
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FROM CHARTS TO CODE: A HIERARCHICAL BENCH-
MARK FOR MULTIMODAL MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Chart2Code, a new benchmark for evaluating the chart understanding
and code generation capabilities of large multimodal models (LMMs). Chart2Code
is explicitly designed from a user-driven perspective, capturing diverse real-world
scenarios and progressively increasing task difficulty. It consists of three levels:
Level 1 (Chart Reproduction) reproduces charts from a reference figure and user
query; Level 2 (Chart Editing) involves complex modifications such as changing
chart types or adding elements; and Level 3 (Long-Table to Chart Generation)
requires models to transform long, information-dense tables into faithful charts
following user instructions. To our knowledge, this is the first hierarchical bench-
mark that reflects practical chart2code usage while systematically scaling task
complexity. In total, Chart2Code contains 1,947 tasks across 22 chart types, paired
with multi-level evaluation metrics that assess both code correctness and the visual
fidelity of rendered charts. We benchmark 25 state-of-the-art LMMs, including
both proprietary and the latest open-source models such as GPT-5, Qwen2.5-VL,
InternVL3/3.5, MiMo-VL, and Seed-1.6-VL. Experimental results demonstrate
that even the strongest models struggle to generalize across levels and chart types,
highlighting the significant challenges posed by Chart2Code. We anticipate this
benchmark will drive advances in multimodal reasoning and foster the development
of more robust and general-purpose LMMs.

1 INTRODUCTION

Charts are one of the most powerful tools for communicating complex ideas. From scientific
publications to business reports, they distill large amounts of structured data into clear and persuasive
visuals. With the rapid progress of large multimodal models (LMMs) (OpenAI, 2025; Anthropic,
2025), it becomes increasingly realistic to envision AI systems that not only interpret visual charts
(Wang et al., 2024b) but also generate executable plotting code, a task we refer to as chart-to-code
(chart2code). Such capabilities can significantly enhance productivity by automating visualization
creation, enabling reproducibility.

Yet, the reality of how people use charts tells a different story. Users rarely stop at simple chart
reproduction—they need to edit figures by changing chart types, merging datasets, or adding new
elements; they often work with long tables that must be distilled into interpretable plots; and
they expect precise control over layout and style to ensure clarity. On the other hand, current
LMMs (OpenAI, 2025; Anthropic, 2025; Deitke et al., 2024) achieve impressively high scores on
existing chart2code benchmarks Yang et al. (2025a); Zhao et al. (2025b), suggesting that the problem
is close to being solved. However, when applied to these more common and demanding scenarios,
the very same models often struggle, revealing substantial gaps in their practical ability (refer to
Appendix B for examples). This discrepancy creates a mismatch between reported benchmark
performance and real-world utility, highlighting the need for a benchmark that more comprehensively
reflects everyday chart2code challenges.

Motivated by this observation, we introduce Chart2Code (Figure 1), a new benchmark designed to
rigorously evaluate chart generation capabilities of LMMs under progressively challenging conditions.
Chart2Code consists of three levels: Level 1 (Chart Reproduction) targets mimicking a reference
figure and instruction; Level 2 (Chart Editing) requires complex and precise editing, such as
changing chart types or adding new elements; Level 3 (Long-Table to Chart Generation) presents

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Setting 1: Direct Chart Reproduction

Large Multimodal Model

Setting 2: Customized Data from Raw Data

ax.bar(instagram, share,
bar_width, color=f_Color
edgecolor='white',
label='Facebook’)
ax.bar(tiktok, t_share,
bar_width, color=t_Color,
edgecolor='white’)
ax.bar(twitter,
share,color=tw_color)

Reference Chart

Years=[1990, 2000, 2010,
2020, 2022]
Americas=[7.5,8.2,8.0,6.8
,7.0]
Europe=[9.0,7.8,7.5,5.8,5
.5]
Asia=[8.0,10.5,17.0,20.5,
21.0]

Large Multimodal Model

Reference Chart Text-format table data

Predicted Code: Predicted CodeRendered Chart

Setting 2: Customized Data from Figure Data

Reference Chart Table Figure

Please Normalize the

various environmental

parameters from 2019

to 2023 and plot a

radar chart to compare

the proportion of each

parameter.

Instruction

Large Multimodal Model

Rendered Chart Predicted Code

Please modify the colors in

the chart to differentiate

between proprietary and

open-source models and

remove the trend line.

Additionally, create a bar

chart below the main plot to

aggregate the performance of

open-source and proprietary

models across different task

types.

ax2.bar(x2 - width/2,
avg_open, width,
color=['#d1495b',
'#f4a261', '#b8b5a7’])…
ax2.bar(x2 + width/2,
avg_prop, width,
color=['#ff8fab',
'#ffc999', '#f2f0e6'])

ax1.bar(x - width, simple,
width,
color=bar_colors_simple)
ax1.plot(x-width, trend,
linestyle='--’)

Instruction

Level-1 (Chart Reproduction)

Reference Chart
Predicted Code Rendered Chart

LMM

Level-2 (Chart Editing)

Instruction: Please generate the Python

code that can reproduce the provided

reference image.

Plot using the provided CSV

data and instructions,

replicating the style of the

reference image.

I have an Excel spreadsheet

to analyze, which contains

two columns…

Instruction Reference Chart Long-context

Table Data
Predicted Code Rendered Chart

Level-3 (Long Table to Chart)

…ax.set_facecolor('#f2f2f2’)
cf = ax.contourf(X, Y, Z,
levels=levels, cmap='RdBu_r’,
extend='both’)
cs = ax.contour(X, Y, Z,
levels=levels, colors='black',
linestyles='dotted’,linewidths=0
.5)…

…ax.plot(h_angle, r,
marker='o', markersize=6,
markerfacecolor='white',
markeredgecolor='#9370DB',
markeredgewidth=1.5)
 ax.text(h_angle + 0.1, r,
f'{r:.1f}', color='black',
 fontsize=12,
ha='left', va='center’)…

ax.bar(x,medium_err,
error_kw=dict(ecolor=medium_c
olor, lw=1.5, capsize=4,
capthick=1.5))
ax.bar(x + width, small_rd,
width, yerr=err)
ax.scatter(x[0], y[0], s=s[0],
c=colors[0], marker=‘o’)

Instruction: Please generate Python code that can perfectly

reproduce the provided reference image based on the given

data and instructions.

Instruction: Please generate Python code that extracts data

from the source image, replicates the style from the reference

image, and follows the provided instructions to create the plot.

LMM

Figure 1: Chart2Code covers three progressively challenging levels: reproduction, editing, and
long-table to chart generation. It provides a user-driven and diverse benchmark that better reflects
real-world chart2code demands.

the most demanding setting, where models must convert long, unprocessed data tables into faithful
charts from user instructions. This hierarchical design reflects real-world usage while progressively
increasing difficulty, and its distinctions from prior benchmarks are highlighted in Table 1.

We comprehensively benchmark 25 state-of-the-art LMMs, including both proprietary and open-
weight models, across the three levels of Chart2Code. Our results show that while LMMs demonstrate
promising capabilities on simple reproduction tasks, their performance deteriorates sharply on
complex editing and long-context data-to-chart generation. Together, these findings reveal the
unsolved challenges of chart2code generation and point to future directions for building more reliable
visualization assistants. In summary, our contributions are threefold:① We present Chart2Code, the
first hierarchical benchmark targeting chart2code generation with progressively more challenging
tasks. ② We propose multi-level evaluation protocols that jointly assess code executability and visual
fidelity, offering a comprehensive lens on model performance. ③ We provide an extensive empirical
study across 25 mainstream LMMs, yielding new insights into their strengths, weaknesses, and design
trade-offs for chart generation.

2 RELATED WORK

Large Multimodal Models. Thanks to the success of proprietary LMMs such as GPT-5 (OpenAI,
2025), Gemini-2.5-Pro (Comanici et al., 2025), and Claude-Sonnet-4 (Anthropic, 2025), we see the
dawn of building AI agents for addressing realistic applications. In the academic community, we see
enormous excellent open-source models: MiMo-VL (Xiaomi & Team, 2025), QwenVL-series (Bai

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Comparison of existing chart-to-code benchmarks. Ref. Fig.: Reference Figure; Instr.:
Instruction; Text Data: Text-format data; Fig. Data: Figure-format data; L1: Chart reproduction; L2:
Chart editing; L3: Long-table-to-chart generation; NL: Natural language.

Benchmark Input Type Task Cat. Output Metric
Ref. Fig. Instr. Text Data Fig. Data L1 L2 L3 Rule-based GPT-score

CharXiv (Wang et al., 2024b) ✗ ✓ ✗ ✗ ✗ ✗ ✗ NL ✓ ✗
Plot2Code (Wu et al., 2025) ✓ ✓ ✗ ✗ ✓ ✗ ✗ Code ✗ ✓
AcademiaChart (Zhang et al., 2024) ✓ ✓ ✗ ✗ ✓ ✗ ✗ Code ✓ ✓
Chartmimic (Yang et al., 2025a) ✓ ✓ ✗ ✗ ✓ ✗ ✗ Code ✓ ✓
ChartEdit (Zhao et al., 2025b) ✓ ✓ ✗ ✗ ✗ ✓ ✗ Code ✗ ✓

Chart2Code (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Code ✓ ✓

et al., 2025; Wang et al., 2024a), and InternVL-series (Wang et al., 2025; Zhu et al., 2025), MolMo
(Deitke et al., 2024), Kimi-VL (Team et al., 2025) LLaVA-series (Li et al., 2024a; Liu et al., 2024; Li
et al., 2024b), Deepseek-VL (Lu et al., 2024), and GLM-4V (GLM et al., 2024).

Agentic Benchmarks. The rapid progress of foundation LLMs and LMMs has motivated the
creation of diverse agentic benchmarks, spanning GUI automation (Xie et al., 2024; Zhao et al.,
2025a; Lin et al., 2024; Koh et al., 2024), agentic coding (Jimenez et al., 2024; Yang et al., 2025b),
tool use (Yao et al., 2025), AI research assistance (Nathani et al., 2025), and chart reasoning (Wang
et al., 2024b). We focus on chart2code, a practical task central to everyday workflows for researchers
and professionals. Despite progress, even the best proprietary LMMs still fail to generate faithful
charts from long, raw tables, underscoring the need for future modeling advances.

Chart Understanding to Code Generation. Chart understanding has evolved through a series of
benchmarks that progressively expand task complexity. ChartQA (Masry et al., 2022) first established
large-scale visual question answering over charts, combining queries with logical and visual reasoning.
ChartXiv (Wang et al., 2024b) advanced this line by introducing scientific charts with expert-designed
questions, further exposing the gap between multimodal models and human performance. Moving
beyond QA, Chart2Code benchmarks address faithful chart generation. ChartMimic (Yang et al.,
2025a) formalized this by requiring code synthesis from chart images and instructions, while ChartEdit
(Zhao et al., 2025b) emphasized interactive modification, where models must edit chart-rendering
code following natural-language instructions. Extending chart generation more generally, StarVector
(Rodriguez et al., 2025) proposed a vision-language approach to directly produce scalable vector
graphics from visual or textual inputs. Although GPT-4o achieves high scores on ChartMimic
(83.2) and ChartEdit (93.6), it still struggles with realistic chart2code tasks, motivating a new, more
challenging benchmark for reliable evaluation.

3 CHART2CODE: FROM VISUAL CHARTS TO CODE

3.1 TASK DEFINITION OF CHART2CODE

Chart2Code can be represented as: C = f(R, I,D) where, R is the reference chart (e.g., screenshot),
I is the instruction and C is the Python code generated by LMM (f). D represents optional input data
types, Chart2Code supports three kinds of data formats: textual data, image data (e.g., screenshot),
and Excel files. To ensure rigor and comprehensiveness, we designed three tasks of increasing
difficulty.

Level 1 (Chart Reproduction): This task consists of two subsettings. The first setting requires the
LMM to directly generate the executable code that can reproduce the reference chart (R). This task
primarily explores the model’s visual understanding capabilities. The second setting requires the
LMM to extract the required table data from the data file D and generate Python code based on the
style and format of the given reference chart (R). It is closely aligned with real-world chart creation
needs and not included in previous studies (Yang et al., 2025a; Wu et al., 2025; Zhang et al., 2024).

Level 2 (Chart Editing): At this level, the LMM edits the reference chart (R) as instructed, with
operations like style changes, type swaps, data edits, or multi-subplot generation. The LMM is
expected to generate code that meets the editing requirements and adheres to the style and format of
chart.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Level 3 (Long-Table to Chart Generation): The final level asks the LMM to accurately gather the
target data points from the extremely long data and unprocessed sheet and then produce the executable
code, referencing the style and format of the given reference chart (R). It is the hardest task, which
targets the most realistic scenario in data visualization or business presentations, assuming the user is
not a data visualization expert.

3.2 DATA CURATION AND ANNOTATION

3.2.1 DATA CURATION

Chart Data: Our chart figure sources primarily consist of three aspects. First, we collected approxi-
mately 5,000 paper charts from Arxiv, spanning from January 2024 to July 2025, covering various
fields such as CSEE, Physics, Statistics, and Economics, to ensure diversity and modernity in the
chart types. Second, we gathered 1,000 example charts from function libraries such as Matplotlib,
Seaborn, WordCloudX, Scipy, as well as Matlab plotting example tutorials. Finally, we filtered 300
difficult charts from the ChartMimic (Yang et al., 2025a) dataset.

Raw Data: Our benchmark collects raw data from sources such as Kaggle, Annual Reports, and
publicly available data from various company websites. The raw data includes Excel spreadsheets,
figures, text, and other formats, covering multiple domains such as corporate financial reports, flight
route data, weather data, GDP data, and car sales figures. Additionally, we have intentionally selected
data of varying lengths to test the LLM’s ability to analyze and process long text data.

3.2.2 DATA FILTERING

Chart Data: We propose a “gathering-distribution” data selection process. First, we gather data from
various sources into a chart pool, which is then roughly filtered by 10 undergraduate computer science
students based on chart type and information complexity. Based on this initial selection, we reduce
the data to 3,000 charts to ensure that the resulting data contains a diverse range of visual elements
and chart types. Next, the gathered data is distributed by category to 5 experts with many years of
experience in Python plotting for independent evaluation. The evaluation criteria are refined into
three dimensions: data complexity, visual complexity, and programming complexity. Each dimension
is independently assessed to select more valuable charts as part of the benchmark data. Finally, the
charts from various categories are aggregated to form the 719 reference figures in the benchmark.

