → A maps states to the actions taken in
these states and may be stochastic. We treat the policy as a
black box, and hence make no further assumptions about π.

Mutation
When we simplify a policy, we mutate some of its states
such that the default action (repeating the previous action)
is taken rather than the policy action. Given a state space S,
a simplified policy has a ”mutated” space SM ⊂ S and a
mutually exclusive ”normal” space SN ⊂ S, such that any
time a state is encountered in SN the policy action is taken
and any time a state is encountered in SM the default action
is taken.

TF-IDF Vectorization
TF-IDF, which stands for Term Frequency-Inverse Docu-
ment Frequency, is a numerical statistic used in informa-
tion retrieval and text mining to evaluate the importance of
a word in a document relative to a collection of documents
(corpus). The goal of TF-IDF is to quantify the significance
of a term within a document by considering both its fre-
quency within the document (TF) and its rarity across the
entire corpus (IDF) (Jones 1972).

Given a corpus C, document D and term t, we define C(t)
to be the number of documents containing t, and D(t) to be
the number of appearances of t in D. The TF-IDF score of a
term t in document D is calculated as follows.

TF(D, t) = D(t)/|D| (2)

IDF(t) = log(|C|/(C(t) + 1)) (3)

TF-IDF(D, t) = TF (D, t) ∗ IDF (t) (4)

Each document D is then represented as a vector with
the entry corresponding to each term t in the corpus being
TF-IDF(D, t). The resulting vectorized documents provide
a way to identify the importance of terms within a document

in the context of a larger corpus. It is commonly used in var-
ious natural language processing (NLP) tasks such as docu-
ment retrieval, text classification, and information retrieval.
Terms with higher TF-IDF scores are considered more sig-
nificant to a particular document.

Principal Component Analysis
Principal Component Analysis (PCA) (Hotelling 1936) is a
dimensionality reduction technique widely used in statistics
and machine learning. Its primary goal is to transform high-
dimensional data into a new coordinate system, where the
axes (principal components) are ranked by their importance
in explaining the variance in the data. The first principal
component captures the most significant variance, the sec-
ond principal component (orthogonal to the first) captures
the second most significant variance, and so on.

PCA starts by computing the covariance matrix of the
standardized data. The covariance matrix summarizes the re-
lationships between different features, indicating how they
vary together. The next step involves finding the eigenval-
ues and corresponding eigenvectors of the covariance ma-
trix. The eigenvectors represent the principal components
and are listed in order of decreasing variance. By selecting a
subset of these principal components with the highest vari-
ance, you can achieve dimensionality reduction while retain-
ing the most important information in the data.

Method
Random Sampling

Algorithm 1 Sample Trajectory
Input: µ, τ , env, policy, default
Output: SM or SN , averageReward

1: Let SM , SN = {}
2: Let totalReward = 0
3: for in range(τ) do
4: env.reset()
5: while not env.end() do
6: Let state = env.getEncodedState()
7: if state ∈ SM then
8: env.step(default)
9: else if state ∈ SN then

10: env.step(policy)
11: else if random() < µ then
12: SM .add(state)
13: env.step(default)
14: else
15: SN .add(state)
16: env.step(policy)
17: end if
18: totalReward += env.reward()
19: end while
20: end for
21: if µ < 0.5 then return SM , totalReward/τ
22: else return SN , totalReward/τ
23: end if

The naive approach to finding optimal clusters would be
to determine a degree of desired simplification, such as by
selecting the size of SN , generate a suite of all potential sets
SN of that size, and keep the set with the consequent tra-
jectory of highest reward. For obvious reasons this is not
practical. The quantity of all potential SN of size |SN | is
(

|S|
|SN |), which is Θ(|S||SN |). Instead we can randomly sam-

ple trajectories and extract aggregate data from them. In or-
der to generate a randomly sampled suite of SN sets, we
define a mutation rate hyper-parameter µ, a suite size hyper-
parameter N, and a trials hyper-paremeter τ , and perform N
runs of Alg. 1. We may also employ an encoder that sim-
plifies our state space to a set of abstract states, thereby
decreasing the size of S and thus the search space for sets
SN . This encoder may for example include down-scaling or
grey-scaling images that are input to the agent, or discretiz-
ing a continuous state space. The more the encoder simpli-
fies the environment without losing important information,
the better and faster this process performs. Particularly, in a
continuous state space, a discretizing encoder is prerequisite
for this process to work at all.

We define a “+” suite as a suite with a µ > 0.5. For such
suites, we record the sets SN corresponding to successful
runs as defined by some condition unique to the environment
and their average rewards. We define a “-” suite as a suite
with µ < 0.5. For such suites, we record the sets SM cor-
responding to unsuccessful runs and their average rewards.
For any run, we generate a “+” suite and a “-” suite, each
of size N, using mutation rates µ and 1 − µ. The recorded
sets in each form the two types of important sets, those that
enable a large reward when all other states are mutated, and
those that significantly decrease reward by being mutated.

