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Abstract

Seeking effective numerical approximations for partial differential equations1

(PDEs) is a major challenge in modern science and technology. Recently, AI-2

inspired data-driven solvers, such as neural operators, have achieved great success3

in quickly PDE solving. However, in the design of neural operators, the processing4

of frequency domain information is crucial, and a single processing method is5

difficult to comprehensively handle frequency domain information of different6

components. We present the V-shaped spectral mixture neural operator (VSMNO)7

architecture which combines spectral learning modes of different neural operators8

to process frequency domain information in PDE solving at various levels. For9

general PDE solving, we propose a residual learning structure that can transfer10

residuals in V-Cycle by combining frequency domain learning patterns of different11

neural operators to reduce high-frequency and low-frequency error. For differ-12

ences in PDEs, we propose a neural operator correction strategy based on the13

correspondence between the PDE spectrum distribution and the neural operator14

spectral pattern, to correct the results by utilizing the prior knowledge of the PDE15

system. Experimentally, VSMNO achieves state-of-the-art and yields a relative16

error reduction of 22% averaged on four classical benchmarks.17

1 Introduction18

Many of the most fundamental laws of nature can be formulated as partial differential equations19

(PDEs). Nevertheless, the analytical solutions needed to comprehend these pivotal PDEs in modern20

science are frequently unknown, rendering the pursuit of effective approximate solutions through21

numerical methods one of the major challenges confronting humanity(1). However, traditional22

methods for solving PDE still suffer from high computational costs and expenses. Recently, with the23

emergence of neural operator methods(3; 4; 5), a quick solver to PDEs has been proposed by learning24

the complex mapping relationship between input and output in function space with AI operators.25

Following the research line, lots of basic works have been reported, such as DeepONet(3) with trunk26

network and branch network to learn the PDE initial conditions. Fourier neural operator (FNO)27

approximates integral operators in the frequency domain through the convolution theorem(4). Trans-28

former models(5; 6; 7), based on attention mechanisms, are reported to capture global information of29

PDEs.30

Building on these foundational architectures, considerable effort has been devoted to enhancing31

the performance of neural operators in PDE solving, particularly by improving the handling of32

spectral information. For example, extending FNO based methods(8; 9; 10), considering basis33

functions(11; 13) or aliasing phenomena(12) in the frequency domain, or combining multi-scale34

and spectral tools(13; 14; 15). Although these works have realized the use of frequency domain35
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Figure 1: The figure shows the solutions and spectral distributions of different PDEs, with the
low-frequency region in the middle. We can observe that the spectral distribution patterns of PDEs
are both similar and different. The spectra of different PDEs are often dominated by low-frequency
energy, but there are often significant differences in spectral distribution patterns and high-frequency
components.

information for PDE solving, they often only focus on one aspect of spectral information, ignoring36

the commonalities and differences in the PDE solving process, and failing to consider the different37

spectral learning modes of different neural operators which leads to a lack of flexibility in the design38

of neural operators.39

To address this challenge, we propose the VSMNO architecture. Based on the commonality of PDE40

spectral distribution, a residual transfer operator was designed by combining the spectral learning41

modes of FNOs and CNN to correctly transfer residuals in a multi-scale structure. This ensures42

the correct transfer of errors at different scales while improving high-frequency and low-frequency43

learning capabilities.44

After that, we summarized the learning patterns of FNO type methods. In this process, we observed45

the certain similarity between the spectral distribution of solution to PDE and the spectral pattern of46

neural operators. And we propose the neural operator correction strategy with spectrum analysis to47

design the correction module to correct the output. Experimentally, VSMNO achieves state-of-the-art48

and yields a relative error reduction of 22% averaged on four classical benchmarks. Our contributions49

are summarized as follows.50

• We designed VSMNO by combining spectral learning patterns of different neural opera-51

tors and proposed a residual learning structure that can transfer residuals in V-cycles to52

comprehensively process the frequency domain information of PDE.53

• Considering the correspondence between spectral learning pattern of neural operator and54

spectral distribution of PDE, we propose a novel neural operator correction strategy based55

on the spectrum analysis.56

• As results, we achieved the state-of-the-art (SOTA) and an 22% average improvement in57

computational accuracy on four PDE benchmarks, And the effectiveness of our method was58

demonstrated in the ablation experiment.59

2 Preliminaries60

2.1 Neural operators61

Neural operator is a type of data-driven models used to approximate the mapping from parameter62

functions to PDEs solutions (27). By learning operators in the function space, it is found that63
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mapping relationship between input and output in finite dimensions, and thus have the ability to64

generalize a class of PDE. Various neural operator methods have been proposed for solving PDE.65