Raw Data: Since the raw data we collected contains various data formats, we first use automated
scripts to filter out the raw data that exhibits rich numerical performance and is suitable for plotting.
After that, we conduct manual checks to preserve the diversity of the raw data as much as possible.
The final selection includes 39 Excel files, 80 raw data figures, and 36 raw data text files.

3.2.3 DATA ANNOTATION

During the data annotation process for the three-level tasks, we employed an interactive data anno-
tation method based on Python scripts and agents, which we refer to as the human-AI interactive
annotation process. Specifically, in the level 1 data annotation process, annotators, with the assistance
of the LMM, recreate the selected data by writing Python code. The data generated here directly
serves as the first setting of the Level 1 task. Subsequently, based on the 719 scripts, annotators select
and modify suitable chart types using the data from the 80 raw table figures and 36 raw table text
files, resulting in 108+36 customized entries for the second setting of the task.

In the Level 2 annotation process, annotators first categorize and summarize chart editing operations
commonly encountered in real-world scenarios. They then modify the code with the help of prompt
engineering and Python code injection, leveraging the programming capabilities of LLM. While the
LLM may lack proficiency in the chart2code task, its programming ability is exceptional. Through
this process, we obtained over 4,700 edited and modified scripts, which were further filtered through
the data selection process, ultimately yielding 925 high-quality Level 2 data entries.

For Level 3 data annotation, annotators first analyzed the content of the 39 diverse data tables,
formulated statistical data requirements, and extracted and processed the data from the tables. This
process resulted in 150 Level 3 data entries.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: Collected charts distribution.

Level 1 (Chart Reproduction)
44.56%

Level 2 (Chart Editing)
47.70%

Level 3 (LT2Chart)
7.74%

B
ar

13.5%

1

C
om

bination
9.6%

2

3d
8.6%

3

R
adar

7.5%

4

Heatm
ap

6.7%

5

Line

6.7%

6

Scatter

6.3%

7

Violin4.9%

8

Contour4.6%

9

Graph4.6%

10

Errorbar4.0%

11Pie3.6%
12Quiver3.3% 13Box

2.9% 14
Errorpoint

2.4% 15

Hist
2.4%

16

Area
2.1%

17

Hr
2.1%

18

Density

1.9%

19

Tree

1.0%

20

Multid
iff

0.7%

21

Pip

0.7
%

22

Com
bin

ati
on

18
.7%

1

Ra
da

r
10

.7
%

2

Sc
at

te
r

10
.5

%

3

C
on

to
ur

6.
5%

4

Vi
ol

in
6.

5%

5

B
ox

6.
2%

6

H
ist

5.2%

7

Line
5.2%

8

Pie5.0%

9

Errorpoint

4.7%

10

3d3.8%

11

Hr3.8%

12 Quiver
3.8%

13 Density2.7%

14
Area2.3%

15
Multidiff1.9%

16

Errorbar1.4%
17

Tree
1.3%18

Box
18.7%1

Hist
16.0%

2

Scatter

16.0%

3

Bar
13.3%

4

Pie
10.7%

5

Lin
e

9.3
%

6

Hea
tm

ap
6.7

%

7

Vi
oli

n
4.

7%

8

Co
m

bi
na

tio
n

2.
0%

9

Ar
ea

1.
3%

10

Er
ro

rp
oi

nt
0.

7%

11

M
ul

tid
iff

0.
7%

12

Table 2: Deatiled data statistic.

Statistic Number
GT Charts
Total charts 1,911
- Level 1 / 2 / 3 charts 836 / 925 / 150
Unique charts 804
- Unique Level 1 / 2 / 3 charts 719 / 0 / 85

Instructions
Total instructions 1,947
- Level 1 / 2 / 3 instructions 872 / 925 / 150
Unique instructions 1,220
- Unique instructions - Level 1 / 2 / 3 145 / 925 / 150
Maximum instruction length - Level 1/ 2 / 3 224 / 544 / 390
Average instruction length - Level 1 / 2 / 3 137.8 / 307.6 / 178.9

GT Code (Lengths/Lines)
Maximum code length - Level 1 / 2 / 3 96,563 / 7,855 / 790,130
Average code length - Level 1 / 2 / 3 2,621.6 / 2,880.6 / 29,899.8
Maximum code lines - Level 1 / 2 / 3 842 / 219 / 388
Average code lines - Level 1 / 2 / 3 69.9 / 82.9 / 51.3

Extremely Long-Table Data
Total Excel files 37
Average lines per file 606.7
Maximum lines 3,023
Average data entries 8,329.3
Maximum data entries 51,391

3.3 DATA STATISTICS AND ANALYSIS

Chart2Code comprises 1,947 tasks across three levels–872/925/150 for L1/L2/L3–spanning 22/18/12
chart families (e.g., radar, heatmap, scatter, box, tree, error-bar, pie, multidiff; see Fig. 2). To
maximize diversity, Level 1 emphasizes unique charts (719 unique). Level 2 reuses Level 1 charts
with at least one edit instruction per chart, resulting in 925 unique, non-duplicated edits. Level 3
(LT2Chart) includes 85 charts and 150 instructions derived from web-sourced long tables, making
annotation and ground-truth code especially challenging. As summarized in Tab. 2, the instruction
scale and substantial code lengths highlight the breadth and difficulty of Chart2Code.

3.4 EVALUATION

To comprehensively evaluate the performance of various models on the Chart2Code benchmark, we
first establish the code executability rate as the primary evaluation metric. This directly measures
the model’s ability to generate functional visualization code, and its calculation is detailed in equa-
tion 1. Secondly, we introduce a multi-level, multi-dimensional evaluation method to assess model
performance at both the code-level and the chart-level.

At the code-level, we propose a ‘base evaluation’ method that calculates the similarity of visual
outcomes by parsing and matching matplotlib.Figure objects across eight dimensions. Our
‘base evaluation’ method offers faster assessment, more comprehensive dimensions, and superior
evaluation performance (see Appendix E.2 for details). Similarly, to provide a broader code assess-
ment, we employ GPT-5-mini (OpenAI, 2025) to score the code without execution, assessing its
prospective visual output to derive a comprehensive LLM-score (see Appendix E.3 for details).

At the chart-level, we similarly use GPT-5-mini to assess the predicted charts, yielding an LMM-
score. Although LLMs like GPT-5 may not excel at the Chart2Code generation task itself, they
possess a keen ability to judge the similarity between both code and charts. The direct evaluation of
charts is most aligned with human intuition, making it more suitable as the final evaluation score.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Models. We conducted tests on 25 widely-used open-source models and proprietary models to evalu-
ate their performance on our benchmark. For the open-source models, we selected 12 representative
vision-language models, with total parameters ranging from 7B to 72B, including: Qwen2-VL (7B,
72B), Qwen2.5-VL (7B, 72B), Deepseek-VL (7B), Kimi-VL (7B), MiMo-VL-SFT (7B), MiMo-VL-
RL (7B), InternVL-2.5 (8B, 38B), InternVL-3 (8B, 38B), InternVL-3.5 (8B, 38B), GLM-4V (9B),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 3: Evaluation results on Chart Reproduction (Level 1) with various LMMs. Each task
includes a reference chart as input. DR: input without the table data. CRD: input with customized
text-format table data. CFD: input with customized figure-format table data. Exec. Rate: execution
rate; We use GPT-5-mini as the base model for both LLM-score and LMM-score;

Model Direct Mimic(DR) Customize Raw Data(CRD) Customize Figure Data(CFD)
Exec.Rate LLM-Score LMM-Score Exec.Rate LLM-Score LMM-Score Exec.Rate LLM-Score LMM-Score

Proprietary

Gemini-2.5-Pro 90.4 0.6286 0.3807 100 0.6763 0.2661 87.04 0.6145 0.2214
Claude-Sonnet-4 96.38 0.5629 0.2553 97.2 0.4878 0.236 88.89 0.5538 0.2273
GPT-5 87.48 0.6334 0.3575 94.4 0.6070 0.2238 85.19 0.6082 0.2382
Seed-1.5-VL 85.81 0.5536 0.2341 97.2 0.6325 0.2662 65.74 0.5756 0.1962
Seed-1.6-VL 84.70 0.5237 0.8117 94.4 0.6525 0.2503 83.96 0.5978 0.2075

Open-Source LMMs (non-thinking)

LLaVA-OV-Qwen2-7B-SI 32.82 0.1820 0.0154 11.11 0.4225 0.1550 0 - -
LLaVA-OV-Qwen2-7B-OV 11.13 0.2651 0.0376 5.56 0.4213 0.0825 0 - -
DeepSeek-VL-7B 48.68 0.2854 0.0431 61.11 0.5374 0.1114 10.19 0.2539 0.0145
kimi-VL-A3B 68.85 0.4409 0.1374 72.22 0.5887 0.2081 61.11 0.4641 0.1379
Qwen2-VL-7B 64.39 0.3364 0.0664 75.00 0.5950 0.1367 30.56 0.4235 0.0519
Qwen2-VL-72B 75.66 0.4368 0.1207 80.56 0.6082 0.1628 51.85 0.5518 0.1373
InternVL-2.5-8B 66.89 0.3348 0.0723 80.56 0.5712 0.1183 37.74 0.5715 0.0568
InternVL-2.5-38B 86.23 0.4577 0.1463 0 - - 0 - -
InternVL-3-8B 66.34 0.4371 0.1389 86.11 0.6169 0.1732 57.41 0.4450 0.1028
GLM-4V-9B 72.18 0.2881 0.0459 66.67 0.5628 0.1183 44.74 0.2904 0.0130
Intern-VL-3.5-8B 66.34 0.4371 0.1389 86.11 0.6169 0.1732 57.41 0.4450 0.1028
MiMo-VL-7B-RL 37.83 0.5439 0.2316 69.44 0.6068 0.2421 41.67 0.4962 0.1407
MiMo-VL-7B-SFT 44.65 0.4959 0.1983 69.44 0.6237 0.1852 46.30 0.5155 0.1732
Qwen2.5-VL-7B 65.64 0.4197 0.0994 75.00 0.5952 0.1515 44.44 0.5952 0.091
Qwen2.5-VL-72B 65.36 0.5118 0.1893 100 0.6273 0.1989 37.96 0.5532 0.1688

Open-Source LMMs (thinking)

MiMo-VL-7B-RL 55.77 0.5261 0.2294 69.44 0.6053 0.2582 33.33 0.5807 0.2172
MiMo-VL-7B-SFT 50.35 0.6555 0.2130 86.11 0.6644 0.2248 38.89 0.5578 0.1455

LLAVA-onevision-si (7B), LLAVA-onevision-ov (7B), Molmo (7B). For proprietary models, we
selected the five most popular multimodal large models, including: Gemini-2.5-pro, Claude-sonnet-4,
GPT-5, Seed-1.5-VL, and Seed-1.6-VL.

Configuration. All experiments were conducted on NVIDIA V100 GPUs. Qwen2-VL-7B and
Qwen2.5-VL-7B models were executed on a single GPU. MiMo-VL-SFT, MiMo-VL-RL, and
LLaVA-OneVision (LLaVA-OV) required two GPUs, with inference parallelized across devices due
to memory constraints. Similarly, the InternVL series (2.5-VL-8B, 3-VL-8B, 3.5-VL-8B), Kimi-VL,
DeepSeek-VL, and GLM-4V models were evaluated using two GPUs with model parallelism. We
set the maximum output length to 8,192 tokens for Level 1 and 2, and 32,768 tokens for Level 3.
Empirically, non-thinking models required only 4,096 tokens, with negligible truncation except for
the largest InternVL-3.5-38B model. The decoding temperature was fixed at 0.1 across all models.
To preserve visual fidelity, we fed images at their native resolution and used the maximum input pixel
setting supported by each model to ensure complete processing of chart details.

4.2 MAIN EXPERIMENTAL RESULTS

4.2.1 LEVEL-WISE COMPARISON OF MODELS

Level 1. As shown in Tab. 3, proprietary models lead across Direct Mimic (DM), Customize Raw
Data (CRD), and Customize Figure Data (CFD), achieving high executability but only moderate
visual fidelity—for example, Gemini-2.5-Pro reaches 90.4/100/87.04% ER on DM/CRD/CFD while
LMM-Scores stay around 0.22–0.38. CRD is “easy to run” (e.g., Gemini and Qwen2.5-VL-72B
at ≈100% ER) yet still low-fidelity (≈0.15–0.27), confirming execution ̸= fidelity. CFD is the
hardest: top proprietary models keep ≥85% ER but LMM-Scores remain ≈0.22–0.24, and many
open-source models drop sharply (some 0 ER). Larger open-source backbones (Qwen2/2.5-VL-72B,
InternVL-3-8B/38B) close part of the execution gap but not the fidelity gap. A notable outlier is
Seed-1.6-VL with DM LMM-Score ≈0.812, suggesting evaluator/model calibration effects.

Level 2. The results are presented in Tab. 4. Proprietary models sustain ∼90% ER (Gemini 90.49,
Claude 90.92, GPT-5 90.59) and excel on code-level subskills—especially Layout/Type ≈0.95–
0.96—yet figure-level remains modest (∼0.18–0.22), evidencing a persistent gap between syntactic
compliance and rendered-image fidelity. Strong open-source systems improve executability (e.g.,
Qwen2.5-VL-72B 71.89%) with solid code-level scores (Layout ≈0.94, Type ≈0.92), but figure-level
still lags (0.12–0.14). Smaller backbones struggle (e.g., LLaVA-OV-Qwen2-7B variants ≤2.71%

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 4: Evaluation results on Chart Editing (Level 2) with various LMMs.