Vectorization
We employ a modified version of the TF-IDF process to vec-
torize our randomly sampled suites. C now refers to a ran-
domly sampled suite, D now refers to a cluster from that
suite and t to a state in the environment. R(D) refers to the
reward achieved by cluster D min-max normalized across
suite C. T (C) refers to 1 for the “-” suite and 0 for the “+”
suite. Each state can only appear once in a cluster, so D(t)
is now 1 if t ∈ D and 0 otherwise.

TF We modify Eq. 2 as follows.

TF(D, t) = D(t) ∗R(D)2 − T (C) (5)

By squaring R(D), we emphasize the differentiation be-
tween high scoring and low scoring trajectories. Addition-
ally, by subtracting T (C), states in small groups that enabled
large reward will have large positive TF scores in that vector,
and states in small groups that, when mutated, caused a large
decrease in reward will have large negative TF scores in that
vector. These are our two criteria for states being important,
so by doing this, we ensure that states that fulfil both criteria
will have greater variance than those that fulfil only one, and
thus be more significant to Principal Component Analysis.

IDF Typical IDF makes it so that terms that appear often
across documents have very low scores. In fact, a term that

is in every document would receive an IDF of 0. For our pur-
poses these states should be down-weighted, but not to such
a high degree. We define a downweighting hyper-parameter
δ and modify Eq. 3 as follows.

IDF(tk) = (logδ(C(tk) + δ))−1. (6)
Smaller δ leads to greater downweighting. We leave Eq. 4

unchanged. By vectorizing using TF-IDF scores in the same
way as described above, we now have two collections of vec-
torized clusters where important states will be represented
by large positive or negative scores and states that were im-
portant together will have such large scores together across
vectors.

Cluster Extraction
We would like to extract small clusters that appear together
often in these high scoring vectors. We can create three ma-
trices: The “-” matrix has the vectorizations of the “-” suite
for its columns, the “+” matrix has the vectorizations of the
“+” suite for its columns, and the “+-” matrix has the vec-
torizations of both suites for its columns.

By applying PCA to each of our three matrices we can
get the principal components, each a linear combination of
our states. Here, we define two more hyper-parameters: σ is
the number of clusters we extract, and η is the proportion
of states in a component to cluster. For each of the first σ
priincipal components of highest order, we extract a cluster
consisting of the η ∗ |S| states with corresponding coeffi-
cients of the greatest absolute value in that component. Thus
for each matrix we get σ clusters each with η ∗ |S| states.
For each cluster, we then execute runs of the policy pruned
to where all states not in that cluster are mutated and record
the average reward achieved. The clusters are ranked in or-
der of decreasing average reward.

The clusters extracted from the “+” matrix form the “clus-
ter+” ranking, those from the “-” matrix form the “cluster-”
ranking, and those from the “+-” matrix form the “cluster+-”
ranking,

A diagram of how the parts of the method fit together can
be found in Fig 1.

Experimental Results
Experimental Setup
We present the results of our experiments on a num-
ber of standard benchmarks. The first benchmark is Min-
igrid (Chevalier Boisvert, Willems, and Pal 2018), a grid-
world in which the agent operates with a cone of vision and
can navigate many different grids, making it more complex
than a standard gridworld. In each step the agent can turn or
move forward.

The second set of experiments was performed on Atari
games (Brockman et al. 2016). We use policies that are
trained using third-party code. No state abstraction is applied
to the gridworld environments. For the Atari games, as is
typically done, we crop the game’s border, grey-scale, down-
sample to 18×14, and lower the precision of pixel intensities
to make the enormous state space manageable. Note that
these abstractions are not a contribution of ours, and were

Figure 1: A flowchart of the method, using Minigrid (Cheva-
lier Boisvert, Willems, and Pal 2018) as an example.

primarily chosen for their simplicity. For our main experi-
ments, we use “repeat previous action” as the default action.
As a baseline, we compare our clustering method to the pre-
existing processes to accomplish policy pruning, those being
the SBFL, FreqVis, and Rand rankings explored in (Pouget
et al. 2021).

We use the performance of pruned policies as a proxy for
the quality of the ranking computed by our algorithm. In
pruned policies, all but the top-ranked states are mutated.
The pruned policies for SBFL, FreqVis, and Rand are de-
signed as specified in (Pouget et al. 2021). Beginning with
all states mutated, an increasing fraction of states are “re-
stored” (i.e. returned to the original) in each subsequent
pruned policy, in order of decreasing rank.