Among them, FNO(4) and DeepONet(3) are the most famous works. DeepONet is proposed by using66

infinite dimensional operator mapping learning based on the general approximation theorem. FNO67

approximates the integration operator by directly defining a kernel function in the Fourier space.68

Building on these basic models, extensive research has focused on employing various frequency69

domain processing methods to enhance the accuracy of neural operators in solving PDEs. In 2021,70

MWT(13) introduces multi-wavelet basis operators to deal with the coupled mappings between the71

functions. SNO(11) solves PDEs by learning basis functions and the mapping between coefficients. In72

2022, FFNO(9) proposes to decompose high-dimensional Fourier coefficients into multiple indepen-73

dent one-dimensional Fourier coefficients and it overcomes the problem of difficult convergence of74

deep FNO. U-FNO(28) and U-NO(14) combine the U-net architecture with FNO to process physical75

information in multi-scale space. MG-TFNO(10) improves model performance by combining global76

tensor decomposition and multigrid domain decomposition strategies. CNO(12) handles aliasing77

error by combining sampling theorem. Latent Spectral Models (LSM)(15) overcomes the limitations78

of redundant coordinate spaces in multi-scale hidden space inputs and achieves (state-of-the-art)79

SOTA performance on multiple datasets by combining neural spectral block.80

Although these methods have achieved impressive results, due to the commonalities and differences81

in PDE spectral distributions (see 1), using a single frequency domain processing method is actually82

difficult to handle the differences in frequency domain components of different PDEs. While designing83

a universal PDE solver, in order to handle the spectral distribution differences of different PDEs more84

flexibly. Unlike the above methods, we present the VSMNO architecture by summarizing the spectral85

learning patterns of different neural operator methods. This architecture can comprehensively process86

different frequency domain information and adapt to different PDE spectral distribution patterns,87

thereby further improving the accuracy of neural operator solutions for PDE.88

3 Method89

3.1 Problem settings90

We consider PDEs in a bounded open set D ⊂ Rd, both inputs and outputs can be rewritten as91

functions w.r.t. coordinates, which are in the Banach spaces X (D,Rdx) and Y = Y(D, Rdy )92

respectively(3; 4). Rdx and Rdy are the range of input and output functions. The solving process is to93

approximate the optimal operator G : X → Y with deep model Gθ to minimize the relative mean94

squared error loss between the prediction and data.95

3.2 Overview of model architecture96

To design a universal solver for neural operators based on frequency domain methods, we first need97

to be able to comprehensively process frequency domain information of different components. In98

frequency domain analysis, the frequency components of a signal are decomposed into different99

frequency components, each with its own specific amplitude and phase. It can be divided into100

high frequency and low frequency according to the size of the frequency components. In PDE101

solving, the low-frequency component reflects the large-scale structure of the physical system, while102

the high-frequency component represents more details in the physical system. In order to further103

utilize frequency domain information to enhance the accuracy of neural operators, we propose the104

VSMNO architecture, which combines the spectral patterns of different neural operators to improve105

low-frequency and high-frequency learning capabilities.106

Here, we provide an overview of our VSMNO model, as shown in Figure 2. we could divide it into107

three parts, including preprocess module, cycle module, and correction module.108

Preprocess module. The preprocess part includes the post-processing part of the entire preprocess109

operator and correction operator. The module attempt to convert input on irregular regions into110

input on regular regions, which can be handled by neural operators. We follow the same settings111

as geo-FNO(8). Among them, preprocess module could convert irregular geometric inputs into112

regular geometric shapes and perform mapping from physical space to computational space. And113

then conversion between latent space and computational space.114
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Figure 2: Overview of the model architecture. After data preprocess, we will fold and expand the
low-frequency region, and use a multi residual transfer operator structure to comprehensively process
the frequency domain information in V-cycle. The residual learning operator handles low-frequency
error (blue line), while interpolation reconstructs high-frequency information (red line). Finally, we
use correct module which designed based on a correction strategy to correct the results. The images
of the correct module represent the spectral distribution pattern of the PDE data and its errors in the
spectral solution process. NOs represent the spectral learning pattern of neural operators.