Model Exec.
Rate

Code-Level Chart-Level
Color Grid Layout Legend Visual Data Text Type LLM-Score LMM-Score

Proprietary

Gemini-2.5-Pro 90.49 0.6284 0.8958 0.9606 0.5269 0.4988 0.7564 0.6195 0.9638 0.5725 0.2134
Claude-Sonnet-4 90.92 0.5871 0.8330 0.9591 0.4878 0.4640 0.6782 0.5724 0.9575 0.5318 0.1844
GPT-5 90.59 0.5898 0.8548 0.9509 0.4939 0.4643 0.7040 0.5962 0.9602 0.5658 0.2201
Seed-1.5-VL 63.46 0.5213 0.8418 0.9530 0.4599 0.4400 0.7013 0.7175 0.9433 0.5148 0.1547
Seed-1.6-VL 72.22 0.5359 0.8117 0.9485 0.4926 0.4275 0.6888 0.7324 0.9441 0.5179 0.1634

Open-Source LMMs (non-thinking)

LLaVA-OV-Qwen2-7B-SI 1.30 0.3507 0.6964 0.7833 0.4074 0.3002 0.5249 0.4871 0.7889 0.3157 0.0875
LLaVA-OV-Qwen2-7B-OV 2.71 0.3216 0.5933 0.7138 0.4667 0.2111 0.5592 0.5041 0.8080 0.3607 0.0284
DeepSeek-VL-7B 22.51 0.2625 0.6403 0.7273 0.2541 0.1797 0.4121 0.4572 0.8048 0.2600 0.0322
kimi-VL-A3B 49.73 0.4055 0.7376 0.9069 0.3633 0.3176 0.5876 0.5915 0.9131 0.3776 0.0838
Qwen2-VL-7B 24.86 0.2859 0.6116 0.7736 0.2900 0.2221 0.4602 0.4881 0.8124 0.3215 0.0519
Qwen2-VL-72B 57.73 0.4161 0.7972 0.9044 0.3581 0.3276 0.6149 0.5748 0.9129 0.3949 0.0898
InternVL-2.5-8B 21.08 0.3343 0.7165 0.8388 0.3213 0.2741 0.5378 0.5488 0.8423 0.3391 0.0611
InternVL-2.5-38B 69.47 0.2625 0.6403 0.7273 0.2541 0.1797 0.4121 0.4572 0.8048 0.2600 0.0322
InternVL-3-8B 4.65 0.3609 0.6094 0.9408 0.3393 0.3454 0.5581 0.5313 0.8533 0.3504 0.073
InternVL-3-38B 61.51 0.4818 0.7954 0.9406 0.4281 0.3841 0.6476 0.6544 0.9216 0.4543 0.1205
GLM-4V-9B 10.49 0.2085 0.6869 0.7771 0.2470 0.2016 0.4616 0.4904 0.7598 0.2975 0.0533
Intern-VL-3.5-8B 25.62 0.4218 0.7590 0.8975 0.3849 0.3670 0.6290 0.6530 0.9181 0.4072 0.1062
MiMo-VL-7B-RL 16.54 0.4454 0.8706 0.9260 0.4376 0.4014 0.6421 0.6530 0.6707 0.9172 0.4713
MiMo-VL-7B-SFT 22.27 0.4435 0.7581 0.8888 0.3982 0.3891 0.6335 0.6558 0.9371 0.4510 0.1203
Qwen2.5-VL-7B 33.84 0.286 0.612 0.774 0.290 0.222 0.460 0.488 0.81 0.3651 0.0759
Qwen2.5-VL-72B 71.89 0.5109 0.8470 0.9492 0.4606 0.4127 0.6653 0.6808 0.9362 0.4782 0.1437

Open-Source LMMs (thinking)

MiMo-VL-7B-RL 28.32 0.5157 0.7643 0.9452 0.4226 0.4246 0.7014 0.6854 0.9489 0.4844 0.1510
MiMo-VL-7B-SFT 23.57 0.4746 0.7545 0.9269 0.3838 0.3741 0.6769 0.6574 0.9351 0.4583 0.1367

Table 5: Evaluation results on Long-Table to Chart task (Level 3) with various LMMs.

Model Exec.
Rate

Code-Level Figure-Level
Color Grid Layout Legend Visual Data Text Type LLM-Score LMM-Score

Proprietary

Gemini-2.5-Pro 29.33 0.7276 0.9733 1.0000 0.7727 0.6701 0.7880 0.8291 0.9470 0.3516 0.0361
Claude-Sonnet-4 38.00 0.5676 0.7963 1.0000 0.8148 0.3731 0.5881 0.7175 0.9062 0.5125 0.007
GPT-5 38.00 0.5676 0.7963 1.0000 0.8148 0.3731 0.5881 0.7175 0.9062 0.5125 0.0362
Seed-1.5-VL 18.67 0.7252 0.8929 1.0000 0.8869 0.5502 0.7182 0.7804 0.9690 0.0000 0.0611
Seed-1.6-VL 40.00 0.7030 0.8833 1.0000 0.7972 0.5396 0.7956 0.8128 0.9244 0.0000 0.0547

ER). “Thinking” helps procedure more than pixels: MiMo-VL-7B-RL ER improves 16.54→28.32,
and MiMo-VL-7B-SFT figure-level nudges 0.1203→0.1367, but absolute fidelity remains low; the
unusually high 0.4713 figure-level for MiMo-VL-7B-RL (non-thinking) merits.

Level 3. Tab. 5 presented the results. Coverage is limited because the benchmark is very hard: only
a couple of open-source models could even complete inference, and on the proprietary side, five
models were run, but overall ER is still <50%, primarily due to long-context inputs exceeding the
maximum input limits. Among those that ran, ER drops to 29–40% (e.g., Gemini 29.33%), while
code-level stays strong (Layout = 1.0; high Grid/Type), indicating structurally plausible code under
long context. However, figure-level fidelity collapses (Gemini 0.0361, Claude 0.007, GPT-5 0.0362;
Seed-1.5/1.6-VL 0.061/0.055), showing that turning lengthy raw tables into pixel-accurate charts is
the main bottleneck; the Seed rows also show LLM-Score = 0 with non-zero LMM-Score, hinting at
evaluator/model coupling or edge-case artifacts that warrant robustness checks.

4.2.2 ANALYSIS

Execution vs. Complexity: From level 2 to Level 3, ER for proprietary systems drops from 90% in
Tab. 4 to 29–40% on Level 3 (Gemini 29.33, Claude 38.00, GPT-5 38.00 in Tab. 5). This mirrors
the jump in reasoning load (long-context/table parsing, multi-constraint edits), showing that being
able to run code at level 2 does not translate to robust end-to-end success at Level 3. We concluded
execution success declines steeply with task complexity, even for top proprietary models.

Code vs. Visual Fidelity: On level 2 (Tab. 4), proprietary models score very high on Layout/Type
(e.g., Gemini 0.9606/0.9638, Claude 0.9591/0.9575, GPT-5 0.9509/0.9602), yet figure-level GPT-
Score is only 0.18–0.22 (Gemini 0.2134, Claude 0.1844, GPT-5 0.2201). On Level 3 (Tab. 5),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

EASY MEDIUM HARD Overall

Gemini-2.5-pro

Claude-Sonnet-4

GPT-5

Seed-1.6-VL

Deepseel-VL-7B

GLM-4V-9B

InternVL-2.5-38B

InternVL-3-38B

Qwen2-VL-7B

Qwen2-VL-72B

Qwen2.5-VL-7B

Qwen2.5-VL-72B

Kimi-VL

Mimo-VL-7B-RL

0.383 0.407 0.318 0.369

0.221 0.287 0.206 0.238

0.436 0.384 0.355 0.392

0.188 0.259 0.230 0.226

0.043 0.103 0.004 0.050

0.087 0.010 0.022 0.040

0.033 0.047 0.064 0.048

0.215 0.178 0.143 0.179

0.063 0.000 0.070 0.044

0.100 0.140 0.101 0.114

0.071 0.148 0.061 0.093

0.115 0.248 0.144 0.169

0.065 0.210 0.040 0.105

0.197 0.264 0.160 0.207

Difficulty Levels of Level 1

0.0

0.1

0.2

0.3

0.4

0.5

EASY MEDIUM HARD Overall

Gemini-2.5-pro

Claude-Sonnet-4

GPT-5

Seed-1.6-VL

Deepseel-VL-7B

GLM-4V-9B

InternVL-2.5-38B

InternVL-3-38B

Qwen2-VL-7B

Qwen2-VL-72B

Qwen2.5-VL-7B

Qwen2.5-VL-72B

Kimi-VL

Mimo-VL-7B-RL

0.212 0.139 0.236 0.196

0.304 0.224 0.178 0.235

0.297 0.256 0.238 0.264

0.179 0.070 0.199 0.149

0.100 0.200 0.015 0.105

0.100 0.200 0.015 0.105

0.083 0.083 0.184 0.117

0.137 0.128 0.160 0.142

0.080 0.060 0.010 0.050

0.083 0.135 0.083 0.100

0.025 0.090 0.100 0.072

0.126 0.119 0.134 0.126

0.098 0.036 0.093 0.076

0.203 0.180 0.265 0.216

Difficulty Levels of Level 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

EASY MEDIUM HARD Overall

Gemini-2.5-pro

Claude-Sonnet-4

GPT-5

Seed-1.6-VL

Deepseel-VL-7B

GLM-4V-9B

InternVL-2.5-38B

InternVL-3-38B

Qwen2-VL-7B

Qwen2-VL-72B

Qwen2.5-VL-7B

Qwen2.5-VL-72B

Kimi-VL

Mimo-VL-7B-RL

0.074 0.077 0.088 0.077

0.042 0.057 0.074 0.053

0.050 0.043 0.044 0.047

0.051 0.036 0.032 0.043

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

Difficulty Levels of Level 3

0.00

0.02

0.04

0.06

0.08

0.10

Figure 3: Correlation of the model performance (i.e, LMM-score) on different manually annotated
difficulty levels (i.e., Easy, Medium, Hard) on Level 1, 2, 3, respectively.

0.3 0.4 0.5 0.6 0.7
Level 1

0.2

0.3

0.4

0.5

0.6

0.7

Le
ve

l 2

Gemini-2.5-Pro
Claude-Sonnet-4

GPT-5

Seed-1.5-VLSeed-1.6-VL

Qwen2-VL-7B
InternVL-3-8B

GLM-4V-9B

MiMo-VL-7B-SFT

Qwen2.5-VL-7B

Qwen2.5-VL-72B

LLM-score
Proprietary
Open-Source

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Level 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Le
ve

l 2

Gemini-2.5-Pro
Claude-Sonnet-4

GPT-5

Seed-1.5-VL
Seed-1.6-VL

Qwen2-VL-7B

InternVL-3-8BGLM-4V-9B

MiMo-VL-7B-SFT

Qwen2.5-VL-7B

Qwen2.5-VL-72B

LMM-score
Proprietary
Open-Source

Figure 4: Left: Both proprietary and open-source models generalize well on Level 1 and Level 2
tasks when calculating the LLM-score for predicted code assessment. Right: Proprietary models tend
to obtain higher LMM-scores on the Level 1 task rather than the Level 2, while open-source models
perform poorly on both tasks (scores are lower than 0.5).

the gap widens: code-level remains strong (e.g., Layout = 1.0000 across models), but LMM-Score
collapses (Gemini 0.0361, Claude 0.007, GPT-5 0.0362, Seed1.5/1.6-VL 0.0611/0.0547). This
demonstrates that while code-level compliance is generally high, it does not guarantee pixel-level
visual correctness, making figure-level fidelity the primary bottleneck.

Chart Reproduction Challenge: In Tab. 3, proprietary models still execute but with lower
fidelity (e.g., Gemini CFD ER 87.04 with LMM-Score ≈0.22; Claude 88.89/0.227; GPT-5
85.19/0.238). Open-source models suffer larger drops (e.g., InternVL-3-8B 57.41/0.103, Qwen2-VL-
72B 51.85/0.137; several models hit 0 ER). Compared to DM/CRD in the same table, CFD exposes
weaknesses in axis/series alignment, legend consistency, scaling, and style carry-over. We concluded
reproducing existing charts (CFD) is the hardest subtask in Level1.

Scaling Open-Source Backbones: In Tab. 4, Qwen2.5-VL-72B reaches 71.89 ER with strong
code-level, yet figure-level is only 0.1437; InternVL-3-38B shows 61.51 ER and similar code-
level strength (Layout 0.9406, Type 0.9216), but figure-level remains 0.1205. This contrasts with
proprietary models’ ∼90% ER and still-low figure-level (≈0.18–0.22), underscoring that fidelity, not
executability, is the persistent gap. These result shows larger open-source backbones close part of
the execution gap on level 2, but figure-level fidelity gains are modest.

Thinking Helps Procedural Compliance: On level 2 (4), MiMo-VL-7B-RL ER rises from 16.54
→ 28.32 when enabling thinking; MiMo-VL-7B-SFT nudges 22.27 → 23.57. LLM-side (code-level
GPT-Score) also improves slightly. However, figure-level remains low or mixed (e.g., MiMo-SFT
0.1203 → 0.1367; MiMo-RL thinking row lacks figure-level). The net effect suggests that chain-of-
thought/planning aids procedural compliance, yet post-render pixel-level exactness requires additional

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

mechanisms (e.g., render-then-verify loops). This indicates ”Thinking” variants help instruction
following and executability, but visual fidelity improvements are inconsistent.

Metric Sensitivity: In Level 1 (Tab. 3), Seed-1.6-VL shows an unusually high DM LMM-Score
≈0.812, far above peers. In level 2 (Tab. 4), MiMo-VL-7B-RL (non-thinking) reports an unusually
high figure-level 0.4713, exceeding proprietary models (∼0.18–0.22). In Level 3 (Tab. 5), Seed1.5/1.6-
VL LLM-Score = 0.0000 despite non-zero LMM-Scores (0.0611/0.0547). These inconsistencies
motivate robustness checks (multi-crop/image-space perturbation, secondary scorers, human spot-
checks) and a discussion on metric sensitivity to style choices. Several metric anomalies indicate
evaluator calibration and model–evaluator coupling effects that merit auditing.

Table-to-Chart Gap: On Level 1 CRD (Tab. 3), multiple models achieve very high ER (e.g.,
Gemini 100; Qwen2.5-VL-72B 100), yet LMM-Score remains low (0.15–0.27 across models).
On level 2 (Tab. 4), code-level Data/Text/Type scores are solid for leading models (e.g., Gemini
0.756/0.620/0.964, GPT-5 0.704/0.596/0.960), but figure-level stays around 0.18–0.22, highlighting
the gap between semantic correctness and visual exactness. Table to chart is relatively “easy to
execute” but still hard to render faithfully.

4.3 DISCUSSION.

Model Performance Across Manually Defined Difficulty Levels. In this experiment, we ask the
human labeler to split each level into easy, medium and hard, in total three levels, and each subset
contains 30 samples. As shown in Figure 3, model performance exhibits a clear correlation with
manually annotated difficulty levels across all benchmark stages. On Level 1, proprietary models (e.g.,
GPT-5, Gemini-2.5-Pro, Claude-Sonnet-4) maintain relatively strong scores across Easy, Medium,
and Hard subsets, though the overall fidelity remains moderate. In contrast, most open-source
models show low scores and struggle particularly on harder cases. On Level 2, performance declines
noticeably even for proprietary models, with overall scores dropping to ∼0.20–0.26 and sharper
degradation from Easy to Hard, indicating sensitivity to increased editing complexity. By Level 3,
almost all models fail regardless of difficulty level: LMM-scores converge near zero, showing that
long-context table-to-chart generation overwhelms current systems. These trends suggest that while
models can partially track difficulty scaling on simpler tasks, the hardest scenarios effectively
collapse their ability to produce faithful visualizations.

