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Abstract

Out-of-distribution (OOD) fine-tuning has emerged as a promising approach for
anomaly segmentation. Current OOD fine-tuning strategies typically employ
global-level objectives, aiming to guide segmentation models to accurately predict
a large number of anomaly pixels. However, these strategies often perform poorly
on small anomalies. To address this issue, we propose an instance-level OOD
fine-tuning framework, dubbed LNOIB (Leaving No OOD Instance Behind). We
start by theoretically analyzing why global-level objectives fail to segment small
anomalies. Building on this analysis, we introduce a simple yet effective instance-
level objective. Moreover, we propose a feature separation objective to explicitly
constrain the representations of anomalies, which are prone to be smoothed by
their in-distribution (ID) surroundings. LNOIB integrates these objectives to
enhance the segmentation of small anomalies and serves as a paradigm adaptable to
existing OOD fine-tuning strategies, without introducing additional inference cost.
Experimental results show that integrating LNOIB into various OOD fine-tuning
strategies yields significant improvements, particularly in component-level results,
highlighting its strength in comprehensive anomaly segmentation.

1 Introduction

Semantic segmentation has achieved remarkable success in autonomous driving. However, traditional
segmentation approaches adhere to a closed-set training taxonomy [52, 44, 55]. When deployed in
real-world scenarios, these segmentation networks struggle to predict instances of previously unseen
categories (known as OOD instances or anomalies), inevitably leading to potential risks.

To identify OOD regions, great efforts have been made in anomaly segmentation (AS) [21, 48, 31, 62,
57, 35]. One promising solution is OOD fine-tuning [4, 47, 41], which uses mixed-content images
(containing ID and OOD regions) to enhance the generalization of segmentation models to previously
unseen instances. Current OOD fine-tuning strategies typically use global-level objectives, aiming
to accurately predict as many anomaly pixels as possible, rather than segmenting all anomalies.
As a result, these objectives lead to the neglect of small OOD instances. However, mispredicting
small anomalies (e.g., a small cow in Figure 1) can pose significant safety risks. Thus we argue that
detecting small anomalies is also critical for ensuring the safety of segmentation networks.

In this paper, we propose a novel OOD fine-tuning framework called LNOIB to ensure a comprehen-
sive detection of all OOD instances by the segmentation model. We start by theoretically analyzing
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(c) M2A (d) M2A+LNOIB (ours)(a) input image (b) OOD ground-truth

Figure 1: Current OOD fine-tuning strategies for AS, such as Mask2Anomaly (M2A) in (c), some-
times neglect small anomalies (e.g., a small cow in the green box). When incorporating LNOIB,
M2A effectively segments both large and small anomalies (e.g., both big and small cows in (d)).

why current global-level objectives for OOD fine-tuning often fail to detect small anomalies. For
this reason, we introduce a simple yet effective instance-level objective that equally optimizes each
anomaly. Note that, beyond a specific loss function, this objective serves as a versatile function that
can be adapted to various existing global-level OOD fine-tuning losses (such as entropy-based loss
[4], energy-based loss [47], etc.). By integrating both global-level objective and our instance-level
objective, we formulate an overall prediction-based objective, which effectively guides the model to
detect small anomalies while maintaining high accuracy in identifying large anomalies.

Moreover, another reason for the neglect of small anomalies is that the features of OOD instances
often become smoothed by their ID surroundings during convolution operations [54, 46]. To tackle
this issue, we propose a feature separation objective to ensure that the prototype of each OOD
instance diverges significantly from ID representations. This objective comprises an ID semantic
loss and a nearest neighbor loss: the former provides a universal view to prevent OOD features from
aligning with ID semantic prototypes, while the latter ensures that each OOD prototype remains
distinct from its nearest ID prototype neighbors.

LNOIB combines the prediction-based objective with the feature separation objective to effectively
segment all anomalies. Accordingly, LNOIB offers several advantages to OOD fine-tuning: 1)
Effectiveness: The proposed objectives in LNOIB significantly enhance the overall performance,
particularly in small anomalies. 2) Efficiency: LNOIB incurs no additional computational cost
during inference, ensuring a consistent inference speed. 3) Versatility: LNOIB can be seamlessly
adapted to existing OOD fine-tuning strategies, such as Entropy Maximization (EM) [4], PEBAL
[47], and M2A [41]. Note that LNOIB acts as a paradigm that can be integrated into existing OOD
fine-tuning strategies, rather than being limited to a specific loss function. Experimental results
show that extended by LNOIB, current OOD fine-tuning strategies achieve better performance across
various benchmarks, with notable improvements in component-level and instance-level metrics.

We briefly summarize our contributions as follows:

• We propose LNOIB, a novel OOD fine-tuning framework for AS, which adapts existing strategies
that merely use global-level objectives to improve the segmentation results of small anomalies.
• We introduce a prediction-based objective and a feature separation objective within LNOIB to

guide the segmentation models in focusing on small OOD instances.
• Experimental results show that integrating LNOIB significantly enhances the performance of

existing OOD fine-tuning strategies (EM, PEBAL, and M2A), particularly in component-level
and instance-level metrics.

2 Related Work

Anomaly Segmentation AS aims to segment instances whose categories are not present in the
training dataset. Existing approaches can be broadly categorized into discriminative methods [21,
34, 24, 17, 58] and generative methods [16, 48, 10, 27, 29, 18]. The former primarily utilizes the
predictions of semantic segmentation to estimate uncertainty, while the latter typically employs extra
generative networks to model the distribution of ID samples. Both methods produce a pixel-wise
anomaly score map as the result of AS. Accordingly, the most commonly used pixel-level metrics
measure the accuracy of pixel predictions. However, this focus can lead to the neglect of small OOD
instances, as they have less impact on the overall performance. In this paper, we mainly compare
component-level and instance-level metrics as introduced in [3, 37] to evaluate LNOIB.
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Figure 2: Overview of LNOIB fine-tuning framework for AS. (a) illustrates the prediction-based ob-
jective containing a commonly-used global-level objective Lglob and a novel instance-level objective
Lins; (b) depicts the feature separation objective, including an ID semantic loss Lsem (with some
connections omitted for clarity) and a nearest neighbor loss Lnear.

OOD Fine-Tuning OOD fine-tuning is an optional yet effective strategy in discriminative methods
for AS. The main goal is to use a mixed-content dataset (containing both ID and OOD regions in
each image) to simulate anomalies, thereby exposing the models to outliers and enabling them to
learn the differences between ID and OOD patterns [22, 40, 38]. Common approaches for generating
these mixed-content datasets follow a direct cut-and-paste strategy [47, 31]. Moreover, a suitable
fine-tuning objective is required to guide the model in distinguishing between ID and OOD data.
Existing literature often employs softmax entropy [4], energy [47], or logit [36] to design fine-tuning
objectives in a pixel-wise manner. However, these objectives tend to focus on correctly predicting
more pixels globally, falling short of detecting small anomalies. In this paper, we propose a novel
OOD fine-tuning framework, termed LNOIB, to segment both large and small anomalies.

Prototype Learning Prototypes can be regarded as the mean representations of semantic category
features in few-shot segmentation [50, 25, 26, 60, 33]. Existing approaches typically utilize category-
wise prototypes to align pixel-wise features and produce dense predictions [50, 26]. In contrast
to previous studies, this work investigates whether prototype-based representations can benefit
the OOD fine-tuning process. Specifically, we construct ID prototypes for each ID category and
OOD prototypes for each OOD instance, and encourage clear separation between OOD and ID
prototypes. The motivation for adopting instance-wise OOD prototypes, rather than merely enforcing
the separation between ID category prototypes and all pixel-wise OOD representations, is also
supported by our instance-level theoretical analysis to perform well on small anomalies.

3 Methodology

We begin with a brief review of AS. Then we theoretically analyze the limitations of existing global-
level fine-tuning objectives and introduce a versatile instance-level objective. Next, we propose a
feature separation objective to enhance the detection of small anomalies. Finally, we present the
overall OOD fine-tuning framework of LNOIB.

3.1 Task Preview

Given an input image x ∈ R3×H×W , a segmentation model is utilized to extract the latent features
F ∈ RC×H×W of x through the encoder, where C is the feature dimension. The decoder of the
model then processes these features to produce the segmentation results f(x) ∈ RK×H×W , where
K is the total number of ID categories.
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To segment anomalies, AS yields a pixel-wise anomaly score map s(x) ∈ [0, 1]H×W based on
f(x). For example, the pioneering work [21] uses the maximum softmax probability of f(x) as the
confidence score to produce s(x). However, segmentation models often exhibit overconfidence in
their predictions. To address this, OOD fine-tuning is a widely adopted way to enhance the model,
enabling it to separate ID and OOD patterns to refine AS performance. Despite this, current OOD
fine-tuning strategies struggle to capture small anomalies. We theoretically analyze the reasons for
this limitation below.

