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Abstract

Current trends to pre-train capable Large Lan-
guage Models (LLMs) mostly focus on scaling of
model and dataset size. However, the quality of
pre-training data is an important factor for training
powerful LLMs, yet it is a nebulous concept that
has not been fully characterized. Therefore, we
use the recently proposed Task2Vec diversity co-
efficient to ground and understand formal aspects
of data quality, to go beyond scale alone. Specifi-
cally, we measure the diversity coefficient of pub-
licly available pre-training datasets to demonstrate
that their formal diversity is high when compared
to theoretical lower and upper bounds. In addition,
to build confidence in the diversity coefficient, we
conduct interpretability experiments and find that
the coefficient aligns with intuitive properties of
diversity, e.g., it increases as the number of latent
concepts increases. We conclude the diversity
coefficient is reliable, show it’s high for publicly
available LLM datasets, and conjecture it can be
used to build useful diverse datasets for LLMs.

1. Introduction

Current trends in pre-training Large Language Models
(LLMs) tend to concentrate on model and dataset size scal-
ing (Chowdhery et al., 2022; Nostalgebraist, 2022; OpenAl,
2023; Google, 2023), but the effectiveness of these systems
fundamentally relies on the quality (Longpre et al., 2023)
and coverage of the pre-training data (Hashimoto, 2021;
David et al., 2010). Therefore, vast amounts of effort have
been invested in understanding neural scaling laws — empir-
ical findings that deep networks exhibit power law scaling
in test metrics as a function of the size of the pre-training
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dataset, model or compute (Hestness et al., 2017; Rosen-
feld et al., 2019; Henighan et al., 2020; Kaplan et al., 2020;
Gordon et al., 2021; Hernandez et al., 2021; Jones, 2021;
Zhai et al., 2022; Hoffmann et al., 2022; Clark et al., 2022;
Neumann & Gros, 2022). Whereas data quality and cov-
erage (David et al., 2010) is often overlooked or discussed
in vague and imprecise ways (Longpre et al., 2023), we
propose to ground the discussion of data quality through
the diversity coefficient (Miranda et al., 2022a), a data cov-
erage metric that moves beyond scale alone. We extend
the diversity coefficient to formally quantify data diversity
of publicly available datasets and discover that LLMs are
pre-trained on formally diverse data. We demonstrate the
diversity coefficient is high for these pre-training datasets
by comparing their formal diversity to the non-vacuous con-
ceptually well-motivated lower and upper bounds of the
diversity coefficient. In addition, to instill confidence in
the usage of the diversity coefficient, we assess the inter-
pretability of the coefficient as it relates to intuitive and
expected properties of such a diversity metric. Concretely,
we demonstrate:

1. The diversity coefficient increases as one concatenates
more pre-training datasets of different sources.

2. We show the task embedding distances used in the di-
versity coefficient groups in a meaningful way, reflect-
ing the conceptual and semantic information humans
expect.

3. Using the Generative IN-Context Learning (GINC)
(Xie et al., 2021) dataset, we show that as the number
of latent concepts' increases the diversity coefficient
increases.

4. We show that a larger, more diverse vocabulary leads
to a higher diversity coefficient in the Generative IN-
Context Learning (GINC) (Xie et al., 2021) dataset.

Our key contributions are:

1. A paradigm shift beyond dataset scale to a data-centric

Latent concepts represent document-level features such as
semantics, structure, and style (Xie et al., 2021).
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machine learning perspective through a formal data
quality metric — the diversity coefficient.

2. We advance discussions on data quality by measur-
ing an aspect of quality — data diversity — using the
diversity coefficient.

3. We further validate the diversity coefficient by demon-
strating its interpretability and correlation with intuitive
diversity properties, e.g., the coefficient increases as
more datasets are concatenated, the number of latent
concepts increases, and a richer vocabulary is used.

4. We formally demonstrate the high diversity of pub-
lic datasets for LLM pre-training is high using well-
motivated lower and upper bounds.

Therefore, we conclude the diversity coefficient is reliable,
and conjecture the diversity coefficient can be used to build
quality diverse datasets for capable LLMs. In doing so,
we hope this work inspires more systematic and effective
techniques for dataset design beyond simply increasing the
number of data points, sequences, or tokens.

2. Methods
2.1. Task2Vec Embeddings for Sequence Data

We use the Task2Vec diversity coefficient (Miranda et al.,
2022a) to compute the formal diversity of a dataset. To do
so0, we first compute Task2Vec (vectorial) embeddings of a
batch of sequences. The original Task2Vec method (Achille
et al., 2019) embeds data (e.g. few-shot learning task) using
the diagonal entries of the Fisher Information Matrix (FIM)
that result from partially fine-tuning the final layer of a
fixed neural network (also called a probe network) to solve
the current task, or batch. We implement this framework
by fine-tuning GPT-2 (Radford et al., 2019) to predict the
next token for each sequence in the current batch B, then
compute the FIM as follows:

Fp = BBiEs, Vo (&0 | 21-10) Vb (@ | @-11) 7
The Task2Vec embedding f p is the diagonal (Diag) of the
FIM: .

fB = Diag(Fp)
where x is a sequence of length 7, sampled from a batch
Bi.e. x € B, % is a sequence of tokens sampled from the
fine-tune probe network f,, (with weights w) conditioned
on the real sequence x i.e. & ~ P, (24 | T4—1.1), B¢ indi-
cates taking the average across the sequence length when
computing the loss.

To better understand the Task2Vec embedding, observe that
the (diagonal) of the FIM can be interpreted as a measure
of the information that a given parameter contains about the

generative distribution p,, (& | £;—1.1). Therefore, it serves
as a unique fingerprint, or feature vector, for a batch, which
defines a task distribution. Empirical findings in (Achille
et al., 2019) show that the clustering of Task2Vec embed-
dings cluster reflects semantics between different visual
concepts and that Task2Vec cosine distances are positively
correlated with taxonomical distances.

