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ABSTRACT
Learning to route has received significant research momentum as a

new approach for the route planning problem in intelligent trans-

portation systems. By exploring global knowledge of geographical

areas and topological structures of road networks to facilitate route

planning, in this work, we propose a novel Generative Adversar-

ial Network (GAN) framework, namely Progressive Route Planning
GAN (ProgRPGAN), for route planning in road networks. The nov-

elty of ProgRPGAN lies in the following aspects: 1) we propose to

plan a route with levels of increasing map resolution, starting on a

low-resolution grid map, gradually refining it on higher-resolution

grid maps, and eventually on the road network in order to progres-
sively generate various realistic paths; 2) we propose to transfer

parameters of the previous-level generator and discriminator to the

subsequent generator and discriminator for parameter initialization

in order to improve the efficiency and stability in model learning;

and 3) we propose to pre-train embeddings of grid cells in grid maps

and intersections in the road network by capturing the network

topology and external factors to facilitate effective model learn-

ing. Empirical result shows that ProgRPGAN soundly outperforms

the state-of-the-art learning to route methods, especially for long

routes, by 9.46% to 13.02% in F1-measure on multiple large-scale

real-world datasets. ProgRPGAN, moreover, effectively generates

various realistic routes for the same query.

CCS CONCEPTS
• Theory of computation → Sequential decision making; •
Information systems→ Geographic information systems; •
Computing methodologies→ Neural networks.
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(a) Real routes (b) Generated paths

Figure 1: Routes for the same source and destination

1 INTRODUCTION
With the proliferation of GPS-enabled devices and location-based

services, enormous amount of trajectory data are generated and

collected [2, 3]. The large volume of trajectory data provides op-

portunities to study and enhance various mining tasks in urban

planning and intelligence transportation systems (ITS), such as

trajectory clustering, travel time estimation, route planning, etc.

Among them, route planning (RP) is a fundamental task in many ITS

applications, e.g., navigation, ride sharing, and online map [8, 25].

Conventional studies on route planning focus on developing effi-

cient graph-search algorithms [6, 11, 12, 15, 17, 26] to find top-k

paths for a given route planning query (RPQ) based on various

cost estimates associated with road segments, such as distance,

travel time, gasoline consumption, traversed frequency, etc. These

algorithms, assuming that mobile road users prefer paths with the

optimal cost, focus on finding routes in certain aspects, e.g., shortest

distance or fastest routes, based on some explicitly identified cost

factors. However, the returned routes do not necessarily agree with

the choices of road users (who may consider some implicit factors

such as road safety or the number of traffic lights encountered) [4].

Moreover, the usefulness of the returned routes highly depends on

the quality of the cost estimates adopted in RPQ.

Recently, arguing that trajectories have holistically captured var-

ious factors considered by road users, a growing number of learning
to route (LTR) methods have been proposed to mine the routing

behaviours and decisions in trajectories for route planning. Given

a road network and a trajectory dataset collected from the road

network, these methods learn models from the trajectories to gen-

erate a number of routes (i.e., paths on the road network) from the

source to the destination (as specified by a given RPQ) that mobile

users most likely travel on. Mostly exploring variants of Recurrent

Neural Network (RNN), these LTR methods generate a path on road

network by sequentially predicting the next road segment from the

source to the destination [16, 27, 32]. However, without exploiting

global knowledge of geographical areas and topological structures

of road networks in routing decisions, they do not generate good

results, especially for long paths. Moreover, while some existing

works may generate multiple paths, e.g., by searching paths with

top-k minimal cost or applying beam search [22] to generate the
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Figure 2: Progressive Route Planning

top-k most likely paths, the generated paths are often very simi-

lar, i.e., only different slightly in a small portion of road segments.

Consequently, some acceptable but less frequently traveled paths

are not generated. For example. Figure 1(a) shows the real routes

of taxi drivers in Porto city between a source and a destination. As

shown in Figure 1(b), in contrast to the real routes, some similar

high-frequent paths may be generated (i.e., red and yellow paths),

missing low-frequent paths (e.g., green path).
1

Indeed, LTR is challenging because 1) various factors, e.g., spatial-

temporal information, road types and road network constraints,

need to be considered; 2) a proper objective, taking these factors

into account, to measure the quality of a generated route is needed

to guide the model learning, but conventional metrics based on

individual road segments fail to consider the route as a whole; and

3) it’s desirable to return a variety of acceptable routes for a given

RPQ.

To address these challenges, in this paper, we propose to explore

Generative Adversarial Networks (GANs) for route planning. GANs
have attracted significant research interests due to their ability

in generating realistic high-dimensional complex data, such as

images [10? ], videos [? ] and texts [30]. A GAN model typically

consists of two neural networks: a generator𝐺 and a discriminator𝐷 ,
which are iteratively trained against each other. Here,𝐺 takes a RPQ

and a noise vector 𝑧 as input to generate a reachable path from the

source to the destination as the output. By feeding different noise

vectors, 𝐺 is able to non-deterministically generate various paths

for the same query. On the other hand, instead of directly designing

an objective to train𝐺 (e.g., minimal cost or maximum likelihood to

travel on a road segment, as previous works do), the discriminator

𝐷 is trained to assess whether a generated path from 𝐺 is realistic
(i.e., indifferentiable from those in the real data). In other words, 𝐷

learns directly from the data to measure the quality of generated

paths (i.e., the more similar to the real data, the more realistic) as

the objective to train𝐺 . We exploit the proven power of RNN-based

models, e.g., LSTM, in modeling sequential data for both𝐺 and𝐷 so

they can effectively generate a path by sequentially predicting the

next step from the source to the destination and classify the path

as a generated path or a real path, respectively. However, directly

generating a path from the source to the destination in the road

network is difficult as it’s important for 𝐺 to capture the global

information and topological structure of road networks to generate

realistic paths. To address this issue, inspired by existing GANs for

high-resolution image generation [13], as shown in Figure 2, we

propose to generate the path progressively, starting by generating a

“low-resolution” path, consisting of a sequence of coarse-partitioned

grid cells, which gradually grows into “higher-resolution” paths

consisting of sequences of finer-partitioned cells, and eventually

produce a realistic path on the road network, i.e., consisting of

a sequence of intersections. This progressive generation process

1
NASR [25], a state-of-the-art for LTR, generates only red and yellow paths, while our

method generates all red, yellow and green paths.

Figure 3: ProgRPGAN

not only effectively captures the global information in geometrical

maps and the road network, but also speed up the training and

improve stability [13].

To realize this idea, we propose the Progressive Route Planning
GAN (ProgRPGAN) framework. As shown in Figure 3, ProgRPGAN

starts training the generator𝐺𝑆×𝑆 and discriminator𝐷𝑆×𝑆 (e.g., 𝑆 =

2), which takes a query to generate a low-resolution path on the 𝑆×𝑆
grid map and classifies if this path is generated or real, respectively.

As the training advances, it progressively trains the generators and

discriminators for generating higher-resolution paths on 4×4, 8×8,

...,𝐾×𝐾 grid maps. We propose to exploit LSTM for both generators

and discriminators. More specifically, a generator𝐺𝑘×𝑘 generates a

sequence of cells in a 𝑘 × 𝑘 grid map by sequentially predicting the

next cell to move towards the destination. Moreover, 𝐺𝑘×𝑘 takes

not only the RPQ but also the path generated by𝐺 𝑘
2
× 𝑘

2

as the input

to guide the generation of a higher-resolution path. Each 𝐺𝑘×𝑘
and 𝐷𝑘×𝑘 is initialized by 𝐺 𝑘

2
× 𝑘

2

and 𝐷 𝑘
2
× 𝑘

2

, respectively, to speed

up the training (by avoiding learning from scratch) and improve

stability. Finally,𝐺𝑟𝑜𝑎𝑑 and𝐷𝑟𝑜𝑎𝑑 (which are also LSTMmodels) are

trained respectively to generate the highest-resolution path (which

consists of a sequence of road segments) as the final output and to

classify if the final path is generated or real. Moreover, we propose

to pre-train embeddings of grid cells in grid maps and intersections

in the road network in order to capture the network topology and

external factors, e.g., types of road segments, to facilitate model

learning. To the best of our knowledge, this is the first attempt to

explore the GAN framework for route planning.