3.2 Global vs. Instance-Level Objective

Before introducing our approach, we first analyze why existing OOD fine-tuning strategies neglect
small anomalies. Given a mixed-content image x and its ground-truth binary mask y ∈ {0, 1}H×W
(indicating normality or anomaly), previous OOD fine-tuning strategies typically employ global-
level contrastive losses to separate ID and OOD regions, aiming to maximize the accuracy of pixel
predictions across the entire image. These global-level objectives can be uniformly formulated as:

Lglob =
1

Nin

∑
xi∈Ωin

lin[s(xi), yi]︸ ︷︷ ︸
Lin

+
1

Nout

∑
xj∈Ωout

lout[s(xj), yj ]︸ ︷︷ ︸
Lout

(1)

where Ωin and Ωout denote the image lattices of ID and OOD regions (based on the binary mask
y), respectively. i and j are the spatial indices. Nin = |Ωin| and Nout = |Ωout| separately are
the total number of pixels in Ωin and Ωout. Additionally, lin and lout signify the pixel-wise loss
for ID and OOD pixels, respectively. Note that, lin and lout can be any metric that measures the
similarity between the pixel-wise anomaly score and its ground-truth, including entropy-based loss
[4], energy-based loss [47], and logit-based loss [41]. For convenience, we denote the first and second
terms of Eq. (1) as Lin and Lout, respectively.

As to the OOD region Ωout, it typically contains several independent OOD instances O =
{o1, o2, ..., oN}, where N is the number of anomalies. Accordingly, we have Ωout = Ωo1 ∪ Ωo2 ∪
... ∪ ΩoN . Below, we present Lemma 1.
Lemma 1. (Weighted Loss Decomposition). The total loss Lout decomposes into instance-specific
components:

Lout =
1

|Ωout|
∑
ok∈O

|Ωok | · Exj∼Ωok
[lout [s(xj), yj ]]︸ ︷︷ ︸
Lok

,
N∑

k=1

wkLok (2)

where wk ,
|Ωok

|
|Ωout| is the normalized weight of instance ok and Lok is the mean loss over Ωok .

The proof of Lemma 1 is provided in Appendix A. Based on this decomposition, the overall loss Lout

can be viewed as a weighted sum of anomaly-wise losses Lok , where the weights correspond to the
relative size of each anomaly region. This formulation enables further analysis of the influence of the
dominant anomaly on the total loss. That is, when a single OOD instance occupies a large portion of
the anomaly region, the following theorem provides a bound on Lout in terms of the loss contributed
by that dominant OOD instance:
Theorem 1. (Dominant Instance Effect). If there exists t ∈ {1, ..., N}, such that:

|Ωt| ≥ (1− ε)|Ωout| for some ε ∈ (0, 1), (3)

then the loss Lout is bounded by:

(1− ε)Lot ≤ Lout ≤ (1− ε)Lot + ε ·max
k 6=t

Lok (4)

The proof of Theorem 1 is given in Appendix A. Based on this, we derive the following corollary:

Corollary 1. (Asymptotic Dominance). If |Ωot |
|Ωout| → 1 (i.e., ε→ 0), then Lout → Lot in probability.

Proof. From Theorem 1, as ε→ 0, both bounds converge to Lot .
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According to Corollary 1, we observe that small anomalies contribute minimally to Lout, leading to
limited optimization during OOD fine-tuning. This likely explains why small anomalies are often
ignored in the commonly used global-level objectives. To address this issue, we propose a simple yet
effective instance-level objective that focuses on each separated OOD instance, formulated as:

Lins = Lin +
1

N

∑
ok∈O

∑
xj∈Ωok

1

|Ωok |
· lout[s(xj), yj ] (5)

where Lin is equal to that of Eq. (1). This instance-level objective addresses the above drawback by
encouraging segmentation models to equally focus on each anomaly. However, merely employing
Lins is insufficient because ensuring the segmentation quality of large anomalies is also important.
Specifically, Lins draws attention to all potential anomalies while reducing the penalty on large
ones compared to Lglob. Hence, we incorporate the commonly used global-level loss to Lins, and
formulate the total prediction-based loss as:

Lpred = αLglob + (1− α)Lins (6)

where α is a balanced factor that controls the trade-off between global-level quality and instance-level
completeness. Note that, Lpred is not limited to one specific loss; instead, it acts as a paradigm for
existing global-level objectives that calculate the similarity between s(xj) and yj . For example, if we
select the entropy-based function [4] for lin and lout to calculate Lglob, our proposed Lins will also
use the same entropy-based function. This paradigm can be extended to other global-level objectives
as well. In this paper, we use the global-level objectives in EM [4], PEBAL [47], and M2A [41] to
evaluate the versatility of our proposed instance-level objective. For detailed formulations, please
refer to Appendix B.

3.3 Features Separation Objective

In addition to using global-level objectives for OOD fine-tuning, another reason for inadequate
performance on small anomalies is that the features tend to be smoothed out by their ID surroundings
under convolution operations [54, 46]. Therefore, we explicitly constrain the anomaly features to
make them more distinguishable to address this issue.

Given an image x and its latent feature F , we first calculate the prototype pok for each OOD instance
ok in a widely used masked average pooling [50] manner:

pok =
1

|Ωok |
∑

xj∈Ωok

Fj (7)

where Fj ∈ RC represents the pixel-wise representation of pixel xj . Accordingly, the prototype
set P = {po1 , po2 , ..., poN } for all anomalies can be easily obtained. The rationale for constructing
prototypes for each OOD instance, rather than merely enforcing the separation between ID category
prototypes and all pixel-wise representations, is further elaborated in Appendix A.4.

As our goal is to separate OOD prototypes from ID representations, one intuitive approach is to
ensure that each OOD prototype is far from each prototype of the ID category [2]. The prototype for
the c-th ID category can be established based on the segmentation model by:

qc =

∑
xj
Fj · 1[fc(xj) > τ ]∑
xj
1[fc(xj) > τ ]

(8)

where fc(xj) represents the probability of predicting pixel xj as category c, τ is a threshold for
feature filtering, and 1[·] is an indicator function. Inspired by [13], we set a higher τ = 0.7 to ensure
the quality of each ID prototype. Accordingly, the prototype set for all ID categories in x can be
obtained as Q = {q1, q2, ..., qK}.
Therefore, we formulate the ID semantic loss as:

Lsem =
1

N ·K
∑

pok
∈P

∑
qc∈Q

cosSim[pok , qc] (9)
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where cosSim[·, ·] is the normalized cosine similarity (ranging [0, 1]) between the prototype of
each OOD instance and that of each ID category. In this way, the prototypes of OOD instances are
separated from those of ID categories.

However, this strategy raises another issue: an OOD prototype may be close to one specific ID proto-
type while being far from others. We present Theorem 2 to provide a foundation for understanding
this phenomenon.
Theorem 2. (Finite-Category Mean Similarity Bound). Let Q = {qc}Kc=1 be a set of K ID class
prototypes, and pit be an ID instance prototype from class t. Assume:

1. Intra-class Alignment: cosSim(pit , qt) = 1− ε, where ε ∈ [0, 1] is small (e.g., ε→ 0+).

2. Inter-class Separability: cosSim(pit , qc) ≤ δ for all t 6= c, where δ ∈ [0, 1] is close to 0 (e.g.,
δ → 0+).

Then, the mean cosine similarity S̄K between pit and all ID prototypes is bounded by:

S̄K :=
1

K

K∑
c=1

cosSim(pit , qc) ≤
1− ε+ (K − 1)δ

K
(10)

For large K (e.g., K � 1), this simplifies to:

S̄K ≈ δ +
1− ε− δ

K

K�1−−−→ δ (11)

The proof of Theorem 2 is provided in Appendix A. Theorem 2 indicates that using Lsem cannot
determine whether the prototype of an OOD instance falls into a specific ID category, especially
when there are numerous ID categories (large K). To address this, we advocate for separating OOD
prototypes from their nearest ID prototypes. Hence we calculate a nearest neighbor loss Lnear as:

Lnear =
1

N ·M
∑

pok
∈P

∑
qc∈Qok

cosSim[pok , qc] (12)

where Qok represents the top-M nearest ID prototype neighbors of the OOD instance ok.

Combining Lsem and Lnear, we formulate the overall instance-level feature separation loss as:

Lfeat = βLsem + (1− β)Lnear (13)

where β is a balanced factor to adjust Lsem and Lnear.

3.4 OOD Fine-tuning and Inference

OOD fine-tuning: Given a segmentation model trained on the close-set taxonomy, we propose the
LNOIB framework for OOD fine-tuning to encourage the model to segment all OOD instances, as
shown in Figure 2. The overall objective in LNOIB is formulated by:

LLNOIB = γ1Lpred + γ2Lfeat (14)

where γ1 and γ2 are balanced factors. LLNOIB can be technically adapted to global-level objectives
in existing OOD fine-tuning strategies. Specifically, Lpred acts as an instance-level extension of the
global-level objectives, while Lfeat can be easily computed using the latent features of segmentation
models. As to the weights γ1 and γ2, please refer to Appendix E for further analysis.

Inference: After OOD fine-tuning with LLNOIB , we use the segmentation model to generate
anomaly scores. Different OOD fine-tuning strategies may provide various methods to yield anomaly
scores. To ensure the versatility of LNOIB, we retain the original method used in each strategy. For
example, if LNOIB is based on PEBAL [47], the anomaly score is obtained by calculating the free
energy map as described in [47], without any modification. Consequently, the inference process
depends on the specific strategy used and does not introduce extra computations, demonstrating the
versatility and efficiency of LNOIB.

6



Table 1: Component-level results on multiple datasets. By incorporating LNOIB, existing OOD
fine-tuning methods achieve higher results. The best results are in bold and the second best results
are underlined. ↑ means higher values are better.