2.2. Diversity Coefficient Computation for Natural
Language Datasets

Using our extension of Task2Vec for sequence data, we
explain how to compute the Task2Vec diversity coefficient
(Miranda et al., 2022a) for natural language datasets using
GPT-2 as a probe network. We compute the Task2Vec diver-
sity coefficient as the expected cosine distance d between
pairs of Task2Vec embeddings of batches:

JIV(D) = EBl,BQd(fB1 5 fBz)

where D is the natural language dataset from which we
sample batches B1, By, and fp, is the Task2Vec embgdding
of a batch B; using the diagonal of the FIM matrix Fg,.

To compute Task2Vec embeddings, we use GPT-2 (Radford
et al., 2019) pre-trained on the English language as the
probe network f,. Following Task2Vec, we fine-tune only
the final layer (a language modeling head) on each batch.
Figure 4 demonstrates our pipeline.

By measuring the distance between FIMs, the diversity coef-
ficient captures the average intrinsic variability of batches in
the underlying data distribution as a proxy for data coverage
or information contained in the dataset. Another interpreta-
tion is that dataset diversity reflects how different batches
are from each other. Therefore, a low diversity coefficient
implies that batches are not very different.

2.3. Recipe for Establishing if a Diversity Coefficient is
High via the Conceptual Lower and Upper Bounds

To establish if a diversity coefficient div(D) of a dataset D
is high (or low), we use two conceptually well-motivated
reference values: the lower and upper bounds of the diversity
coefficient.

For the lower bound, we construct a dataset with minimal
diversity by sampling from a fixed vocabulary of size 2,
focusing most of the probability mass on an arbitrary to-
ken (excluding special tokens) and assigning the remaining
weight to the <eos> token. In contrast, the upper bound
represents a dataset with maximum diversity, where all to-
kens in the vocabulary are sampled uniformly at random.
See section E for more details.
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Table 1. Diversity coefficients of LLM pre-training datasets
with 95% confidence intervals are 3-5 times higher than the
conceptual lower bound and more than half that of the upper
bound.

DATASET D1VERSITY COEFF.

LOWER BOUND
NIH EXPORTER

0.0525 + 3.41E-4
0.15 £ 3.218E-5

USPTO 0.1582 4 4.09e-5
PUBMED ABSTRACTS 0.168 + 2.63E-5
HACKERNEWS 0.201 + 4.52E-5

WIKITEXT-103 0.2140 4+ 7.93E-5
C4 0.2374 4+ 2.785E-5
THE PILE 0.2463 £ 3.034E-5
PILE-CC 0.2497 &+ 3.41E-5
C4 AND WIKITEXT-103 0.2711 4+ 3.22E-4
CONCATENATION OF FIVE DATASETS 0.2939 4+ 2.03E-4
UPPER BOUND 0.4037 + 1.932E-5

3. Experiments & Results

In this section, we describe the experiments and results
supporting the contributions outlined in the introduction.

3.1. Diversity Coefficients of Pre-training Data shows
LLMs are Pre-trained on Formally Highly Diverse
Data

Experiments: We evaluate the diversity coefficient (section
2) of eight publicly available LLM pre-training datasets and
two concatenated datasets: (1) C4 and WikiText-103, and
(2) five sub-datasets of The Pile: Pile-CC, HackerNews,
NIH ExPorter, PubMed, and USPTO (section F.5). We
also compute the conceptually motivated lower and upper
bounds on the diversity coefficient (section 2.3).

Results: Table 1 presents the measured diversity coeffi-
cients of individual LLM pre-training datasets, concatenated
datasets, and the lower and upper bounds. Key observations
from the results are:

* Pre-training datasets tend to have diversity coefficients
that are 3-5 times greater than the theoretical lower
bound and, on average, half the upper bound. Notably,
WikiText-103, C4, The Pile, and Pile-CC exhibit high
diversity coefficients (0.21, 0.25).

* Pile-CC shows a higher diversity coefficient than C4, indi-
cating a potentially stricter preprocessing method applied
to the Common Crawl corpus for Pile-CC, resulting in
enhanced data diversity.

¢ Three sub-datasets of The Pile — NIH ExPorter, PubMed
Abstracts, and USPTO - display relatively low diver-
sity (0.15-0.17), approximately half of the upper bound
(0.4). This could be attributed to their specialized and cu-
rated nature, where shared formatting and semantics exist
among patents in USPTO and abstracts in NIH ExPorter

or PubMed Abstracts.

* However, Pile-CC and HackerNews demonstrate higher
diversity, likely due to their coverage of a broad range of
topics. Among them, Pile-CC exhibits greater diversity,
aligning with its heterogeneous content composition.

3.2. Concatenation of Datasets of Different Sources
Produces Higher Measured Diversity

Experiments: To show that the concatenation of different
datasets produces high diversity datasets, we measure the
diversity coefficient of C4 plus WikiText-103, as well as
the diversity coefficient of five sub-datasets of The Pile in
Table 1. To understand the source of this increased diversity,
we plot the Task2Vec (cosine) distances between batches
from individual datasets and distances of batches from the
different datasets in Figures 1 and 6.

Results: Our key observations are:

» The diversity coefficient for the C4 and WikiText-103
concatenated dataset is 0.2711, about +0.03-0.05 higher
than that of each individual dataset.

* The diversity coefficient for the concatenation of the five
sub-datasets of the Pile is 0.2939 (Table 1), which is about
+0.04-0.1 (Figure 1) that of each individual dataset.

* The concatenation of the five sub-datasets of The Pile
achieves the highest diversity coefficient in Table 1.

This increase in diversity occurs because concatenating
datasets produces higher pairwise Task2Vec distances be-
tween batches from different datasets (see Figure 1). This
results in a higher diversity coefficient, since the coefficient
is an average of all pairwise Task2Vec distances. Note that,
this aligns with human intuition that combining data from
heterogeneous sources increases the overall data diversity.

