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ABSTRACT

Discriminative approaches to classification often learn shortcuts that hold in-
distribution but fail even under minor distribution shift. This failure mode stems
from an overreliance on features that are spuriously correlated with the label. We
show that generative classifiers, which use class-conditional generative models,
can avoid this issue by modeling all features, both core and spurious, instead of
mainly spurious ones. These generative classifiers are simple to train, avoiding
the need for specialized augmentations, strong regularization, extra hyperparam-
eters, or knowledge of the specific spurious correlations to avoid. We find that
diffusion-based and autoregressive generative classifiers achieve state-of-the-art
performance on five standard image and text distribution shift benchmarks and re-
duce the impact of spurious correlations in realistic applications, such as medical
or satellite datasets. Finally, we carefully analyze a Gaussian toy setting to under-
stand the inductive biases of generative classifiers, as well as the data properties
that determine when generative classifiers outperform discriminative ones.

1 INTRODUCTION

Ever since AlexNet (Krizhevsky et al., 2012), classification with neural networks has mainly been
tackled with discriminative methods, which train models to learn pθ(y | x). This approach has scaled
well for in-distribution performance (He et al., 2016; Dosovitskiy et al., 2020), but these methods
are susceptible to shortcut learning (Geirhos et al., 2020), where they output solutions that work well
on the training distribution but may not hold even under minor distribution shift. The brittleness of
these models has been well-documented (Recht et al., 2019; Taori et al., 2020), but beyond scaling
up the diversity of the training data (Radford et al., 2021) so that everything becomes in-distribution,
no approaches so far have made significant progress in addressing this problem.

In this paper, we examine whether this issue can be solved with an alternative approach, called
generative classifiers (Ng & Jordan, 2001; Yuille & Kersten, 2006; Zheng et al., 2023). This method
trains a class-conditional generative model to learn pθ(x | y), and it uses Bayes’ rule at inference
time to compute pθ(y | x) for classification. We hypothesize that generative classifiers may be better
at avoiding shortcut solutions because their objective forces them to model the input x in its entirety.
This means that they cannot just learn spurious correlations the way that discriminative models
tend to do; they must eventually model the core features as well. Furthermore, we hypothesize
that generative classifiers may have an inductive bias towards using features that are consistently
predictive, i.e., features that agree with the true label as often as possible. These are exactly the core
features that models should learn in order to do well under distribution shift.

Generative classifiers date back at least as far back as Fischer discriminant analysis (Fisher, 1936).
Generative classifiers like Naive Bayes had well-documented learning advantages (Ng & Jordan,
2001) but were ultimately limited by the lack of good generative modeling techniques at the time.
Today, however, we have extremely powerful generative models (Rombach et al., 2022; Brown
et al., 2020), and some work is beginning to revisit generative classifiers with these new models (Li
et al., 2023; Clark & Jaini, 2023). Li et al. (2023) in particular find that ImageNet-trained diffusion
models exhibit the first “effective robustness” (Taori et al., 2020) without using extra data, which
suggests that generative classifiers are have fundamentally different (and perhaps better) inductive
biases. However, their analysis is limited to ImageNet distribution shifts and does not provide any
understanding. Our paper focuses on carefully comparing deep generative classifiers against today’s
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Figure 1: Generative classifiers. We repurpose today’s best generative modeling algorithms for
classification. Generative classifiers predict argmaxy pθ(x | y)p(y). We use diffusion-based gener-
ative classifiers on image tasks and autoregressive generative classifiers on text tasks, and find that
they scale better out-of-distribution than discriminative approaches.

discriminative methods on a comprehensive set of distribution shift benchmarks. We additionally
conduct a thorough analysis of the reasons and settings where they work. We list our contributions:

• Show significant advantages of generative classifiers on realistic distribution shifts. Gen-
erative classifiers are simple and effective compared to previous distribution shift mitigations.
They utilize existing generative modeling pipelines, avoid additional hyperparameters or training
stages, and do not require knowledge of the spurious correlations to avoid. We run experiments
on standard distribution shift benchmarks across image and text domains and find that generative
classifiers consistently do better under distribution shift than discriminative approaches. Most
notably, they are the first algorithmic approach to demonstrate “effective robustness” (Taori
et al., 2020), where they do better out-of-distribution than expected based on their in-distribution
performance (see Figure 1, right). We also surprisingly find better in-distribution accuracy on
most datasets, indicating that generative classifiers are also less susceptible to overfitting.

• Understand why generative classifiers work. We carefully test several hypotheses for why
generative classifiers do better. We conclude that the generative objective p(x | y) provides
more consistent learning signal by forcing the model to learn all features of x.

• Provide insights from Gaussian data. We compare generative (linear discriminant analysis)
and discriminative (logistic) classification methods on a simplified setting. We find the exis-
tence of “generalization phases” that show which kind of approach does better, depending on the
strength of the spurious correlations and noisy features in the data. These phases shed light on
the inductive bias of generative classifiers towards low-variance features.