Approach SMIYC-RA SMIYC-RO FS Static FS L&F Road Anomaly
sIoU ↑ PPV ↑ F1* ↑ sIoU ↑ PPV ↑ F1* ↑ sIoU ↑ PPV ↑ F1* ↑ sIoU ↑ PPV ↑ F1* ↑ sIoU ↑ PPV ↑ F1* ↑

SynBoost (CVPR’21) [10] 28.93 19.01 9.37 38.86 36.52 35.77 19.84 27.98 25.67 22.35 14.46 10.85 33.19 27.57 29.33
FlowEneDet (UAI’23) [18] 21.16 17.08 5.72 40.96 42.07 37.20 15.43 8.87 11.82 10.60 9.58 5.49 21.50 23.04 20.43

RbA (ICCV’23) [36] 56.26 41.35 42.04 47.44 56.16 50.42 37.03 30.96 26.94 27.47 18.69 20.27 37.19 35.70 42.27
RPL (ICCV’23) [31] 49.77 29.96 30.16 52.62 56.65 56.69 18.70 20.53 13.16 14.72 11.67 3.91 26.82 29.71 24.64
CSL (AAAI’24) [58] 45.14 47.70 44.85 41.66 48.98 46.27 27.81 23.55 18.90 22.03 12.64 6.79 25.18 33.67 27.64

RWPM (ECCV’24) [57] 53.10 58.25 47.44 52.89 70.21 64.85 34.52 37.15 28.21 19.86 26.27 18.31 41.65 44.14 45.38
PixOOD (ECCV’24) [49] 44.15 24.32 19.82 42.68 57.49 50.82 28.66 28.05 24.71 25.28 22.54 20.31 32.74 38.97 41.18

EM (ICCV’21) [4] 48.50 40.13 29.28 45.79 55.31 45.47 32.71 33.49 20.39 21.85 21.68 14.74 26.11 20.63 19.74

+LNOIB(ours) 58.73 47.42 43.90 50.86 58.80 48.57 44.38 37.20 37.79 34.74 29.56 23.97 35.72 33.18 27.30
(±0.26) (±0.21) (±0.35) (±0.38) (±0.22) (±0.09) (±0.30) (±0.41) (±0.25) (±0.17) (±0.24) (±0.10) (±0.18) (±0.05) (±0.29)

PEBAL (ECCV’22) [47] 40.42 31.07 18.60 27.81 9.16 7.73 24.76 22.30 17.83 12.66 14.95 8.51 31.34 26.44 23.87

+LNOIB(ours) 52.17 39.55 33.48 32.88 12.90 13.46 38.84 29.75 28.44 27.36 35.78 17.73 37.68 30.91 32.65
(±0.41) (±0.13) (±0.44) (±0.30) (±0.06) (±0.16) (±0.25) (±0.19) (±0.09) (±0.26) (±0.33) (±0.14) (±0.33) (±0.15) (±0.12)

M2A (PAMI’24) [42] 51.47 46.70 45.26 50.49 69.38 64.02 35.24 27.70 29.18 26.51 19.43 23.76 47.43 40.80 44.57

+LNOIB(ours) 63.15 57.37 60.08 61.50 73.71 70.25 52.08 44.93 42.96 39.16 38.10 34.80 53.70 51.46 50.97
(±0.48) (±0.53) (±0.27) (±0.07) (±0.51) (±0.46) (±0.18) (±0.20) (±0.30) (±0.31) (±0.17) (±0.19) (±0.38) (±0.25) (±0.08)

4 Experiments

4.1 Experimental Setup

Datasets: As to the ID dataset, we adopt the Cityscapes dataset [9] for pre-training, which includes
2975 training and 500 validation images, containing 19 different urban scene categories. For OOD
datasets, we evaluate our approach on various AS benchmarks. The Fishyscapes benchmark [1]
includes two datasets: Fishyscapes Static (FS Static) and Fishyscapes Lost & Found (FS L&F). The
former contains 30 validation images from blending Pascal [12], and the latter is based on Lost and
Found dataset [39], with 100 validation images. SMIYC benchmark [3] consists of two separate
datasets: RoadAnomaly (SMIYC-RA) and RoadObstacle (SMIYC-RO), which contain 10 and 30
validation images with road anomalies and obstacles, respectively. Additionally, the Road Anomaly
dataset [30], which served as a precursor to SMIYC, includes 60 images with anomalies located in or
near the road for validation.

Evaluation Metrics: As our target is to segment all anomalies regardless of their sizes, we mainly
focus on the component-level metrics to evaluate LNOIB, including the component-wise intersection
over union (sIoU), the positive predictive value (PPV), and the averaged component-wise F1 score
(F1*). Please refer to Appendix C for detailed information. These metrics reflect the extent to which
each disjoint component is covered, ensuring that smaller components are weighted equally with
larger ones. Furthermore, we also consider the commonly used pixel-level metrics, i.e., Area under
the Precision-Recall Curve (AuPRC) and False Positive Rate at a true positive rate of 95% (FPR95),
to guarantee the overall pixel-level quality. In addition, inspired by [37], we also adopt instance-level
metrics iAP and iAP50 to further validate the effectiveness of our method. For detailed definitions
and corresponding results, please refer to Appendix F.

Implementation Details: To test the versatility of our approach, we employ LNOIB to EM [4],
PEBAL [47], and M2A [41], for the three leading AS solutions utilizing global-level OOD fine-
tuning strategies. For fair comparisons, we adopt the same configurations as each respective approach
during the first stage, where a closed-set segmentation model is trained on the Cityscapes [9]. During
the OOD fine-tuning stage, our LNOIB objectives are built on the global-level losses used in EM,
PEBAL, and M2A, respectively, with parameters set as α = 0.5, β = 0.5, M = 1, τ = 0.7, and
γ1 = γ2 = 1 , empirically. For detailed formulations of LNOIB objective, please refer to Appendix
B. We select features from stages 2, 3, and 4 of each backbone, upsample them to 1/4 of the image
size, and incorporate them to calculate Lfeat. For consistency, we fine-tune the whole segmentation
model for each method using their corresponding configurations. We adopt AnomalyMix [47] to
sample 297 images from COCO [28] and mix them into Cityscapes to generate outlier images and
identify each OOD instance for calculating Lins and Lfeat. During inference, we follow the methods
to yield anomaly scores in EM, PEBAL, and M2A, respectively.

4.2 Main Results

Component-level performance: We first evaluate the component-level performance of LNOIB on
multiple datasets. The results for sIoU, PPV, and F1* are shown in Table 1. As seen, OOD fine-tuning
strategies like EM, PEBAL, and M2A show significant improvements when integrated with LNOIB.
Notably, M2A, when extended with LNOIB, outperforms other methods such as SynBoost [10],
FlowEneDet [18], CSL [58], RbA [36], RPL [31], RWPM [57], and PixOOD [49]. Please note that
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Table 2: Pixel-level performances on SMIYC-RA, SMIYC-RO, FS Static, FS L&F, and Road
Anomaly. By incorporating LNOIB, existing OOD fine-tuning strategies achieve improvements in
most cases. ↓ means lower values are better.

Approach SMIYC-RA SMIYC-RO FS Static FS L&F Road Anomaly
AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓

SynBoost (CVPR’21) [10] 50.64 57.63 58.89 8.47 48.44 47.71 40.99 34.47 41.83 59.72
FlowEneDet (UAI’23) [18] 52.61 61.43 76.04 1.38 52.61 14.91 56.11 3.87 76.35 15.24

RbA (ICCV’23) [36] 86.13 15.94 87.85 3.33 83.26 4.22 60.96 10.63 78.45 11.83
RPL (ICCV’23) [31] 72.60 12.65 75.53 4.19 87.27 5.69 49.92 16.78 63.96 26.18
CSL (AAAI’24) [58] 76.75 9.14 81.55 0.96 79.73 6.34 70.68 8.15 61.38 43.80

RWPM (ECCV’24) [57] 88.30 11.87 91.68 0.40 81.69 4.51 74.45 4.83 76.12 13.67
PixOOD (ECCV’24) [49] 58.83 34.64 84.96 0.93 85.37 4.77 84.53 2.27 75.79 13.38

EM (ICCV’21) [4] 83.95 17.13 84.81 2.36 86.56 9.37 80.22 5.40 70.86 21.47

+LNOIB(ours) 86.26 15.28 84.47 2.39 86.95 8.89 81.68 5.18 72.42 19.74
(±0.47) (±0.11) (±0.35) (±0.06) (±0.21) (±0.10) (±0.24) (±0.07) (±0.68) (±0.17)

PEBAL (ECCV’22) [47] 53.72 32.18 27.24 19.58 82.73 6.81 59.83 6.49 62.37 28.29

+LNOIB(ours) 61.46 22.03 31.30 18.44 83.81 4.47 64.50 3.82 65.35 22.77
(±0.44) (±0.18) (±0.07) (±0.14) (±0.52) (±0.03) (±0.40) (±0.11) (±0.14) (±0.10)

M2A (PAMI’24) [42] 87.83 15.09 91.52 0.43 71.36 10.28 89.91 1.85 75.70 16.31

+LNOIB(ours) 92.20 11.34 92.58 0.33 75.19 8.27 90.54 1.68 79.38 13.29
(±0.11) (±0.07) (±0.42) (±0.04) (±0.55) (±0.11) (±0.58) (±0.05) (±0.22) (±0.08)

Image Mask2FormeGround-Truth r M2A LNOIB

Figure 3: Qualitative results on Cityscapes. We compare the close-set performance of Mask2Former,
Mask2Former fine-tuned with M2A, and Mask2Former fine-tuned with LNOIB (based on M2A),
showing minimal close-set performance drop.