3.3. Distribution of Pairwise Batch Distances Reflects
Conceptual and Semantic Dataset Information

To bolster the credibility of the diversity coefficient as a
metric, we examine the distributions of Task2Vec (cosine)
distances used to compute the coefficient. Specifically, we
investigate if the grouping of these distances aligns with
human conceptual and semantic understanding.

Experiments: We analyze Task2Vec distances between
batches from five sub-datasets of The Pile, comparing dis-
tances within and across different sub-datasets. The re-
sulting histograms and violin plots are shown in Figure 1.
Additionally, we segment the distances between C4 and
WikiText-103 batches in Figure 6.

Results: Our key observations are as follows:

* Figure 1 (right) shows 15 modes, which is the expected
number of pairwise batch combinations from the five
datasets®>. Due to overlap in distance values, only 11

’Given a 5 by 5 distance matrix, the lower triangular portion
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Distribution of Task2Vec Distances, Sub-Datasets of The Pile
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Figure 1. Distribution of pairwise batch distances reflect conceptual and semantic dataset properties, therefore increasing trust in
the diversity coefficient. Pairwise distance distributions take on a multi-modal form (left) according to dataset comparisons. Pairwise
distances are segmented by source datasets for each pair of batches (right), where each sub-distribution corresponds to a mode from
the histogram. Dotted lines denote the diversity coefficient of the concatenation of five sub-datasets of The Pile. These results show
that combining batches from two different datasets computes a higher diversity, as expected. Therefore, these results align with human
intuitions, increasing the confidence in the diversity coefficient as a diversity metric.

modes are visible in Figure 1 (left).

Similarly, when considering only C4 and WikiText-103
(see Figure 6), we observe 3 modes as expected.
Combining datasets results in an increased diversity co-
efficient compared to individual datasets, supporting our
previous findings.

Pairings of unrelated datasets exhibit higher diversity com-
pared to pairings of related datasets. This is evident in
Figure 1, where the violin plots for unrelated dataset com-
binations appear above the dotted line (e.g. HackerNews
and PubMed), while technically similar datasets group
below it’.

Pile-CC and HackerNews, being broad web-scale datasets,
cover diverse topics and are expected to have higher indi-
vidual diversities. This is reflected in the first two violins
in Figure 1 (right), where they exhibit the highest diver-
sity among individual datasets and display the greatest
increase when combined with other datasets as shown in
the 6th to 12th violins counting from the left.

Distances between batches from Pile-CC and Hack-
erNews (6th violin from the left) are the lowest among
pairwise distances of concatenated datasets above the di-
versity coefficient. This aligns with human conceptual
intuition, as these sub-datasets are the most similar due to
their web-scale nature.

These findings provide compelling evidence that the diver-
sity coefficient is a reliable metric for measuring dataset

plus the diagonal is the number of pairings: C5 4+ 5 = 15.

3e.g. NIH ExPorter and PubMed Abstracts each contain medi-
cal abstracts, and have the lowest distances (third violin from the
right) among combinations of different datasets.

diversity, as the observed clustering behavior of the coeffi-
cient and underlying Task2Vec distances aligns with human
intuition.

3.4. Diversity Coefficient Captures LLM Pre-training
Data Distributional Properties

To instill confidence in the diversity coefficient, we perform
a correlation analysis with data distributional properties of
the GINC dataset (Xie et al., 2021). GINC generates se-
quences by modeling how real documents are generated
based on latent document concepts. It utilizes a mixture
of Hidden Markov Models (HMM) with each HMM rep-
resenting a latent concept that models document statistics.
Additional details on GINC can be found in section J.

Experiments: We investigate how the diversity coefficient
varies with the number of latent concepts and vocabulary
size in the GINC dataset. For each dataset, we plot the
diversity coefficient against the number of latent concepts
(1-10,000) and vocabulary size (50-10,000 unique tokens),
respectively, and fit curves for fixed vocab sizes of 50 and
150 as well as number of latent concepts of 5 and 5000. The
corresponding plots are shown in Figure 2.

Results: Our observations are as follows:

* Diversity coefficient increases with a greater number
of latent concepts. Figure 2 (top) demonstrates that
adding more latent concepts leads to an increase in the
diversity coefficient, albeit with diminishing returns. This
suggests that additional latent concepts introduce new and
diverse document-level statistics. The R? values are high
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at 0.952 and 0.898.

*» The diversity coefficient saturates as more latent concepts
are added, potentially due to marginal increases in vari-
ation caused by increased overlap, e.g. wiki bios and
autobiographical web pages may have syntactical and
semantic similarities.

* Diversity coefficient increases with larger vocabularies.
Figure 2 (bottom) indicates that the measured diversity
coefficient increases exponentially as the vocabulary size
grows. The R? values are high at 0.993 and 0.984.

* We hypothesize that the exponential growth is a result
of scaling the number of tokens, which leads to a more
diverse dataset by increasing the number of ways to repre-
sent any sequence.

These findings demonstrate that the diversity coefficient

effectively captures different distributional sources of varia-

tion within the data.
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Figure 2. Diversity coefficient of GINC datasets with varying
number of latent concepts and vocab sizes shows the diver-
sity coefficient behaves as expected. The diversity coefficient
increases and saturates with an increasing number of latent con-
cepts (top) and exponentially increases with increasing vocab size
(bottom). This implies that increases in the measured diversity
coefficient correspond to changes in LM pre-training data distribu-
tional properties that intuitively enable more diverse data.

4. Discussion

Our work extends the Task2Vec diversity coefficient to natu-
ral language data, validating its application in a new modal-

ity. We demonstrate that open LLMs are pre-trained on
formally diverse data. Our approach offers several advan-
tages. Through extensive experiments that verify intuitive
properties of a diversity metric, we instill confidence in
its effectiveness and concretize the concept of data diver-
sity. Additionally, our conceptually motivated lower and
upper bounds on the diversity coefficient provide insight
into its magnitude. However, these bounds are limited to
sequence data with a symbolic vocabulary. Using a multi-
modal embedding method aligning our proposed bounds
across modalities would address this limitation.