2 RELATED WORK

Learning in the presence of spurious features It is been well-known that deep networks trained
with empirical risk minimization (ERM) have a tendency to rely on spurious correlations to predict
the label, such as the background in an image or the presence of certain words (Beery et al., 2018;
Ribeiro et al., 2016; Geirhos et al., 2020; McCoy et al., 2019). Notably, overfitting to these shortcuts
causes a degradation in performance under distribution shift, since these spurious correlations may
no longer be predictive (Hendrycks & Dietterich, 2019; Rosenfeld et al., 2018; Taori et al., 2020).
The performance on rare (“minority”) groups in particular tends to suffer (Dixon et al., 2018; Zhao
et al., 2017; Sagawa et al., 2019), and this imbalance is aggravated in highly overparametrized mod-
els (Sagawa et al., 2020). Theoretical works attribute this problem to the inductive bias of classifiers
trained with cross-entropy loss; these classifiers prefer to find max-margin solutions, and thus fit spu-
rious features even when they are not fully predictive like the core feature (Nagarajan et al., 2020;
Puli et al., 2023). To address these failures in discriminative models, people use objectives that try to
balance learning across different groups (Sagawa et al., 2019; Setlur et al., 2023; Lee et al., 2023),
or add data augmentation to smooth out the spurious feature (Shen et al., 2022). However, these
methods still tend to fail to capture the core feature and often lead to degradations in in-distribution
performance. Some approaches focus on identifying the specific spurious features, annotating which
examples contain them, and using that to rebalance the data (Wu et al., 2023; Ghosh et al., 2023;
Kirichenko et al., 2022). Unfortunately, these approaches require significant manual effort, are not
as scalable, and may not work for problems where humans do not understand the learned features.
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Ideally, we find an approach with the right inductive bias to generalize well under distribution shift
without requiring extra supervision.

Classification with Generative Models Few deep learning approaches have trained class-
conditional generative models and used them directly for classification, perhaps due to the difficult
task of modeling p(x | y) with weaker generative models. However, recent generative models have
significantly improved, especially with better techniques in diffusion probabilistic models (Sohl-
Dickstein et al., 2015; Ho et al., 2020), and deep generative classification methods have recently
been proposed (Li et al., 2023; Clark & Jaini, 2023). Li et al. (2023) showed that ImageNet-trained
class-conditional diffusion models are competitive with discriminative classifiers and achieve the
first nontrivial “effective robustness” (Taori et al., 2020) on ImageNet-A (Hendrycks et al., 2021)
without using extra data. Prabhudesai et al. (2023) show that a hybrid generative-discriminative clas-
sifier can use test-time adaptation to improve performance on several synthetic corruptions. Other
work (Clark & Jaini, 2023; Jaini et al., 2023) has shown that large pretrained generative models are
more biased towards shape features and more robust to synthetic corruptions, but this may be due to
effect of pretraining on extra data, or the fact that diffusion specifically confers resilience to input
perturbations. Other works have found that generative classifiers can improve adversarial robustness
(Grathwohl et al., 2020; Zimmermann et al., 2021; Chen et al., 2023; 2024a). However, adversarial
robustness has been shown to not translate to robustness to distribution shift (Santurkar et al., 2020;
Taori et al., 2020). Overall, it still remains unclear whether generative classifiers are more robust to
the spurious correlations seen in realistic distribution shifts or why they might be better.

3 PRELIMINARIES

3.1 TYPES OF DISTRIBUTION SHIFT

We consider classification under two types of distribution shift. In subpopulation shift, there are
high-level spurious features that are correlated with the label. For example, on CelebA (Liu et al.,
2015), where the task is to predict whether a person’s hair is blond or not blond, the spuriously
correlated feature is the gender. This occurs because there are very few blond men in the dataset,
so models typically learn to use the “man” feature. The spurious feature determines groups: the
majority group contains examples where the spurious feature is correct, and the minority group
contains examples where the spurious feature is incorrect. We also consider domain shift, where
the test domain’s data distribution is similar to the training domain’s distribution. For example,
training images in Camelyon17-WILDS (Koh et al., 2021) come from 3 hospitals, whereas the test
images come from a disjoint 4th hospital. Spurious features that worked on the training distribution,
e.g., artifacts of the way slide staining or sample collection was done, may hurt accuracy under
distribution shift (Veta et al., 2016; Komura & Ishikawa, 2018; Tellez et al., 2019). We examine 5
common distribution shift benchmarks in total: besides CelebA and Camelyon, we use Waterbirds
( Sagawa et al. (2019); subpopulation shift), FMoW (Koh et al. (2021); both subpopulation and
domain shift), and CivilComments (Koh et al. (2021); subpopulation shift).

3.2 SHORTCOMINGS OF DISCRIMINATIVE CLASSIFIERS

Discriminative classifiers, which seek to maximize pθ(y | x), can overly rely on the spurious features
and fall victim to shortcut solutions (Geirhos et al., 2020). This is because they can use the spuriously
correlated features to correctly and confidently fit the majority group examples. After this happens,
the loss on these examples flattens out, and there is less gradient signal available to encourage the
model to use core features (Li et al., 2019; Pezeshki et al., 2021). The model then overfits to the
remaining minority examples where the spurious correlation does not help (Sagawa et al., 2020;
Nagarajan et al., 2020). These shortcut solutions often work in-distribution but can fail, sometimes
catastrophically, under even minor distribution shift. Significant effort has been put into preventing
this, mainly by rebalancing the data so that the spurious correlation no longer holds (Sagawa et al.,
2019; Kirichenko et al., 2022; Liu et al., 2021; Setlur et al., 2023). However, these methods all add
additional hyperparameters and complexity to the training process, and often require knowledge of
the exact distribution shift to counteract, which is impractical for realistic problems where there may
be many spurious correlations.
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4 GENERATIVE CLASSIFIERS

We now present generative classifiers, a simple paradigm for classification with class-conditional
generative models. To classify an input x, generative classifiers first compute pθ(x|y) with a class-
conditional generative model and then utilize Bayes’ theorem to obtain pθ(y|x). This paradigm
had been popular in machine learning with methods like linear discriminant analysis and Naive
Bayes (Ng & Jordan, 2001), but has fallen out of favor in the modern era of deep learning. We revisit
this paradigm with deep learning architectures and show its advantages for robustness to distribution
shift in Section 5. Algorithm 1 gives an overview of the generative classification procedure.