Code Generalization Holds, Visual Fidelity Lags. As shown in Figure 4, the performance trends
differ substantially when measured by LLM-score versus LMM-score. On the left, both proprietary
and open-source models generalize reasonably well from Level 1 to Level 2 when evaluated with
LLM-score, indicating that code-level syntax and structure can often be preserved across tasks. On
the right, however, the LMM-score reveals a sharper divide: proprietary models achieve relatively
higher visual fidelity on Level 1 than on Level 2, whereas open-source models perform poorly on both
levels, with most scores remaining below 0.5. This contrast highlights that while models can maintain
code-level compliance, translating such compliance into pixel-level faithful renderings remains a key
unsolved challenge, particularly for open-source systems.

5 CONCLUSION AND LIMITATIONS

We presented Chart2Code, a hierarchical benchmark for chart-to-code generation that spans three
progressively challenging levels: chart reproduction, chart editing, and long-table to chart generation.
Our large-scale evaluation of 25 state-of-the-art LMMs shows a clear trend: while current models
manage simple reproduction reasonably well, they struggle with complex editing and long-context
visualization, exposing substantial gaps in practical capability. These findings underscore the unsolved
challenges of chart-to-code generation and call for models with stronger reasoning, generalization,
and robustness. Despite its contributions, Chart2Code has two key limitations. First, all tasks are
currently in English; extending to multilingual chart2code remains an open and important direction.
Second, our evaluation relies on large language models as judges to assess code correctness and
visual fidelity. While this enables scalable and nuanced evaluation, it may introduce inaccuracies or
biases compared to fully human assessment. Future work will explore multilingual expansion and
more reliable evaluation protocols, further enhancing the benchmark’s coverage and trustworthiness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

This work introduces a benchmark for chart-to-code generation without involving any sensitive
personal data or human subject experiments. All datasets are derived from publicly available or
synthetically generated tables and charts, ensuring compliance with privacy and legal considerations.
We acknowledge potential risks of misuse (e.g., generating misleading visualizations), and therefore
release the benchmark with clear documentation and intended use guidelines. We affirm adherence to
the ICLR Code of Ethics throughout the research process.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. Detailed dataset construction steps,
task definitions, and evaluation protocols are described in Section 3. Implementation details of
experiments, including hyperparameters and evaluation scripts, are provided in Appendix. In addition,
we release the benchmark dataset and evaluation code as anonymous supplementary materials to
enable independent verification of our results.

REFERENCES

Anthropic. Introducing claude 4. Preprint, 2025. URL https://www.anthropic.com/
news/claude-4.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. arXiv e-prints, pp. arXiv–2409,
2024.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu,
Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen
Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models
from glm-130b to glm-4 all tools, 2024.

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, et al. Seed1.5-vl technical report. arXiv preprint arXiv:2505.07062,
2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

10

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2502.13923
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024b.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen WU, Mingyi Yan, Zhengyuan Yang, Lijuan
Wang, and Mike Zheng Shou. VideoGUI: A benchmark for GUI automation from instructional
videos. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=jSKtxmxc0M.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26296–26306, June 2024.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan.
Deepseek-vl: Towards real-world vision-language understanding, 2024.

Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
Association for Computational Linguistics: ACL 2022, pp. 2263–2279, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL
https://aclanthology.org/2022.findings-acl.177.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens,
Mikhail Plekhanov, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Nicolaus Foerster, Yoram
Bachrach, William Yang Wang, and Roberta Raileanu. MLGym: A new framework and benchmark
for advancing AI research agents. In Second Conference on Language Modeling, 2025. URL
https://openreview.net/forum?id=ryTr83DxRq.

OpenAI. Gpt-5 system card. Preprint, 2025. URL https://openai.com/index/
introducing-gpt-5/.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Pedersoli. Starvector: Generating scalable vector
graphics code from images and text. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 16175–16186, June 2025.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Mengfan
Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu, Sihan
Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin Xu,
Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinhao Li, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao,
Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yuhao Dong,
Yulun Du, Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng
Zhang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, Ziwei Chen, and Zongyu Lin. Kimi-vl
technical report, 2025. URL https://arxiv.org/abs/2504.07491.

Seed Team. Seed1.6 tech introduction. Preprint, 2025. URL https://seed.bytedance.
com/en/seed1_6.

11

https://openreview.net/forum?id=jSKtxmxc0M
https://aclanthology.org/2022.findings-acl.177
https://openreview.net/forum?id=ryTr83DxRq
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2504.07491
https://seed.bytedance.com/en/seed1_6
https://seed.bytedance.com/en/seed1_6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi Chen. Charxiv:
Charting gaps in realistic chart understanding in multimodal LLMs. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2024b. URL https:
//openreview.net/forum?id=cy8mq7QYae.

Chengyue Wu, Zhixuan Liang, Yixiao Ge, Qiushan Guo, Zeyu Lu, Jiahao Wang, Ying Shan, and
Ping Luo. Plot2Code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Findings of the Association for Computational Linguistics: NAACL 2025, pp. 3006–3028,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-
8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.164. URL https://aclanthology.
org/2025.findings-naacl.164/.

LCT Xiaomi and Core Team. Mimo-vl technical report. arXiv preprint arXiv:2506.03569, 2025.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=tN61DTr4Ed.

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran XU, Xinyu
Zhu, Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang.
Chartmimic: Evaluating LMM’s cross-modal reasoning capability via chart-to-code genera-
tion. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=sGpCzsfd1K.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. SWE-bench multimodal: Do ai systems generalize to visual software domains? In
The Thirteenth International Conference on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=riTiq3i21b.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R Narasimhan. {τ}-bench: A benchmark
for \underline{T}ool-\underline{A}gent-\underline{U}ser interaction in real-world domains. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=roNSXZpUDN.

Zhehao Zhang, Weicheng Ma, and Soroush Vosoughi. Is GPT-4V (ision) all you need for
automating academic data visualization? exploring vision-language models’ capability in
reproducing academic charts. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 8271–
8288, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.485. URL https://aclanthology.org/2024.
findings-emnlp.485/.

Henry Hengyuan Zhao, Kaiming Yang, Wendi Yu, Difei Gao, and Mike Zheng Shou. Worldgui:
An interactive benchmark for desktop gui automation from any starting point, 2025a. URL
https://arxiv.org/abs/2502.08047.

Xuanle Zhao, Xuexin Liu, Haoyue Yang, Xianzhen Luo, Fanhu Zeng, Jianling Li, Qi Shi, and Chi
Chen. Chartedit: How far are mllms from automating chart analysis? evaluating mllms’ capability
via chart editing. arXiv preprint arXiv:2505.11935, 2025b.

12

https://openreview.net/forum?id=cy8mq7QYae
https://openreview.net/forum?id=cy8mq7QYae
https://aclanthology.org/2025.findings-naacl.164/
https://aclanthology.org/2025.findings-naacl.164/
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=roNSXZpUDN
https://openreview.net/forum?id=roNSXZpUDN
https://aclanthology.org/2024.findings-emnlp.485/
https://aclanthology.org/2024.findings-emnlp.485/
https://arxiv.org/abs/2502.08047

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A LLM Usage Statement 15

B User-Centric Case Studies 15

C Data Curation 19

C.0.1 Chart Image Data . 19

C.1 raw data filtering . 20

D More Analysis 21

E Metric Details 22

E.1 Overall . 22

E.2 Base Evaluation . 22

E.2.1 Color Score . 23

E.2.2 grid Score . 24

E.2.3 Layout score . 25

E.2.4 Legend score . 26

E.2.5 data parameter score . 27

E.2.6 visual parameter score . 28

E.2.7 type score . 29

E.2.8 text score . 30

E.3 LLM-Evaluation . 31

E.4 LMM-Evaluation . 31

F Run configurations 33

G Open-Source Model Components 34

H Model License 35

I Model Source 35

I.1 level 1 . 36

I.2 level 2 . 41

I.3 level 3 . 46

J Evaluation Code 50

J.1 color . 50

J.2 Grid . 51

J.3 Layout . 52

J.4 Legend . 53

J.5 Visual . 54

J.6 Data . 54

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

J.7 Text . 56

J.8 Type . 57

K Prompt 58

K.1 generation Prompt . 58

K.2 LLM-Score Prompt . 61

A LLM USAGE STATEMENT

We disclose the use of Large Language Models (LLMs) in this research in several capacities.

First, during the preparation of this manuscript, we utilized an LLM for grammatical correction and
stylistic refinement to improve the paper’s readability.

Second, and central to our methodology, multiple LLMs served as the subjects of our experiments to
test our proposed benchmark. Furthermore, the evaluation metrics for our benchmark involved using
an LLM to assess the comprehensive quality of the results.

We explicitly state that we have never relied on LLMs to generate core research ideas, methodologies,
experimental designs, or conclusions. All technical contributions and analyses presented herein are
the original work of the authors.

B USER-CENTRIC CASE STUDIES

In this section, we showcase representative examples that reflect scenarios commonly encountered
by human users. One example is a Level 2 task ("Error Sample"), where the model must not only
generate chart code but also edit the original data to produce the target visualization. We observe that
most Large Multimodal Models (LMM) fail on this seemingly routine setting, which highlights their
difficulty in handling tasks that are trivial for humans.

Moreover, as illustrated in the subsequent cases ("LLM capability exploration"), existing LMMs
often produce wrong answers even for basic perception tasks, such as recognizing image content
or extracting key chart information. These failures indicate that if models cannot reliably solve
such everyday scenarios, it is even less likely they can succeed in the more complex challenge of
chart2code.

Error Sample

Instruction: Analyze inventory distribution by category. - Highlight sufficient inventory in ’Grooming Tools’ and ’Kids’ Clothing’ - Highlight insufficient
inventory in ’Toys & Games’ and ’Books & Stationery’ - Use separate colored sections in the chart to distinguish these two groups Generate runnable
Python code matching the uploaded image style.
Data text:

{
"Grooming Tools": {"in_stock": 15.2, "out_of_stock": 14.8},
"Kids’ Clothing": {"in_stock": 12.5, "out_of_stock": 13.2},
"Toys & Games": {"in_stock": 8.3, "out_of_stock": 9.1},
"Books & Stationery": {"in_stock": 7.1, "out_of_stock": 8.2},
"Health & Wellness": {"in_stock": 6.8, "out_of_stock": 7.4},
"Cameras & Accessories": {"in_stock": 6.5, "out_of_stock": 7.0},
"Beauty & Personal Care": {"in_stock": 6.2, "out_of_stock": 6.7},
"Men’s Clothing": {"in_stock": 5.9, "out_of_stock": 6.3},
"Women’s Clothing": {"in_stock": 5.4, "out_of_stock": 6.0},
"Shoes & Footwear": {"in_stock": 5.1, "out_of_stock": 5.8}
}

Reference Figure
GT Figure

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Wrong Answer

Doubao-Seed-1.6:

Data analysis statistics are incorrect; colors have not properly
mimicked the style; the pie chart should be a donut chart.

Wrong Answer

Claude Sonnet 4:

One sub-figure is missing; the colors do not follow the reference
style; the data extraction is incorrect; the legend style is wrong.

Wrong Answer

GPT-5:

Color style error; data analysis error.

Correct Answer

Gemini-2.5-pro:

The image is highly faithful; the data analysis is correct; there
are minor flaws but acceptable.

LLM capability exploration

Question: Please, based on this image, tell me if there is any title text in the picture? If so,
what is its position, is it single or multiple lines, and what are its size and color?
Figure:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Correct Answer

Answer: Yes; Upper; Single; fontsize=12; Black;

Correct Answer

Doubao-1.5-thinking-vision-pro: Yes; Upper; Single; fontsize=14; Black;

Correct Answer

Qwen2.5-VL-72B: Yes; Center top; Single; fontsize=14-16; Black;

Correct Answer

Claude-opus-4: Yes; Center top; Single; Large; Black;

Wrong Answer

Gemini-2.5-pro: Yes; Center top; Multiple; Large; Black;

Correct Answer

GPT-5: Yes; Center top; Single; fontsize=16; Black;

LLM capability exploration

Question: Please describe the arrangement and relative position of the legend in this chart: Is
it arranged horizontally, vertically, or in a grid? Which side of the main graph is it located on
(top, bottom, left, right, or embedded within)?
Figure:

Correct Answer

Answer: Horizontally(N*1); Lower right;

Wrong Answer

Doubao-1.5-thinking-vision-pro: Horizontally(N*1); Upper right;

Correct Answer

Qwen2.5-VL-72B: Horizontally(N*1); Lower right;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Wrong Answer

Claude-opus-4: Horizontally(N*1); Middle right;

Wrong Answer

Gemini-2.5-pro: Horizontally(N*1); Middle right;

Wrong Answer

GPT-5: Horizontally(N*1); Right;

LLM capability exploration

Question: Please describe the grid lines in this chart: Are they horizontal, vertical, or both?
Are the lines dashed or solid?
Figure:

Correct Answer

Answer: Only horizontal grid lines; Dashed line;

Wrong Answer

Doubao-1.5-thinking-vision-pro: Only horizontal grid lines; Solid line;

Correct Answer

Qwen2.5-VL-72B: Only horizontal grid lines; Dashed line;

Wrong Answer

Claude-opus-4: Only horizontal grid lines; Solid line;

Correct Answer

Gemini-2.5-pro: Only horizontal grid lines; Dashed line;

Correct Answer

GPT-5: Only horizontal grid lines; Dashed line;

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

LLM capability exploration

Question: Please describe the primary tick marks on the axes of this chart: whether they
exist, their thickness and orientation (facing outward or inward), as well as the position and
rotation angle of the tick labels.
Figure:

Correct Answer

Answer: No; Lower; 45 degrees.

Wrong Answer

Doubao-1.5-thinking-vision-pro: Implied; Lower; 0 degrees.

Wrong Answer

Qwen2.5-VL-72B: No; Lower; 0 degrees.

Wrong Answer

Claude-opus-4: No; Lower; 0 degrees.

Wrong Answer

Gemini-2.5-pro: No; Lower; 0 degrees.

Wrong Answer

GPT-5: No; Lower; 0 degrees.