Another advantage is that our method does not rely on ac-
tivations from an arbitrarily selected layer in a network.
Activations can be unreliable for embedding datasets/tasks
since they may yield large distances between datasets/tasks
that are due to well-separated decision boundaries rather
than intrinsic dataset/task properties. Instead, the diversity
coefficient is well-justified, extensively tested in our work
and previous studies, and exhibits correlations with ground
truth diversities, semantic clustering, and taxonomy (section
C and (Achille et al., 2019; Miranda et al., 2022a)). In sum-
mary, FIM-based representations, grounded in information
theory and validated by independent sources (Miranda et al.,
2022a; Achille et al., 2019; Vu et al., 2020), provide a robust
alternative to activation-based approaches.

Regarding limitations, our method requires a data represen-
tation, but we argue that data representation is an inherent
aspect of data processing. Choosing symbols or raw pixels
is a representation choice, and a model or method to embed
the data is essential for any data-dependent task. We sug-
gest deep learning representations, since they have proven
highly successful in various domains, e.g. computer vision
(Krizhevsky et al., 2012; He et al., 2015), natural language
processing (OpenAl, 2023; Google, 2023), and more. In
addition, the availability of open-source pre-trained models,
e.g. (Radford et al., 2021), (Touvron et al., 2023), has made
embedding method selection easier. We also explore ran-
dom networks and models with no fine-tuning to make our
method more accessible. We hypothesize that as long as a
consistent model/method is used to create task embeddings,
the specific model/method may not significantly impact the
results, as we primarily rely on comparable distances based
on the data/task.

In conclusion, we affirm the reliability of the diversity co-
efficient and propose its use in constructing quality diverse
datasets for capable LLMs. We hope that our contributions
inspire more systematic and effective techniques for dataset
design, moving beyond mere increases in data scale and
encouraging quantitative approaches to data collection and
curation that improve performance.
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A. Related Work

Existing diversity metrics have concentrated on data produced by General Adversarial Networks (GANs) and involve
variations of a precision- and recall-based framework originally proposed in (Sajjadi et al., 2018) to measure quality and
diversity, respectively (Kynkddnniemi et al., 2019; Simon et al., 2019; Naeem et al., 2020). Similar to the Task2Vec diversity
coefficient, these methods utilize embedding functions, These methods argue that data quality is not synonymous with data
diversity in the context of GANs (Fowl et al., 2020) and hence take a two-metric approach. In the context of LLMs, we argue
that data diversity is a subset of data quality, which is demonstrably important to enable capabilities not explicitly trained
for such as in-context learning. Therefore, a diversity metric is sufficient to capture an important aspect of data quality. In
addition, a diverse enough dataset increases the coverage and likelihood that a task in the test dataset is covered. Furthermore,
large LLMs are robust to noise and therefore even if the diversity is made high, the models might still generalize. Therefore,
we conjecture that high diversity is preferred and provide evidence that current datasets for open LLMs do have that property.

A recently proposed diversity metric that does not rely on an embedding function is the Vendi Score (Friedman & Dieng,
2022). The Vendi Score is given by the exponential of the Shannon entropy of the eigenvalues of a similarity matrix or
kernel. However, the benefits of this more sophisticated aggregation method are not clear, and its computation O(n?) is
more expensive than the diversity coefficient O(n?), as it requires eigenvalue decomposition. Moreover, the Vendi Score
assumes the availability of a suitable similarity function (or kernel) for the data, and thus does not provide guidance on
data representation — which is arguably the most challenging and important ingredient in machine learning. Furthermore,
they suggest that utilizing data representational methods such as embedding networks that require pretrained models may
be limiting. We argue instead that data representation is a fundamental property of data processing that has led to the
overwhelming success in machine learning due to deep learning, e.g. in computer vision (Krizhevsky et al., 2012; He et al.,
2015), natural language processing (Devlin et al., 2018; Brown et al., 2020; Chowdhery et al., 2022; OpenAl, 2023; Google,
2023), game playing (Silver et al., 2016; Mnih et al., 2013; Ye et al., 2021), theorem proving (Rabe et al.; Polu & Sutskever,
2020; Han et al.), code (Chen et al.) and more. Given the success of deep learning data representations and our work, we
demonstrate deep learning is a strong way to create dataset/task embeddings. In contrast to the Vendi Score, our approach
learns effective embeddings of tasks, batches, and datasets in an end-to-end manner, whereas the Vendi Score is focused on
measuring diversity between specific data points. Since many canonical datasets already exist and are publicly available (e.g.
Common Crawl, Wikipedia), data used to train new models may be curated from such datasets, necessitating a metric that
captures overall dataset diversity. These scenarios are thus in favor of using the Task2Vec diversity coefficient. Therefore,
our method is more general, flexible, and scalable than the Vendi Score. We leave a detailed comparison with the Vendi
Score as future work.

B. Future Work

Our future research will explore the potential of the Task2Vec distance function for pre-training dataset curation. Given that
the objective of pre-training is to maximize downstream task performance, we define high-quality training data as data that
facilitates the best achievable performance on such tasks. We anticipate that higher diversity in the dataset will increase
the likelihood of achieving this objective. The rationale is that a higher data diversity implies a broader coverage of tasks
or batches, thereby increasing the probability of training the model on tasks or data representations that are relevant to
evaluation tasks. Our focus will be to leverage Task2Vec to assess the similarity between individual data points, batches,
or datasets to a target task. This assessment will enable us to curate the training data by selectively removing tasks that
resemble random, noisy, or irrelevant sequences, which may adversely affect downstream performance.