The major contributions of this work are listed below.

• Novel ideas for learning to route. We analyze the chal-

lenges in learning to route on road networks and propose to

overcome these challenges by exploring the GAN framework

to progressively generate realistic paths for route planning.

• A new framework for route planning. We propose Pro-

gRPGAN for route planning on road networks, which con-

sists of a sequence of (generator, discriminator) pairs. While

capturing the global knowledge in grid maps and the road

network, generators progressively generate paths on grid

maps of low to higher resolutions, and eventually a real-

istic path on the road network. By feeding noise vectors,

generators are able to generate a variety of paths for the

given query. Instead of relying on a pre-designed objective

in generators to guide the learning, discriminators are used

to assess if a path generated from generators is realistic.

• Empirical evaluation using real-world data. We evalu-

ate ProgRPGAN by conducting a comprehensive evaluation
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using two large-scale real-world trajectory datasets in com-

parison with several baselines, including graph-search based

and learning based methods. Empirical result shows ProgRP-

GAN soundly outperforms all existing methods and effec-

tively generates various realistic paths for the given query.

The rest of this paper is structured as follows. We review the

related work in Section 2 and provide problem definition and anal-

ysis in Section 3. We detail the proposed ProgRPGAN framework

in Section 4 and show experiment results in Section 5. Finally, we

conclude the paper in Section 6.

2 RELATEDWORK
Here we review related works on route planning and GAN.

2.1 Route Planning
Route planning is a fundamental task in ITS, which can be examined

in the following aspects: 1) types of trajectory data, such as GPS

data [6, 16, 26, 31], POI check-in data [5, 23], etc.; 2) personalization,

i.e., personalized [7, 11, 25] or non-personalized [6, 12, 17, 31]; and 3)

physical constraints, e.g., moving distance [6], grid maps [14, 26] or

road networks [25, 27]. In this work, we focus on non-personalized
route planning on road networks by exploiting GPS data, aiming to

train machine learning models to generate realistic paths on road

network for a route planning query. As mentioned, existing works

on route planing generally fall into two categories: graph-search

based and learning based approaches.

Graph-searchBasedRoute Planning. Earlyworks on route plan-
ning are graph-search based. Bymodeling the travel cost in different

aspects (e.g., moving distance, travel time, fuel consumption, etc.)

on individual road segments, find the path with minimal cost by

applying graph-search algorithms, e.g., Dijkstra and A* algorithm

on the road networks [12, 31]. BBS [15] encodes multiple costs to

form a multi-attributed road network to generate multiple skyline

paths. STHMM and PACE [28, 29] model the travel time on each

road segment as a distribution by using hidden markov models

to generate the path with minimal travel time. MPR, RICK and

TPMFP [6, 17, 26] consider the travel frequency derived from his-

torical trajectories along with other costs (e.g., distance and travel

time) to find the top-k paths with lowest cost or highest transition

probability. To address the data sparsity issue faced in estimating

the cost on road networks, L2R [11] clusters frequently traversed

intersections and road segments as groups, called regions, using his-
torical trajectory data to form a region graph, and then finds paths

with minimal cost on the region graph. Assuming that mobile users

prefer a path with optimal cost, these approaches highly depend

on the quality of cost estimate on road segments.

Learning Based Route Planning. Recently, deep learning meth-

ods are developed to model the spatial-temporal dynamics in trajec-

tory data for path generation or route planning. Particularly, Recur-

rent Neural Network (RNN) based models, such as Long Short-Term

Memory (LSTM), have been widely used for modeling trajectories,

aiming to sequentially predict the next step (in terms of intersection

or road segment) to generate most likely paths. Various RNN-based

models are proposed, e.g., hierarchical RNN [32], RNN with spatial-

temporal contexts [16], RNN with road network constraints [27]

and RNN with grid map constraints [14]. However, these works

focus on predicting short-term movement, e.g., the next step recom-

mendation, without paying attention on issues of route planning,

although some of them [14, 27] do suggest to feed the destination

as an input in order to apply their models on route planning. One

recent work, NASR [25] models i) the cost of current path from

the source, and ii) additional cost required to approach the desti-

nation, to guide the next step prediction for route planning. These

methods, directly generating a path by predicting the next step

consecutively without exploiting global knowledge of geographical

areas and topological structure of road networks, do not fare well,

especially for long paths. Moreover, although both graph-search

based and learning based approaches may be able to generate mul-

tiple paths by searching paths with top-k minimal cost or applying

beam search [22] to generate top-k most likely paths, the generated

paths usually are different only in a small portion of road segments,

failing to generate a variety of realistic routes.

2.2 Generative Adversarial Network
Generative adversarial networks (GANs) have achieved great success
recently in generating realistic complex data, such as images [10],

videos [18] and texts [30]. A typical GAN model consists of two

submodels, a generator𝐺 and a discriminator 𝐷 .𝐺 aims to generate

realistic data by learning a transformation from a noise prior to the

data distribution of the real dataset, while 𝐷 learns to decide, by

classification, whether a sampled data is from the real dataset or

the synthetic dataset generated by𝐺 [10].𝐺 and𝐷 are trained itera-

tively in an adversarial manner. Eventually𝐺 generates a variety of

realistic data (using different input noises) such that a discriminator

could not differentiate the generated samples from the real data.

To improve the quality, stability and variation of GAN for image

generation, progressive GAN is proposed to build the generator and

discriminator progressively. It starts with low-resolution images

and progressively adds more layers of generators and discrimina-

tors to generate and assess images of increasing resolutions [13],

respectively. To our best knowledge, GAN has not been explored

for trajectory data and route planning.

3 RESEARCH PROBLEM AND CHALLENGES
In this section, we introduce important terms, describe the targeted

research problem and discuss the challenges.

Definition 1. RoadNetwork. A road network is a directed graph
𝐺 = (𝑉 , 𝐸,Ψ), where 𝑉 is a set of nodes denoting intersections and
each node 𝑣 ∈ 𝑉 contains a geographic location (𝑣 .𝑙𝑛𝑔, 𝑣 .𝑙𝑎𝑡) (i.e.,
longitude and latitude); 𝐸 ⊆ 𝑉 ×𝑉 is a set of directed edges denoting
road segments; and Ψ : 𝐸 → 𝑅 is a type mapping function for edges,
e.g., a road segment is a highway.

Definition 2. Path. A path 𝑝 is a sequence of connected nodes
on a road network, i.e., 𝑝 = {𝑣1, ..., 𝑣 |𝑝 |}.

Definition 3. Trajectory. A trajectory is a sequence of spatio-
temporal sample points generated from the movement of a road user
on a path, where a sample point contains a location (i.e., longitude
and latitude) and a timestamp.

Definition 4. Learning to Route on Road Networks. Given
a road network 𝐺 and a path dataset 𝐷 =

{
(𝑝𝑖 , 𝑑𝑖 )

} |𝐷 |
𝑖=1

, where 𝑝𝑖 is
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the 𝑖-th path and 𝑑𝑖 is the departure time, a learning-to-route model
is learned for a given route planning query (RPQ) 𝑞, specified as a
3-tuple (source 𝑠𝑞 , destination 𝑑𝑞 , departure time 𝑏𝑞), to generate k
realistic paths on 𝐺 , to be traveled from 𝑠𝑞 to 𝑑𝑞 , departing at 𝑏𝑞 .

To implement ProgRPGAN, we face several new challenges: (1)

Progressive route planning. A well-designed framework, consist-

ing of a sequence of (generator, discriminator) pairs, is critical for

generating realistic paths. Several issues arise in the framework

design. While we propose to exploit LSTM for both of generators

and discriminators, how to transfer the knowledge of previous-level

paths to facilitate efficient generation and assessment of a high-

resolution path? How to incorporate the physical constraints, e.g.,

the topology of the road network, for generation and assessment?