Cycle module. As shown in Figure 2, our cycle module is a V-shaped multi-scale structure composed115

of multiple residual transfer operators. In existing literature(29) on multigrid operators, we found116

that with the same depth, the performance differences between various cycle structures are minimal.117

Therefore, we chose the V-cycle architecture.118

In the cycle module, the residual transfer operator expands the low-frequency learning range of the119

neural network through frequency domain folding. Residual transfer operators of different scales120

can eliminate the incoming residuals at different scales and transfer low-frequency error, while121

gradually reconstructing the high-frequency details of the PDE solution in the frequency domain122

space, completing the solution of the corresponding PDE. The residual transfer operator consists of123

restriction operator, residual learning operator, and interpolation operator.124

Restriction Operator. Restriction operator could transfer the input information from the high scale125

to the low scale space, retaining key features between residual transfer operators of different scales.126

Meanwhile, the restriction operator can also be seen as a low-pass filter(25), which retaining the low-127

frequency information and enhancing the low-frequency features in the solution area. The restriction128

operator not only reduces computational overhead by reducing the size of the solution region, but129

also enhances the low-frequency learning ability of neural operators in the low-frequency region. We130

use average pooling with multiple convolution blocks to implement the restriction Operator.131

Residual learning operator. In order to process low-frequency information in PDE and reduce132

low-frequency error in PDE solving. We have designed a residual learning operator in the residual133

transfer operator. Residual learning operator can process physical information of different scales to134

solve and eliminate low-frequency error in the corresponding solution region. In order to enable the135

residual learning operator to correctly reduce low-frequency error, we first explored the mathematical136

form of error e could be written in the following form:137

e = Y − Gθ (X ) (1)

The correct solution Y of a given PDE is usually unknown. Gθ is the solution operator obtained138

during the training process through neural operators, where theta is the parameter. Gθ (X ) represents139

the PDE solution obtained by the neural operator when the input is X . As a remedy, we consider140

the residual. If we record the output of the preprocess as X and assume that the result H(X ) is the141

correct mapping we want to learn, we can obtain the following form of residual r as,142

r = H (X )−X (2)
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When r approaches 0, e is also the same. So operators can learn the correct mapping by correctly learn-143

ing residuals. For this, we design a residual learning operators in a form with residual connections(19).144

Besides, we design a structure without skip connections within the same level layer to ensure the145

above structure could correctly learn residuals and to avoid the problem of mismatched features146

between different layers(24).147

Furthermore, Although neural networks tend to learn low-frequency information during training(21;148

22). But in order to better handle important low-frequency error, we use the FNOs model specifically149

for processing low-frequency error. The Fourier block of the FNO type model can generally be150

written in the following form,151

(Rθ • f (a)) (ω) =

{
(Rθ • f(a))(ω) ,Ω(ωx, ωy) ≤ Tω

0 , other
(3)

Among them, Ω is the range control function, Among θ is a set of the network parameters and F is152

a fast Fourier transformation. If we set Tω as a cutoff frequency. In FNOs method, it truncates the153

low-frequency components (ω<Tω). And we will discuss it in 3.3. From the above equation, it can154

be seen that the FNOs model provides us with a powerful tool for addressing low-frequency errors.155

We have chosen the FNOs model to implement our residual learning operator, thereby better reducing156

low-frequency error in PDE solving.157

We chose FFNO as the foundation for the residual learning operator module because, as shown in158

formula 6, FFNO has the largest frequency domain learning range. To better capture frequency159

domain features, we used FFNO as the basic framework for the residual module, incorporating shared160

parameters to reduce the parameter count and maintain consistent feature extraction between layers.161

Additionally, to ensure solution accuracy, we employed a multi-layer structure to enhance the model’s162

expressive power.163

Interpolation operator. The function of interpolation operator and restriction operator operator164

should be similar, that is, to transfer the residuals to residual learning operators from low scale to165

high scale. However, in the design of the residual learning operator, we mentioned that in order to166

avoid inconsistent features in inter layer learning, we cancelled the skip connection which has led167

to the problem of excessive smoothing of high-frequency information by the restriction operator.168