4.1 INTUITION

Why could generative classifiers do better on these distribution shifts? In contrast to discriminative
classifiers, which can minimize their training objective using just a few spurious features, generative
classifiers need to model the entire input x. This means that they cannot stop at just the spurious
features; their training objective requires them to learn both core and spurious features. This should
translate to better training signal throughout the course of the training. We confirm this in Sec-
tion 5.3. Note that learning both types of features does not mean that it uses them equally when
classifying an input. The generative classifier should learn which type of features are more consis-
tently correlated with the label and weight them accordingly. Section 6.3 and 6.4 demonstrates this
inductive bias in a simple setting with Gaussian data.

4.2 DIFFUSION-BASED GENERATIVE CLASSIFIER

For image classification, we use diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020),
which are currently the state-of-the-art approach for image modeling. Diffusion models are trained
to iteratively denoise an image and do not have an exact likelihood that can be computed in a single
forward pass. They are typically trained with a reweighted variational lower bound of log pθ(x|y).
To use them in a generative classification framework, we use that value to approximate log pθ(x | y):

log pθ(x | y) ≈ Eϵ,t[∥ϵθ(xt, y)− ϵ∥2] (1)

Training the class-conditional diffusion models is done as normal – we use off-the-shelf training
pipelines to train diffusion models from scratch, without modifying any hyperparameters. At in-
ference time, we follow the Diffusion Classifier algorithm from (Li et al., 2023), which samples
multiple noises ϵ, adds them to the image to obtain noised xt =

√
ᾱtx+

√
1− ᾱtϵ, and does multi-

ple forward passes through the network to obtain a Monte Carlo estimate of Eq. 1. This is done for
each class, and the class with the highest conditional likelihood log pθ(x | y), which corresponds to
the lowest denoising error, is chosen.

4.3 AUTOREGRESSIVE GENERATIVE CLASSIFIER

For text classification, we introduce generative classifiers built on autoregressive Transformer mod-
els, as they are the dominant architecture for text modeling. Since we need to now learn pθ(x | y),
where x is a sequence of text tokens and y is a label, we make a small modification to the training
procedure. Instead of starting each sequence of text tokens with a “beginning of sequence” (BOS)
token, we allocate C special class tokens in our vocabulary, one per class, and replace BOS with the
desired class token. Obtaining log pθ(x | y) can be done in a single forward pass:

log pθ(x | y) = log

(
n∏

i=1

pθ(xi | x<i, y)

)
=

n∑

i=1

log pθ(xi | x<i, y) (2)

We train our Transformer as usual using cross-entropy loss over the entire sequence, with the ground
truth label y∗ at the beginning. To classify a text sequence at inference time, we do C forward passes,
one with each possible class token. We then choose the class token with the lowest cross-entropy
loss over the entire sequence as our prediction. Figure 1 (middle) shows a diagram of this method.

Overall, generative classifiers can be easily trained using existing generative modeling pipelines and
do not require any specialized architectures, extra hyperparameters, data augmentation, multi-stage
training, or knowledge of the specific shortcuts to avoid. Training is also cheap: all of our generative
models can be trained on a single GPU in 2-3 days.
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Method Waterbirds CelebA Camelyon FMoW CivilComments

ID WG ID WG ID OOD ID OOD WG ID WG

ERM 88.8 32.2 92.4 50.5 95.2 78.3 51.1 27.5 90.6 53.3
LfF (Nam et al., 2020) 86.4 28.9 90.8 34.0 90.5 66.3 49.6 31.0 87.9 49.4
JTT (Liu et al., 2021) 88.1 32.9 91.9 42.1 88.1 65.8 52.1 31.8 89.2 55.6
RWY/DFR 90.8 31.6 94.1 68.9 95.2 78.3 39.3 26.1 90.1 58.1
Generative (ours) 96.8 79.4 91.2 69.4 98.3 90.8 62.8 35.8 79.8 61.4

Table 1: Accuracy on distribution shift benchmarks. We show in-distribution (ID) and either
worst-group (WG) or out-of-distribution (OOD) accuracy, depending on the type of shift in each
dataset. Our generative approach performs the best on all five distribution shifts and 3/5 ID datasets.

5 EXPERIMENTS

We now compare our generative classification approach to discriminative methods that are com-
monly used today. We aim to answer the following questions in this section. First, do generative
classifiers have better robustness to distribution shift? If so, why are they more robust than discrim-
inative methods? We test multiple hypotheses to determine which explanation is correct.

5.1 SETUP

Benchmarks We use five standard benchmarks for distribution shift. Camelyon undergoes domain
shift, so we report its OOD accuracy on the test data. Waterbirds, CelebA, and CivilComments
undergo subpopulation shift, so we report worst group accuracy. FMoW has both subpopulation
shift over regions and a domain shift across time, so we report OOD worst group accuracy. The
first four are image benchmarks, while CivilComments is text classification. Waterbirds and CelebA
are natural images, whereas Camelyon contains whole-slide images of cells and FMoW contains
satellite images. In total, these benchmarks cover multiple shift types, modalities, and styles.

Model Selection We believe that it is unrealistic or impractical to know the exact distribution
shift that will happen on the test set. Thus, we do not use knowledge of the spurious correlation
or distribution shift when training or performing model selection, and instead tune hyperparameters
and perform early stopping on the in-distribution validation accuracy, not the worst-group accuracy.
This is the most valuable setting, as it matches how models are often deployed in practice, and thus
is a popular experimental setting for evaluating methods (Koh et al., 2021; Yang et al., 2023; Liu
et al., 2021; Setlur et al., 2023). We use class-balanced accuracy for model selection as it uniformly
improves performance on each dataset for all methods (Idrissi et al., 2022).