(2) Representation learning for grid cells and intersections. To facil-
itate the generation and assessment of ProgPRGAN, we propose

to pre-learn embeddings of grid cells in different resolution grid

maps and intersections in the road network. A number of technical

issues arise. How to pre-learn embeddings of grid cells and inter-

sections simultaneously? How to encode various information into

embeddings, e.g., the geometrical correlation between grid cells, the

types of road segments, etc.? (3) Progressive learning process. How
to design an effective and efficient learning process in a progressive

manner? How to initialize a pair of a generator and a discriminator

by the previous-level generator and discriminator to avoid learning

from scratch? These are research questions to be addressed in our

design of ProgRPGAN.

4 THE PROGRPGAN FRAMEWORK
The ProgRPGAN framework progressively generates realistic paths

for a given query in an adversarial manner. As shown in Figure 3, we

train a sequence of (generator, discriminator) pairs, {(𝐺𝑆×𝑆 , 𝐷𝑆×𝑆 ),
(𝐺2𝑆×2𝑆 , 𝐷2𝑆×2𝑆 ), ..., (𝐺𝐾×𝐾 , 𝐷𝐾×𝐾 ), (𝐺𝑟𝑜𝑎𝑑 , 𝐷𝑟𝑜𝑎𝑑 )}, to generate

and assess paths, respectively, on grip maps of increasing resolu-

tions and eventually the road network to produce the final output.

In this section, we detail our design of ProgRPGAN, including the

generator, the discriminator, and the learning process.

4.1 Generator
We propose to exploit LSTM for the generator model which gener-

ates a path by sequentially predicting the next step (in terms of grid

cell or intersection) from the source to the destination of an RPQ.

The generation process not only takes the query and a grid map

(or a road network) as the inputs, but also a random noise vector

(for variety of realistic paths) and its previous-level path to guide

the current path generation. In the following, we first introduce

the design of the generator and the generation process for a 𝑘 × 𝑘
grid map and then present a similar design for the road network.

Given an RPQ 𝑞 = (𝑠𝑞, 𝑑𝑞, 𝑏𝑞), a noise vector 𝑧 and a previous-

level path 𝑝 ′ = {𝑐 ′
1
, 𝑐 ′

2
, ..., 𝑐 ′|𝑝′ |} in the

𝑘
2
× 𝑘

2
grid map, a genera-

tor 𝐺𝑘×𝑘 generates a path consisting of a sequence of cells in the

𝑘 × 𝑘 grid map by sequentially predicting the next cell to move

towards the destination. At the beginning, it first maps 𝑠𝑞 and 𝑑𝑞
to the corresponding grid cells in the 𝑘 × 𝑘 grid map, denoted as

𝑐1 and 𝑐𝑑 , respectively. If 𝑐1 and 𝑐𝑑 are the same cell, it directly

returns {𝑐1}, a path with only one cell, as the output. Otherwise,

the generation process continues. As shown in Figure 4, at the

Embeddings Layer

LSTM

c’next c1 cd bq z

Eprev E Etime

||

ci+1

LSTM LSTM

hi
...

concatenate

ci

softmax

Figure 4: i-th state of generator

Ci

C’1 C’2 C’3

C’4
C’5 C’6

C’7 C’8 C’9

Figure 5: Embed-
dings transferring

𝑖-th state of the generation process, to predict the next grid cell

𝑐𝑖+1,𝐺𝑘×𝑘 takes several items as input, including the current cell

𝑐𝑖 , the source cell 𝑐1, the destination cell 𝑐𝑑 , the departure time

𝑏𝑞 , the noise vector 𝑧 and the next cell 𝑐 ′𝑛𝑒𝑥𝑡 in 𝑝
′
, where 𝑐 ′𝑛𝑒𝑥𝑡 is

set as the grid cell 𝑐 ′
𝑗+1 in 𝑝 ′ whereas 𝑐𝑖 is located in 𝑐 ′

𝑗
of 𝑝 ′. If

there is no next grid cell (i.e., 𝑐𝑖 is in the last grid cell of 𝑝 ′), 𝑐 ′𝑛𝑒𝑥𝑡
is set to zero. 𝐺𝑘×𝑘 first projects 𝑐𝑖 , 𝑐1, 𝑐𝑑 , 𝑏𝑞 and 𝑐 ′𝑛𝑒𝑥𝑡 into a la-

tent embedding space and then concatenates all these embeddings

with 𝑧 as the input for stacked LSTM cells. More specifically, 𝑐𝑖 , 𝑐1

and 𝑐𝑑 are replaced by their embeddings recorded in the projec-

tion/embedding matrix 𝐸 ∈ R𝐻×𝑘2

by table lookup, where 𝑘2
is the

number of grid cells in the 𝑘 × 𝑘 grid map, 𝐻 is the dimensionality

of embeddings, and each column of 𝐸 records the embeddings of

its corresponding grid cell. Note that the embedding of 𝑐 ′𝑛𝑒𝑥𝑡 is
obtained by lookup in the embedding matrix 𝐸𝑝𝑟𝑒𝑣 learned in the

previous level. The embedding of 𝑐 ′𝑛𝑒𝑥𝑡 is set as a zero vector (i.e.,

zeros in all dimension) for the lowest-resolution (e.g., 2 × 2) grid

map as there is no previous-level path. Regarding the embedding

of departure time 𝑏𝑞 , we first generate a vector of time information,

i.e.,
®𝑏𝑞 = {𝑑𝑎𝑦_𝑖𝑛_𝑎_𝑤𝑒𝑒𝑘,𝑤𝑒𝑒𝑘_𝑑𝑎𝑦_𝑜𝑟_𝑤𝑒𝑒𝑘𝑒𝑛𝑑, ℎ𝑜𝑢𝑟,𝑚𝑖𝑛𝑢𝑡𝑒},

from 𝑏𝑞 and then transform
®𝑏𝑞 into its embedding by 𝐸𝑡𝑖𝑚𝑒 × ®𝑏𝑞 ,

where 𝐸𝑡𝑖𝑚𝑒 ∈ R𝐻𝑡𝑖𝑚𝑒×| ®𝑏𝑞 |
is the projection matrix and 𝐻𝑡𝑖𝑚𝑒 is

the dimensonality of the embedding space.

After feeding the concatenated input to the stacked LSTM cells,

to predict the next cell 𝑐𝑖+1, the output of the 𝑖-th state of the

LSTM cells, ℎ𝑖 , is projected by a matrix𝑊 ∈ R𝑘2×|ℎ𝑖 |
followed by

a softmax function to estimate the transition probability of each

grid cell in the 𝑘 × 𝑘 grid map. However, the transition in a grid

cell is constrained by the topology of the grid map, i.e., the next

grid cell to move to should be adjacent to the current grid cell.

Moreover, it is proved that RNN-based models hardly learn the

topology information well automatically [27]. Thus, we enforce the

topological constraint by deriving 𝑃 (𝑐𝑖+1 |𝑐1:𝑖 ), i.e., the conditional
probability for a grid cell 𝑐𝑖+1 to be selected as the next step, given

the previous grid cells 𝑐1:𝑖 have been passed by, as follows.

𝑃 (𝑐𝑖+1 = 𝑐 𝑗 |𝑐1:𝑖 ) = 𝑃 (𝑐𝑖+1 = 𝑐 𝑗 |ℎ𝑖 ) =
𝑒𝑥𝑝 (𝑊 ·ℎ𝑖 ·𝑎𝑑 𝑗𝑐𝑖 ,𝑐 𝑗 )∑
𝑐 𝑗 ∈N(𝑐𝑖 ) 𝑒𝑥𝑝 (𝑊 ·ℎ𝑖 )

where 𝑎𝑑 𝑗𝑐𝑖 ,𝑐 𝑗 =

{
1, 𝑐 𝑗 ∈ N (𝑐𝑖 )
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here N(𝑐𝑖 ) denotes the 8 adjacent grid cells of 𝑐𝑖 , i.e., at up, down,

left, right and four diagonal corners to 𝑐𝑖 . Setting the transition

probability of grid cells not adjacent to 𝑐𝑖 to zero allows the model

to focus on updating only the weights of those cells adjacent to 𝑐𝑖 .
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The generation process continues until it reaches the destination

cell 𝑐𝑑 or exceeds the maximal length of the generation process.