In addition, our residual learning operator is also limited on learning in low frequency during this169

process and cannot handle high-frequency information. And these problems require us to transmit170

high-frequency information during the error propagation process in the cycle module. So we further171

designed interpolation operators based on the frequency domain learning pattern of CNN.172

The frequency domain patterns of CNN have some similarities with FNO(20), but CNN can capture173

high-frequency regions in the frequency domain, and there have been considerable works utilizing174

this feature to achieve super-resolution tasks(26). The pattern of CNN enables us to transmit175

and reconstruct high-frequency information and features in the frequency domain during the error176

propagation process. Based on this, we designed an interpolation operator consisting of multiple177

convolution blocks and deconvolution, which reduces computational overhead, preserves the low-178

frequency information calculated by the residual neural operator, and gradually reconstructs the179

high-frequency details of the PDE solution. Improving the low-frequency and high-frequency learning180

ability of neural operators enhances the accuracy and performance of VSMNO in solving PDE.181

Correction module. The correction module includes a correction operator which composed of several182

residual learning operators with different model which selected based on our operator correction183

strategy based on spectrum analysis, and a post-processing part. The correction operator outputs184

the reconstructed high and low frequency information for final correction processing. And through185

post-processing, the output of the latent space is mapped back to the computational space and the186

original physical space to obtain the final result we expect. The post-processing part is also the same187

as the settings in geo-FNO(8). And we will now discuss our correction strategy in 3.3.188

3.3 Operator correction strategy based on spectrum analysis189

In order to flexibly handle PDEs with different spectral distribution patterns, we further explore the190

specific forms of spectral learning patterns of different neural operators based on the previous section,191

and construct our correction module’s correction strategy according to the correspondence between192

PDE spectral distribution patterns and neural operator spectral learning patterns.193
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Figure 3: The red rectangles in figure show low-frequency learning pattern of two-dimensional FNO,
FFNO, and MG-TFNO. The figures are plotted in the logarithmic spectrogram from the dataset of the
Pipe task. The middle of the spectrum is the low-frequency region.

Here we begin to discuss the low-frequency learning mode of neural operators, using FNO as an194

example. Its integration kernel can be defined as,195

(K (θ) vt) (x) = F−1 (RθF (vt)) (x) (4)

From formula 3, when the model is FNO, Ω(x) is taken as max(x). the integral kernel of two-196

dimensional FNO can also be expressed as,197

(Rθ • f (a)) (ω) =

{
(Rθ • f(a))(ω) ,max(ωx, ωy) ≤ Tω

0 , other
(5)

We can note that without considering the mlp component of FNO, the frequency domain learning198

pattern of FNO is equivalent to passing the original region through an ideal low-pass filter and then199

reconstructing the target PDE solution in the corresponding region. Its frequency domain learnable200

range f is equal to cutoff frequency Tω .201

From formula 5, we can see that one basic limitation of the FNO method in solving PDE is its202

frequency domain learnable range, and the different forms of this frequency domain learning range203

also determine the frequency domain learning modes of different operators. Next, we will summarize204

the frequency domain learning modes of other FNO type methods.205

FFNO factorizes high-dimensional Fourier transform into multiple one-dimensional Fourier transform.206

Its Ω(x) is taken as min(x) and its integral kernel can also be written as,207

(Rθ • f (a)) (ω) =

{
(Rθ • f(a))(ω) ,min(ωx, ωy) ≤ Tω

0 , other
(6)

MG-TFNO uses low-rank decomposition to process the parameter matrix of FNO. the Ω(x) of208

MG-TFNO increases control over the rank of the learnable matrix. We formalize it according to the209

above process and directly provide the approximate expression of the MG-TFNO integral kernel as,210

(Rθ • f(a))(ω) =
{
(Rθ • f (a)) (ω) , max(ωx, ωy) ≤ Tω, rank(Rθ) ≤ Tω

0 , other
(7)