C DATA CURATION

To construct a comprehensive and challenging chart benchmark, we collected a rich dataset of chart
images and their corresponding raw data from multiple sources.

C.0.1 CHART IMAGE DATA

Our chart image library is primarily composed of three parts, designed to cover a wide range of chart
types, visual styles, and information densities.

• Charts from Academic Literature: We extracted chart images from approximately 5,000 PDF
documents by crawling and parsing papers from the preprint server arXiv using automated scripts.
These publications span from January 2024 to July 2025 and cover multiple disciplines, including
computer science, physics, statistics, and economics, timestamps distribution of chart sources from

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Jan
-2

4

Fe
b-

24

Mar-
24

Apr
-2

4

May
-2

4

Jun
-2

4
Jul-

24

Aug
-2

4

Sep
-2

4

Oct-
24

Nov
-2

4

Dec
-2

4

Jan
-2

5

Fe
b-

25

Mar-
25

Apr
-2

5

Jun
-2

5
Jul-

25

Collection Period

0

200

400

600

N
um

be
r

of
 P

ap
er

s

200 200 200 200 200 200 200 200 200 200 200 200
300 300 300 300

450

600

ArXiv Paper Collection by Month

Figure 5: Timestamps distribution of chart sources from arxiv preprint.

arxiv preprint 5. This ensures that our dataset not only includes common statistical charts but also
covers the highly customized and information-dense visualizations frequently found in academic
research, guaranteeing both diversity and state-of-the-art relevance.

• Examples from Programming Communities and Tutorials: To include “standard” charts
generated directly from code, we collected 1,000 example charts from the official documentation
and tutorials of several mainstream data visualization libraries. Sources include official plotting
examples from Matplotlib, Seaborn, Plotly, WordCloudX, Scipy, and Matlab. This portion of the
data provides a set of stylistically consistent and high-quality “golden standard” references for the
benchmark.

• Existing Chart Datasets: To further increase the difficulty of the benchmark, we selected 300 of
the most structurally and elementally challenging complex charts from the existing ChartMimic
(Yang et al., 2025a) dataset, based on its inherent difficulty labels and our own pre-assessment.

Preliminary Collection and Deduplication: First, we gathered all charts from the three aforemen-
tioned sources into a unified database. We then performed preliminary automated deduplication and
format standardization.

Coarse Filtering: We recruited 10 senior undergraduate students majoring in computer science to
conduct an initial screening of the chart pool. The screening criteria were primarily based on the
clarity of the chart type (i.e., whether it is a common chart type) and its information complexity (e.g.,
the number of data series, density of text labels). This stage aimed to quickly eliminate ambiguous,
overly simplistic, or low-quality images, reducing the dataset size from approximately 6,300 to 3,000.

Expert Evaluation and Annotation: We invited five doctoral students and researchers, each with
over three years of experience in data visualization, to serve as experts for a fine-grained evaluation
of the filtered charts. We assigned the charts to the experts by category (e.g., line charts, bar charts,
scatter plots) and asked them to independently score each chart from 1 to 5 across three dimensions:
Data Complexity: Refers to the dimensional and structural complexity of the underlying data
required for the chart. Visual Complexity: Refers to the richness of visual elements in the chart,
such as markers, colors, annotations, and dual axes. Programming Complexity: Refers to the
programming skills and volume of code required to reproduce the chart, such as the need for complex
layouts or custom functions. Final Adjudication: We selected charts that achieved a high composite
score across the three dimensions and had high inter-rater agreement (> 0.8). For charts with
disagreements, two core researchers made the final decision. Through this process, we finalized a set
of 719 high-quality reference charts.

C.1 RAW DATA FILTERING

Automated Preprocessing: We developed automated scripts to parse raw data files in various formats
(e.g., Excel, CSV, TXT, JSON). These scripts prioritized the selection of data tables that contain
abundant numerical, time-series, or categorical information suitable for visualization.

Manual Verification and Diversity Preservation: Subsequently, we manually reviewed the data
filtered by the scripts, discarding any incomplete or poorly formatted data. During this process,
we placed special emphasis on preserving the diversity of data sources and domains to ensure the
final dataset was not biased towards any specific field. Ultimately, we constructed a raw database
containing 39 Excel files, 80 structured data files (such as CSVs), and 36 semi-structured text files.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Seed-1.5-VL

Seed-1.6-VL

GPT-5

Gemini-2.5-pro

Claude-Sonnet-4

Qwen-2.5-VL-72B

Qwen-2-VL-72B

Deepseek-VL

InternVL-3.5-8B

Kimi-VL

0.58 0.72 0.42 0.66 0.57 0.58 0.46 0.37 0.69 0.55

0.54 0.71 0.45 0.67 0.51 0.32 0.47 0.29 0.72 0.46

0.51 0.84 0.79 0.76 0.52 0.84 0.66 0.49 0.68 0.61

0.00 0.83 0.77 0.64 0.46 0.70 0.62 0.56 0.81 0.66

0.33 0.68 0.71 0.61 0.46 0.75 0.48 0.40 0.75 0.54

0.55 0.34 0.46 0.65 0.51 0.36 0.00 0.00 0.00 0.00

0.00 0.33 0.33 0.60 0.38 0.34 0.26 0.00 0.00 0.00

0.07 0.00 0.25 0.26 0.00 0.38 0.00 0.00 0.59 0.00

0.43 0.42 0.30 0.59 0.00 0.00 0.00 0.00 0.51 0.62

0.63 0.38 0.00 0.62 0.35 0.00 0.31 0.26 0.61 0.32

(a) LLM-Score for Code Evaluation

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

0.19 0.22 0.40 0.10 0.28 0.23 0.12 0.12 0.51 0.33

0.20 0.24 0.23 0.13 0.40 0.24 0.08 0.18 0.48 0.31

0.36 0.56 0.30 0.01 0.34 0.39 0.25 0.12 0.47 0.45

0.00 0.62 0.60 0.10 0.19 0.25 0.35 0.31 0.55 0.56

0.20 0.52 0.35 0.13 0.30 0.13 0.18 0.27 0.32 0.32

0.05 0.12 0.03 0.13 0.10 0.21 0.00 0.00 0.00 0.00

0.00 0.01 0.09 0.06 0.02 0.11 0.08 0.00 0.00 0.00

0.01 0.00 0.04 0.15 0.00 0.16 0.00 0.00 0.21 0.00

0.06 0.08 0.01 0.11 0.00 0.00 0.00 0.00 0.29 0.15

0.29 0.16 0.00 0.15 0.05 0.00 0.05 0.03 0.36 0.27

(b) LMM-Score for Chart Evaluation

Figure 6: Analysis of model performance on different task cases with LLM-score and LMM-score.

D MORE ANALYSIS

Discrepancy Between LLM-Score and LMM-Score. Figure 6 illustrates model performance
across ten representative task cases, evaluated by both LLM-score for code quality (left) and LMM-
score for rendered chart fidelity (right). A clear discrepancy emerges: proprietary models such as
GPT-5, Gemini-2.5-Pro, and Claude-Sonnet-4 achieve consistently high LLM-scores across most
tasks (often ≥0.7), indicating strong code-level compliance. However, their corresponding LMM-
scores are much lower (typically ≤0.35), showing that syntactically correct code often fails to
produce visually faithful charts. Open-source models, in contrast, underperform on both metrics,
with particularly low LMM-scores across all tasks. This contrast highlights that current models
generalize relatively well at the code level but remain fundamentally limited in achieving pixel-level
chart fidelity, especially on diverse and challenging task cases.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

E METRIC DETAILS

E.1 OVERALL

To better evaluate the performance of different models, we conduct comparative assessments from
two levels: the code-level and the chart-level. Throughout the evaluation process, we first examine
the executability of the generated code. The execution rate is defined as the ratio between the number
of executable code snippets that successfully generate images (s) and the total number of tasks (t).
Formally, the execution rate is expressed as:

exec_rate =
s

t
. (1)

The execution rate is reported as a percentage.

At the code-level, we first extract plotting elements from the matplotlib.Figure object and
propose eight evaluation dimensions as the base evaluation. The detailed specifications are given
in E.2. Subsequently, we leverage gpt-5-mini to perform a holistic similarity assessment of the
code’s visualization results, thereby providing a more reliable confidence score at the code level. We
refer this as LLM-Score.

At the chart-level, we input the executable code into gpt-5-mini for image-based evaluation.
By designing specific prompts, the large multimodal model (LMM) assesses multiple dimensions
and produces an aggregated score. This chart-level evaluation offers an intuitive similarity measure
of the visual outputs, thereby serving as a direct indicator of model performance. We refer this as
LMM-Score. The implementation details of these two evaluation mechanisms are described as
follows.

E.2 BASE EVALUATION

To evaluate visualization effects from the code perspective, we investigated commonly used Python
plotting libraries and found that Seaborn, Matplotlib, NetworkX, and WordCloud all rely on Mat-
plotlib’s underlying plotting functions. When using these libraries for plotting, a Figure object
is generated in memory, which contains all the elements of the plot. This implies that we can
extract all visualization-related elements from the Figure object and compare the GT_code with
the generated_code to evaluate their visualization effects.

More Efficient. Unlike ChartMimic (Yang et al., 2025a), which depends on code tracers and code
injection, our evaluation method is substantially more efficient. In practice, ChartMimic must execute
both the GT_code and generated_code for each evaluation dimension, resulting in up to twelve
executions for a single generated_code. This process incurs significant computational overhead in
both time and memory. By contrast, our method executes the GT_code and generated_code only
once, caches their corresponding Figure objects, and then evaluates multiple dimensions directly on
these objects, thereby greatly reducing execution cost.

More General. In comparison to ChartMimic’s (Yang et al., 2025a) hard-coded rules, which exhibit
limited adaptability and strong dependence on specific Matplotlib versions, our evaluation method is
inherently more general. ChartMimic enforces rule-based matching of plotting elements, which not
only imposes strict version constraints but also leaves many elements unsupported. Our approach
instead parses the Figure object directly, which comprehensively encapsulates all elements in
memory, ensuring greater robustness and version independence.

More Versatile. Whereas ChartMimic (Yang et al., 2025a) is restricted to a narrow set of functions
from specific libraries, our method offers broad applicability. By operating directly on core Matplotlib
objects, our approach seamlessly extends to all visualization libraries that build upon Matplotlib’s
primitives, thereby achieving substantially stronger cross-library generalization.

More Precise. Unlike ChartMimic (Yang et al., 2025a), which evaluates function call patterns rather
than visual outputs, our method emphasizes the visualization results themselves. ChartMimic leaves
a gap between code execution and rendered charts, while our approach directly inspects visual objects
such as Line and Patch. This enables a more faithful and precise evaluation of visualization
quality at the code-to-visualization level.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

E.2.1 COLOR SCORE

Traditional approaches typically treat all colors in a chart as an unordered set, neglecting the binding
relationship between colors and specific data items(Yang et al., 2025a). To address this issue, we
propose an efficient and more professional method for color extraction strategy designed to parse
colors and their corresponding semantic information from Matplotlib’s graphical objects Figure.
This strategy decomposes the chart into different types of visual elements and organizes the extracted
color information into a structured mapping, which can be expressed as:

{ElementType → {DataKey → HexColor}} (2)

where:

• ElementType: Refers to the object to which the color is applied, such as the fill color of
a bar chart (patch_face), the line color of a line chart (line_color), the color of a
scatter plot (scatter_color), or the background of the axes (axes_bg).

• DataKey: Refers to the specific data entity bound to the color. This is typically the label in
the legend, the tick label on the axis, or the content of a text element.

• HexColor: The standardized hexadecimal color code.

After obtaining the structured color data, we design a set of weighted evaluation metrics to quantify
the color fidelity between generated_code and GT_code. The core principle of this evaluation is that
not all colors are equally important. For example, errors in the colors of data series are more severe
than errors in the colors of axis grid lines.

To this end, we introduce element-type weights (wt), assigning a predefined weight to each
ElementType t. Core data elements (e.g., patch_face, line_color) are assigned high
weights (e.g., 1.0), whereas auxiliary or decorative elements (e.g., figure_bg, spine) are as-
signed lower weights (e.g., 0.01).

The evaluation is performed only on the element types and data keys shared by both gener-
ated_code(gen) and GT_code(gt). This ensures a valid comparison, avoiding mismatches such
as comparing a line color in generated with a bar color in gt_code.

The total weighted similarity Stotal serves as the core of our model, and is computed as:

Stotal =
∑

t∈Tgen∩Tgt

∑
k∈Kgen,t∩Kgt,t

wt · σ
(
Cgen,t,k, Cgt,t,k

)
, (3)

where:

• Tgen and Tgt denote the sets of all element types present in the generated chart and the
ground-truth chart, respectively.

• Kgen,t and Kgt,t denote the sets of all data keys under element type t in the generated and
ground-truth charts, respectively.

• wt is the predefined weight for element type t.
• Cgen,t,k and Cgt,t,k are the colors corresponding to element type t and key k in the generated

and ground-truth charts, respectively.
• σ(C1, C2) is a function measuring the similarity between two hexadecimal colors.

The color similarity function σ(C1, C2) is used to quantify the visual closeness between two colors.
In our implementation, we adopt a normalized reversed Euclidean distance in the RgenB color space
to compute similarity.

First, the hexadecimal color C is converted into its RGB representation (R,G,B). The Euclidean
distance between two colors C1 and C2 is defined as:

d(C1, C2) = (R1 −R2)
2 + (G1 −G2)

2 + (B1 −B2)
2. (4)

The maximum possible distance in the RGB space corresponds to the distance between (0, 0, 0) and
(255, 255, 255), i.e.,

dmax = 3 · 2552. (5)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

We then normalize the distance d and transform it into a similarity score σ within the range [0, 1]:

σ(C1, C2) = 1− d(C1, C2)

dmax
. (6)

When two colors are identical, σ = 1.0; when they differ maximally, σ = 0.0.

To provide comprehensive and interpretable evaluation results, we map the computed total weighted
similarity (Stotal) to three standard metrics widely used in the information retrieval domain: Precision,
Recall, and F1-Score.

Total Weight: We first compute the total weights of the generated chart and the ground-truth chart,
representing the maximum theoretically achievable similarity score.

Wgen =
∑

t∈Tgen

∑
k∈Kgen,t

wt, Wgt =
∑
t∈Tgt

∑
k∈Kgt,t

wt. (7)

Precision: Measures the accuracy of all color elements in the generated chart. It answers the question:
“Among all generated colors, what proportion is correct?”