Baselines We compare generative classifiers against several discriminative baselines. ERM min-
imizes the average cross-entropy loss of the training set and is the standard method for training
classifiers. We additionally evaluate several methods designed to combat spurious features. Learn-
ing from Failure (LfF) (Nam et al., 2020) simultaneously trains one network to be biased and uses
it to identify samples that a second network should focus on. Just Train Twice (JTT) (Liu et al.,
2021) is a similar two-stage method that first trains a standard ERM model for several epochs, and
then heuristically identifies worst-group examples as training points with high loss under the first
model. JTT then upsamples these points and trains a second classifier. DFR (Kirichenko et al., 2022)
fine-tunes a model on a training set that has been carefully balanced to make the spurious feature
unpredictive. As in prior work (Yang et al., 2023), DFR samples data from each class equally when
there are no spurious feature annotations. This is equivalent to RWY (Idrissi et al., 2022) and can
help if there is class imbalance related to the spurious correlation. For fairness, we train all models,
generative and discriminative, from scratch to eliminate the effect of differing pre-training datasets.

Models For image-based tasks, all discriminative baselines use ResNet-50, ResNet-101, and
ResNet-152, whereas our generative classifier approach trains a class-conditional U-Net-based la-
tent diffusion model (Rombach et al., 2022). For text-based tasks, all discriminative baselines use
an encoder-only Transformer, whereas our generative classifier approach trains a Llama-style au-
toregressive language model (Touvron et al., 2023) from scratch. See Appendix B for more details.
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Figure 2: In-distribution vs out-of-distribution accuracy for each dataset. Each point corre-
sponds to a separate training run, other than the diffusion-based generative classifier results, which
are checkpoints of a run with default training hyperparameters. We observe better OOD scaling
trends (i.e., effective robustness) for generative classifiers on CelebA, CivilComments, and poten-
tially Camelyon17, although results are noisy for this dataset (the red line in Camelyon17 denotes
a linear fit for the relationship between ID and OOD accuracy for discriminative models). On the
remaining two datasets, they follow the same trend and do better both ID and OOD.

5.2 RESULTS ON DISTRIBUTION SHIFT BENCHMARKS

Main Results Table 1 compares generative classifiers against discriminative baselines on the dis-
tribution shift benchmarks. Compared to the discriminative baselines, generative classifiers have
better worst-group or OOD accuracy on all five datasets. Surprisingly, generative classifiers also
achieve significantly better in-distribution accuracy on three of the five datasets, which indicates less
overfitting. These results suggest that generative classifiers may have an advantage in both (a) learn-
ing core features that generalize across distribution shifts, and (b) learning features that generalize
from the training set to the ID test set.

Accuracy above the line Comparing the best generative classifier against the best discriminative
classifier provides a one-dimensional understanding of each approach. To provide a better sense of
which method may scale better in the future, Figure 2 plots the in-distribution and out-of-distribution
accuracies of each family of methods. We can classify the benchmarks into two sets:

1. Generative classifiers are better both ID and OOD, and lay on the same trend line as discrimina-
tive models. This includes Waterbirds and FMoW.

2. Generative classifiers have a significantly better OOD performance trend, but are the same or
worse in-distribution. This includes CelebA, CivilComments, and potentially Camelyon.

The second case, where generative classifiers have better OOD accuracy than discriminative clas-
sifiers at any ID accuracy, demonstrates “effective robustness” (Taori et al., 2020). This suggests
fundamentally better out-of-distribution behavior for generative classifiers in some scenarios and
indicates that they may be the right approach to classification after further scaling. Our results cor-
roborate findings from Li et al. (2023), which found some signs of effective robustness on ImageNet.
Section 6 examines a toy setting and provides insights into the cause of this “effective robustness.”
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Figure 4: Scaling disc. model
size does not improve accuracy
on Waterbirds. This shows that
model size is not a confounder
in our experiments.

Train Objective ID WG

p(y | x) 91.4 35.7
p(x) and p(y | x) 91.7 35.4
p(x | y) (ours) 79.8 61.4

Table 2: Alternative training
objectives for an autoregres-
sive model on CivilComments.
p(y | x) is a standard discrim-
inative approach with cross-
entropy loss, and “p(y | x)
and p(x)” tests if adding an
unconditional generative mod-
eling improves performance.

5.3 WHY DO GENERATIVE CLASSIFIERS DO BETTER?

We test several hypotheses for how generative classifiers outperform the discriminative baselines.

Learning More from Majority Examples Our intuition is that the generative objective log pθ(x |
y) provides more consistent learning signal across epochs. In contrast, discriminative models may
use spurious features to make confident and correct predictions on the training set and lose the gradi-
ent signal necessary to use the core features. We test this by measuring the gradient norm on majority
and minority examples across epochs. We compute the per-example gradient norm ∥∇θL(xi, yi)∥2
and average it over the majority and minority groups. We normalize this by the average majority
group gradient norm at epoch 5 in order to fairly compare different architectures that have different
loss landscapes. Figure 3 shows these metrics on CivilComments with toxic comments about the
Black demographic as the minority group. For the discriminative model, the majority group gradient
quickly vanishes, and the minority group gradient starts high but eventually decays. The generative
classifier, however, has very similar gradient norm across the majority and minority groups, and
the gradient norm actually slightly increases over training. These results support our intuition that
the generative objective helps the model learn more from examples with and without the spurious
features. Note: the per-example gradient norm for generative classifiers does not go to 0, since there
is always a way to increase the likelihood of a single data point.

Does an unconditional objective p(x) improve discriminative performance? One hypothesis
is that the generative classification objective pθ(x | y) teaches the model better features in general,
similar to how generative pre-training methods (Devlin et al., 2018; He et al., 2022) learn features
that are useful for fine-tuning. We test this on CivilComments, as the architecture makes it simple
to add an unconditional generative objective p(x). Instead of placing the class-specific token at the
beginning of the sequence, we place it at the end. Predicting the text tokens of x now corresponds to
predicting p(x), and predicting the class-specific token at the end corresponds to p(y | x). Table 2
shows that adding the objective p(x) does not affect performance, so we reject this hypothesis.