LNOIB is compatible with existing OOD fine-tuning approaches. Therefore, we select EM, PEBAL,
and M2A as the baseline methods for integration. For a more precise assessment of the performance
gains brought by our instance-level extension, we report our own reproduced results of these baselines
to exclude the influence of setup discrepancies (such as hardware discrepancy and random seed
discrepancy, as we report the mean of 3 runs). These results highlight that LNOIB improves AS by
comprehensively capturing more anomalies. To further isolate the impact on large anomalies, we
need to analyze pixel-level metrics. If pixel-level improvement is less pronounced, it would indicate
that LNOIB primarily enhances small anomaly segmentation.

Instance-level performance: Integrating LNOIB into existing OOD fine-tuning strategies signifi-
cantly improves instance-level performance. For more details, please refer to Appendix F, which
further demonstrates that LNOIB enhances segmentation across all anomalies.

Pixel-level performance: LNOIB is primarily designed to enhance component-level and instance-
level results but also delivers promising results in pixel-level metrics. Specifically, we evaluate
AuPRC and FPR95 metrics across multiple datasets, as summarized in Table 2. The results show that
incorporating LNOIB improves AuPRC and FPR95 for most OOD fine-tuning approaches, including
EM, PEBAL, and M2A. While these improvements are more pronounced at the component and
instance levels, pixel-level gains appear relatively modest. This subtle improvement suggests that
the enhancements are primarily driven by better handling of small anomalies. Furthermore, the
competitive pixel-level results indicate that OOD fine-tuning with LNOIB effectively preserves the
high quality of large OOD instances. This is because large anomalies contribute substantially to
pixel-level scores, any degradation in their segmentation would have led to a noticeable drop in
overall performance.

Close-set segmentation: OOD fine-tuning may degrade the performance on ID categories. To
investigate this, we evaluate the closed-set performance of segmentation models on Cityscapes after

8



Image M2A �����+���� �����+����� LNOIB(�����)

Figure 4: Qualitative results of applying LNOIB to M2A. Instances that do not belong to the
Cityscapes categories are regarded as anomalies. Vanilla Lglob in M2A falls short in predicting
small anomalies (see green boxes). With the combination of Lins and Lfeat in LNOIB, it yields
competitive performances on small OOD instances.

Table 3: Ablation results of each component in prediction-based objective and feature separation
objective on SMIYC-RA. Incorporating Lins, Lsem, and Lnear contributes to further improvements.

(a) Prediction-based Objective

Approach Lglob Lins sIoU ↑ PPV ↑ F1* ↑ AuPRC ↑ FPR95 ↓

EM
X 48.50 40.13 29.28 83.95 17.13

X 44.29 37.06 26.84 53.60 35.15
X X 55.79 46.36 39.20 85.10 17.02

PEBAL
X 40.42 31.07 18.60 53.72 32.18

X 31.93 26.69 14.37 41.16 44.70
X X 50.60 36.95 27.44 58.98 27.59

M2A
X 51.47 46.70 45.26 87.83 15.09

X 47.72 44.16 42.09 66.32 31.90
X X 62.82 53.55 54.86 88.07 15.47

(b) Feature Separation Objective

Approach Lsem Lnear sIoU ↑ PPV ↑ F1* ↑ AuPRC ↑ FPR95 ↓

EM

48.50 40.13 29.28 83.95 17.13
X 42.18 35.62 27.21 75.74 18.87

X 48.71 41.10 29.16 81.57 16.88
X X 53.94 43.61 38.77 85.53 16.70

PEBAL

40.42 31.07 18.60 53.72 32.18
X 33.03 25.85 14.47 46.60 37.57

X 40.78 30.56 18.83 55.01 30.78
X X 44.35 34.76 22.13 56.41 26.89

M2A

51.47 46.70 45.26 87.83 15.09
X 44.85 42.73 40.51 82.41 19.83

X 53.03 48.43 44.97 84.79 15.17
X X 57.75 50.67 48.79 85.70 13.28

applying OOD fine-tuning with LNOIB. Interestingly, LNOIB maintains competitive mIoU scores
(within a 1% drop compared to vanilla segmentation models, please see Appendix D for details).
For a clearer understanding, qualitative results are also presented in Figure 3, showing that OOD
fine-tuning with LNOIB preserves strong ID performance on Cityscapes, with results that remain
comparable to those of the original Mask2Former.

4.3 Ablation Study

We investigate the impact of Lpred and Lfeat in LNOIB. To achieve this, we conduct thorough
ablation experiments to determine the optimal settings on EM, PEBAL, and M2A using the SMIYC-
RA dataset, which includes OOD instances of various sizes, from large to small. Moreover, to
evaluate the generality of these components, we also conduct extensive ablation study on multiple
datasets. Please refer to Appendix E for more details.

Global vs. Instance-Level Objective: We explore the influence of the commonly used global-level
objective Lglob and our proposed instance-level objective Lins for OOD fine-tuning on overall
performances. Specifically, we set α = 1, α = 0, and α = 0.5 in Eq. (6), which correspond to
solely adopting the global-level objective Lglob (equivalent to the vanilla OOD fine-tuning strategy),
merely employing the instance-level objective Lins, and using a hybrid objective of Lglob and Lins,
respectively. We remove the irrelevant feature separation objective here, and the results are presented
in Table 3a. As shown in the table, combining Lglob and Lins achieves the best performance across
multiple metrics. We also observe that solely using Lins even results in decreases in both metrics,
due to its insufficient attention to large anomalies compared to Lglob. Consequently, the overall
prediction-based objective that incorporates both Lglob and Lins effectively addresses both large and
small anomalies, demonstrating promising performances.

Furthermore, we explore the optimal factor α in Eq. (6) with respect to the performance. The results
and analyses are provided in Appendix E.
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Features Separation Objective: We explore the impact of feature separation objective for OOD fine-
tuning. We directly incorporate Lsem and Lnear with the commonly used Lglob in each respective
OOD fine-tuning strategy, and the results are shown in Table 3b. The table shows that using Lsem

alone even decreases the overall perfomance. Solely adopting Lsem may cause the OOD prototype
to align with the prototype of a specific ID category, as presented in Theorem 2. On the other hand,
solely using Lnear is also insufficient because it cannot ensure that the OOD prototype stays separated
from all ID prototypes, especially when several ID categories share similar representations. Therefore,
Lsem and Lnear are complementary, and their combination achieves the best results.

Moreover, we aim to identify the optimal balance factor β. The results and analyses are provided in
Appendix E. Additionally, we investigate the impact of the threshold τ and the number of nearest
neighbors M for Lfeat. For more details, please also refer to Appendix E.

4.4 Qualitative Results

We further explore the qualitative results of LNOIB to show the effectiveness of each proposed
objective. Figure 4 illustrates how each objective refines the performance of M2A. Specifically, we
compare the vanilla M2A (solely using Lglob) with M2A+Lins (Lpred), M2A+Lfeat, and M2A with
LNOIB (using the OOD fine-tuning objective in Eq. (14)) for OOD fine-tuning. As depicted in
the figure, the vanilla M2A falls short in capturing small anomalies. With the addition of Lins and
Lfeat, LNOIB achieves superior segmentation performances on several small OOD instances (e.g.,
small cow, traffic cones, and cup in the first, second, and third rows, respectively), while maintaining
competitive results on larger anomalies. When using the overall objective in LNOIB, M2A achieves
the best performance.

5 Conclusion

In this paper, we proposed a novel instance-level OOD fine-tuning framework for AS, dubbed LNOIB,
which is designed to effectively segment OOD instances regardless of their sizes. We provided a
theoretical analysis explaining why current OOD fine-tuning strategies struggle to detect small
anomalies. Building on this insight, we introduced a simple yet effective instance-level objective to
target small anomalies. Furthermore, we proposed a feature separation objective to further enhance
the segmentation of small anomalies. Note that, beyond a single objective design, LNOIB serves as a
versatile paradigm that can be seamlessly integrated with existing OOD fine-tuning strategies, without
introducing extra cost during inference. Extensive experimental results show that incorporating
LNOIB into existing OOD fine-tuning strategies yields superior performance.

6 Limitation and Future Work

LNOIB serves as a versatile mechanism for existing OOD fine-tuning strategies, demonstrating
strong performance across EM, PEBAL, and M2A with a unified set of hyperparameters. However,
for other approaches, particularly those whose global-level objective values are significantly larger
or smaller than the feature separation term, hyperparameter tuning may be necessary to achieve
optimal results. Although LNOIB effectively refines small anomalies in most cases, the quality is
not always perfect, as illustrated in the first row of Figure 4. Therefore, there remains a potential
risk when deploying it in safety-critical applications. Moreover, since LNOIB serves as an extension
of existing OOD fine-tuning approaches, our current evaluation is conducted on validation images.
Further experiments on more challenging test sets are expected to provide a more comprehensive
assessment of its generalization capability. Finally, OOD fine-tuning itself remains controversial, as it
only mimics limited OOD scenarios and fails to capture the full diversity of real-world OOD patterns.
Therefore, we believe it is worthwhile to explore alternative approaches for addressing this issue.