Precision =
Stotal

Wgen
. (8)

Recall: Measures the extent to which all color elements in the ground-truth chart are correctly
reproduced in the generated chart. It answers the question: “Among all required colors, what
proportion has been correctly generated?”

Recall =
Stotal

Wgt
. (9)

F1-Score: The harmonic mean of Precision and Recall, providing a single comprehensive evaluation
score.

F1-Score =
2 · Precision · Recall
Precision + Recall

. (10)

E.2.2 GRID SCORE

We define a structured Grid State Descriptor. For each subplot ax in a chart, we extract the visibility
of its X-axis and Y-axis grid lines, and encode them as a Boolean dictionary:

{’x_grid_visible’ : bool, ’y_grid_visible’ : bool}. (11)

We traverse all Axes objects within a Figure, and for each subplot where at least one grid line
(X-axis or Y-axis) is visible, we generate a grid state descriptor. Ultimately, the grid configuration of
an entire chart is abstracted as a list of such descriptors, which can be mathematically regarded as a
multiset.

For example, in a Figure with two subplots, where the first subplot has only Y-axis grid lines and
the second subplot has both X-axis and Y-axis grid lines, the grid configuration is represented as:

{’x_grid_visible’ : False, ’y_grid_visible’ : True},
{’x_grid_visible’ : True, ’y_grid_visible’ : True} (12)

This structured representation is not only precise but also completely ignores the specific styles of
grid lines (e.g., color, linewidth). Instead, it focuses solely on their presence, which captures the core
semantics and makes the evaluation more robust.

After extracting the multisets of grid state descriptors from the generated figure (Ggen) and the
ground-truth figure (Ggt), we further use the F1 metric to measure the accuracy of this parameter.

We define the following notations:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

• Ggen: the multiset of grid state descriptors extracted from the generated figure.
• Ggt: the multiset of grid state descriptors extracted from the ground-truth figure.

The number of true positives (TP) is defined as the cardinality of the intersection between the two
multisets:

TP = |Ggen ∩Ggt|. (13)

True Positives (TP) A true positive is defined as a grid state descriptor that appears in Ggen and
exactly matches one in Ggt. The total number of true positives is given by the size of the intersection
of these two multisets:

TP = |Ggen ∩Ggt|. (14)

Precision Precision measures the proportion of correctly activated grid configurations among all
grid configurations in the generated figure (i.e., those that also exist in the ground-truth figure):

Precision =
TP

|Ggen|
=

|Ggen ∩Ggt|
|Ggen|

. (15)

If |Ggen| = 0, we define Precision = 1.0.

Recall Recall measures the proportion of required grid configurations in the ground-truth figure that
are successfully reproduced in the generated figure:

Recall =
TP

|Ggt|
=

|Ggen ∩Ggt|
|Ggt|

. (16)

If |Ggt| = 0, we define Recall = 1.0.

F1-Score The F1-score, as the harmonic mean of precision and recall, provides a single comprehensive
metric:

F1-Score = 2 · Precision · Recall
Precision + Recall

. (17)

E.2.3 LAYOUT SCORE

For each individual subplot (i.e., an Axes object) in a chart, we create a unique and quantitative
Layout Descriptor. This descriptor fully defines the size and position of the subplot within a virtual
grid (GridSpec). Instead of relying on pixel coordinates, we extract the underlying structural
information from Matplotlib’s SubplotSpec object.

For each subplot ax in a Figure, we extract the following six key parameters to construct its layout
descriptor D:

• nrows (R): the total number of rows in the corresponding GridSpec.
• ncols (C): the total number of columns in the corresponding GridSpec.
• row_start (rs): the starting row index of the grid cells occupied by the subplot.
• row_end (re): the ending row index of the grid cells occupied by the subplot.
• col_start (cs): the starting column index of the grid cells occupied by the subplot.
• col_end (ce): the ending column index of the grid cells occupied by the subplot.

Thus, the layout of each subplot can be precisely represented as a 6-tuple:

D = (R,C, rs, re, cs, ce). (18)

By traversing all Axes objects in a Figure, the overall layout can be abstracted as a multiset of
these layout descriptors D, denoted as L.

We define the following notation:

• Lgen: the multiset of layout descriptors extracted from the generated figure.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

• LGT : the multiset of layout descriptors extracted from the ground-truth figure.

True Positives (TP) A true positive represents a layout descriptor that exists in Lgen and exactly
matches one in Lgt. The total number of true positives is defined as the size of the intersection of
these two multisets:

TP = |Lgen ∩ Lgt| (19)

This indicates the number of subplots that are correctly generated and placed in the correct positions.

Precision Precision measures the proportion of correctly generated subplots among all generated
subplots:

Precision =
TP

|Lgen|
=

|Lgen ∩ Lgt|
|Lgen|

(20)

Here, |Lgen| denotes the total number of subplots in the generated figure. A low precision indicates
that the model produced redundant or incorrectly placed subplots.

Recall Recall measures the proportion of required subplots in the ground-truth figure that were
successfully generated:

Recall =
TP

|Lgt|
=

|Lgen ∩ Lgt|
|Lgt|

(21)

Here, |Lgt| denotes the total number of subplots in the ground-truth figure. A low recall suggests that
the model failed to generate all required subplots.

F1-Score The F1-score, as the harmonic mean of precision and recall, provides a single balanced
metric for evaluating the overall quality of the layout:

F1-Score = 2 · Precision · Recall
Precision + Recall

(22)

E.2.4 LEGEND SCORE

We propose a Dual-Constraint Matching Framework for Legend Evaluation. This framework de-
composes legend evaluation into independent assessments of the semantic and spatial properties of
each individual legend entry, and quantifies the consistency between the generated and ground-truth
figures through a flexible matching algorithm. Consequently, it provides a more comprehensive and
robust evaluation scheme.

Our method does not treat the legend as a single entity but decomposes it into a collection of
independent legend entries. For each visible legend object in the chart, we traverse all its text labels
and create an atomic, structured Legend Descriptor for each label.

The descriptor D is defined as a 2-tuple that captures both semantic and spatial information:

D = (t, B) (23)

where:

• t is a string representing the textual content of the legend entry. This element captures the
semantic correctness of the legend.

• B is a 4-tuple (x0, y0, x1, y1) representing the bounding box of the entire legend object
containing the text entry, expressed in the screen rendering coordinate system. This element
captures the spatial correctness of the legend.

By traversing all legends from both the Axes objects and the Figure object itself, we can extract
all visible legend entries of a chart and represent them collectively as a multiset of descriptors D,
denoted as L.

After extracting the multisets of legend descriptors Lgen and Lgt from the generated and ground-truth
figures, respectively, we design a dual-constraint matching algorithm to compute their similarity. The
algorithm can flexibly operate in two modes: semantic-only matching or combined semantic and
spatial matching.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

A descriptor Dgen = (tgen, Bgen) from Lgen matches a descriptor Dgt = (tgt, Bgt) from Lgt if and
only if one or both of the following constraints are satisfied:

Semantic Constraint: The text content of the two descriptors must be identical:

tgen = tgt. (24)

Positional Constraint: The bounding boxes of the legend objects containing the descriptors must
have a positive intersection area:

Areaintersection(Bgen, Bgt) > 0. (25)

For two bounding boxes B1 = (x1,0, y1,0, x1,1, y1,1) and B2 = (x2,0, y2,0, x2,1, y2,1), the intersec-
tion area is computed as:

xA = max(x1,0, x2,0)

yA = max(y1,0, y2,0)

xB = min(x1,1, x2,1)

yB = min(y1,1, y2,1)

Areaintersection = max(0, xB − xA) ·max(0, yB − yA)

(26)

The algorithm finds unique matching pairs that satisfy the above constraints (removing matched
descriptors from the pool) and computes the total number of true positives (TP). Based on TP, we
perform the final quantitative evaluation using standard precision, recall, and F1-score metrics:

Precision =
TP

|Lgen|
, Recall =

TP

|Lgt|
, F1-Score = 2 · Precision · Recall

Precision + Recall
. (27)

E.2.5 DATA PARAMETER SCORE

The primary goal of data visualization is to faithfully and accurately convey the underlying data. We
introduce an evaluation framework designed to quantify the fidelity of a chart’s data parameters. This
framework inspects the chart at a deep level, directly verifying the correctness of its underlying data.

The first step of the framework is to identify and extract the data parameters that directly define the
data representation of the chart. Through introspection of Matplotlib plotting elements, we categorize
these parameters into distinct types. The set of data parameters, denoted as Kdata, is explicitly
defined as:

Kdata = {’xdata’, ’ydata’, ’offsets’, ’xy’, ’verts’, ’width’, ’height’, ’sizes’}. (28)

These parameters directly correspond to the geometric and positional properties of chart elements:

• For line plots (Line2D), we extract xdata and ydata.
• For bar charts (Rectangle), we extract the lower-left corner coordinates xy, as well as
width and height.

• For filled plots (Polygon), we extract all vertex coordinates verts.
• For scatter plots (Collection), we extract the center coordinates offsets and the point

sizes sizes.

Through this process, each chart is decomposed into a multiset E of element-parameter dictionaries.

Data parameters, especially those represented as arrays, cannot be compared using simple equality
operators. To robustly handle variations in data point ordering or floating-point precision, we define a
dedicated similarity function S(v1, v2). The core logic for data parameters is as follows:

Numeric Type: For scalar values, we use numpy.isclose to determine whether two floating-point
numbers are approximately equal within a tolerance ϵ:

S(v1, v2) =

{
1 if |v1 − v2| ≤ ϵ

0 otherwise
(29)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Array-like Type: For array data, which is crucial for evaluating data parameters, we adopt the
Jaccard similarity coefficient to measure the overlap between the contents of two arrays. Let V1 and
V2 denote the sets of elements in v1 and v2, respectively:

S(v1, v2) =
|V1 ∩ V2|
|V1 ∪ V2|

(30)

This method is insensitive to the order of data points and accurately reflects the true content overlap
between two datasets.

After quantifying the similarity between parameters, we employ a two-stage algorithm to compute
the final evaluation metrics.

Element Matching: To address differences in element order and quantity across charts, we use a
greedy optimal matching algorithm. For each element egt in the ground-truth chart, the algorithm
searches among elements of the same type in the generated chart to find the best match e∗gen that
maximizes the total similarity across all parameters. This matching is performed globally, considering
all parameter types. The result is a set of successful matches:

M = {(egen, egt)}. (31)

Data Metric Computation: Once the matching set M is obtained, we focus exclusively on data
parameters to aggregate the scores. The total true positive score for the data dimension, TPdata, is
computed as the sum of similarities across all matched pairs. We iterate over the union of keys to
ensure penalties for missing or extra parameters:

TP =
∑

(egen,egt)∈M

∑
k∈(keys(egen)∪keys(egt))∩Kdata

S(egen[k], egt[k]) (32)

Next, we count the total number of data parameters in the generated chart and the ground-truth
chart, denoted as Ndata,gen and Ndata,gt, respectively. Finally, we compute the precision, recall, and
F1-score for the data dimension:

Precision =
TP

Ndata,gen
,

Recall =
TP

Ndata,gt
,

F1-Score = 2 · Precision · Recall
Precision + Recall

.

(33)

E.2.6 VISUAL PARAMETER SCORE

The visual style of a chart is also an important component of chart reproduction quality. Visual style is
governed by a set of visual parameters, such as line styles, marker shapes, element transparency, and
so on. Correct usage of these parameters not only affects the aesthetic quality and professionalism
of the chart, but also directly determines whether it adheres to specific design guidelines or user
instructions. We propose a framework, running in parallel with the data parameter evaluation,
specifically designed to quantify the consistency of a chart with respect to its visual parameters.

This framework builds upon the parameterized representation established in E.2.5. After extracting
all parameters of an element, we identify the set of visual parameters (Kvisual) by exclusion. A
parameter key k is classified as a visual parameter if it satisfies:

k /∈ Kdata and k /∈ Kignore (34)

where Kdata is the predefined set of data parameters, and Kignore is the set of parameters handled by
other evaluators (e.g., color). Typical visual parameters include: ’linestyle’, ’linewidth’,
’marker’, ’markersize’, ’alpha’, and so on. The extraction process is performed in parallel

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

with that of the data parameters, but subsequent evaluation computations focus exclusively on this
subset of parameters.

We employ the same general similarity function S(v1, v2) introduced in the equation 29 and equa-
tion 30 to compare the values of visual parameters. Its robustness is equally applicable to various
data types of visual parameters:

• String type: For parameters such as linestyle (e.g., ’-’ vs ’–’) or marker (e.g., ’o’ vs
’x’), the function performs a direct string equality comparison.

• Numeric type: For parameters such as linewidth (e.g., 1.5 vs 2.0) or alpha (e.g., 0.8
vs 1.0), the function uses numpy.isclose to perform a tolerance-based comparison.

This consistent definition of similarity ensures intrinsic coherence across different evaluation dimen-
sions.

Element Matching: We reuse the set of matched element pairs M = {(egen, egt)} obtained through
the greedy optimal matching algorithm. This implies that the matching of elements is determined
based on their overall similarity (data + visual), consistent with human perception — we always
perceive an element as a whole. Establishing a match indicates that both the data and visual aspects
will be evaluated for that pair.

Visual Metric Computation: Given the set of matched pairs M , we focus exclusively on the visual
parameters to aggregate the scores. We compute the total true positive score for the visual dimension
(TPvisual), defined as the sum of visual parameter similarities across all matched pairs:

TPvisual =
∑

(egen,egt)∈M

∑
k∈(keys(egen)∪keys(egt))∩Kvisual

S(egen[k], egt[k]) (35)

Similarly, we count the total number of visual parameters in the generated and ground-truth charts,
denoted as Nvisual,gen and Nvisual,gt, respectively. Finally, the precision, recall, and F1-score for
the visual dimension are computed as:

Precisionvisual =
TPvisual

Nvisual,gen
,

Recallvisual =
TPvisual

Nvisual,gt
,

F1-Scorevisual = 2 · Precisionvisual · Recallvisual
Precisionvisual + Recallvisual

.

(36)

E.2.7 TYPE SCORE

We propose an evaluation framework based on Artist Class Introspection. Unlike methods that rely
on the visual rendering of charts, this framework directly inspects the object model constructed in
memory by the plotting library (Matplotlib). By examining the core drawing artists (i.e., primitive
graphical objects) and their associated classes, the framework deterministically and robustly infers
the composition of a chart. The key idea is that Matplotlib employs different classes of artist objects
for different types of plots. For example, a line plot is rendered using Line2D objects, whereas a bar
chart is rendered using Rectangle objects. Leveraging this intrinsic correspondence, we can infer
the chart types present in a figure by identifying which classes of artist objects it contains.