Model Size In our image classification experiments, our generative classifier used a standard
395M parameter UNet (Rombach et al., 2022), which is far more than the 26M parameters in its
ResNet-50 (He et al., 2016) discriminative counterpart. Could the greater parameter count could be
responsible for the difference in performance and OOD behavior? We first note that the discrimi-
native classifier used for CivilComments in Table 1 contains 67M parameters, which is more than
the 42M parameters we use in our autoregressive generative classifier. Furthermore, the architec-
tures and parameter counts of the discriminative p(y | x) and generative p(x | y) classifiers are
exactly matched in Table 2. On image tasks, we test whether parameter count matters by scaling
from ResNet-50 up to ResNet-152 (He et al., 2016). We perform a sweep over model size and train-
ing hyperparameters (learning rate and weight decay). Figure 4 and Figure 8 show that increasing
discriminative model size does not improve performance. This aligns with previous work: Sagawa
et al. (2020) found that increasing discriminative model size can actually hurt OOD performance.
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6 ILLUSTRATIVE SETTING

We explore a simplified Gaussian data setting and find that linear generative classifiers can also
display better robustness to distribution shift compared to their discriminative counterparts. We
rigorously explore this behavior in order to understand the inductive bias of generative classifiers.
Finally, we connect our findings back to practice and explain the varying empirical behavior for
generative vs discriminative classifiers.

6.1 DATA

1 0 1
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Figure 5: Visualization of fea-
tures (noise dims not shown).

Consider binary classification with label y ∈ {−1,+1}. The fea-
tures are x = (xcore, xspu, xnoise) ∈ Rd, where:

xcore | y = N (y, σ2) ∈ R (3)
xspu | y = yB w.p. ρ, else − yB ∈ R (4)

xnoise | y = N (0 , σ2
noise) ∈ Rd−2 (5)

We set the spurious correlation ratio ρ = 0.9 and core feature stan-
dard deviation σ = 0.15, which is small enough that the data can
be perfectly classified by using only the core feature xcore and ig-
noring the remaining features. Figure 5 shows a visualization of the
core and spurious features. The majority groups consist of samples
where the spurious and core features agree (top right and bottom
left of Fig. 5), and the minority groups consist of samples where the
spurious and core features disagree (top left and bottom right).

This synthetic dataset has previously been used to understand the failure modes of discriminative
classifiers in previous work (Sagawa et al., 2020; Idrissi et al., 2022; Setlur et al., 2023) and is a
natural simplified setting for us to study the advantages of generative classifiers.

6.2 ALGORITHMS

Discriminative We analyze unregularized logistic regression, as is done in previous work (Sagawa
et al., 2020; Nagarajan et al., 2020). Since the data is linearly separable, logistic regression learns
the max-margin solution when trained via gradient descent (Soudry et al., 2018).

Generative We use linear discriminant analysis (LDA), a classic generative classification method
that models each class as a multivariate Gaussian. It fits separate class means µ−1 and µ+1 but
learns a shared covariance matrix Σ for both classes. Assuming balanced classes, LDA predicts:

argmax
y

p(x | y) = sign
(
log

p(x | y = +1)

p(x | y = −1)

)
= sign

(
log

N (x | µ+1,Σ)

N (x | µ−1,Σ)

)
(6)

This corresponds to a linear decision boundary with coefficients wLDA = Σ−1(µ+1 − µ−1). We
chose LDA because it has the least inductive bias among common linear generative classifiers (e.g.,
it is equivariant to rotations). For this reason, we rejected methods like Naive Bayes, which learns
an axis-aligned generative model, even though theoretical analysis would have been easier.

6.3 THE INDUCTIVE BIAS OF LDA

We carefully examine a setting where the generative approach has the same in-distribution perfor-
mance, but it outperforms the discriminative approach on the worst group (OOD). Figure 6 compares
the behavior of LDA and logistic regression on toy data with data dimension d = 1026 and noise
variance σ2

noise = 0.36. We find that both methods have similar in-distribution accuracies, but
LDA does significantly better on the minority group. In fact, Figure 6 (middle) shows that LDA
has essentially no performance gap between the majority and minority groups, which indicates that
it does not use the spurious feature at all. In contrast, logistic regression has a large performance
gap between the groups. This can be explained by looking at the linear coefficients learned by both
methods. Figure 6 (right) shows the ratio |wspu|/|wcore| between the weights on the shortcut and
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Figure 6: Illustrative setting for shortcut learning. Left: in-distribution accuracies are roughly the
same between generative (LDA) and discriminative (logistic regression) methods, but LDA achieves
much higher minority group accuracy. Middle: the difference between the majority and minority test
accuracies as a function of the number of training examples. The generative method displays better
robustness to the spurious correlation. Right: spurious feature weights |wspu| and noise feature
weights ∥wnoise∥2, normalized by the magnitude of the core feature weight wcore. LDA puts much
less weight on the spurious feature, even with very little training data. Logistic regression puts more
weight on the noise, and only achieves good in-distribution accuracy by using the spurious feature.
Shading denotes ±1 standard deviation over 25 seeds.

core features. Ideally, this ratio goes to 0 as fast as possible as the model sees more data. Logis-
tic regression, however, places significant weight on the spurious feature until it gets thousands of
training examples. LDA is far more data-efficient and places almost no weight on the spurious fea-
ture with as few as 16 training examples. Interestingly, logistic regression puts more weight on the
noisy features than LDA does. It is only by putting significant weight on the spurious feature that it
achieves good in-distribution performance, though this hurts worst group accuracy.