C. Task2Vec Diversity Coefficient Correlates with Ground Truth Diversity

As shown in (Miranda et al., 2022b), when the ground truth diversity is available for a synthetic Gaussian benchmark, the
Task2Vec diversity coefficient correlates with the ground truth diversity. These results provide confidence in the Task2Vec
diversity coefficient as diversity metric.

D. Pipeline for Diversity Coefficient Computation of Natural Language Datasets

Figure 4 shows our pipeline for computing the diversity coefficient of large scale, natural language datasets. See section 2.2
for more details on our method.
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Figure 3. Task2Vec diversity coefficient correlates with ground truth diversity for synthetic Gaussian benchmark. Source: (Miranda
et al., 2022b)
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Figure 4. A depiction of a pipeline to compute the Task2Vec diversity coefficient for a natural language dataset.

E. Conceptually Motivated Lower and Upper Bounds of the Diversity Coefficient

Consider a dataset constructed by sampling with most of the probability mass concentrated on some arbitrary token. This is
a good candidate for a dataset with minimum diversity. On the other extreme, a dataset constructed by sampling any token
uniformly at random given a fixed vocabulary (in our case, the GPT-2 tokenizer vocabulary) is a good candidate to create a
dataset with maximum diversity.

Therefore, we measure a conceptual lower bound on a dataset with a vocabulary size of 2: <eos> token and a randomly
selected non-special token from the GPT-2 tokenizer vocabulary. The <eos> token was assigned a probability weight of
1/{GPT-2 vocab size}. The non-special token was assigned the remaining weight. Similarly, a high or maximum diversity
dataset would consist of random sequences of all possible tokens, with no underlying order to semantics, formatting, etc.
The upper bound of the diversity coefficient was therefore measured on a synthetic dataset with an equal probability of
occurrence assigned to all tokens in the GPT-2 tokenizer vocabulary.
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F. Experimental Details
F.1. LLM Pre-training Datasets

Since LLMs are often trained on internal, non-public datasets*, we used publicly available language datasets from the same
sources as LLM pre-training data:

* C4, a 305GB cleaned version of Common Crawl’s web crawl corpus in English (Raffel et al., 2019). Sequences in C4
were extracted from the web via de-duplication methods and heuristics to remove boiler-plate and gibberish.

¢ WikiText-103, a S00MB collection of over 100 million tokens extracted from the set of verified Good and Featured
articles on Wikipedia (Merity et al., 2016).

* The Pile, a 825 GiB open-source English-text corpus for language modeling that combines 22 smaller, high-quality
datasets from diverse sources (Gao et al., 2020). These sources include Pile-CC (Common Crawl), PubMed Abstracts,
Books3, OpenWebText2, ArXiv, and GitHub.

For instance, GPT-3 was trained on a filtered Common Crawl dataset and Wikipedia (Brown et al., 2020), which are
represented by C4 and WikiText-103. It was also trained on WebText2 and Books, which are sub-datasets of The Pile.

We also evaluate the diversity coefficient of the following five sub-datasets of The Pile:

¢ Pile-CC, a 227 GiB preprocessed version of Common Crawl’s web crawl corpus (Gao et al., 2020). While both Pile-CC
and C4 are sourced from Common Crawl, Pile-CC was preprocessed from Web Archive files, which are raw HTTP
responses and page HTML, whereas C4 was preprocessed from WET files, which consist of plaintext. Nonetheless, we
expect that both datasets are non-mutually-exclusive.

* HackerNews, a 4 GiB scraped and parsed dataset of comment trees from Hacker News, a social news website
that aggregates article links (Gao et al., 2020). Articles are generally focused on topics in computer science and
entrepreneurship.

* NIH ExPorter, a 1.9 GiB dataset of NIH Grant abstracts for awarded applications from 1985-present hosted on the
ExPORTER initiative (Gao et al., 2020).

* PubMed Abstracts, a 19 GiB dataset of abstracts from 30 million publications in PubMed (Gao et al., 2020).
* USPTO Backgrounds, a 23 GiB dataset of background sections from patents granted by the United States Patent and
Trademark Office (USPTO) (Gao et al., 2020).

These five sub-datasets were selected for streaming support on HuggingFace, and for relatively efficient streaming time.

F.2. Dataset Preprocessing

In accordance with (Achille et al., 2019), we used the training split of datasets to finetune the probe network when computing
Task2Vec embeddings per dataset. Sequences were tokenized using a pre-trained HuggingFace GPT-2 tokenizer based on
byte-level Byte-Pair-Encoding, and padded or truncated to a max length of 128. Because the WikiText-103 dataset contained
empty text examples, we removed these examples before sampling batches to compute embeddings.

F.3. Model Architecture and Finetuning

We used a pre-trained GPT-2 model with a language modeling (LM) head on top. The pre-trained GPT-2 model itself has 12
layers, 12 heads, 768-d hidden size, and 117M total parameters. The LM head is a linear layer with weights corresponding
to the input embedding layers. The model was pre-trained on the English language and the pre-trained GPT-2 tokenizer
has a vocab size of ~ 50k tokens. For all finetuning experiments, we fine-tuned only the LM head for 10 epochs. We used
no learning rate scheduler and no gradient accumulation. We used the AdamW optimizer, since AdamW has been shown
empirically to give better training loss and improved generalization.

*For instance, Gopher was trained on Google’s internal dataset MassiveText.
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We note that, in principle, the Task2vec diversity coefficient can be computed with any LLM. The metric itself is not specific
to any particular LLM architecture or model version. We chose GPT-2 for our experiments due to computational efficiency
and resource constraints. However, more powerful LLMs like LLaMA can also be used to compute the diversity coefficient.
As long as the probe network used is consistent across experiments, the relative differences in the diversity coefficient value
between datasets are directly comparable. The same goes for using pretrained vs. non-pretrained probe networks.