Similarly, for each of our rankings “cluster+”, “cluster-
”, and “cluster+-” we first run with all states mutated, and
restore another cluster in each pruned policy in order of de-
creasing cluster rank. We then have two metrics by which to
compare ranking processes. The first is what percent of the
original reward can be accomplished given the proportion
of the state space that is restored according to that process.
The second is what percent of the original reward can be ac-

complished given what proportion of the actions taken in a
trajectory are policy actions rather than default actions ac-
cording to that process.

Performance

Figure 2: Bowling Reward by States Restored

Figure 3: Bowling Reward by Actions Restored

We find that in some environments one or more of our
clustering methods outperforms SBFL, FreqVis, and Rand.
There are many atari environments in which clustering out-
performs SBFL but not FreqVis or vice-versa; the Bowling
and Krull Atari games seemed best suited to the clustering
process’s strengths among the environments we explored.

Fig 2 shows the comparison of methods by our first met-
ric in the Bowling environment. All three clustering pro-
cesses noticeably outperform SBFL, accomplishing most of
the original reward with a significantly smaller portion of the
state space restored. They do underperform FreqVis by this
metric, however that is typically to be expected, as by defi-
nition FreqVis restores most of the actions by restoring only
a small part of the state space. Our second metric which is
shown in Fig 3 is more suited to comparing a ranking’s effec-
tiveness against FreqVis. Here, the “cluster-” method mostly
keeps pace with FreqVis and even reaches 80% reward be-
fore it (though FreqVis achieves 95% reward faster).

Fig 4 shows the comparative performance by our first met-
ric in the Krull environment. As in Bowling, all three clus-

Figure 4: Krull Reward by States Restored

Figure 5: Krull Reward by Actions Restored

tering methods noticeably outperform SBFL, but “cluster+”
and “cluster+-” seem on par with FreqVis even in the first
metric. The addition of the second metric in Fig 5 reveals
that FreqVis is not in fact well suited to the Krull environ-
ment, and “cluster+” outperforms all other methods. Based
on these results, we extrapolate that Krull has a set of states
that are not observed significantly more often than others (as
Freqvis extracts) and do not individually have a significant
effect on reward (as SBFL extracts), but collectively syner-
gize to restore a significant proportion of the reward without
requiring the restoration of larger parts of the state space.

Conclusions and Discussion
FreqVis, SBFL, and our clustering procedure each likely
have their own place in policy simplification depending on
the size, complexity, and characteristics of the environment.
We suggest using a portfolio platform that includes a num-
ber of techniques when trying to find an optimal pruning of
a policy. It is likely that our clustering method works sig-
nificantly better when a feature based encoder is employed
rather than simple abstractions such as grey-scaling or dis-
cretizing. This may be feasible given recent work in model-
based reinforcement learning such as the development of the
CLIP algorithm (Radford et al. 2021) which learns an off-
policy encoding of the state space without losing significant
information and has the potential to expose pseudo-features.

As stated in (Pouget et al. 2021), in order to fully demon-
strate the effectiveness of policy simplification as a method
of explainable AI, a user study would need to be conducted.
However, similarly to that previous work, that is outside the
scope of this paper. In the absence of such a study, there
exist theoretical justifications for policy simplification. One
such justification is that by isolating the most impactful de-
cisions that the policy makes, we can significantly reduce
the number of places to look for potential issues with the
policy. Alternatively, the simplified policy that is generated
may also be useful for reducing the work of a more fine-
toothed process to grant even more insight into the policy,
allowing it to look at how the policiy makes only its most
important decisions.

References
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. CoRR, abs/1606.01540.
Chevalier Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
igrid. https://github.com/Farama-Foundation/Minigrid.
Gunning, D.; and Aha, D. W. 2019. DARPA’s explainable
artificial intelligence program. AI Magazine, 40(2): 44–58.
Hotelling, H. 1936. Relations Between Two Sets of Variates.
Biometrika, 28(3/4): 321–377.
Jones, K. S. 1972. A statistical interpretation of term speci-
ficity and its application in retrieval. Journal of Documenta-
tion, 28(1): 11–21.
Lewis, M.; Li, H.; and Sycara, K. 2020. Deep Learn-
ing, Transparency and Trust in Human Robot Teamwork.
Preprint.
McNamee, D.; and Chockler, H. 2022. Causal Policy Rank-
ing. In ICLR2022 Workshop on the Elements of Reasoning:
Objects, Structure and Causality.
Pouget, H.; Chockler, H.; Sun, Y.; and Kroening, D.
2021. Ranking Policy Decisions. In Proceedings of An-
nual Conference on Neural Information Processing Systems
(NeurIPS), 8702–8713.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
Krueger, G.; and Sutskever, I. 2021. Learning Transfer-
able Visual Models From Natural Language Supervision.
arXiv:2103.00020.
Sutton, R.; and Barto, A. 2018. Reinforcement Learning: An
Introduction. MIT Press.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and Semi-MDPs: A Framework for Temporal Abstraction in
Reinforcement Learning. Artificial Intelligence, 112: 181 –
211.