These differences in behavior indicate that LDA has a significantly different inductive bias. We
suspect that the most important factor is the core feature variance σ2. We increased σ from 0.15
to 0.6 and reran the same analysis. Figure 14 shows that LDA now consistently underperforms
logistic regression, both in-distribution and out-of-distribution. Why is this? Intuitively, when the
learned probability pθ(xi | y∗) of feature xi is low (i.e., the feature is not consistently correlated
with the label) compared to other features, the generative classifier downweights this feature in its
prediction. This helps improve robustness to distribution shift, since, by definition, we believe that
the core feature xcore should be the most consistently predictive.

6.4 GENERALIZATION PHASE DIAGRAMS

The feature dimension d, spurious feature scale B, noisy feature variance σ2
noise, and core feature

variance σ2 influence the solutions that models prefer to learn. Intuitively, the spurious feature scale
B controls the saliency of the shortcut feature, and larger B makes it easier for the model to learn this
shortcut. The noisy feature variance σ2

noise controls how easy it is for a model to overfit to training
examples (Nagarajan et al., 2020). The core feature variance σ2 controls how consistently the core
feature predicts the label. Varying these properties of the data creates a family of datasets, and we
use them to understand when generative classifiers outperform their discriminative counterparts.

Each plot in Figure 7 varies B and σ2
noise, for a given number of training examples n = 32 and

d = 1024. Each successive subplot corresponds to increasingly larger variance σ2 in the core
feature, and each plot is divided into regions depending on which method does better ID or OOD
for the given (B, σ2

noise) at that location. We call this a generalization phase diagram, since it
resembles a phase diagram which shows the impact of pressure and temperature on the physical
state of a substance. In our case, there are four possible generalization phases:

1. The generative classifier is better both ID and OOD. This typically happens at high σ2
noise,

since the discriminative model overfits using the noise features.

2. The discriminative classifier is better both ID and OOD. This happens at low σ2
noise.
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Figure 7: Generalization phase diagrams. We vary the scale B of the spurious feature and the
variance σ2

noise of the noise features and evaluate their effect on the ID and OOD test accuracy of
generative classifiers (LDA) vs discriminative classifiers (logistic regression). Each plot corresponds
to a different variance σ2 of the core feature, and the color of each pixel denotes which classifier does
better for a particular combination of B and σ2

noise. We observe three main phases of generalization:
(1) discriminative has better ID and OOD accuracy, (2) generative has better ID and OOD accuracy,
and (3) discriminative does better ID and generative does better OOD. Each plot corresponds to a
different standard deviation σ of the core feature. As σ increases, the core feature becomes less
reliable, and the generative classifier uses the spurious and noise features more. This shows the
inductive bias of generative classifiers: they prefer consistently predictive features.

3. The discriminative classifier is better ID, but the generative classifier is better OOD. This
phase occurs at a sweet spot of B and σ2

noise. Moderate noise allows some overfitting, but
the spurious feature is strong enough for the discriminative model to achieve good ID ac-
curacy. However, its heavy reliance on the spurious feature reduces its OOD performance.

4. The generative classifier is better ID, but the discriminative classifier is better OOD. This
is exceedingly rare (see the dark, unlabeled regions in Figure 7).

Notably, there is no free lunch. Even in this setting, neither generative nor discriminative classifiers
are uniformly better than the other. However, we do note that B and σ2

noise are unbounded above, and
generative classifiers should do comparatively better as the strength of shortcuts or noise increases.

Finally, while it is hard to map B and σ2
noise directly onto a realistic image or text dataset, they do

offer insights on important properties of the data that determine which method is suitable for a given
task. Indeed, we can categorize the distribution shift benchmarks into these phases based on their
generative vs discriminative behavior. Waterbirds and FMoW fall in phase 1 (generative better ID
and OOD), CelebA and CivilComments fall in phase 3 (discriminative better ID and generative better
OOD), and Camelyon lies on the transition boundary between phase 1 and 3, since the generative
classifier achieves better OOD and similar ID accuracy compared to discriminative baselines.

7 CONCLUSION

Discriminative approaches to classification have dominated the field since AlexNet catalyzed the
widespread adoption of deep learning. Despite their prevalence, these methods face increasing lim-
itations, including vulnerability to distribution shift and escalating data requirements. In this paper,
we present a simple alternative. We revisit the paradigm of generative classifiers and show that they
have significant advantages in both in-distribution and out-of-distribution performance on realistic
distribution shift benchmarks. We carefully analyze their behavior, and finally show insights from a
simplified, illustrative setting into when generative classifiers can be expected to do better.

As deep generative classifiers have not been well-explored, there is significant room for future work.
The inference cost of these generative classifiers, especially diffusion-based ones, is currently im-
practically high. It is also unclear how to incorporate complex augmentations, such as Mixup, into
generative classifiers. Finally, the ideas from this work may be useful in other contexts, such as lan-
guage modeling. Tasks like sentiment analysis, code completion, and reasoning are currently being
done in a discriminative approach: given a context x, predict the correct answer y by sampling from
pθ(y | x). Improving the performance and out-of-distribution robustness of these models by doing
a generative approach p(x | y) would be a particularly exciting direction.
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APPENDIX

A ADDITIONAL ANALYSIS

A.1 ADDITIONAL RESULTS ON THE EFFECT OF DISCRIMINATIVE MODEL SIZE
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Figure 8: Scaling up discriminative model size does not improve performance. Each point with
the same color is a model trained with different hyperparameters (learning rate and weight decay).
Results on Waterbirds are shown in Figure 4.

We add additional results to our investigation into the role of discriminative model size. Previously,
our analysis of CivilComments in Section 5.3 showed that matching the parameter count between
the discriminative and generative classifiers did not account for the qualitative differences in their
generalization behavior. Furthermore, Figure 4 showed that increasing model size on Waterbirds did
not improve performance. Figure 8 shows additional results. On FMoW, scaling only helps when
going from ResNet-50 to ResNet-101; further scaling did not help. On Camelyon17, increasing
model size had no effect on performance. Overall, we can confidently conclude that model size is
not responsible for generative classifiers’ improved robustness to distribution shift.