F.4. Number of Batches and Batch Size Selection

Diversity coefficients in Table 1 were computed using randomly selected batches of size 512 sequences and a pre-trained,
finetuned GPT-2 probe network. Diversity coefficients of C4, WikiText-103, The Pile, Pile-CC, HackerNews, NIH ExPorter,
PubMed Abstracts, and USPTO were each computed using 200 sampled batches. Given resource constraints, we found 200
batches’ to be a sufficiently large number of batches to estimate the diversity coefficient with tight 95% confidence intervals
on the order of 1e-5. We chose 512 as the batch size, since it is a relatively large and feasible batch size to fine-tune the
probe network on 200 batches using Azure NV12s_v3 instances equipped with Tesla M60 GPUs in a reasonable amount of
time (30+ hours).

F.5. Diversity Coefficient Computation of Concatenated Datasets

The diversity coefficient of a concatenated dataset of C4 and WikiText-103 was measured over a combined set of batches.
Each batch consisted of sequences sampled from one of these datasets, e.g. a batch could have sequences randomly sampled
from C4 or WikiText-103 but not both. The coefficient was computed over 400 batches of batch size 512 (200 batches from
each dataset). Note that for the concatenated dataset, we utilized the same 200 batches per dataset that were used to compute
the coefficients of C4 and of WikiText-103 individually.

The diversity coefficient of concatenated five sub-datasets of The Pile was computed over 1000 batches (200 batches from
each dataset) of batch size 512. Similarly to the concatenated dataset of C4 and WikiText-103, we utilized the same 200
batches per dataset that were used to compute the coefficients of each individual sub-dataset.

F.6. Diversity Coefficient of The Pile vs. Concatenation of Five Sub-Datasets

We make a clarification on the approach taken to evaluate the diversity coefficient for The Pile vs. for concatenation of its
five sub-datasets.

The diversity coefficient of The Pile was computed over 200 batches sampled across all 22 sub-datasets of The Pile. This
means that any given batch could contain sequences across all 22 sub-datasets, i.e. a batch could have sequences from
Pile-CC, HackerNews, and NIH ExPorter.

The diversity coefficient of the concatenated dataset was computed over 1000 batches comprised of 200 batches separately
sampled from each of the five sub-datasets. Each batch contained sequences from only one sub-dataset, i.e. a batch could
only have sequences from Pile-CC or HackerNews or NIH ExPorter.

We hypothesize this distinction in the diversity coefficient computation explains why the concatenated dataset has higher
diversity, even though it consists of only five of the 22 sub-datasets of The Pile. For the diversity coefficient of The
Pile, because batches were sampled such that any batch contains sequences from across the 22 sub-datasets, the batch
representations learned by the probe network may have been more similar, resulting in lower diversity relative to the
concatenated dataset.

G. Pairwise Distance Distributions of C4, WikiText-103, and The Pile

Experiments: To provide confidence in the magnitude of the coefficient values of C4, WikiText-103, and The Pile, we
plot the distribution of distances per dataset in Figure 5. We aim to show that a subsample of batches can provide a good
estimation of population statistics, such as the diversity coefficient, which measures the expected Task2Vec (cosine) distance
between batches.

Results: For each dataset, the pairwise distances take on unimodal and approximately Gaussian distributions with few
outliers. These results suggest the Task2Vec distances are approximately normally distributed. This suggests we can make

>This results in (2002 — 200)/2 = 19, 900 pairwise distances used to compute the diversity coefficient.
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Figure 5. Distributions of pairwise batch distances from C4 (top left), WikiText-103 (top right), and The Pile (bottom) are
approximately Gaussian, which justifies the use of a sample of batches to measure the diversity coefficient. Dotted lines indicate the
average distance, i.e. the diversity coefficient, for each dataset.

strong inferences about the population. Specifically, we are able to compute a good estimate of the diversity coefficient
using 200 batches using the mean. This is in fact the same argument from (Miranda et al., 2022a) — but we verified it applied
in our setting. Figure 5 also shows few outlier batches — the presence of which could influence the computed diversity
coefficient. This provides further confidence in the coefficient values computed and justifies our use of a sample of batches
to estimate diversity.

H. Pairwise Distance Distribution of Concatenated C4 and WikiText-103 Dataset

Experiments: To ascertain the source of the increased diversity from concatenating C4 and WikiText-103, we plot the
Task2Vec (cosine) batch distances used to compute the diversity coefficient in Figure 6.

Results: Our findings are
* Figure 6 (left) shows 3 modes. We confirm that the modes correspond to pairings of datasets in Figure 6 (right). For
instance, the right-most mode, corresponding to distances with values higher than the diversity coefficient, consists of

pairwise distances between C4 and WikiText-103 batches. This confirms intuitive properties we’d expect, i.e. we’d
expect 3 modes given 2 datasets (022 + 2 =3).

 The distance distribution of batch pairs where one batch is from C4 and one is from WikiText-103 is higher than that of
individual datasets. Another intuitive property we expect, test, and validate.

These results further confirm that combining batches from two different datasets computes a higher diversity. This aligns
with our expectation that combining datasets from hetereogeneous sources increases the overall data diversity.

I. Using the Diversity Coefficient in Practice: Setting Batch Size and Network Parameters

Experiments: We test the sensitivity of the computed diversity coefficient value to changes in batch size and probe network
parameters in order to gauge how these parameters should be set in practice for natural language datasets.

13



Beyond Scale: the Diversity Coefficient as a Data Quality Metric Demonstrates LLMs are Pre-trained on Formally Diverse Data

Distribution of Task2Vec Distances, c4 and WikiText-103 Distribution of Pairwise Distances by Task Dataset
|
4000 0.36 1
3500 4 0.34 1 ‘
3000 - g 0324
c
g
2 2500 A S 0.30 1
g g
22000 @ 0.28
i (s} - —
& 1
1500 A 2 026
=
g \I
1000 - & 0.24 é \
500 - 0.22 A
0- 0.20 -
020 022 024 026 028 030 032 034 036 ! ! !
Cosine Distance between Task Pairs c4 and c4 WT-103 and WT-103 c4 and WT-103

Figure 6. Pairwise task distances from concatenation of C4 and WikiText-103 show multi-modal distribution corresponding to
datasets that batches are sourced from, and thereby, reflect semantic dataset properties expected. Pairwise distance distribution
contains three modes (left). Pairwise distances are segmented by source datasets for each pair of batches (right), where each sub-distribution
corresponds to a mode from the histogram. Dotted lines denote the diversity coefficient of the concatenated C4 and WikiText-103 dataset.