For path generation on road network, 𝐺𝑟𝑜𝑎𝑑 acts the same way

as generating a path of grid cells but instead predicting a sequence

of intersections in the road network. Moreover, it embeds the road

network topology to constrain the transitions on intersections.

Transfer Learning in Generators. To avoid learning a genera-

tor from scratch to improve training efficiency and stability, and

to transfer global knowledge learned from geometrical maps to

facilitate path generation, we propose to initialize a generator’s

parameters based on those of its previous-level generator, including

embeddings matrices 𝐸𝑝𝑟𝑒𝑣 , 𝐸, 𝐸𝑡𝑖𝑚𝑒𝑠 , LSTM cells and𝑊 . In the

following, we introduce the parameter transfer from 𝐺 𝑘
2
× 𝑘

2

to the

generator 𝐺𝑘×𝑘 and then to 𝐺𝑟𝑜𝑎𝑑 .

Among the parameters to be initialized in 𝐺𝑘×𝑘 , 𝐸𝑝𝑟𝑒𝑣 , 𝐸𝑡𝑖𝑚𝑒
and LSTM cells are copied from 𝐸, 𝐸𝑡𝑖𝑚𝑒 and LSTM cells of 𝐺 𝑘

2
× 𝑘

2

,

respectively.𝑊 is initialized by replicating𝑊 of 𝐺 𝑘
2
× 𝑘

2

four times,

i.e., the 𝑖-th row of𝑊 in𝐺 𝑘
2
× 𝑘

2

is copied to (4× 𝑖 + 𝑗)-th rows of𝑊

in 𝐺𝑘×𝑘 where 𝑗 = 0, .., 3. For the embedding matrix 𝐸, we propose

to not only initialize it from 𝐸 in 𝐺 𝑘
2
× 𝑘

2

but also the pre-trained

embeddings of grid cells (and intersections), derived as follows.

𝐸 = 𝛼𝐸𝑡𝑟𝑎𝑛𝑠 + (1 − 𝛼)𝐸𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (1)

where 𝐸𝑡𝑟𝑎𝑛𝑠 denotes the embeddings transferred from 𝐸 of𝐺 𝑘
2
× 𝑘

2

,

𝐸𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 is the pre-trained embeddings of grid cells in 𝑘 × 𝑘
grid map and 𝛼 is for weighting. The pre-training of 𝐸𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑
is detailled later. On the other hand, 𝐸𝑡𝑟𝑎𝑛𝑠 is aggregated from 𝐸

of 𝐺 𝑘
2
× 𝑘

2

based on the distance between cells. More specifically,

as shown in Figure 5, each column of 𝐸𝑡𝑟𝑎𝑛𝑠 , i.e., the transferred

embeddings of 𝑐𝑖 in the 𝑘 ×𝑘 grid map, is calculated by aggregating

the embeddings of its corresponding surrounding grid cells in
𝑘
2
× 𝑘

2

map (denoted as 𝑐 ′
1
, ..., 𝑐 ′

9
). The aggregation is derived as follows.

®𝑐𝑖𝑡𝑟𝑎𝑛𝑠 =
∑
𝑐′
𝑗
∈𝑆𝑢𝑟 (𝑐𝑖 ) 𝑤𝑖 𝑗 · ®𝑐 ′𝑗 ; 𝑤𝑖 𝑗 =

1/𝑑𝑖𝑠 (𝑐𝑖 ,𝑐′𝑗 )∑
𝑐′
𝑗
∈𝑆𝑢𝑟 (𝑐𝑖 ) 1/𝑑𝑖𝑠 (𝑐𝑖 ,𝑐′𝑗 )

where 𝑆𝑢𝑟 (𝑐𝑖 ) is the surrounding grid cells of 𝑐𝑖 in
𝑘
2
× 𝑘

2
grid map,

and 𝑑𝑖𝑠 (𝑐𝑖 , 𝑐 ′𝑗 ) is the geometrical distance between the centroids of

𝑐𝑖 and 𝑐
′
𝑗
. Finally, 𝐸𝑡𝑟𝑎𝑛𝑠 is set as [𝑐1; ...; 𝑐𝑘×𝑘 ].

Next, we discuss the initialization of the generator 𝐺𝑟𝑜𝑎𝑑 for

road network, which is pretty much the same as the initialization

of generators for grid maps, except that 1)𝑊 of𝐺𝑟𝑜𝑎𝑑 is initialized

by copying𝑊 in 𝐺𝐾×𝐾 (the generator for the highest-resolution

grid map) where the number of copies depends on how many in-

tersections are covered by a grid cell, and 2) 𝐸𝑡𝑟𝑎𝑛𝑠 is initialized by

considering the geometrical distance between an intersection and

the centroids of its surrounding grid cells in the highest-resolution

𝐾 × 𝐾 grid map. Note that, during training, all parameters of a

generator are fine-tuned, except 𝐸𝑝𝑟𝑒𝑣 is fixed because it is well

trained in the previous level.

Pre-train Embeddings of Grid Cells and Intersections. To fa-
cilitate the learning of generators and discriminators, we propose to

pre-train embeddings of grid cells in different resolution levels and

intersections in the road network by encoding 1) the geometrical

information of grid maps and the topological structure of road net-

work; and 2) external information of the road network, e.g., types

of road segments. Then, the pre-trained embeddings of cells and

intersections, denoted as 𝐸𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 , are used to initialize gener-

ators as derived in Eq. (1). To achieve this goal, a naive way is to

model each grid map as a grid graph (where grid cells are denoted

as nodes and two adjacent grid cells are linked by an undirected

edge) and then apply network representation learning methods,

such as DeepWalk [21] on the grid graphs and road network sepa-

rately to learn embeddings of cells and intersections. However, in

this way, the learned embeddings of nodes in different graphs are

irrelevant because they are learned separately, which may hurt the

initialization of generators while aggregating 𝐸 in Eq. (1).

To address this issue, we propose to learn the embeddings of

grid cells in grid graphs of all resolution levels and intersections in

the road network jointly. To achieve this goal, we first model all the

grid maps and the road network into a unified graph. An example

of the unified graph is shown in Figure 6. The unified graph not

only consists of the above-mentioned grid graphs in each resolution

level and the road network, but also additional edges between cells

in adjacent levels (i.e., if a cell is covered by another cell in the

previous level) and edges between cells in the highest-resolution

grid map and intersections (i.e., if an intersection is covered by a

cell in the grid graph of the highest resolution). Moreover, each

edge in the unified graph is labeled by an edge type which indicates

the relationship between its two end nodes. For example, in the

example unified graph, edge (𝑐1, 𝑐2) is labeled by "2 − 2" indicating

they are both in the 2× 2 grid map, edge (𝑐2, 𝑐3) is labeled by "2− 4"

indicating a refinement from the 2 × 2 grid map to the 4 × 4 grid

map, and edge (𝑣4, 𝑣5) is labeled by “primary” indicating the type

of road segment between the two intersections. In other words, the

unified graph is a heterogeneous information network (HIN) which
contains nodes and edges labeled by various types.

After constructing the unified graph, we propose to exploit an

existing network representation learning method for HIN, called

HIN2Vec [9], to learn embeddings of nodes (i.e., grid cells and road

segments here). HIN2Vec aims to not only encode the topology of

the graph (i.e., if two nodes have more paths between them, their

embeddings are more similar) but also the type of path between

nodes (i.e., capturing the sequences of edge types between nodes)

into the learned embeddings. Specifically, HIN2Vec applies random

walks in the graph to sample training data with negative sampling

mechanism [19]. For the unified graph, which consists of multiple

graphs (representing grid maps of different resolutions and the

road network) linked by interconnecting edges, we propose a pa-
rameterized random walks to sample the training data for learning

embeddings. Specifically, we introduce a leaping parameter 𝛽 , rep-
resenting the probability of leaping into a node not in the current

grid graph, in order to control the walking process. With a large 𝛽 ,

the walking process tends to select the next node in a grid graph

different from the current one (or in the road network). On the

other hand, a small 𝛽 tends to guide the walking process staying

in the current grid graph. Based on the generated random walks,

we applies a sliding window over the walks to generate various

training data samples consisting of two nodes and a path type. For

instance, using a sliding window of size 3 (in terms of nodes), the

example random walk in Figure 6, {node 𝑐1, edge "2 − 2", node 𝑐2,

edge "2−4", node 𝑐3, ... }, may generate (𝑐1, 𝑐2, "2−2"), (𝑐2, 𝑐3, "2−4"),

(𝑐1, 𝑐3, "2 − 2 − 4"), ... as data samples.
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4.2 Discriminator
We also propose to exploit LSTM for the discriminator model. In

the following, we introduce the design of the discriminator and

the classification process for a 𝑘 × 𝑘 grid map. The design of the

discriminator model and the classification process for the road

network is the same as for a grid map.