A.2 SCALING CAN IMPROVE GENERATIVE CLASSIFIERS
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Figure 9: Effect of scaling up generative classifiers. Increasing the number of parameters helps sig-
nificantly on FMoW and CivilComments, but can sometimes hurt: OOD accuracy drops on Came-
lyon17 with a larger generative classifier.

Scaling model size has proved extremely effective for generative models in other settings (Brown
et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022). This has typically been done in the “almost
infinite data“ regime, where only a few epochs are used, and overfitting is not an issue. Does scaling
similarly help here for our generative classifiers?

We tried different model scales on three of our distribution shift benchmarks: FMoW, CivilCom-
ments, and Camelyon17. Figure 9 shows the results of our investigation. On FMoW and Civil-
Comments, scaling model size significantly improves performance both in- and out-of-distribution.
However, on Camelyon17, a smaller model actually does significantly better out-of-distribution than
a model that is 5.5 times as large. This indicates that overfitting can become an issue in this setting,
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where we have limited training data and must be careful about overfitting. Overall, we are excited
by the fact that scaling generative classifiers can be beneficial in some settings, unlike discrimimi-
native classifiers, which consistently show poor use of extra model capacity (see Figure 4, Table 2,
Figure 8).

A.3 RESULTS ON ADDITIONAL DATASETS
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Figure 10: In-distribution vs out-of-distribution accuracy for additional subpopulation shift
datasets (Santurkar et al., 2020). We again observe OOD scaling trends for generative classifiers.
Each point for a discriminative model corresponds to a separate model with a different architecture,
augmentation, or adversarial training method. Accuracies for the discriminative models are taken
from Santurkar et al. (2020).

We additionally run experiments on two highly-used subpopulation shift benchmarks from
BREEDS (Santurkar et al., 2020): Living-17 (with 17 animal classes) and Entity-30 (with 30
classes). As usual, we train our diffusion-based generative classifiers from scratch on each train-
ing set and evaluate them on the in-distribution and out-of-distribution test sets. We compare against
discriminative baselines reported in the original BREEDS paper, which includes interventions such
as stronger augmentations or adversarial training. Figure 10 displays the same trends here as our
main results. Both datasets display effective robustness (for a given ID accuracy, the OOD accuracy
of the generative classifier is higher), though the effect is much stronger on Entity-30.

A.4 CORRELATION BETWEEN GENERATIVE AND DISCRIMINATIVE PERFORMANCE

We take a careful look at how well generative capabilities like validation likelihood and sample
quality correlate with classification performance. Figure 11 shows how these three metrics evolve
over the course of training for a diffusion-based generative classifier on CelebA.

We first find that the model does not need to generate good samples in order to have high classifi-
cation accuracy. The first generation in Figure 11 has significant visual artifacts, yet the generative
classifier already achieves 90% class-balanced accuracy. This makes sense: for ground-truth class
y∗, the classifier only needs pθ(x | y∗) > pθ(x | y) for all other classes y ̸= y∗, so pθ(x | y∗) can
be low as long as pθ(x | y ̸= y∗) is even lower. In fact, given a generative classifier pθ(x | y), one
can construct another generative classifier p̃(x | y) = λpθ(x | y) + (1− λ)pother(x), which has the
same accuracy as pθ but generates samples that look increasingly like pother as λ → 0+.

However, even though sample quality is not necessary for high accuracy, we do find that validation
diffusion loss correlates well with class-balanced accuracy. As the loss decreases, class-balanced
accuracy correspondingly increases. Figure 12 shows how an increase in validation diffusion loss
due to overfitting translates to a corresponding decrease in classification accuracy on Waterbirds.

Finally, Figure 11 shows how we can check the samples to audit how the generative classifier models
the spurious vs core features. The samples are generated deterministically with DDIM (Song et al.,
2020) from a fixed starting noise, so the sample from the last checkpoint shows that the model is
increasing the probability of blond men (the minority group in CelebA). This means that the model
is modeling less correlation between the hair color (causal for the blond vs not blond label) and the
gender (the shortcut feature). This is one additional advantage of generative classifiers: generating
samples is a built-in interpretability method (Li et al., 2023). Again, as we note above, generation
of a specific feature is sufficient but not necessary to show that it is being used for classification.
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Figure 11: Correlation between accuracy and generative performance. Top: class-conditional
DDIM samples generated from the same noise using intermediate checkpoints. Bottom: diffusion
validation loss and class-balanced accuracy on CelebA by training epoch. Main findings: First, high
classification accuracy can be achieved even without good sample quality (see the first generation).
Second, generative validation loss is highly correlated with classification accuracy. Third, as training
progresses, the minority group (blond men) becomes more likely, indicating that the generative
classifier correctly models less correlation between hair color (causal) and gender (shortcut).
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Figure 12: Overfitting in diffusion loss on Waterbirds directly translates to overfitting in classifica-
tion accuracy. We smooth the loss for better visual clarity.