For future work, we plan to extend our instance-level framework to other segmentation scenarios
to investigate whether this mechanism can improve the segmentation of small components across
different tasks [61, 45, 7, 59, 53]. Specifically, although there are several hyperparameters in LNOIB,
they also provide different selections to suit the corresponding tasks. Moreover, extending this
framework to video tasks [23, 11, 14, 15, 51] may also be a promising direction for future research.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the problem that we want to solve and our contribution in both
abstract and introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We have described the limitations in the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have given the proof of each lemma, theorem, and corollary in the main
paper and supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have described the details that allow us to reproduce the results in Section
4 and supplementary material.
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As LNOIB is a versatile mechanisms for current OOD fine-tuning approaches, we give the
pseudo code of how to incorporate LNOIB into EM. Moreover, all of our source code will
be publicly available upon publication.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the code in the code appendix. More details will be available
at: https://github.com/yuxuan357/LNOIB
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.

17

https://github.com/yuxuan357/LNOIB
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have describe the details and instructions in Section 4 and supplementary
material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Each experiment is conducted by 3 times and we report the average score.
Moreover, we report the standard deviation of our main results in Tables 1 and 2.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Related information is provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As to the potential negative societal impact, while our method shows signifi-
cant improvements over prior approaches in autonomous driving scenarios, it still cannot
guarantee 100% accuracy. Therefore, there remains a potential risk when deploying it in
safety-critical applications. This claim is demonstrated in the Limitation section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited all the used open-sourced datasets.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as
any important, original, or non-standard components. This paper only employed LLM for
editing purpose.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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Supplementary Material

A More Proofs

A.1 Proof of Lemma 1

Lemma 1. (Weighted Loss Decomposition). The total loss Lout decomposes into instance-specific
components:

Lout =
1

|Ωout|
∑
ok∈O

|Ωok | · Exj∼Ωok
[lout [s(xj), yj ]]︸ ︷︷ ︸
Lok

,
N∑

k=1

wkLok (15)

where wk ,
|Ωok

|
|Ωout| is the normalized weight of instance ok and Lok is the mean loss over Ωok .

Proof. As
∑N

k=1 |Ωok | = |Ωout| < +∞ and Ωo1 ∩ Ωo2 ∩ ... ∩ ΩoN = ∅, the expectation over Ωout

splits into disjoint domains:

Lout =
1

|Ωout|
∑

xj∈Ωout

lout[s(xj), yj ] (16)

=
1

|Ωout|
∑
ok∈O

∑
xj∈ok

lout[s(xj), yj ] (17)

=
1

|Ωout|
∑
ok∈O

|Ωok | · Exj∼Ωok
[lout [s(xj), yj ]] (18)

A.2 Proof of Theorem 1

Theorem 1. (Dominant Instance Effect). If there exists t ∈ {1, ..., N}, such that:

|Ωt| ≥ (1− ε)|Ωout| for some ε ∈ (0, 1), (19)

then the loss Lout is bounded by:

(1− ε)Lot ≤ Lout ≤ (1− ε)Lot + ε ·max
k 6=t

Lok (20)

Proof. From Lemma 1 and the weight condition, we have the lower bound:

Lout = wtLot +
∑
k 6=t

wkLok ≥ wtLot ≥ (1− ε)Lot . (21)

As to the upper bound:

Lout ≤ wtLot +

∑
k 6=t

wk

max
k 6=t

Lok ≤ (1− ε)Lot + ε ·max
k 6=t

Lok (22)
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A.3 Proof of Theorem 2

Theorem 2. (Finite-Category Mean Similarity Bound). Let Q = {qc}Kc=1 be a set of K ID class
prototypes, and pit be an ID instance prototype from class t. Assume:

1. Intra-class Alignment: cosSim(pit , qt) = 1− ε, where ε ∈ [0, 1] is small (e.g., ε→ 0+).

2. Inter-class Separability: cosSim(pit , qc) ≤ δ for all t 6= c, where δ ∈ [0, 1] is close to 0 (e.g.,
δ → 0+).

Then, the mean cosine similarity S̄K between pit and all ID prototypes is bounded by:

S̄K :=
1

K

K∑
c=1

cosSim(pit , qc) ≤
1− ε+ (K − 1)δ

K
(23)

For large K (e.g., K � 1), this simplifies to:

S̄K ≈ δ +
1− ε− δ

K

K�1−−−→ δ (24)

Proof. The sum of S̄K can be decomposed as:

S̄K =
1

K

cosSim(pit , qt) +
∑
c6=t

cosSim(pit , qc)


=

1

K

1− ε+
∑
c 6=t

cosSim(pit , qc)


≤ 1

K
(1− ε+ (K − 1)δ) (25)

More explanations: In a well-trained segmentation model, the intra-class feature variation tends
to be minimal. Consequently, the prototype of an ID instance is typically close to the center of its
corresponding category. However, this raises a concern: relying solely on ID semantic loss may cause
an OOD instance to be mistakenly classified as belonging to one of the ID categories, especially
when the number of ID categories is large. This occurs because the semantic loss for ID categories
can also be near zero under such circumstances, which gives a false sense that the prototype of an
OOD instance is far from all the ID semantic prototypes. Thus we also need the nearest neighbor loss
to deal with this issue, as demonstrated in the main paper.

A.4 Instance-Level OOD Prototypes

In the main paper, we propose to construct an OOD prototype for each OOD instance, rather
than merely enforcing the separation between ID category prototypes and all pixel-wise OOD
representations. This design choice is motivated by the limitations of global-level feature separation
objective, which tends to overlook small or localized anomalies.

We provide a theoretical analysis of the feature separation objective Lsem when globally separating
each OOD pixel-wise representation from ID semantic prototypes (Averaging all OOD pixels suffers
from the same issue). This analysis shows that, without instance-level OOD prototypes, small
anomalies are likely to be ignored in the feature separation objective.

Firstly, we formulate the global-level ID semantic objective Lgsem as:

Lgsem =
1

K|Ωout|
∑
qc∈Q

∑
xj∈Ωout

cosSim[Fxj , qc] (26)
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The objective of Lgsem is to enforce clear separation between ID category prototypes and pixel-wise
OOD representations.
Lemma 2. The total objective of Lgsem decomposes into instance-specific components:

Lgsem =
1

K|Ωout|
∑
qc∈Q

∑
xj∈Ωout

cosSim[Fxj
, qc] (27)

=
|Ωok |
|Ωout|

∑
ok∈O

1

K
Exj∼Ωok

∑
qc∈Q

cosSim[Fxj , qc]︸ ︷︷ ︸
Lgsem,ok

(28)

,
N∑

k=1

rk · Lgsem,ok (29)

where rk = |Ωk|
|Ωout| is the normalized weight of instance, and Lgsem,ok is the mean ID semantic loss

over Ωok .

Proof.

Lgsem =
1

K|Ωout|
∑
qc∈Q

∑
xj∈Ωout

cosSim[Fxj
, qc] (30)

=
1

K|Ωout|
∑
qc∈Q

∑
ok∈O

∑
xj∈ok

cosSim[Fxj , qc] (31)

=
1

K|Ωout|
∑
qc∈Q

∑
ok∈O

|Ωok | · Exj∼Ωok
cosSim[Fxj

, qc] (32)

Based on the definition of Lgsem,ok , we have:

Lgsem =
1

|Ωout|
∑
ok∈O

|Ωok | · Lgsem,ok (33)

Theorem 3. If there exists t ∈ {1, 2, ..., N}, such that:

|Ωt| ≥ (1− ε)|Ωout| for some ε ∈ (0, 1), (34)

then Lgsem is bounded by:

(1− ε)Lgsem,ot ≤ Lgsem ≤ (1− ε)Lgsem,ot + ε ·max
k 6=t

Lgsem,ok . (35)

Proof. The proof follows a reasoning analogous to that of Theorem 1.

Corollary 2. If |Ωt|
|Ωout| → 1, then Lgsem → Lgsem,ot in probability.

Proof. This proof mirrors the approach taken in Corollary 1.

Based on the theoretical analysis above, globally separating each pixel-wise OOD feature from ID
prototypes also overlooks the optimization for small anomalies, thus our ID semantic objective Lsem

in Eq. (9) is more reasonable, which equally optimizes each anomaly. Moreover, the theoretical
analysis of using Lnear is the same. Therefore, the feature separation objective also benefits from our
instance-level framework to refine the optimization on small anomalies.
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B How LNOIB Adapts to Existing OOD Fine-Tuning Strategies

To provide a clearer understanding of how to apply LNOIB to current OOD fine-tuning strategies that
employ global-level objectives, we present a detailed formulation of the integration of EM [4] with
LNOIB, PEBAL [47] with LNOIB, and M2A [41] with LNOIB, respectively.