Given a query 𝑞 = (𝑠𝑞, 𝑑𝑞, 𝑏𝑞), a path 𝐶 = {𝑐1, 𝑐2, ..., 𝑐 |𝐶 |} and a

previous-level path 𝑝 ′ = {𝑐 ′
1
, 𝑐 ′

2
, ..., 𝑐 ′|𝑝′ |} in the

𝑘
2
× 𝑘

2
grid map, a

discriminator 𝐷𝑘×𝑘 aims to classify if 𝐶 is a generated or real path.

At the beginning, it first maps 𝑠𝑞 and 𝑑𝑞 to the corresponding grid

cells in the 𝑘 ×𝑘 grid map, denoted as 𝑐1 and 𝑐𝑑 , respectively. Then,

as shown in Figure 7, at the 𝑖-ith state, 𝐷𝑘×𝑘 takes the current cell

𝑐𝑖 , the source cell 𝑐1, the destination cell 𝑐𝑑 , the departure time 𝑏𝑞

and the next cell 𝑐 ′𝑛𝑒𝑥𝑡 in the previous
𝑘
2
× 𝑘

2
grid map as the inputs,

then also transforms 𝑐𝑖 , 𝑐1, 𝑐𝑑 , 𝑏𝑞 and 𝑐
′
𝑛𝑒𝑥𝑡 as embeddings (as𝐺𝑘×𝑘

does) and concatenates them as the input to stacked LSTM cells.

𝐷𝑘×𝑘 sequentially encodes the whole path, and finally the output of
the latest state, ℎ𝑑 , is projected by a matrix𝑊𝐷 ∈ 1 × |ℎ𝑑 | followed
by a sigmoid function to classify if it is generated or real.

To avoid learning the discriminator 𝐷𝑘×𝑘 from scratch, we pro-

pose to initialize 𝐷𝑘×𝑘 by transferring parameters from both 𝐷 𝑘
2
× 𝑘

2

and 𝐺𝑘×𝑘 , including embedding matrices 𝐸𝑝𝑟𝑒𝑣 , 𝐸, 𝐸𝑡𝑖𝑚𝑒𝑠 , LSTM

cells and𝑊𝐷 . More specifically, 𝐸𝑝𝑟𝑒𝑣 , 𝐸 and 𝐸𝑡𝑖𝑚𝑒 are initialized

by copying the 𝐸𝑝𝑟𝑒𝑣 , 𝐸 and 𝐸𝑡𝑖𝑚𝑒 in 𝐺𝑘×𝑘 , respectively. On the

other hand, LSTM cells and𝑊𝐷 are initialized by copying from

the LSTM cells and𝑊𝐷 in 𝐷 𝑘
2
× 𝑘

2

, respectively. Note that, during

training, 𝐸𝑝𝑟𝑒𝑣 , 𝐸 and 𝐸𝑡𝑖𝑚𝑒 are fixed (because they are trained by

𝐺𝑘×𝑘 for the generation), but LSTM cells and𝑊𝐷 are fine-tuned.

4.3 Learning Process
In ProgRPGAN, we progressively train a sequence of (generator,

discriminator) pairs in an adversarial manner, where 𝐺 aims to

maximize the estimated “reward” from 𝐷 , i.e., the probability of a

generated path to be classified as a real path, and𝐷 aims tominimize

the error of the classification among generated and real paths. To

train a𝐺 , we apply the policy gradient method [24] to maximize the

estimated rewards of generated paths, with a Monte-Carlo rollouts

(MCR) mechanism [30] to estimate the individual reward for each

next-step prediction (i.e., a grid cell or an intersection) during the

path generation process. The estimated reward 𝑅 and its gradient

▽𝑅 of a training epoch is derived as follows.

𝑅 =
∑𝑀
𝑚=1

𝑅(𝑝𝑚)𝑃 (𝑝𝑚 |𝜃, 𝑞, 𝑧)
▽𝑅 ≈ 1

𝑀

∑𝑀
𝑚=1

𝑅(𝑝𝑚)𝑑𝑙𝑜𝑔𝑃 (𝑝𝑚 |𝜃, 𝑞, 𝑧)

where 𝑀 is the number of samples of a training epoch, 𝑅(𝑝𝑚)
is the reward for the whole path 𝑝𝑚 from 𝐷 , 𝑃 (𝑝𝑚 |𝜃, 𝑞, 𝑧) is the
probability to generate 𝑝𝑚 by current𝐺 given a query 𝑞 and a noise

vector 𝑧, and 𝜃 denotes the trainable parameters of 𝐺 . Then, we

applyMCR to estimate the reward of the next prediction at 𝑖-th state

of a path 𝑝 , denoted as 𝑅𝑝1:𝑖
. The idea behind MCR is to additionally

generate 𝑁 paths starting from 𝑖-th state of 𝑝 to the destination, and

then get the average of 𝑁 rewards from𝐷 to estimate 𝑅𝑝1:𝑖
, which is

derived as 𝑅𝑝1:𝑖
= 1

𝑁

∑
𝑝𝑛 ∈𝑀𝐶 (𝑝1:𝑖 ,𝑁 ) 𝐷 (𝑝

𝑛) where 𝑀𝐶 (𝑝1:𝑖 , 𝑁 ) =
{𝑝1, ..., 𝑝𝑁 } denotes the generation of 𝑁 additional paths starting

from 𝑝1:𝑖 to the destination. Finally, ▽𝑅 is modified as follows.

▽𝑅 ≈ 1

𝑀

∑𝑀
𝑚=1

∑
𝑖 𝑅𝑝𝑚

1:𝑖
𝑑𝑙𝑜𝑔𝑃 (𝑝𝑚

1:𝑖
|𝜃, 𝑞, 𝑧)

We update 𝐺 ’s parameters by gradient ascent as follows.

𝜃 ← 𝜃 + 𝜂▽𝑅 (2)

where 𝜂 is the learning rate. On the other hand, 𝐷 aims to minimize

the classification error (i.e., the cross entropy) and we update 𝐷’s

parameters by gradient descent as follows.

𝐽 ≈ − 1

𝑀

∑𝑀
𝑚=1
[𝑙𝑜𝑔𝐷 (𝑝𝑚 |𝜙)] − 1

𝑀

∑𝑀
𝑚=1
[𝑙𝑜𝑔(1 − 𝐷 ( ˜𝑝𝑚 |𝜙))]

𝜙 ← 𝜙 − 𝜂▽𝐽 (3)

where 𝑝𝑚 is a path sampled from the real paths, ˜𝑝𝑚 is a generated

path from 𝐺 and 𝜙 denotes the trainable parameters of 𝐷 .