A.5 EFFECT OF IMAGE EMBEDDING MODEL

For our image results in the main paper, we trained latent diffusion models from scratch for each
dataset. In order to be consistent with the generative modeling literature and keep the diffusion
model training pipeline completely unmodified, we trained the diffusion models on the latent space of
a pre-trained VAE (Rombach et al., 2022). This VAE compresses 256×256×3 images into 32×32×

Embedding model Waterbirds CelebA Camelyon

ID WG ID WG ID OOD

Pre-trained VAE (Rombach et al., 2022) 96.8 79.4 91.2 69.4 98.3 90.8
PCA patch embeddings (Chen et al., 2024b) 93.8 61.7 91.3 71.1 98.7 93.8

Table 3: Effect of image embedding model. We compare different image encoders, which map
the image from 256 × 256 × 3 to 32 × 32 × 4. For our main results, we use the pre-trained deep
VAE released in the original LDM paper (Rombach et al., 2022). We compare it to a PCA-based
patch embedding that tokenizes each 8×8×3 patch independently and is trained separately on each
dataset. We find that the pre-trained VAE is not consistently better, as it only does better on 1 of the
3 datasets that we tested the PCA encoder on.
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4 latent embeddings, which are cheaper to model. Perhaps our generative classifier is benefiting from
an encoder that makes use of extra pre-training data? We test this hypothesis by trying to remove
as much of the pre-trained encoding as possible. Following previous analysis work on diffusion
models (Chen et al., 2024b), we replace the VAE network with a simple PCA-based encoding of
each image patch. Specifically, we turn each image into 32 × 32 total 8 × 8 × 3 pixel patches, and
use PCA to find the top 4 principal components of the patches. When encoding, we normalize by
the corresponding singular values to ensure that the PCA embeddings have approximately the same
variance in each dimension. Overall, we perform this process separately on each training dataset,
which completely removes the effect of pre-training, and train a diffusion model for each dataset
within the PCA latent space. Table 3 compares this embedding model to the VAE and finds that it
actually performs better on 2 of the 3 datasets. We conclude that the pre-trained encoder does not
have a significant directional effect on our generative classifier results.

A.6 COMPARISON WITH PRE-TRAINED DISCRIMINATIVE MODELS
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Figure 13: Finetuning a pretrained discriminative model improves performance, but it still does not
achieve the same “effective robustness“ as our generative classifier.

All of our experiments so far train the classifier (whether discriminative or generative) from scratch.
This is done to ensure a fair, apples-to-apples comparison between methods. What happens if we
use a pretrained discriminative model? In preliminary comparisons, we use a ResNet-50 pretrained
with supervised learning on ImageNet-1k (Krizhevsky et al., 2012) and finetune it on CelebA. Fig-
ure 13 shows the results of this unfair comparison between a pretrained discriminative model versus
our generative classifier trained from scratch. We find that pretraining helps, but it does not signifi-
cantly close the gap with the generative classifier. This is in spite of the fact that the discriminative
model has seen an extra 1.2 million labeled training images, those labels have more bits (since there
are 1000 classes instead of just two), and the pretraining classification task has minimal spurious
correlations that are relevant to the downstream task.
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A.7 ADDITIONAL PLOTS FOR GENERALIZATION PHASE DIAGRAMS
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Figure 14: Comparing logistic regression and LDA when the core feature variance has been in-
creased from σ = 0.15 to σ = 0.6. The generative approach’s accuracy drops much more in this
setting.
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Figure 15: Effect of varying the standard deviation σ of the core feature. d−2 noise dimensions not
shown. These correspond to the σ shown in Figure 7.
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Figure 16: Each plot corresponds to a different number n of training examples.
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Figure 17: Effect of σnoise on the generalization of SVM vs LDA. Larger σnoise makes it easier
for SVM to overfit, since it uses the high-norm noise features to increase its margin. Lower σnoise

makes it harder to overfit, since the noise features are too small to significantly increase the margin.

B EXPERIMENTAL DETAILS

Algorithm 1 Generative Classifier

1: Input: Training set D = {(xi, yi)}Ni=1
2: Training model pθ(x|y):
3: Minimize generative loss E(x,y)∼D[− log pθ(x|y)]
4: Classification of test input x:
5: for class yi ∈ Y do
6: Compute pθ(x|yi)
7: end for
8: Return argmaxyi

pθ(x|yi)p(yi)

B.1 IMAGE-BASED EXPERIMENTS

B.1.1 DIFFUSION-BASED GENERATIVE CLASSIFIER

We train diffusion models from scratch in a lower-dimensional latent space (Rombach et al., 2022).
We use the default 395M parameter class-conditional UNet architecture and train it from scratch
with AdamW (Loshchilov & Hutter, 2017) with a constant base learning rate of 1e-6 and no weight
decay or dropout. We did not tune diffusion model hyperparameters and simply used the default
settings for conditional image generation. Again, we emphasize: we achieved SOTA accuracies
under distribution shift, using the default hyperparameters from image generation.

Each diffusion model requires about 3 A6000 days to train. For inference on Waterbirds, CelebA,
and Camelyon, we sample 100 noises ϵ and use them with each of the two classes. For FMoW, we
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use the adaptive strategy from Diffusion Classifier (Li et al., 2023) that uses 100 samples per class,
then does an additional 400 samples for the top 5 remaining classes.

B.1.2 DISCRIMINATIVE BASELINES

We use the official training codebase released by Koh et al. (2021) to train our discriminative base-
lines. For image-based benchmarks, we train 3 model scales (ResNet-50, ResNet-101, and ResNet-
152) and sweep over 4 learning rates and 4 weight decay parameters. We use standard augmenta-
tions: normalization, random horizontal flip, and RandomResizedCrop.

B.2 AUTOREGRESSIVE GENERATIVE CLASSIFIER

For training, we pad shorter sequences to a length of 512 and only compute loss for non-padded
tokens. We use a Llama-style architecture (Touvron et al., 2023) and train 15M and 42M parameter
models from scratch. We train for up to 200k iterations, which can take 2 A6000 days. We use
a repository without default hyperparameters, so we sweep over learning rate, weight decay, and
dropout based on their effect on the data log-likelihood. The resulting family of models is then
shown in Figure 2.

B.2.1 DISCRIMINATIVE BASELINES

For CivilComments, we use a randomly initialized encoder-only transformer with the same architec-
ture as DistilBert (Sanh et al., 2019). We train for 100 epochs and sweep over dropout rate, learning
rate, and weight decay.
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