B.1 Global vs. Instance-Level Objective

As shown in the main paper, the commonly used global-level objective Lglob and our proposed
instance-level objective Lins can be formulated as follows:

Lglob =
1

Nin

∑
xi∈Ωin

lin[s(xi), yi]︸ ︷︷ ︸
Lin

+
1

Nout

∑
xj∈Ωout

lout[s(xj), yj ]︸ ︷︷ ︸
Lout

(36)

Lins = Lin +
1

N

∑
ok∈O

∑
xj∈Ωok

1

|Ωok |
· lout[s(xj), yj ] (37)

where Ωin and Ωout represent the image lattices of ID and OOD regions (based on the ground-truth
binary mask y), respectively. Nin = |Ωin| and Nout = |Ωout| separately are the total number of
pixels in Ωin and Ωout. O denotes the set of OOD instances and Ωok is the image lattice of the OOD
instance ok. These notations are also introduced in the main paper.

The proposed instance-level objective Lins does not refer to a specific loss function. Instead, it
acts as a versatile function that can be extended to the existing global-level objective Lglob for
OOD fine-tuning. Specifically, the concrete formulation of Lins is determined by lin and lout used
in the corresponding Lglob. Note that, the formulation of lin and lout in Eq. (1) is for high-level
understanding by comparing the similarity between the predicted anomaly score and the corresponding
ground-truth. For each specific implementation, the input parameters of lin and lout may vary. For
example, EM directly adopts the predicted softmax distribution f(x), which acts as an indicator of
anomaly score, to calculate the loss. Consequently, we omit the input parameter lists of lin and lout
below for clarity.

B.1.1 LNOIB on Entropy Maximization

Given a mixed-content image x ∈ R3×H×W (containing both ID and OOD regions), we first employ
the well-trained semantic segmentation model DeepLabv3+ [5] to generate a softmax prediction
f(x) ∈ RK×H×W for close-set categories, where K is the number of ID categories. Then, according
to the close-set mask yclose ∈ {1, 2, ...,K}H×W , lEM

in and lEM
out are formulated as:


lEM
in = −

K∑
c=1

log(fc(xi)) · 1[c = yclosei ]

lEM
out = − 1

K

K∑
c=1

log(fc(xj))

(38)

where 1[·] is an indicator function. Note that lin is a typical cross-entropy loss used in close-set
semantic segmentation, while lEM

out is an upper bound of the softmax entropy according to Jensen’s
inequality (for more details, please refer to [4]). The goal for minimizing lEM

in is to make each pixel
predict a higher score for the corresponding ID category, while the target for minimizing lEM

out is to
let the predicted results follow a uniform distribution. Both of these losses measure the similarity
between the indicator of anomaly scores and the corresponding binary ground-truth mask, resulting
in a well-trained boundary of ID and OOD regions after OOD fine-tuning.
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Accordingly, the vanilla global-level objective LEM
glob is calculated by:

LEM
glob =

1

Nin

∑
xi∈Ωin

lEM
in +

1

Nout

∑
xj∈Ωout

lEM
out (39)

To adapt the instance-level objective toLEM
glob , we first divide Ωout into several separate OOD instances:

Ωout = Ωo1 ∪ Ωo2 ∪ ... ∪ ΩoN , as demonstrated in the main paper. Building on the global-level
objective LEM

glob , we then formulate the instance-level objective LEM
ins for EM as:

LEM
ins =

1

Nin

∑
xi∈Ωin

lEM
in +

1

N

∑
ok∈O

∑
xj∈Ωok

1

|Ωok |
· lEM

out (40)

In this manner, we adapt the instance-level objective to EM, followed by the calculation of LEM
pred:

LEM
pred = αLEM

glob + (1− α)LEM
ins (41)

where α is a balanced factor as demonstrated in the main paper.

B.1.2 LNOIB on PEBAL

Unlike EM, PEBAL employs a K + 1 class semantic segmentation model, where the class K + 1 is
designated for the anomaly score. In the case of a mixed-content image, if a pixel i belongs to an inlier
class, its ground-truth is yi ∈ {1, 2, ...,K}, which corresponds to a typical one-hot encoded vector.
On the other hand, if a pixel j is an outlier, we assign a uniform value 1 across all the closed-set
categories (similar to EM). This is because we need to calculate the close-set predicted distribution
that also reflects the anomaly score for optimization.

Therefore, lPEBAL
in and lPEBAL

out can be calculated as:


lPEBAL
in = − log

(
K∑
c=1

(fc(xi)) · 1[c = yclosei ] +
fK+1(xi)

ai

)

lPEBAL
out = − log

(
1

K

K∑
c=1

(fc(xi)) +
fK+1(xj)

aj

) (42)

where a is an energy-biased pixel-wise adaptive factor to penalize an outlier pixel if it is predicted as
a close-set category. On the other hand, a encourages inlier pixels to make a close-set prediction. This
loss is known as Gambler loss, and a is obtained by calculating the pixel-wise free energy. Please
refer to [47] and [32] for more details about abstention learning. Minimizing lPEBAL

in and lPEBAL
out

also aims to bring the prediction of the anomaly score closer to the corresponding binary ground
truth. Note that, there are also two auxiliary terms in lPEBAL

in and lPEBAL
out . We omit the formulation

of them here for convenience, as these two terms contribute little to the overall performance.

Accordingly, the global-level objective for PEBAL is calculated as:

LPEBAL
glob =

1

Nin

∑
xi∈Ωin

lPEBAL
in +

1

Nout

∑
xj∈Ωout

lPEBAL
out (43)

Based on the formulation of lPEBAL
in and lPEBAL

out , our instance-level objective for PEBAL is
calculated by:

LPEBAL
ins =

1

Nin

∑
xi∈Ωin

lPEBAL
in +

1

N

∑
ok∈O

∑
xj∈Ωok

1

|Ωok |
· lPEBAL

out (44)
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Combining LPEBAL
glob and LPEBAL

ins , we obtain the overall prediction-based objective LPEBAL
pred by:

LPEBAL
pred = αLPEBAL

glob + (1− α)LPEBAL
ins (45)

B.1.3 LNOIB on Mask2Anomaly

M2A is based on the segmentation model Mask2Former [8], which decouples the prediction of masks
and categories. Despite this difference, it ultimately yields a pixel-wise prediction f(x) ∈ RK×H×W

as well. Note that, f(x) is the logit here, rather than softmax prediction.

According to [41], lM2A
in and lM2A

out are calculated by:


lM2A
in =

1

2
(

K
max
c=1

fc(xi))
2

lM2A
out =

1

2

(
max(0, γ +

K
max
c=1

fc(xi))
)2

(46)

where γ is a hyperparameter that decides the minimum distance between ID and OOD classes.
Minimizing lM2A

in and lM2A
out aims to create a gap between ID and OOD logits, which also makes the

anomaly score closer to the binary ground-truth (normality or anomaly), as demonstrated in Eq. (36).
Please refer to [41] for detailed information.

Then the global-level objective for M2A is calculated as:

LM2A
glob =

1

Nin

∑
xi∈Ωin

lM2A
in +

1

Nout

∑
xj∈Ωout

lM2A
out (47)

Building on lM2A
in and lM2A

out , our instance-level objective adapted to M2A can be formulated as:

LM2A
ins =

1

Nin

∑
xi∈Ωin

lM2A
in +

1

N

∑
ok∈O

∑
xj∈Ωok

1

|Ωok |
· lM2A

out (48)

Then the prediction-based objective for M2A can be formulated as:

LM2A
pred = αLM2A

glob + (1− α)LM2A
ins (49)

B.1.4 Summary

Above, we demonstrate how the instance-level objective in LNOIB adapts to current OOD fine-tuning
strategies, including EM, PEBAL, and M2A. Lins is not a specific loss function; instead, Lins can
be built upon each lin and lout and thus can be technically adapted to existing OOD fine-tuning
strategies that employ global-level objectives, showcasing the versatility of LNOIB.

B.2 Feature Separation Objective

This objective can also be easily integrated into current OOD fine-tuning strategies. Since each OOD
fine-tuning strategy is based on a semantic segmentation model, we can leverage the feature map
from the backbone to generate prototypes and calculate the feature separation objectives. Specifically,
EM and PEBAL use DeepLabv3+ [6] with the WideResNet38 [56] backbone, while M2A employs
Mask2Former [8] with global masked attention [41] with the ResNet50 [20] backbone. Accordingly,
we use the feature maps from stages 2, 3, and 4 of each backbone, resize them to 1/4 of the original
input image size, and add these features together for prototype establishment.

B.3 Configurations of OOD Fine-Tuning

We apply LNOIB to current OOD fine-tuning strategies, including EM, PEBAL, and M2A. Apart from
altering the overall objective, we follow the configurations used in each respective strategy without
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bells and whistles, including preprocessing methods, training epochs, learning rates, optimizers,
batch sizes, random seeds, and other settings. Our aim is to present the versatility of LNOIB and
validate whether LNOIB can enhance existing OOD fine-tuning strategies, although we acknowledge
that further adjusting these settings could potentially lead to higher performance for each respective
approach. For the detailed configurations, please refer to the official github repos of EM2, PEBAL3,
and M2A4. For each experiment, we conduct 3 times and report the average performance to guarantee
a fair comparison.

As to the hardware, we use a server running Ubuntu 22.04, equipped with 4 RTX 3090Ti GPUs, each
with 24 GB of memory, as well as another server with 2 NVIDIA A100 GPUs, each with 80 GB of
memory. We adopt the Pytorch framework to conduct the training and evaluation process.