Algorithm 1 Train a pair of 𝐺 and 𝐷

Require: generator 𝐺 ; discriminator 𝐷 ; a path dataset 𝑇

1: Initialize 𝐺 and 𝐷 ;

2: repeat
3: for 𝑑-𝑠𝑡𝑒𝑝 do
4: Sample 𝑀 paths {𝑝1, ..., 𝑝𝑀 } from 𝑇 and generate corre-

sponding queries {𝑞1, ..., 𝑞𝑀 }
5: Sample𝑀 noise vectors {𝑧1, ..., 𝑧𝑀 }
6: Generate𝑀 paths { ˜𝑝1, ..., ˜𝑝𝑀 }, ˜𝑝𝑚 = 𝐺 (𝑞𝑚, 𝑧𝑚)
7: Update 𝐷 by Eq. (3)

8: end for
9: for 𝑔-𝑠𝑡𝑒𝑝 do
10: Sample𝑀 paths from 𝑇 to generate queries {𝑞1, ..., 𝑞𝑀 }
11: Sample𝑀 noise vectors {𝑧1, ..., 𝑧𝑀 }
12: Generate𝑀 paths { ˜𝑝1, ..., ˜𝑝𝑀 }, ˜𝑝𝑚 = 𝐺 (𝑞𝑚, 𝑧𝑚)
13: Update 𝐺 by Eq. (2)

14: end for
15: until 𝐺 and 𝐷 converge

Algorithm 1 details the learning process for a pair of generator𝐺

and discriminator 𝐷 . At the beginning of the training, we initialize

𝐺 and 𝐷 by their corresponding generator and discriminator in

the previous level. For the lowest-resolution 𝐺 and 𝐷 , we initialize

them with random weights. Then,𝐺 and 𝐷 are trained alternatively

with 𝑔-𝑠𝑡𝑒𝑝 and 𝑑-𝑠𝑡𝑒𝑝 , respectively, until they converge.

5 EXPERIMENTS
In this section, we conduct extensive experiments using two large-

scale real-world trajectory datasets to evaluate the performance

of ProgRPGAN against several existing methods. We also perform

sensitivity tests on parameters of ProgRPGAN, examine several

issues in ProgRPGAN.
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Table 1: Statistics of road networks and trajectories

Road network data Porto Chengdu
# of intersections 143,877 101,528

# of road segments 342,838 229,599

Trajectory data Porto Chengdu
# of paths 596,943 1,878,854

moving distance mean 5.836 km 4.226 km

# of road segments mean 74.211 22.480

5.1 Datasets
Two trajectory datasets and corresponding road networks extracted

from OpenStreetMap [1] are used in the evaluation:

Porto taxi data [2] collects trajectories of 442 taxis running from

January 2013 to June 2014 in Porto, Portugal.

Chengdu taxi data [3] collects 1.4 billion GPS points of 14,864 taxis

running in August 2014 in Chengdu, China. We segment the sample

points of each taxi into trajectories based on a 60-second time gap.

For each road network data, we extract intersections and road

segments from raw OpenStreetMap data to form a road network.

We leave the details in Appendix A. For each trajectory dataset,

we first select trajectories with travel time within 1 to 60 minutes

and match the trajectories to the road network by existing map

matching techniques [20] to obtain the corresponding sequence of

intersections (i.e., paths). Then we filter mismatched paths which

have much longer (+10%) or shorter (-10%) moving distances com-

paring with their raw trajectories. Some statistics of the extracted

road networks and paths are summarized in Table 1.

5.2 Baseline Methods for Comparison
The route planning methods we evaluate for comparison include

baselines, graph-search based methods and learning based methods.

Short and Fast, graph-search based baselines that use Yen’s algo-

rithm to find top-k shortest/fastest paths in terms of geometrical

distance and travel time (estimated by spd-LSTM, a state-of-the-art

method predicting the speed of each road segment), respectively.

MPR[6], a graph-search basedmethod thatmodels a transfer graph

based on the traversed frequency and the geometrical distance to

find the most popular path.

RICK [26], a graph-search based method that finds top-k paths

based on geometrical distance, travel time and traversed frequency.

STRNN [16], an RNN based learning method that sequentially pre-

dicts the next step by considering the spatial and temporal contexts.

CSSRNN [27], an RNN based learning method that sequentially

predicts the next step by considering the road network constraint.

NASR [25], an RNN based learning method that adopts neural

network based reinforcement learning techniques to learn two

costs, including a cost of the current path from the source and

a cost required to reach the destination, to guide the next step

prediction for route planning.

5.3 Experimental Setup
In each experiment, for a dataset, we randomly split it into three

folds, 80%, 10% and 10% as the training set, the validation set and the

test set, respectively. We use the training set to train models while

using the validation set to select the best models, and evaluate the

performance using the test set. For each test sample, for a model, we

generate three paths and report the best performance among them

(i.e., top-3 minimal cost paths from a graph-search based method,

top-3 most likely paths from a learning based method by applying

beam search and three paths from ProgRPGAN by feeding different

random noise vectors). We repeat each experiment for 5 times and

report the mean of the different runs. We use micro precision, recall,
F1-measure and Jaccard index between the generated paths and

the ground truth among road segments of paths weighted by the

road segment lengths as the performance metrics. We leave the

equation of each metric in Appendix B. To report more details of

the performance, we further split the test set into three folds by

the lengths, namely short (less then 3km), medium (3km to 6km)

and long (more than 6km). The distributions among the three folds

of Porto and Chengdu datasets are (31.4%, 33.9% and 34.7%) and

(51.6%, 20.3% and 19.1%), respectively.

Regarding the default parameter settings of ProgRPGAN, the

dimensionality of cell/intersection embeddings𝐻 , time embeddings

𝐻𝑡𝑖𝑚𝑒 and LSTM cell are set to 128, the weight 𝛼 for the generator

initialization is set to 0.8. The dimensionality of the noise vector 𝑧 is

16. We adopt a double layer LSTMmodel. For both datasets, we con-

sider a 64km × 64km region and generate a sequence of generator

and discriminator pairs, i.e., {(𝐺𝑆×𝑆 , 𝐷𝑆×𝑆 ), (𝐺2𝑆×2𝑆 , 𝐷2𝑆×2𝑆 ), ...,
(𝐺𝐾×𝐾 , 𝐷𝐾×𝐾 ), (𝐺𝑟𝑜𝑎𝑑 , 𝐷𝑟𝑜𝑎𝑑 )}, where 𝑆 is set to 8 and 𝐾 is set

to 64. For pre-training embeddings, the sliding window size for

training data preparation is set to 3 and the leaping parameter 𝛽

for random walks is set to 0.5. For model learning, the number of

sampling 𝑀 for an epoch is set to 64, the number of sampling 𝑁

for MCR is set to 16, the learning rate 𝜂 is set to 0.0001, the number

of training steps of generates g-step and discriminators d-step are
set to 1 and 20, respectively. The maximal length of the cell path

generation in each grid map and the path generation in the road

network is determined by data such that it covers more than 99%

cell paths and final paths. To obtain converged result, the number of

iterations for model training varies for individual models and differ-

ent datasets. For all compared methods, we tune the best parameter

settings. Our model is implemented in python with Tensorflow. We

train and evaluate all models on a server with NVIDIA GTX 1080

GPUs and one Intel Core i5-8400 CPU on Ubuntu 18.04.

5.4 Evaluation of Models
The performance obtained by all evaluated methods is summarized

in Table 2.
2
ProgRPGAN outperforms all the compared methods on

all three test folds, especially on the long fold which is the hardest.

As shown, the improvement ratio of F1-measure (compared with

the best of these existing models, marked by ’*’) are 13.02% and

9.46% for the long folds in Porto and Chengdu datasets, respectively.

We have the following observations from the comparison.

Travel time is an important criteria. Comparing with other

methods, Fast, RICK, NASR and ProgRPGAN which directly or

potentially consider travel time on road segments have better per-

formance. Among them, Fast and RICK directly consider travel

2
Due to space constraint, "P" and "C" denote Porto and Chengdu datasets, respectively.

"s", "m" and "l" denote the short, medium and long test folds, respectively. "ST" and

"CSS" denote STRNN and CSSRNN, respectively
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Table 2: Performance Evaluation

Data- Precision Recall

set Short Fast MPR RICK ST CSS NASR Ours Short Fast MPR RICK ST CSS NASR Ours
s 0.659 0.754 0.671 0.770 0.698 0.691 *0.791 0.822 0.593 0.708 0.638 0.775 0.681 0686 *0.781 0.815

P m 0.505 0.610 0.549 0.622 0.512 0.514 *0.670 0.718 0.434 0.545 0.476 0.601 0.476 0.464 *0.661 0.713
l 0.247 0.528 0.263 0.547 0.333 0.370 *0.598 0.677 0.182 0.424 0.224 0.496 0.271 0.312 *0.585 0.661
s 0.790 0.790 0.799 0.808 0.789 0.790 *0.818 0.830 0.755 0.761 0.793 0.800 0.763 0.761 *0.812 0.825