We vary the batch size and observe the impact on the diversity coefficient. For the same number of batches (200) and probe
network (pretrained, fine-tuned GPT-2), we computed the diversity coefficient of C4 for batch sizes of 128, 256, 512, and
1024, and plot the results in Figure 7 (left).

We test the following probe network configurations to measure the diversity coefficient of C4 and of WikiText-103:

¢ Pretrained GPT-2 with fine-tuning
* Pretrained GPT-2 without fine-tuning
* Randomly initialized GPT-2 with fine-tuning

* Randomly initialized GPT-2 without fine-tuning

Since using a random and/or non fine-tuned network is more resource efficient and easily accessible in practice, our
motivation is to assess the necessity of using pre-trained and fine-tuned probe network, which is the original configuration
used for Task2Vec in (Achille et al., 2019). We aim to determine if a good approximation of diversity can be computed
without fine-tuning. We plot the diversity of coefficients measured using each of the four probe network configurations in
Figure 7 (right).

Results: We observe that

* Diversity coefficient increases with task batch size, but with diminishing returns. Figure 7 (left) shows positive
correlation between the diversity coefficient and batch size. T his may be because larger batch sizes enable more unique
tokens per batch, which may result in higher distances between batches.

* However, we observe diminishing returns to the increase in diversity coefficient with increasing batch size. We
hypothesize that as the batch size continues to increase, there is greater coverage in tokens, topics, document formats,
etc. between batches, so the increase in the diversity coefficient saturates.

¢ Using a random probe network underestimates diversity. Since the Task2Vec method (Achille et al., 2019) uses a
pretrained and fine-tuned network, we consider the diversity computed using this configuration as a source of truth.
Figure 7 (left) shows that using random probe networks underestimates diversity compared to pretrained networks,
which is in accordance with results from (Miranda et al., 2022b) on vision datasets. We hypothesize that for random
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Figure 7. Diversity coefficients of C4 computed using different task batch sizes show positive and diminishing returns with
increasing batch size (left). Diversity coefficients of C4 and WikiText-103 computed using different GPT-2 probe network
configurations show that random networks underestimate diversity vs. pretrained networks, and non-finetuned networks
overestimate diversity vs. finetuned networks (right). 95% confidence intervals for diversity coefficients are plotted, but are so small
that they do not show. ’pt” refers to pretrained network and “rand” refers to randomly initialized network. "ft” refers to a network that
was finetuned per task and no ft” refers to no finetuning performed.

networks, the probe network parameters are not as calibrated to performing autoregressive language modeling, so
batch representations from model parameters are similar, and the diversity is underestimated compared to pretrained
networks.

 Using a non fine-tuned network overestimates diversity. Fine-tuning ensures the final Task2Vec embedding is more
faithful to the dataset in question, as it adjusts the batch/task representation to a more similar distribution. This is due
to batches — while different content-wise — being conditioned on the same dataset. On the other hand, a non-fine-tuned
network may have more variable representations across batches, as it is not well-adapted to the dataset. This may
explain the overestimation of the diversity coefficient that we observe.

* Trends in diversity coefficient overestimation vs. underestimation for different probe network configurations are
consistent across C4 and WikiText-103.

Based on these findings, we recommend using a batch size of 512 sequences for faster computations and fewer out of
memory issues. We conjecture that our proposed diversity coefficient can be computed more efficiently using random and
non fine-tuned networks, as eliminating pre-training and fine-tuning saves computational costs. While the absolute diversity
coefficient values differ compared to values computed using a pre-trained and fine-tuned network, this is not a serious issue
as long as the same network configuration is used consistently. With that said, further validation is required to determine if
indeed forgoing pre-trained and/or fine-tuned probe networks can produce as robust embeddings as the original Task2Vec
method.

J. Generative IN-Context Learning (GINC) Dataset

J.1. Background

The GINC dataset is generated using the latent concept framework proposed in (Xie et al., 2021), where language models
condition on a prompt to infer latent document concepts learned during pre-training. The pretraining distribution is defined
using a uniform mixture of Hidden Markov Models (HMMs) parameterized over a family © of latent concepts.

J.2. Definitions of GINC Dataset Parameters

Number of latent concepts: A latent concept f parameterizes the transitions of a HMM in the mixture. A latent concept
(e.g. a wiki bio) contains document statistics, such as semantics, syntax, and the formatting of and distribution of tokens.

Vocabulary size: Each HMM in a given mixture outputs a fixed number of tokens, defined as the vocabulary size. The
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vocabulary is generated by enumerating combinations of letters from a to z, aa to az, etc. The delimiter token is designated
by a backslash. Sequences are tokenized by whitespace.

J.3. Supplemental Figures for Diversity Coefficient vs. GINC Parameters
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Figure 8. Trends noted in Section 3.4 are consistent for diversity coefficient vs. number of latent concepts (left) and coefficient vs.
vocab size (right) when the other parameter changes. The diversity coefficient with 95% confidence intervals saturates with increasing
number of latent concepts (left) even as vocab size is varied between 50-1000. Larger vocab sizes generally produce higher diversity
coefficients (right) even as the number of latent concepts is varied between 1-5000.

Figure 8 confirms that the trends between the diversity coefficient and number of latent concepts (left) hold even as vocab
size is varied. Similarly, trends between the diversity coefficient and the vocabulary size (right) hold as the number of latent
concepts is varied. These trends were noted in Section 3.4.