C Component-Level Metrics

The component-level evaluation metrics are introduced in [4], which are designed to focus on
detecting anomalies, regardless of their sizes. These metrics are essential because pixel-level metrics
may not adequately penalize a model for missing small anomalies, even though such anomalies
might be critical to detect. Evaluating this metric is crucial for LNOIB, as our target is to capture all
anomalies using such an OOD fine-tuning strategy. For a comprehensive component-level assessment
of detected anomalies, we need to consider component-wise true positives (TP), false negatives
(FN), and false positives (FP). These quantities are measured by treating anomalies as the positive
class. From these measurements, we are able to use three metrics, i.e., sIoU, PPV, and F1*, to
evaluate component-wise segmentation performance of anomalies. Below, we detail the computation
of these metrics, using O = {o1, o2, ..., oT } to represent the set of ground-truth components and
C = {c1, c2, ..., cN} to denote the set of predicted components.

sIoU employed in SMIYC [3] is a modified version of the component-wise intersection over union
proposed in [43]. It mainly considers the ground-truth components in the computation of TP and FN.
The sIoU score for a ground-truth component ok can be formulated as:

sIoU(ot) =
|ot ∩ C(ot)|

|(ot ∪ C(ot))\A(ot)|
, C(ok) =

⋃
ck∈C,ck∩ot 6=∅

ck (50)

where A(ot) is a term that excludes from the union of those pixels that correctly intersect with other
ground-truth components different from ot. C(ot) represents the set of predicted components that
intersect with ot.
Accordingly, given a threshold η ∈ [0, 1], a target ot ∈ O is considered as a TP if sIoU(ot) > η,
otherwise an FN.

PPV measures whether a predicted component ck ∈ C belongs to FP, and it is formulated as:

PPV(ck) =
|ck ∩ O(ck)|
|ck|

, O(ck) =
⋃

ok∈O,ot∩ck 6=∅

ot (51)

where O(ck) represents the set of ground-truth components that intersect with the predicted compo-
nent ck. A predicted component ck is an FP if PPV (ck) ≤ η.

F1* is calculated based on the results of sIoU and PPV by:

F1 ∗ (η) =
2TP (η)

2TP (η) + FN(η) + FP (η)
∈ [0, 1] (52)

where TP, FN, and FP are determined by the value of η.

2https://github.com/robin-chan/meta-ood
3https://github.com/tianyu0207/PEBAL
4https://github.com/shyam671/Mask2Anomaly-Unmasking-Anomalies-in-Road-Scene-Segmentation
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Table 4: Close-set semantic segmentation results on Cityscapes, which are presented in three groups of
experiments. In each group, the first line shows the performance of the vanilla semantic segmentation
model. The second line presents the results after OOD fine-tuning with current strategies (EM,
PEBAL, and M2A) based on the segmentation model. The third line represents the performance after
OOD fine-tuning with LNOIB based on each OOD fine-tuning strategy mentioned in the previous
line.

Approach mIoU ↑
DeepLabv3+ (WideResNet38) 77.85
+EM 76.71
+LNOIB (based on EM) 77.33
DeepLabv3+ (WideResNet38) 77.85
+PEBAL 77.21
+LNOIB (based on PEBAL) 77.14
Mask2Former (ResNet50) 80.14
+M2A 79.39
+LNOIB (based on M2A) 79.18

These component-level metrics assess component locations independently of their sizes, ensuring that
larger components do not dominate the metrics. Following SMIYC, we set η = 0.5 for evaluation.

Besides SMIYC benchmark, we also employ the component-level metrics to explore the coverage of
small anomalies on Road Anomaly dataset and the validation sets of FS Static and FS L&F (as the
test set of Fishyscapes benchmark does not provide an API to evaluate such component-level metrics).
Accordingly, in Table 1, we reproduce the component-level results of previous approaches on SMIYC
RA, SMIYC RO, Road Anomaly, and the validation sets of FS Static and FS L&F, respectively.
This enables a fair evaluation of how our instance-level extension improves the performance of each
baseline. If we were to directly adopt the benchmark results reported in the original papers, the
comparison would be less accurate due to minor discrepancies between their setups (such as hardware
discrepancy and random seed discrepancy, as we report the mean of 3 runs) and our reproduced
baselines. Although these differences are relatively small, using our own reproduced results allows for
a more precise assessment of the performance gains brought by our instance-level extension. Based
on the experimental results, we find that the combination of LNOIB and current OOD-fine-tuning
strategies significantly enhances the component-level metrics, and the incorporation of M2A [42] and
LNOIB achieves the top-performing sIoU, PPV, and F1* results in most cases.

D Close-set Segmentation Performance

OOD fine-tuning can potentially reduce the performance of the close-set semantic segmentation.
To investigate this effect, we evaluate the mean Intersection over Union (mIoU) on the Cityscapes
dataset. We conduct three groups of experiments: in each group, we compare the results of the
vanilla segmentation model, the model fine-tuned with current global-level objectives, and the model
fine-tuned with LNOIB (built on each global-level objective). The results of this comparison are
presented in Table 4. We observe that adopting LNOIB results in only a 0.52% to 0.96% mIoU drop
compared to the vanilla segmentation model. In most cases, the mIoU results are slightly higher than
those obtained through existing OOD fine-tuning with global-level objectives.

E More Ablation Results

E.1 Fine-grained Balance of Lpred

In the main paper, we analyze the effects of combining Lglob and Lins, and observe that their joint use
yields superior performance. In this section, we further investigate the impact of the weighting factor
α with respect to the performance. The results are depicted in Figure 5 (a)-(c). Interestingly, α = 0.5
achieves the top-performing results in most cases. We observe that when α ≤ 0.4, there is a significant
decline in pixel-level performance (AuPRC in red). Conversely, when α ≥ 0.6, the improvements in
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Figure 5: Results for varying balanced factors, i.e., α in Lpred (first row) and β in Lfeat (second
row). The settings of α = 0.5 and β = 0.5 achieve competitive performances, although they are not
the best across all metrics for all OOD fine-tuning strategies.

component-level metrics (sIoU, PPV, and F1*) diminish. Therefore, as a compromise, α = 0.5 offers
competitive results across all OOD fine-tuning strategies, including EM, PEBAL, and M2A.

E.2 Fine-grained Balance of Lfeat

In the main paper, we explore the effects of incorporating Lsem and Lnear, and find that their joint
use yields superior performance. Here, we aim to further identify the optimal balance factor β, as
illustrated in Figure 5 (d)-(f). Our findings indicate that β = 0.5 delivers competitive performance
across EM, PEBAL, and M2A. For simplicity and versatility, we adopt β = 0.5 in the final results,
despite the real optimum potentially varying for each OOD fine-tuning strategy. To achieve the
optimal performance for specific approaches, we can further explore fine-grained intervals within
[0.4, 0.6].

E.3 Balance of LNOIB Objective

In our main paper, we formulate the overall LNOIB objective as:

LLNOIB = γ1Lpred + γ2Lfeat (53)

In LLNOIB , we simply set γ1 = γ2 = 1. This decision is based on the following considerations.

Firstly, the ranges of Lglob and Lins in Lpred are the same, both being relevant to the definitions of lin
and lout. Moreover, the ranges of Lsem and Lnear in Lfeat are also identical, both falling between 0
and 1. However, the ranges of Lpred and Lfeat are completely different, making it challenging to set
a uniform balanced factor.

Although setting proper balance factors might further improve the overall performance, the search
space will be significantly larger compared to Lpred and Lfeat. Furthermore, since the ranges of
lin and lout vary across different global-level objectives, whether a balance factor is adaptable to all
existing strategies needs further consideration.

In addition, the range of Lfeat is [0, 1], and Lpred is in the same order of magnitude as Lfeat and
typically larger than Lfeat, indicating that Lfeat acts as an auxiliary objective to enhance OOD
fine-tuning, which is consistent with our experimental findings in Table 3 of the main paper, and
Figure 5 of the supplementary material. Therefore, we first adopt the ostrich strategy that sets
γ1 = γ2 = 1 here. Interestingly, this setting is well adapted to various OOD fine-tuning strategies
including EM, PEBAL, and M2A.

We then briefly explore the optimal values of the balancing factors γ1 and γ2. Specifically, we fix
γ1 = 1 and vary γ2 ∈ {0.01, 0.1, 1, 10, 100}. The corresponding results are shown in Figure 6.
We observe that setting γ2 = 1 yields the best performance. A larger γ2 reduces the influence
of the prediction-based objective, leading to a noticeable performance degradation. Specifically,
when γ2 = 100, the impact of Lpred becomes negligible. As a result, the direct objective for OOD
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Figure 6: Results for varying balanced factors γ1 and γ2. We fix γ1 = 1 and search the best value of
γ2 ∈ {0.01, 0.1, 1, 10, 100}. The setting of γ1 = γ2 = 1 achieves competitive performances in most
cases.

( a )  M E ( b )  M 2 A(a) EM (b) M2A

Figure 7: sIoU results for different combinations of nearest numberM and threshold τ on SMIYC-RA.
The combination of M = 1 and τ = 0.7 yields superior results.

fine-tuning on the predicted anomaly scores is largely diminished. Conversely, a smaller γ2 (such
as γ2 = 0.01) results in suboptimal outcomes, as the feature-level optimization also plays a crucial
role in effectively separating ID and OOD representations. According to the results above, we finally
select γ1 = γ2 = 1 as the balancing factors in overall objectives, as this setting performs well on all
of these approaches.