C m 0.650 0.675 0.656 0.691 0.660 0.662 *0.714 0.761 0.601 0.632 0.633 0.665 0.621 0.631 *0.701 0.744
l 0.448 0.552 0.461 0.572 0.483 0.499 *0.642 0.704 0.376 0.481 0.404 0.541 0.412 0.438 *0.626 0.685

Data- F1-measure Jaccard

set Short Fast MPR RICK ST CSS NASR Ours Short Fast MPR RICK ST CSS NASR Ours
s 0.623 0.731 0.655 0.764 0.679 0.674 *0.786 0.821 0.453 0.577 0.485 0.624 0.526 0.506 *0.650 0.695

P m 0.467 0.575 0.496 0.611 0.491 0.488 *0.667 0.715 0.303 0.405 0.331 0.442 0.325 0.323 *0.501 0.557
l 0.209 0.470 0.243 0.519 0.301 0.337 *0.591 0.668 0.115 0.303 0.139 0.351 0.175 0.201 *0.419 0.501
s 0.773 0.775 0.794 0.804 0.776 0.775 *0.816 0.827 0.630 0.635 0.659 0.675 0.633 0.633 *0.688 0.705

C m 0.623 0.652 0.643 0.680 0.638 0.645 *0.707 0.750 0.453 0.485 0.475 0.514 0.471 0.476 *0.546 0.598
l 0.404 0.513 0.431 0.555 0.443 0.466 *0.634 0.694 0.252 0.345 0.273 0.383 0.286 0.304 *0.464 0.531

(a) Lowest-resolution 𝑆 of grid map (b) Highest-resolution 𝐾 of grid map

(c) Dimensionality of embeddings 𝐻 (d) Generator initialization weight 𝛼

Figure 8: Parameter Sensitivity of ProgRPGAN

time on road segments. NASR learns a latent cost potentially cap-

turing travel time by feeding geometrical distance and timestamp,

and ProgRPGAN encodes the road segment types in pre-trained

embeddings which reflect the travel time.

Simply applying next step prediction models does not fare
well. Comparing with other methods, STRNN and CSSRNN have

the worst performance (except for Short). This suggests that sim-

ply applying RNN-based models, which fails to capture the global

knowledge of geographical maps and the road network, to sequen-

tially predict next steps for route planning is impractical.

Progressive GAN based path generation is effective for route
planning. Comparing with Fast, RICK and NASR, the performance

improvement of ProgRPGAN is clear and impressive, because Pro-

gRPGAN exploits discriminators to learn a cost of a generated path

rather than manual-craft costs (as Fast and RICK do) and progres-

sively generates a path on low-resolution to higher-resolution grid

maps rather than directly on the road network (as NASR does).

5.5 Parameter Sensitivity in ProgRPGAN
We examine the impact of important parameter settings in ProgRP-

GAN on its performance. We only show the result on the long test

fold in F1-measure, as the other test folds have a similar trend with

the long test fold. Due to the lack of space, we leave the details in

tuning other parameters in Appendix C.

Resolution of grid maps. Generally speaking, grid maps of very

low resolution are not informative as most of paths are in the same

cell, e.g., a 2×2 grid map consists of four 32km × 32km cells. On the

other hand, grid maps of too high a resolution, e.g., a 128× 128 grid

map consists of 0.5km × 0.5km cells, leads to long cell sequences

and unnecessary complexity for learning. Figure 8(a) and (b) show

that the best performance is achieved when the lowest-resolution 𝑆

is set to 8 and the highest-resolution 𝐾 is set to 64 for both datasets.

Dimensionality of embeddings 𝐻 . In general, a small dimen-

sionality is not capable of capturing the patterns between cells and

intersections to fit the training data, but a large dimensionality

may require a large amount of training data. Figure 8(c) shows that

setting 𝐻 as 128 for both Porto and Chengdu datasets achieves

converged performance.

Impact of pretrained embedding. By varying 𝛼 between 0.6 to

1.0, as shown in Figure 8(d), we observe that setting 𝛼 as 1.0 (i.e.,

does not incorporate pre-trained embeddings) has the worst per-

formance, indicating that the information encoded in pre-trained

embeddings is very useful for route planning. On the other hand,

setting 𝛼 as 0.8 achieves the best performance, suggesting that trans-

ferring embeddings from the previous-level is also useful while

incorporating pre-trained embeddings.

5.6 Study of Unique Issues in ProgRPGAN
In this section, we examine the following unique issues arising in the

design of ProgRPGAN: i) the effect of progressive path generation,

ii) the effect of incorporating graph constraints in the grid maps

and road network topology for path generation, and iii) the effect

of time information in path generation. The results are shown in

Figure 9 where the Best setting denotes ProgRPGAN with the

default settings described in Section 5.3.

Regarding the effect of progressive path generation, we compare

Best with the No Progressive setting which directly generates a

path on the road network without incorporating any grid map. Fig-

ure 9 shows that Best significantly outperforms No Progressive

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

400



Figure 9: Comparison of approaches to issues

in both datasets, indicating that the progressive generation of Prog-

PRGAN is effective for route planning. Next, we compare Best
with the No Graph Constraint setting which does not enforce

graph constraints in path generation. As shown in Figure 9, Best
outperforms No Graph Constraint about 4.8% and 5.6% in Porto

and Chengdu datasets, respectively. This suggests that considering

the topology constraints of grid graphs and road network is useful

for route planning. Finally, Figure 9 shows that Best outperforms

No Time, which does not feed time information in path generation,

for about 3.3% in both Porto and Chengdu datasets. This suggests

that the time information is also useful.

6 CONCLUSION
This study focuses on learning to route on road networks. Prior

works fail to capture the global knowledge in geographical maps

and road networks, and thus do not generate realistic paths. To fill

in this gap, we explore the GAN technique to capture the various in-

formation on geographical maps and road network to progressively

plan routes on grid maps of low to high resolutions and finally gen-

erate realistic paths on the road network. To achieve the goal, we

propose a novel progressive GAN framework, namely ProgRPGAN,
which consists of a sequence of (generator, discriminator) pairs,

aiming to generate and assess realistic paths in adversarial manner.

Moreover, we exploit network representation learning methods to

simultaneously pre-learn embeddings of grid cells in grid maps and

intersections in road network by capturing the network topology

and external factors, e.g., road segment types, to facilitate model

learning. Empirical result shows that ProgRPGAN soundly outper-

forms all existing models in multiple large-scale real-world datasets

especially for long routes. ProgRPGAN, moreover, effectively gen-

erates various realistic paths for a route planning query.
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A ROAD NETWORK EXTRACTION
We extract road networks from the OpenStreetMap (OSM) [1],

which is a publically accessible map website. For each road net-

work data, we download the raw OSM data of the corresponding

city equipped with a trajectory dataset (i.e., Porto and Chengdu)

for our experiments. We then extract Nodes and Ways data from

the raw OSM data as intersections (i.e., nodes) and road segments

(i.e., edges), respectively, to form a road network. More specifi-

cally, we only extract Ways with a "highway" key in their tag sets

(e.g., <key="highway" value="primary"/>) as road segments because

OSM also records the boundaries of buildings and areas as Ways

(without a "highway" key). For each extracted Way, represented

as a sequence of Node ids in the raw OSM data, we only use the

starting Node and end Nodes of the sequence as intersections (i.e.,

nodes in the road network), and remove other internal Nodes which

are used to describe the shape of a Way, and then add a directed

edge from the starting Node to the end Node in road network if the

Way is a one-way road (by checking its "one_way" key); otherwise,

add an additional directed edge from the end Node to the starting

Node. The edges extracted from a Way is labeled a road segment

type as the value of the Way’s "highway" key (e.g., "primary" in

<key="highway" value="primary"/>) and a geometrical length cal-

culated by the length of the Way (by considering all Nodes of its

Node sequence).