J.4. Discussion (cont.)

Our paper introduces a metric that leverages tunable parameters, such as the number of batches, batch size, probe network
configuration (pre-trained vs. random, fine-tuned vs. not) and depth. While these elements influence the diversity
coefficient’s absolute value and necessitate the recalibration of lower and upper bounds (see sections F.4 and I), a consistent
choice of hyperparameters can mitigate these effects.

Intriguingly, our proposed diversity may not always correlate with model performance, as high diversity could simply be
due to uniform noise. Nevertheless, we contend that a higher diversity, in the context of a sufficiently large model, likely
indicates superior performance and data quality. Furthermore, our diversity metric is intentionally designed to be widely
applicable, albeit concealing causal factors, rendering it an effective tool for ablation studies.

Despite our diversity metric’s broader applicability, it may obscure certain causal factors. This limitation is intentional to
enhance its practical usage — since causality is often difficult to infer and is out of scope. This can be overcome with data
property ablation studies, as we showed in our GINC dataset experiments.

Currently, our proposed bounds are specific to sequence data with a symbolic vocabulary, limiting their applicability across
different modalities. To overcome this limitation, we suggest using a multimodal embedding method for embedding diversity
coefficients and lower/upper bounds across tasks.

To really clarify why FIM is better than activations, we provide this intuitive explanation. FIM gives a weight/feature of
which parameter of the generative distribution matters, e.g. the first coordinate of Task2Vec corresponds to how artsy the
text sequence is. This is a feature of a task or dataset itself. Therefore, FIM exactly approximates the (task) data generative
distribution we are trying to embed. Therefore, we conjecture it results in superior representations for datasets compared
to activations since it directly approximates the data (or task) generative distribution. Our study, and references, provide
positive evidence in favor of this argument.

The strength of embeddings is their ability to approximate semantics in a way that symbols may struggle with, such as
distinguishing the equivalence of two sentences with different symbols but identical meanings. In NLP there is no easy
way to determine this equivalence. In formal mathematics, symbolic semantics and thus equivalence can sometimes be
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done exactly. Though it does not come without its costs, e.g. requires expert knowledge, computationally demanding or
(approximately) exhaustive representations like e-graphs. Therefore, embedding methods for data diversity, quality, etc.
have the unique advantage of being more generally applicable.

Our diversity calculations predominantly utilize a small model (GPT-2). Despite the ongoing discussion concerning the
emergence of large language models (LLMs), our conjecture extends the results to models of all sizes. We base this
inference on the fact that the manifestation of emergence is intimately tied to the specific metric employed, and the sudden
unpredictable jumps disappear when smooth metrics are applied (?). The cosine distance is smooth and does not have this
issue.

Why and when does diversity matter? We propose two central conjectures for the importance of diversity and provide the
underlying rationale:

1. Conjecture 1: Diversity is essential because it promotes learning-to-learn (a surrogate for General Intelligence).
The main argument is that a significant level of diversity corresponds to a multitude of tasks in the dataset. Therefore, to
achieve high (test) performance, the model must perform well on all tasks. One potential strategy is by learning-to-learn,
thereby allowing transferability when tasked with a new problem. Another alternative could be to memorize all tasks.

2. Conjecture 2: Diversity is crucial because it enhances the probability that the pre-training set covers the test set.
Diversity is a formal score of coverage — it aims to reflect the effective number of tasks in a dataset. Thus, increased
diversity equates to more tasks in a dataset. This (could) boosts the chance of the training set covering the test set,
hence improving performance, given a sufficiently large model like an LLM. The direct exploration of this conjecture
is slated for future investigation, but we provide a suggestive (correlative) analysis of one reason why LLMs might
perform so well.

Limitations:

» The diversity coefficient presents an aggregate measure that masks the underlying causal factors. Despite this, we
illustrate how it might be employed to uncover these factors. We show this through the use of vocabulary size and latent
space, acknowledging that these experiments could be resource-intensive. Causality is a challenging topic, and we do
not claim to solve it through our experiments. Our experiments in this regime are mostly to show that the diversity
coefficient (might) correlates/captures different sources of diversity beyond number of concepts or tasks.

* The computation of Task2Vec embeddings requires more resources than computing simply the activations. However,
given the proven correlation with ground truth task generative parameters from previous studies, we posit that it
supersedes activations. Furthermore, we hypothesize that using activations could result in high distances due to
optimization for decision boundaries, making it less reliable for measuring distances i.e., high distances in activation
space might be artificially high. We observed this but plan to give more detailed study in the future.

* The choice of an expectation as the aggregation function could be seen as arbitrary. Alternatives such as the Vendi
score are promising, but still under-explored and computationally demanding compared to expectations/sums. Future
work could focus on the comparative analysis of the total distance sum and the Vendi score. We hypothesize, in line
with the Central Limit Theorem (CLT), that the results might not differ significantly e.g., CLT still converges to (unit)
Normal given the proper normalization procedure.

* We reject the notion that the use of models is a limitation. As discussed earlier, models can provide superior data
embeddings, and all forms of data representations are always required. For example, the identity function or symbols
are data representations.

Implications:

* Given the impressive performance of LLMs, our study suggests a correlation with our diversity measure, potentially
providing an explanation for this high level of performance.

* High diversity implies a larger task coverage. Therefore, we conjecture that a highly diverse pre-training set could
increase the probability of including relevant pre-training data for the target task/testing. This suggests that collecting
more diverse data could be a method to enhance performance. If the model is sufficiently large, we conjecture this
method always (stochastically) monotonically increases the performance (as implied by (?)).
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* The transition from a qualitative to a quantitative measure of diversity can be seen as a significant advancement in the
field because of conceptual transitions about how we think and talk about data quality/diversity.

* The use of Task2Vec to embed data implies a method applicable to any modality, potentially benefiting all areas of
machine learning research.
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