E.4 Thresholds of τ and M

Additionally, we investigate the impact of the threshold τ and the number of nearest neighbors M for
Lfeat. We evaluate the sIoU results on EM and M2A, as shown in Figure 7. The figure shows that
τ = 0.7 achieves the best performance. We believe that a smaller τ introduces noise in constructing
ID prototypes, while a larger τ results in incomplete ID prototypes. Furthermore, we find that M = 1
already yields competitive results in most cases.

E.5 Ablation Study on More Datasets

In the main paper and supplementary materials above, we mainly conduct ablation study on SMIYC-
RA. To further evaluate the generality of each component, we conduct more ablation study using
M2A on FS L&F and Road Anomaly datasets.

Firstly, we explore the combination of Lglob and Lins in prediction-based objective, and the results
are demonstrated in Table 6. Moreover, we also investigate the combination of Lsem and Lnear in
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Table 5: Instance-level results on the validation set FS Static and FS L&F. By incorporating LNOIB,
existing OOD fine-tuning strategies achieve higher performances. The results in bold represent better
performances compared with vanilla approaches. ↑ means higher values are better.

Approach FS Static FS L&F
iAP ↑ iAP50 ↑ iAP ↑ iAP50 ↑

EM (ICCV’21) 23.7 30.1 25.8 37.5
+LNOIB(ours) 33.4 37.1 33.8 47.9

PEBAL (ECCV’22) 23.8 32.1 19.6 25.3
+LNOIB(ours) 29.4 40.7 26.8 37.2
M2A (PAMI’24) 26.8 41.0 27.3 36.9
+LNOIB(ours) 37.6 49.3 34.0 47.3

Table 6: Ablation results of each component in prediction-based objective for M2A on more FS L&F
and Road Anomaly. Incorporating Lins contributes to further improvements.

(a) FS L&F

Lglob Lins sIoU ↑ PPV ↑ F1* ↑ AuPRC ↑ FPR95 ↓
X 26.51 19.43 23.76 89.91 1.85

X 25.18 15.69 17.22 57.30 8.97
X X 37.58 35.10 34.23 90.38 1.77

(b) Road Anomaly

Lglob Lins sIoU ↑ PPV ↑ F1* ↑ AuPRC ↑ FPR95 ↓
X 47.43 40.80 44.57 75.70 16.31

X 35.80 31.68 37.39 53.04 21.54
X X 48.99 50.14 46.73 78.01 14.27

feature separation objective, and the results are presented in Table 7. Both tables demonstrate the
superiority of Lins, Lsem, and Lnear in our instance-level OOD fine-tuning framework, which is
consistent to the results of SMIYC-RA.

E.6 OOD Fine-tuning with Imperfect Instance Masks

In the main experiments, we adopt a copy-and-paste strategy using ground-truth masks for OOD
fine-tuning. However, when anomaly masks are unavailable, we should rely on predicted masks
generated by several instance segmentation models, which are inevitably imperfect.

In this part, we try to explore how sensitive is performance to imperfect instance masks. To simulate
imperfect instance masks, we replace the GT masks in COCO with the predicted masks from Mask
R-CNN [19] (34.7 AP), which tend to have coarse boundaries. Using these masks, we apply the
same copy-paste strategy to create mix-content images. Experimental results of M2A on FS L&F
and Road Anomaly are presented in Table 8, showing that while using imperfect masks leads to a
slight performance drop compared to GT masks, our OOD fine-tuning method remains effective. We
attribute this to the fact that the fine-tuning mainly captures the overall OOD patterns. Imperfect
masks may introduce noise into the OOD instance-level prototypes and thus slightly weaken the
feature separation objective. But the impact is limited, showcasing the robustness of our method.

F Anomaly Instance Segmentation

The SMIYC and Fishyscapes benchmarks, designed specifically for anomaly semantic segmentation,
do not inherently support distinguishing between different anomalies. Common approaches such
as EM, PEBAL, and M2A are similarly limited in this regard. However, the instance-level metrics
proposed in [37] provide a means to evaluate whether LNOIB can enhance segmentation performance,
particularly for small anomalies. These metrics are employed to further confirm that LNOIB leads to
tangible improvements at the instance level.
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Table 7: Ablation results of each component in feature separation objective for M2A on more FS
L&F and Road Anomaly. Both Lsem and Lnear contribute to further improvements in Lfeat.

(a) FS L&F

Lsem Lnear sIoU ↑ PPV ↑ F1* ↑ AuPRC ↑ FPR95 ↓
26.51 19.43 23.76 89.91 1.85

X 28.11 22.04 24.46 89.33 1.91
X 31.58 28.40 27.81 89.74 2.03

X X 35.85 33.93 32.10 90.07 1.72

(b) Road Anomaly

Lsem Lnear sIoU ↑ PPV ↑ F1* ↑ AuPRC ↑ FPR95 ↓
47.43 40.80 44.57 75.70 16.31

X 45.39 41.17 43.08 73.36 17.21
X 47.93 44.57 45.61 76.44 16.13

X X 50.51 48.87 50.05 78.26 15.45

Table 8: Results of OOD fine-tuning with imperfect masks generated by Mask-RCNN.
Mask type FS L&F Road Anomaly

sIoU PPV F1∗ AuPRC FPR95 sIoU PPV F1∗ AuPRC FPR95

GT 39.16 38.10 34.80 90.54 1.68 53.70 51.46 50.97 75.70 16.31
Mask-RCNN 38.39 36.60 33.86 88.73 1.91 50.58 51.07 47.92 75.37 16.70

F.1 Instance-level Metrics and Results

In addition to the official component-level metrics, we also evaluate the instance-level metrics of
LNOIB on the Fishyscapes benchmark [1], following the setup in [37]. These metrics include
instance-level average precision (iAP) and iAP50. Since previous approaches do not utilize instance-
level metrics, we primarily compare the performance of vanilla EM, PEBAL, and M2A with their
counterparts enhanced by LNOIB. As shown in Table 5, incorporating LNOIB significantly improves
iAP and iAP50 for OOD fine-tuning approaches, indicating enhanced performance on small anomalies.
Since small and large anomalies occupy similar proportions, and large anomalies are already well
segmented, these improvements likely highlight the enhanced segmentation of smaller anomalies.

F.2 Instance Anomaly Segmentation Details

To compute these instance-level metrics, we utilize the anomaly semantic segmentation results
along with the ground-truth instance masks to estimate the corresponding predicted instance masks,
following the setup in [37]. Specifically, given the predicted anomaly semantic segmentation result
ŷ ∈ {0, 1}H×W , we first obtain the anomaly pixel set ΩA, where pixels with a value of 1 indicate an
anomaly. Then, based on the ground-truth instance mask Ωok of the k-th anomaly, we find the pixel
set P = {p1, p2, ..., pNp} ⊂ ΩA, which satisfies the following properties: 1) ∀p ∈ P , s.t. p ∈ Ωok ;
2) @p ∈ ΩA\P , s.t. p ∈ Ωok . Accordingly, the estimated instance mask of k-th anomaly can be
represented as ôk = {c1, c2, ..., cNp

}, where ci denotes the connected component associated with
pixel pi. Using this representation, we can derive the anomaly instance segmentation results and
subsequently compute the iAP and iAP50 metrics.

Note that, iAP and iAP50 are equivalent to AP and AP50 in Cityscapes [9], with the key difference
being that the former evaluates the average precision of anomalous instances. Similar to [37], as
SMIYC validation sets do not provide instance masks, we evaluate the instance-level metrics on FS
Static and FS L&F datasets.

G More Clarification of Instance-level OOD Fine-tuning and Anomaly
Instance Segmentation

The core idea of LNOIB is to leverage instance-level OOD fine-tuning to enhance anomaly seg-
mentation. Since OOD fine-tuning requires a mixed-content dataset, we use the widely adopted
AnomalyMix, which pastes COCO instances onto Cityscapes images. Previous OOD fine-tuning
methods do not consider instance-level contrastive loss and thus do not need to differentiate between
different anomalies when preparing the mixed-content dataset. In contrast, we assign unique instance
labels to different anomalies, enabling effective instance-level OOD fine-tuning. Note that, the
instance-aware annotation is simple and straightforward in this copy-and-paste approach to generate
the mixed-content dataset.

Unless explicitly stated otherwise, anomaly segmentation generally refers to anomaly semantic
segmentation. SMIYC [3] and Fishyscapes [1], and Road Anomaly datasets all focus on this task,
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which involves segmenting anomalous regions. The component-level metrics assess how well
the anomalous components are covered, giving greater weight to small components compared to
pixel-level metrics.

As our main claim is that LNOIB improves performance on small anomalies, evaluating instance-level
metrics [37] provides further validation of this claim. Therefore, we also assess it using the anomaly
instance segmentation task. While methods on SMIYC and Fishyscapes, such as EM, PEBAL, and
M2A, focus on anomaly semantic segmentation, we adopt the strategy outlined in Section F of the
appendix to simulate anomaly instance segmentation results.

Overall, both the component-level metrics in anomaly semantic segmentation and the instance-level
metrics in anomaly instance segmentation demonstrate that OOD fine-tuning with LNOIB improves
the segmentation quality of small anomalies.
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