B METRICS IN PERFORMANCE EVALUATION
Asmentioned, we usemicro precision, recall, F1-measure and Jaccard
index between the generated paths and the ground truth among

road segments of paths weighted by the road segment lengths as

the performance metrics. Given a tested result set 𝑅𝑒𝑠 consisting

of a set of (an real route 𝑝 and a corresponding generated path 𝑝)

pairs, the four metrics are derived as follows.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑠) =
∑
(𝑝,�̃�) ∈𝑅𝑒𝑠

∑
𝑒∈𝑝∩�̃� 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)∑

(𝑝,�̃�) ∈𝑅𝑒𝑠
∑
𝑒∈�̃� 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒𝑠) =
∑
(𝑝,�̃�) ∈𝑅𝑒𝑠

∑
𝑒∈𝑝∩�̃� 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)∑

(𝑝,�̃�) ∈𝑅𝑒𝑠
∑
𝑒∈𝑝 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑅𝑒𝑠) = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑠) × 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒𝑠)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑠) + 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒𝑠)

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑅𝑒𝑠) =
∑
(𝑝,�̃�) ∈𝑅𝑒𝑠

∑
𝑒∈𝑝∩�̃� 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)∑

(𝑝,�̃�) ∈𝑅𝑒𝑠
∑
𝑒∈𝑝∪�̃� 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)

C ADDITIONAL PARAMETER SENSITIVITY
TESTS IN PROGRPGAN

Here we further examine the impact of other parameter settings in

ProgRPGAN on its performance. To test the parameter sensitivity

of ProgRPGAN, we vary the values of the parameters, 1) the model

design of LSTM; 2) the data preparation for the embeddings pre-

training; 3) the number of samples in learning ProgRPGAN; and

4) the dimensionality of the noise vector 𝑧 and the embeddings of

time 𝐻𝑡𝑖𝑚𝑒 , to observe the changes in F1-measure on the long test

fold, as shown in Figure 10.

Model design of LSTM. Regarding the model design of LSTM,

generally speaking, a small dimensionality or a shallowly stacked

(a) Dimensionality of LSTM (b) Number of layers of LSTM

(c) Leaping parameter 𝛽 for randomwalks

on the unified graph

(d) Window size of data preparation for

embeddings pre-training

(e) # of samples𝑀 per training epoch (f) # of samples 𝑁 for MCR

(g) Dimensionality of noise vector 𝑧 (h) Dimensionality of time embeddings

𝐻𝑡𝑖𝑚𝑒

Figure 10: Parameter Sensitivity Tests of ProgRPGAN

LSTM is not capable of capturing the moving patterns along the

paths to accurately predict the next step (i.e., a grid cell or an

intersection), but a large dimeingsionality or a deeply stacked LSTM

may lead to noises, causing overfitting or requiring a large amount

of training data. Figure 10(a) shows that setting the dimensionality

of LSTM to 128 for both Porto and Chengdu datasets achieves

converged performance, while the performance is decreased after

the dimensionality is set to larger than 512. On the other hand, for

the number of stacked layers of LSTM, Figure 10(e) shows that the

performance does not change much when it is set between 1 to 3.

Thus, setting it to 2 is a good choice.

Parameterized randomwalks in embedding pre-training. We

study the impact of leaping parameter 𝛽 for random walks on the

unified graph and the sliding window size on random walks to

sample training data for HINVec. Figure 10(c) shows that when 𝛽 is

increased (resulting more leaping between adjacent levels of grid

graphs and road network), the performance continues to improve

and coverage when 𝛽 is set to 0.5 or 0.7. It suggests that simultane-

ously learning embeddings of grid cells in grid maps of different

resolutions and intersections (i.e., 𝛽 > 0) is useful, but sampling

more cells/intersections in the same grid graph/road network is

better than between adjacent levels of grid graphs and road net-

work (i.e., 𝛽 = 0.5 0.7 achieves converged performance). On the

other hand, regarding the sliding window size on random walks

to sample training data for HINVec, Figure 10(d) shows that the
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(a) Real routes of RPQ 1 (b) Generated paths for RPQ 1

(c) Real route of RPQ 2 (d) Generated paths for RPQ 2

Figure 11: Real routes and generated paths

performance does not change significantly when it is set at between

2 to 4. Therefore,it is set to 3.

Learning process of ProgRPGAN. We examine the number of

samples 𝑀 for a training epoch and the number of sampls 𝑁 for

Monte-Carlo rollouts (MCR). As shown in Figure 10(e),𝑀 does not

affect the performance significantly while it is greater than 32, and

thus we set it to 64 which achieves the converged performance.

On the other hand, for 𝑁 , Figure 10(f) shows that the performance

continues to improve while the 𝑁 is increased because the more

number of samples, the more accurate estimation of the individual

reward for a next step prediction, but it leads to longer sampling

time for training. Thus,𝑁 is set to 16 due to the limited improvement

made by setting 𝑁 to 32.

Dimensionality of noise vector and time embeddings. Finally,
we study the impact of the dimensionality of noise vector 𝑧 and

time embeddings 𝐻𝑡𝑖𝑚𝑒 . Figure 10(g) shows that the performance

converges while the dimensionality of 𝑧 > 16. It is much smaller

than a conventional setting (i.e., 100) for the other generation tasks

such as image and text generation. This suggests that the variety

of realistic routes is smaller than images or texts, i.e., given a RPQ,

there may exist a relatively small number of acceptable routes from

users compared with image generation, e.g., given an image class,

says "dog", to generate different realistic images for "dog". On the

other hand, Figure 10(h) shows that setting 𝐻𝑡𝑖𝑚𝑒 between 64 to

256 achieves good performance.

D VISUALIZED GENERATED PATHS
In this section, we investigate the generated paths of ProgRPGAN

by visualized case studies. Figure 11 illustrates two example queries

RPQ 1 and RPQ 2 (where RPQ 1 is the same as we show in Section 1),

both of which have a variety of acceptable routes from road users

(i.e., blue lines) between the source and destination, as shown in

Figure 11(a) and (c). Then, we use ProgPRGAN to generate sets of

paths for the both queries by giving random noise vectors 𝑧. The

1

0.13

0.87
0.95

0.05

0.78
0.18

0.04
23

destination

source

Figure 12: Generated path in
the 𝐾 × 𝐾 grid map

1

0.13

0.87
0.95

0.05

0.78
0.18

0.04
234

Figure 13: Next road seg-
ment prediction

generated paths by ProgRPGAN are shown in Figure 11(b) and (d)

(for RPQ 1 and RPQ 2, respectively), distinguished by color that

generated paths which are exactly the same have the same color.

As shown, ProgRPGAN is effective to generate realistic paths from

the given source to destination compared with the real routes from

road users. Moreover, ProgRPGAN is able to generate a variety

of realistic paths for the same query. It is worthy to note that the

distribution of generated paths is correlated to the frequency of

the real routes taken by users (i.e., the darker lines indicate the

higher frequency in Figure 11(a) and (c)). However, we can still

observe that some real routes do not appear in the set of generated

paths (marked as "outliers?" and "missing paths?" in Figure 11).

ProgRPGANmay not have learned to generate these missing routes

due to the low frequency.

E ILLUSTRATION OF NEXT ROAD SEGMENT
PREDICTION

In this section, we further investigate the path generation process of

ProgRPGAN in the road network by a visualized case study. Given

the RPQ 1 in Appendix D as the query (its source and destination

are labeled in Figure 12) and a generated cell path in the highest-

resolution grid map (illustrated as red squares in Figure 12), ProgRP-

GAN aims to generate a path on the road network by sequentially

predicting the next intersection to move toward the destination.

Assume that ProgRPGAN already generates a partial path starting

from the source (i.e, the black path in Figure 12), we illustrate the

further path generation process within the dotted box of Figure 12

in Figure 13. As shown in Figure 13, at intersection 1, ProgRPGAN

infers a transition probability to intersection 2 (i.e., 0.87) higher

than 0.13 to another intersection up north Thus ProgRPGAN selects

intersection 2 as the next step. Note that, while selecting the inter-

section up north of intersection 1 is also a potential good decision

to generate a realistic path (as the blue path shown in Figure 11(b)),

the current generation is guided by the given cell path that the next

cell to reach is the one on left of the current intersection 1, and thus

ProgRPGAN correctly infers intersection 2 as the next intersection

to move to. Then, ProRPGAN sequentially to generate the path

to move to intersection 3 and then intersection 4, following the

direction of the generated cell path.
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