We plot the weight representation regions of these models on the spectrum to represent the differences211

among their spectral learning patterns (see Figure 3). Compared to the FNO method, CNN captures212

more structural features corresponding to high-frequency regions as depth increases(26). Similar213

patterns could exist in some PDEs, taking the heat conduction equation of an infinitely long rod as an214

example,215

f(x) =

{
∂u
∂x = a2 ∂2u

∂x2 , (−∞ < x < +∞, t > 0)

u|t=0 = Φ(x) , (−∞ < x < +∞)
(8)

the f(x) is heat conduction equation. The coefficient ’a’ is the thermal diffusion coefficient, and216

using the integral transformation method, the solution of the equation can be written as,217

u (x, t) = Φ (x) ∗ ( 1

2a
√
πt

exp(− x2

4a2t
)) (9)
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Its Green’s function is a Gaussian function which the energy almost concentrating in the central218

the frequency domain, which have similar shape with spectral domain learnable regions of FNO,219

as time varies. The above examples indicate that spectral distribution patterns of solution to some220

PDE could correspond to certain neural operators learning patterns. In addition, we observed in the221

experiment that although the equation solutions corresponding to different initial conditions differ222

significantly, their spectral distribution patterns are quiet similar, which could be seem as knowledge223

of the corresponding PDE system, implying that we could leverage this correspondence to enhance224

the neural operator.225

For example, the spectral energy of the Pipe dataset is mainly distributed in the central cross region226

of spectrum, similar to the spectral learning pattern of FFNO. Therefore, we use single-layer FFNO227

as the correction operator to solve on the Pipe dataset. This flexible correction strategy allows us to228

process PDEs with different spectral distribution patterns.229

Our methods guides the extraction of frequency domain features of PDE and spectral learning patterns230

of neural operators through prior knowledge of the physical system, enabling neural operators to231

more effectively focus on the truly critical frequency domain information in the problem. This232

method can be seen as a feature engineering based on prior knowledge of PDE frequency domain,233

using known physical information to assist neural operators in quickly extracting intrinsic laws and234

structural features in complex PDE tasks. The introduction of prior knowledge in physics constrains235

the mapping learning process of neural operators on solutions, and avoids overfitting problems based236

on correct and reasonable physical constraints. Thus, it accelerates model convergence and improves237

accuracy without increasing model complexity, providing a concise and reliable solution for building238

flexible universal PDE solvers.239

4 Experiment240

4.1 Benchmark241

The benchmarks we use four classic tasks include Darcy, NS-equation, Pipe and Plasticity datasets.242

These benchmark are generated by different PDEs for different tasks. Specifically, the datasets we243

used comes from FNO datasets and geo-FNO datasets(8). Among them, Darcy and NS are fluid tasks244

for 2D regular grid input. Pipe is a fluid task with 2D irregular grid input, and Plasticity is a solid245

task with 3D irregular input. We show its details in table 1.246

4.2 Baseline247

We compared the VSMNO with 5 neural network models on 4 task benchmarks, including the248

classic FNO methods and its variant such as F-FNO and MWT. LSM, U-NO architecture based on249

multi-scale methods. Among them, LSM is the state-of-the-art (SOTA) model in this field before.250

4.3 Hyperparameter251

All of our calculations are performed on an Nvidia RTX4090 GPU. For fairness, we use relative l2252

error as the training loss and evaluation metric. We use 500 epochs and an ADAM(23) optimizer with253

an initial learning rate of 10-3. Set the batch size to 20. We set the mode to 12, the width to 64, and254

the convolution kernel size in both the interpolation and constraint operators to 3. And We present the255

selection of correction strategies and the spectral distribution patterns of different datasets in Table 1.256

Table 1: Details for benchmarks and the selection of correction strategies.

ATTRIBUTE/DATASET DARCY NAIVER-STOKES PIPE PLASTICITY

TYPE FLUID FLUID FLUID SOLID
MODES 12 12 12 12

MIN MODES 8 8 8 4
DISTRIBUTION CENTER COMPLEX CROSS CENTER

STRATEGY FNO / FFNO FNO
KERNAL SIZE (4,4) / (12,12) (12,12,6)

INPUT POROUS MEDIUM PAST VELOCIT STRUCTURE BOUNDARY CONDITION
OUTPUT FLUID PRESSUR FUTURE VELOCIT FLUID VELOCITY MESH DISPLACEMENT
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Table 2: Our main results of operator learning on several datasets from multiple PDEs. Related-MSE
is recored.

Model\Dataset Darcy NS pipe Plasticity

FNO 0.0108 0.1556 0.0067 0.0074
MWT 0.0078 0.1541 0.0070 0.0076
UNO 0.0148 0.1713 0.0100 0.0034

F-FNO 0.0077 0.1213 0.0070 0.0047
LSM 0.0065 0.1535 0.0050 0.0025
ours 0.0051 0.0941 0.0040 0.0019

Table 3: Ablation experiments on each dataset, We conduct multi removing components (w/o).
Related-MSE is recored.