Our algorithm operates by traversing all subplots (Axes) within a matplotlib.Figure ob-
ject and inspecting the list of artists contained in each subplot (e.g., ax.lines, ax.patches,
ax.collections, etc.).

The algorithm aggregates all detected chart types within a figure into a set. This set-based representa-
tion has a significant advantage: it naturally supports the identification and evaluation of composite
charts. For example, a chart that overlays a line plot on top of a bar chart will be recognized as
containing both bar_or_hist and line.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

The number of true positives is defined as the size of the intersection between the two sets, that is, the
number of chart types present in both the generated chart and the reference chart:

TP = |Tgen ∩ Tgt| (37)

Precision measures the proportion of correct chart types among all generated chart types:

Precision =
TP

|Tgen|
=

|Tgen ∩ Tgt|
|Tgen|

(38)

where |Tgen| denotes the total number of distinct chart types detected in the generated chart.

Recall measures the proportion of reference chart types that are successfully generated:

Recall =
TP

|Tgt|
=

|Tgen ∩ Tgt|
|Tgt|

(39)

where |Tgt| denotes the total number of distinct chart types in the reference chart.

The F1-Score is the harmonic mean of precision and recall, providing a comprehensive evaluation
metric:

F1-Score =
2 · Precision · Recall
Precision + Recall

(40)

E.2.8 TEXT SCORE

We propose a text evaluation framework based on semantic categorization and fuzzy matching. In
this framework, all textual elements in a chart are categorized according to their functional roles, and
a fuzzy matching algorithm based on edit distance is applied among texts within the same category.
This enables a quantitative evaluation of chart text that is both strict and robust.

To achieve precise evaluation of textual roles, we first design an extractor (_extract_texts_from_figure)
that introspects the matplotlib Figure object to identify and classify all visible textual elements.
Instead of treating all texts as an undifferentiated set, we categorize them into predefined semantic
classes.

Through this process, the entire textual content of a chart is transformed into a structured Text Map,
denoted as T . Its form is a dictionary that maps each category name to the list of text strings belonging
to that category: T = {c → [t1, t2, . . .]}. For example, Ttitle represents the list of all subplot titles
in the figure. This categorization mechanism ensures context-aware evaluation and prevents, for
instance, an axis label from being incorrectly compared with a title.

After obtaining the text maps of the generated chart and the reference chart, Tgen and Tgt, we designed
an evaluation algorithm to quantify their consistency. To tolerate minor textual differences, we adopt
the Levenshtein Ratio as the similarity function between two strings s1 and s2, denoted as SL(s1, s2).
This function is based on computing the minimum number of single-character edits (insertions,
deletions, or substitutions) required to transform one string into the other (i.e., the Levenshtein
Distance), and normalizes the value to the interval [0, 1]:

SL(s1, s2) = 1− LevenshteinDistance(s1, s2)
max(|s1|, |s2|)

(41)

A higher value of SL indicates greater similarity between the two strings. Identical strings achieve a
similarity of 1.

Our evaluation algorithm operates independently within each semantic category. For each category c,
the algorithm searches for the best match t∗gt for every generated text tgen ∈ Tgen,c from the available
reference texts Tgt,c, such that SL(tgen, tgt) is maximized. To prevent one-to-many matches, once a
reference text is matched, it is removed from the candidate pool.

We then accumulate the similarity scores of all best matches across all categories to obtain a total
similarity score (TPscore), which can be regarded as a weighted sum of “true positives”:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

TPscore =
∑
c∈C

∑
tgen∈Tgen,c

max
tgt∈T ′

gt,c

SL(tgen, tgt) (42)

where C denotes the union of all text categories present in both charts, and T ′
gt,c is the set of unmatched

reference texts in category c.

Finally, we compute the total number of generated and reference texts (Ngen and Ngt), and derive the
Precision, Recall, and F1-Score as follows:

Precision =
TPscore

Ngen
, Ngen =

∑
c

|Tgen,c| (43)

Recall =
TPscore

Ngt
, Ngt =

∑
c

|Tgt,c| (44)

F1-Score =
2 · Precision · Recall
Precision + Recall

(45)

E.3 LLM-EVALUATION

This study designs and implements a multi-dimensional visualization code evaluation framework
based on Large Language Models (LLMs). The framework does not execute code or render images;
instead, it leverages the powerful code understanding and reasoning capabilities of LLMs to perform
static analysis directly on the source code of both the generated and reference scripts. By decomposing
the complex problem of “visual similarity” into a series of well-defined and mutually orthogonal
evaluation dimensions, and by designing strict scoring instructions for each, our framework provides
a comprehensive, in-depth, and interpretable quantitative assessment of chart code quality.

We deconstruct the ambiguous task of “code quality” assessment into six specific and independent
evaluation dimensions, denoted as Di. This approach makes the LLM’s evaluation task more focused
and renders the final results more diagnostic and interpretable. The six dimensions are defined as
follows:

• Data Handling and Transformation: Evaluates the logic for processing, calculating, and
transforming raw data prior to plotting.

• Chart Type and Mapping: Evaluates the choice of core plotting functions and the mapping
of data columns to visual channels (e.g., x-axis, y-axis, size, color).

• Visual Aesthetics: Evaluates the settings of purely visual style parameters, such as colors,
line styles, and markers.

• Labels, Titles, and Legend: Evaluates the presentation and content of all textual elements.

• Figure Layout and Axes: Evaluates the canvas size, subplot structure, axis ranges, and
scales.

• Auxiliary Elements and Ticks: Evaluates the configuration of auxiliary elements such as
grid lines, reference lines, and axis spines.

The evaluation prompt is in K.2

E.4 LMM-EVALUATION

The ultimate criterion for evaluating automatically generated charts should be human visual perception.
Although programmatic evaluation and source code analysis can technically ensure the correctness
of chart components and parameters, they may not fully capture all visual details, artifacts, or the
overall aesthetic coherence in the final rendered image. To establish an evaluation system that more
closely approximates a "gold standard," we argue for the necessity of directly assessing the final
visual output—the chart image itself.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

To this end, this study designs and implements a holistic chart image evaluation framework based on
Vision-Language Models (VLMs). This framework utilizes advanced multimodal large models by
simultaneously providing them with both the reference and the generated images, supplemented by a
set of rigorous evaluation instructions, to directly quantify the visual similarity between the two. This
end-to-end visual evaluation method can capture a wide range of discrepancies, from macroscopic
layout to microscopic pixel-level differences, thereby providing a comprehensive and holistic quality
score. Here, we adopt a holistic evaluation approach, assessing all visual aspects in a single call. To
ensure rigor, we extend and reinforce the philosophy of a deduction-based scoring system. The
instructions require the model to assume a perfect score of 100, and then to deduct points for every
visual discrepancy it finds between the two images.

The evaluation prompt is in K.2

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

F RUN CONFIGURATIONS

During the experiment, the parameter settings for various open-source and proprietary models were
as follows. For details, please refer to the table below:

Table 6: Run configurations for all models. Unset values indicate that their default values are being
used. For Proprietary models, we are unable to use a Top-P of exactly 1 due to their API settings, and
we end up using a value of 0.99999. Temp. denotes temperature. We use model pages’ code to set up
the run configurations whenever possible.

Model Version/HF Checkpoint Do Sample level 1 2 Max level 3 Max Temp. Top-P

Proprietary Multimodal Large Language Models

GPT-5 OpenAI (2025) gpt-5-2025-08-07 default 55000 0 1
Claude 4 Sonnet Anthropic (2025) claude-4-sonnet-20250523 default 55000 0 1
Gemini-2.5-pro Comanici et al. (2025) gemini-2.5-pro-20250617 default 55000 0 1
doubao-seed-1-5 Guo et al. (2025) seed1.5-VL-20250513 default 16000 0 1
doubao-seed-1-6 Team (2025) seed1.5-VL-20250625 default 32768 0 1

Open-Source Multimodal Large Language Models

Qwen2-VL-7B Wang et al. (2024a) Qwen/Qwen2-VL-7B-Instruct True 8192 32768 0.1 0.95
Qwen2-VL-72B Wang et al. (2024a) Qwen/Qwen2-VL-72B-Instruct True 8192 32768 0.1 0.95
Qwen2.5-VL-7B Bai et al. (2025) Qwen/Qwen2.5-VL-7B-Instruct True 8192 32768 0.1 0.95
qwen2.5-VL-72B Bai et al. (2025) Qwen/Qwen2.5-VL-72B-Instruct True 8192 32768 0.1 0.95
deepseek-VL-7B Lu et al. (2024) deepseek-ai/deepseek-vl-7b-base True 8192 32768 0.1 0.95
kimi-VL-A3B Team et al. (2025) moonshotai/Kimi-VL-A3B-Thinking True 8192 32768 0.1 0.95
MiMo-VL-7B-RL Xiaomi & Team (2025) XiaomiMiMo/MiMo-VL-7B-RL-2508 True 8192 32768 0.1 0.95
MiMo-VL-7B-SFT Xiaomi & Team (2025) XiaomiMiMo/MiMo-VL-7B-SFT-2508 True 8192 32768 0.1 0.95
GLM-4-9b GLM et al. (2024) zai-org/glm-4-9b True 8192 32768 0.1 0.95
Intern-VL 2.5 8B Chen et al. (2024) OpenGVLab/InternVL2_5-8B True 8192 32768 0.1 0.95
Intern-VL 2.5 38B Chen et al. (2024) OpenGVLab/InternVL2_5-38B True 8192 32768 0.1 0.95
Intern-VL 3 8B Zhu et al. (2025) OpenGVLab/InternVL3-8B True 8192 32768 0.1 0.95
Intern-VL 3 38B Zhu et al. (2025) OpenGVLab/InternVL3-38B True 8192 32768 0.1 0.95
Intern-VL 3.5 8B Wang et al. (2025) OpenGVLab/InternVL3_5-8B True 8192 32768 0.1 0.95
Intern-VL 3.5 38B Wang et al. (2025) OpenGVLab/InternVL3_5-38B True 8192 32768 0.1 0.95
llava-onevision-qwen2-7b-si Li et al. (2024a) lmms-lab/llava-onevision-qwen2-7b-si True 8192 32768 0.1 0.95
llava-onevision-qwen2-7b-ov Li et al. (2024a) lmms-lab/llava-onevision-qwen2-7b-ov True 8192 32768 0.1 0.95

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

G OPEN-SOURCE MODEL COMPONENTS

We have listed the main components of the open-source models used in our work below:

Table 7: We summarize the visual and language components of the open-source models evaluated in
our benchmark, along with the input resolutions used in our evaluation. Here, original denotes that we
use the default image size, as the corresponding models support dynamic resolution inputs. Note that
for DeepSeekVL-7B and GLM-4-9B , we apply a maximum input size constraint to accommodate
their requirements.

Model Vision Language Resolu-
Encoder Model tion

Qwen2-VL-7B Qwen2-VL ViT-14-224 Qwen2-VL-LLM-7B origianl

Qwen2-VL-72B Qwen2-VL ViT-14-224 Qwen2-VL-LLM-72B origianl

Qwen2.5-VL-7B Qwen2.5-VL ViT-14-224 Qwen2.5-VL-LLM-7B origianl

Qwen2.5-VL-72B Qwen2.5-VL ViT-14-224 Qwen2.5-VL-LLM-72B origianl

Deepseek-VL-7B SigLIP-384-SO400M & DeepSeek-LLM-7B 1152× 1152*
SAM-ViT-Base

Kimi-VL-A3B MoonViT Moonlight Model origianl

MiMo-VL Qwen2.5-ViT MiMo-7B origianl

GLM-4-9B CLIP ViT-L-14-336 InternLM-7B 1120× 1120*

InternVL-2.5-8B InternViT-6B-448px-V2_5 internlm2_5-7b-chat origianl

InternVL-2.5-38B InternViT-6B-448px-V2_5 Qwen2.5-32B-Instruct origianl

InternVL-3-8B InternViT-300M-448px-V2_5 Qwen2.5-7B origianl

InternVL-3-38B InternViT-6B-448px-V2_5 Qwen2.5-32B origianl

InternVL-3.5-8B InternViT-300M & Qwen3-8B origianl
InternViT-6B

InternVL-3.5-38B InternViT-300M & Qwen3-38B origianl
InternViT-6B

llava-onevision-qwen2-7b-si SigLIP-384-SO400M Qwen2-7B origianl

llava-onevision-qwen2-7b-ov SigLIP-384-SO400M Qwen2-7B origianl

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

H MODEL LICENSE

Table 8: Summary of licenses in models that are evaluated in CharXiv. Entries marked with “Not
Applicable” indicate that authors do not have an explicit code license displayed within the codebase
or model checkpoint page.

Name Model License Code License
GPT-5 Proprietary Proprietary
Claude 4 Sonnet Proprietary Proprietary
Gemini-2.5-pro Proprietary Proprietary
doubao-seed-1.6 Proprietary Proprietary
doubao-seed-1.5 Proprietary Proprietary
Qwen2-VL-7B qwen Apache 2.0
Qwen2-VL-72B qwen Apache 2.0
qwen2.5-VL-7B qwen Apache 2.0
qwen2.5-VL-72B qwen Apache 2.0
deepseek-VL-7B deepseek MIT
kimi-VL-A3B MIT MIT
MiMo-VL-7B-RL MIT Apache 2.0
MiMo-VL-7B-SFT MIT Apache 2.0
GLM-4-9B glm-4 Apache 2.0
Intern-VL 2.5 8B Apache-2.0 MIT
Intern-VL 2.5 38B Apache-2.0 MIT
Intern-VL 3 8B Apache-2.0 MIT
Intern-VL 3 38B Apache-2.0 MIT
Intern-VL 3.5 8B Apache-2.0 MIT
Intern-VL 3.5 38B Apache 2.0 MIT
llava-onevision-qwen2-7b-si Apache 2.0 Apache 2.0
llava-onevision-qwen2-7b-ov Apache 2.0 Apache 2.0

I MODEL SOURCE

Table 9: The release time and model source of LMMs used in our benchmark.