Model\Dataset Darcy NS pipe Plasticity

W/O correct 6.08E-3 / 4.52E-3 2.34E-3
W/O FNOs 1.52E-2 2.28E-1 6.51E-3 5.12E-3
W/O Conv 8.55E-3 1.48E-1 6.91E-3 3.17E-3
W/O Cycle 6.81E-3 1.21E-1 5.66E-3 3.36E-3

Ours 5.06E-3 0.94E-1 4.01E-3 1.90E-3

4.4 Result analysis257

The main results are shown in Table 2. Based on these results, we have the following observations.258

Our proposed VSMNO model shows significant improvement compared to various multi-scale models259

and FNO variant models on benchmark datasets, with an average improvement of 22% compared260

to the previous best method. Overall, VSMNO has a parameter count of 0.65M for 2D tasks and261

1.2M for 3D tasks, which is only 1/30 and 1/10 of the LSM parameter count of the previous SOTA262

model under the same hyperparameter settings. While reducing the number of parameters, VSMNO263

performs on average 26% better than LSM on each benchmark. In the Darcy task with significant264

low-frequency dominance, VSMNO showed a 21.5% improvement in performance compared to the265

optimal method, demonstrating the significant advantage of our method in low-frequency learning;266

In the 2D NS equation task with complex frequency domain distribution, it improved by 38.6%267

compared to LSM, demonstrating the reliable frequency domain learning ability of VSMNO. In268

2D fluid pipe tasks and 3D solid-state plasticity equation tasks, which with irregular grid inputs,269

VSMNO improved the performance by 20% and 24% compared to LSM, demonstrating that our270

model can achieve good results in different geometric inputs. These experimental results validate271

the effectiveness of our proposed approach in improving spectral learning ability and solving PDE272

accuracy.273

4.5 Ablation experiment274

To verify the effectiveness of our proposed method, we conducted comprehensive ablation experiments275

by removing and replacing components (see Table 3). We can obtain the following results from Table3.276

In the removal experiment, we can find that all components are essential for the final performance.277

If without correct module, our model’s performance will decrease by an average of 17% and use278

operators with mismatched spectral patterns for correction can result in a loss of accuracy of over 10%.279

Removing the convolution blocks in interpolation and constraint operators will significantly hinder280

the transfer of features in multi-scale frameworks, resulting in a decrease of over 30% in accuracy.281

Cancelling the F-FNO block of the residual learning module will degrade the architecture to U-net,282

resulting in an accuracy loss of over 50%. The accuracy loss is more pronounced in low-frequency283

tasks such as Darcy and Plasticity, which also reflects the importance of low-frequency learning for284

neural operators to solve PDE. By eliminating the Cycle structure and retaining the original F-FNO285

block, the performance of the Cycle module was reduced by an average of 29.1% and 43.5% on286

irregular input on plasticity and pipe tasks, respectively, which demonstrating its effectiveness. The287

above ablation experiments demonstrate that our proposed approach can effectively solve PDE tasks288
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with different scales and frequency domain properties, and effectively improve the interpretability289

and accuracy of the model.290

5 Conclusion291

In this paper, in order to improve the frequency domain processing capability of PDE, We presented292

the VSMNO. We combined the low-frequency learning pattern of FNO type neural operators with the293

spectral learning ability of CNN to restruct high-frequency features, and designed a residual learning294

transfer operator structure using the spectral learning patterns of different operators. Comprehensively295

improved the frequency domain information processing capability of neural operators. Meanwhile, in296

response to handle the different spectral distribution patterns of PDEs, we have designed a correction297

strategy based on the spectral learning patterns of neural operators, making it possible to flexibly298

process different PDEs. Thanks to the fusion of different spectral learning paradigms, VSMNO299

has achieved consistent state-of-the-art performance in various benchmark tests, while significantly300

reducing the number of parameters. In the future, we will further explore the spectral patterns of301

different neural networks and combine them with the different spectral distributions of PDEs to302

explore more accurate and interpretable neural operator design methods and establish a universal303

PDE solver using neural operators.304
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