Model Release Time Source

Closed-source Models

GPT-5 2025-08-07 https://openai.com/zh-Hans-CN/index/introducing-gpt-5/
Claude 4 Sonnet 2025-05-23 https://www.anthropic.com/news/claude-4
Gemini-2.5-pro 2025-06-17 https://deepmind.google/models/gemini/pro/
doubao-seed-1.5 2025-05-11 https://www.volcengine.com/product/doubao
doubao-seed-1.6 2025-06-11 https://www.volcengine.com/product/doubao

Open-source Models

Qwen2-VL-7B 2024-09-18 https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
Qwen2-VL-72B 2024-09-18 https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
qwen2.5-VL-7B 2025-01-26 https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
qwen2.5-VL-72B 2025-01-26 https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
deepseek-VL-7B 2024-03-09 https://huggingface.co/deepseek-ai/deepseek-vl-7b-base
kimi-VL-A3B 2024-08-20 https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking
MiMo-VL-7B-RL 2025-08-10 https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-RL-2508
MiMo-VL-7B-SFT 2025-08-10 https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-SFT-2508
GLM-4-9B 2024-06-19 https://huggingface.co/zai-org/glm-4-9b
Intern-VL 2.5 8B 2024-11-21 https://huggingface.co/OpenGVLab/InternVL2_5-8B
Intern-VL 2.5 38B 2024-11-21 https://huggingface.co/OpenGVLab/InternVL2_5-38B
Intern-VL 3 8B 2025-04-10 https://huggingface.co/OpenGVLab/InternVL3-8B
Intern-VL 3 38B 2025-04-10 https://huggingface.co/OpenGVLab/InternVL3-38B
Intern-VL 3.5 8B 2025-08-25 https://huggingface.co/OpenGVLab/InternVL3_5-8B
Intern-VL 3.5 38B 2024-08-25 https://huggingface.co/OpenGVLab/InternVL3_5-38B
llava-onevision-qwen2-7b-si 2024-07-29 https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-si
llava-onevision-qwen2-7b-ov 2024-07-25 https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

35

https://openai.com/zh-Hans-CN/index/introducing-gpt-5/
https://www.anthropic.com/news/claude-4
https://deepmind.google/models/gemini/pro/
https://www.volcengine.com/product/doubao
https://www.volcengine.com/product/doubao
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
https://huggingface.co/deepseek-ai/deepseek-vl-7b-base
https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking
https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-RL-2508
https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-SFT-2508
https://huggingface.co/zai-org/glm-4-9b
https://huggingface.co/OpenGVLab/InternVL2_5-8B
https://huggingface.co/OpenGVLab/InternVL2_5-38B
https://huggingface.co/OpenGVLab/InternVL3-8B
https://huggingface.co/OpenGVLab/InternVL3-38B
https://huggingface.co/OpenGVLab/InternVL3_5-8B
https://huggingface.co/OpenGVLab/InternVL3_5-38B
https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-si
https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

I.1 LEVEL 1

Level 1 Direct sample 1

Instruction: You are a Python developer proficient in data visualization, with expertise in using libraries such as Matplotlib, NetworkX, Seaborn, and
others.I have a plot generated by Python code, but I don’t have the corresponding code that generated this plot. Your task is to generate the Python code that
can perfectly reproduce the picture based on the image I provide.
Here are the requirements for the task: 1. Data Extraction: Extract the actual data from the provided image. Based on the visual features of the plot, you
must infer the data and recreate the plot. 2. Recreate the Image: Generate the Matplotlib code that reproduces the image exactly as it appears, including all
elements such as: - Plot type (scatter, line, bar, etc.) - Axis labels and titles - Colors, markers, line styles, and other visual styles - Any legends, annotations,
or gridlines present in the image 3. Self-contained Code: The Python code should be complete, executable, and self-contained. It should not require any
external data files or variables not already present in the code. Your objective is to extract the any necessary details from the image and generate a Python
script that accurately reproduces the plot.
Now, please generate the Python code to reproduce the picture below.
Reference figure:

GT Code:

== CB_38 figure code ==
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as mcolors

== CB_38 figure data ==
capabilities = {

’Basic Knowledge’: [
’Vocabulary’, ’Syntax’, ’Semantics’, ’Discourse’, ’Logic’, ’Math Reasoning’

],...}
datasets = ...
def lighten_color(color, amount=0.5):

rgb = mcolors.to_rgb(color)
return tuple(rgb[i] + (1.0 - rgb[i]) * amount for i in range(3))

...

inner_a, size_a, col_a, outer_a, osize_a, ocol_a = prepare_sunburst(capabilities)
inner_b, size_b, col_b, outer_b, osize_b, ocol_b = prepare_sunburst(datasets)
== figure plot ==
fig = plt.figure(figsize=(18.0, 6.0))
plt.subplots_adjust(left=0.05, right=0.85, wspace=0.7)

-- (a) Evaluation capabilities sunburst --
ax1 = fig.add_subplot(1, 3, 1)
...
wedges1, _ = ax1.pie(size_a, radius=0.8, labels=None, startangle=90, colors=col_a, wedgeprops=dict

(width=0.3, edgecolor=’white’))
centre = plt.Circle((0, 0), 0.5, color=’lightgray’, linewidth=0)
ax1.add_artist(centre)
ax1.text(0, 0, ’Explicit\nSemantics’,

ha=’center’, va=’center’, fontsize=10, weight=’bold’)
ax1.set(aspect=’equal’)
ax1.set_title(’(a) Evaluation capabilities’, fontsize=12, pad=45)
ax1.legend(wedges1, inner_a, title=’Capabilities’, loc=’center left’, bbox_to_anchor=(1.3, 0.5),

fontsize=9, frameon=False)
-- (b) Evaluation datasets sunburst --
...
centre2 = plt.Circle((0, 0), 0.5, color=’lightgray’, linewidth=0)
ax2.add_artist(centre2)
-- (c) Overview of evaluation results (radar) --
ax3 = fig.add_subplot(1, 3, 3, projection=’polar’)
N = len(categories)
angles = np.linspace(0, 2*np.pi, N, endpoint=False).tolist()
angles += angles[:1]
...
ax3.xaxis.set_ticks(angles[:-1])
ax3.set_xticklabels([])
ax3.grid(True, linestyle=’:’)

ax3.set_yticks([0.2, 0.4, 0.6, 0.8, 1.0])
ax3.set_ylim(0, 1)
...
ax3.set_title(’(c) Overview of evaluation results’, fontsize=12, pad=45)
ax3.legend(loc=’lower center’, bbox_to_anchor=(0.5, -0.5), ncol=3, fontsize=7, frameon=False)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Level 1 Direct sample 2

Instruction: You are a Python developer proficient in data visualization, with expertise in using libraries such as Matplotlib, NetworkX, Seaborn, and
others.I have a plot generated by Python code, but I don’t have the corresponding code that generated this plot. Your task is to generate the Python code that
can perfectly reproduce the picture based on the image I provide.
Here are the requirements for the task: 1. Data Extraction: Extract the actual data from the provided image. Based on the visual features of the plot, you
must infer the data and recreate the plot. 2. Recreate the Image: Generate the Matplotlib code that reproduces the image exactly as it appears, including all
elements such as: - Plot type (scatter, line, bar, etc.) - Axis labels and titles - Colors, markers, line styles, and other visual styles - Any legends, annotations,
or gridlines present in the image 3. Self-contained Code: The Python code should be complete, executable, and self-contained. It should not require any
external data files or variables not already present in the code. Your objective is to extract the any necessary details from the image and generate a Python
script that accurately reproduces the plot.
Now, please generate the Python code to reproduce the picture below.
Reference figure:

GT Code:

import numpy as np
import matplotlib.pyplot as plt

hours = np.arange(24)
angles = 2 * np.pi * hours / 24

stationary = ...
bus_counts = np.array(...

fig = plt.figure(figsize=(10,10))
...
for th in angles:

ax.plot([th, th], [0, 160], color=’grey’, linewidth=0.5)

baseline = 100
theta = np.linspace(0, 2*np.pi, 360)
ax.plot(theta, np.full_like(theta, baseline), linestyle=’--’, color=’black’, linewidth=1)
inner_circle = np.mean(no2)
ax.plot(theta, np.full_like(theta, inner_circle), linestyle=’--’, color=’grey’, linewidth=1)

ax.text(0, 0, r’NO$_2$Clock’, fontsize=18, fontweight=’bold’, ha=’center’, va=’center’)

bar_width = 2*np.pi/24 * 0.2
offsets = np.array([-1.5, -0.5, 0.5, 1.5]) * bar_width
for vals, off, color, label in zip(

[stationary, bus_counts, truck_counts, industry_proximity],
offsets,
[’tab:blue’,’tab:red’,’lightpink’,’skyblue’],..

ax.bar(angles + off, vals * 100, bottom=baseline, width=bar_width, color=color, label=label)

scale = 0.8
no2_scaled = baseline + (no2 - baseline) * scale
ln, = ax.plot(angles, no2_scaled, color=’black’, linewidth=2, label=’NO2 max value’)
ax.fill(angles, no2_scaled, color=’grey’, alpha=0.7)

for ang, orig_val, r in zip(angles, no2, no2_scaled):
ax.text(ang, r + 2, f’{orig_val}’, ha=’center’, va=’bottom’, fontsize=8, color=’black’)

ax.text(np.deg2rad(30), baseline+15, ’+ve’, fontsize=14, fontweight=’bold’, ha=’center’)
ax.text(np.deg2rad(30), baseline-15, ’-ve’, fontsize=14, fontweight=’bold’, ha=’center’)

ax.legend(loc=’upper right’, bbox_to_anchor=(1.1,1.1), fontsize=10)

plt.show()

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Level 1 Direct sample 3

Instruction: You are a Python developer proficient in data visualization, with expertise in using libraries such as Matplotlib, NetworkX, Seaborn, and
others.I have a plot generated by Python code, but I don’t have the corresponding code that generated this plot. Your task is to generate the Python code that
can perfectly reproduce the picture based on the image I provide.
Here are the requirements for the task: 1. Data Extraction: Extract the actual data from the provided image. Based on the visual features of the plot, you
must infer the data and recreate the plot. 2. Recreate the Image: Generate the Matplotlib code that reproduces the image exactly as it appears, including all
elements such as: - Plot type (scatter, line, bar, etc.) - Axis labels and titles - Colors, markers, line styles, and other visual styles - Any legends, annotations,
or gridlines present in the image 3. Self-contained Code: The Python code should be complete, executable, and self-contained. It should not require any
external data files or variables not already present in the code. Your objective is to extract the any necessary details from the image and generate a Python
script that accurately reproduces the plot.
Now, please generate the Python code to reproduce the picture below.
Reference figure:

GT Code:

import matplotlib.pyplot as plt
import numpy as np

== New radar figure data ==

labels = [’Compute’, ’Storage’, ’Networking’, ’Database’, ’AI/ML’, ’Security’]
num_metrics = len(labels)
angle of each axis in the plot (in radians)
angles = np.linspace(0, 2 * np.pi, num_metrics, endpoint=False).tolist()
complete the loop
angles += angles[:1]

Values for each industry’s cloud service adoption (0-100 scale)
data = ...

industries = list(data.keys())

New modern color scheme
colors = ...
== figure plot ==

fig, axes = plt.subplots(2, 5,
figsize=(15.0, 9.0), # Slightly larger for readability
subplot_kw=dict(polar=True))

axes = axes.ravel()

for ax, name in zip(axes, industries):
vals = data[name]
close the loop
vals_loop = vals + vals[:1]
i = industries.index(name)
....
ax.set_yticks(rticks)
ax.set_yticklabels([f"{int(x)}" for x in rticks], fontsize=8)
ax.set_ylim(0, max_val * 1.1) # Add a small buffer to max_val

title
ax.set_title(name, fontsize=12, fontweight=’bold’, pad=10)

light grid
ax.grid(color=’gray’, linestyle=’--’, linewidth=0.5, alpha=0.7)
ax.spines[’polar’].set_linewidth(1.0)
...

...
plt.tight_layout(rect=[0, 0, 1, 0.96]) # Adjust layout to make space for a potential suptitle
plt.suptitle(’Cloud Service Adoption Across Industries’, fontsize=16, fontweight=’bold’, y=0.99)
plt.savefig("./datasets_level2/radar_15.png", bbox_inches="tight", dpi=300) # Save the figure
plt.show()

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Level 1 Customized (raw data) sample 1

Instruction: I want to use a heatmap to show the variation range of each category for each month, with the horizontal axis representing time and the
vertical axis representing the three categories: Energy, Metals, and Food. The color intensity represents the magnitude of the variation. Please refer to the
uploaded image style to generate runnable Python code.
Reference figure:

Raw data: "dates": ["2020-01-01", "2020-02-01", ... "2024-08-01", "2024-09-01"], "commodities": ["Energy", "Metals", "Food"], "values": [[4.7, ...
-8.1], [1.6, ... -4.7], [8.8, ... -0.3]]
GT Code:

import numpy as np
import matplotlib.pyplot as plt

Data
dates = ..
commodities = ["Energy", "Metals", "Food"]
values = ..

data = np.array(values)

Plot
fig, ax = plt.subplots(figsize=(14, 6))
fig.subplots_adjust(bottom=0.25)

Determine symmetric range around zero
max_abs = np.max(np.abs(data))
im = ax.imshow(data, cmap=’RdYlBu_r’, aspect=’auto’, vmin=-max_abs, vmax=max_abs)

...

Labels and title
ax.set_xlabel(’Month’, fontsize=14)
ax.set_title(’Monthly Commodity Price Change (%)’, fontsize=16, fontweight=’bold’)

Gridlines
ax.set_xticks(np.arange(data.shape[1] + 1) - 0.5, minor=True)
ax.set_yticks(np.arange(data.shape[0] + 1) - 0.5, minor=True)
ax.grid(which=’minor’, color=’white’, linestyle=’-’, linewidth=2)
ax.tick_params(which=’minor’, bottom=False, left=False)

Colorbar
cbar = fig.colorbar(im, ax=ax, orientation=’horizontal’, pad=0.3, aspect=40, shrink=0.8)
cbar.set_label(’Change (%)’, fontsize=12)
cbar.ax.tick_params(labelsize=12)

plt.show()

GT Figure:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Level 1 Customized (table figure) sample 1

Instruction: I want to use the data from the uploaded director compensation table (PNG) and create a combination chart based on the style of the reference
combination chart: the horizontal axis represents the names of the directors, the bar chart displays cash compensation, stock awards, and total compensation
respectively, and a dashed line chart highlights the trends of these three items. Thank you! Adjust the image size to match the aspect ratio of the reference
image; use the dark blue, cyan, and light gray tones from the reference image; for the x-axis labels, tilt them 45 degrees and align them to the right,
mimicking the text style of the reference image; add a title centered at the top, with font effects similar to the reference image; set the y-axis scale range and
intervals according to the reference image; keep the legend position consistent with the reference image, arranged horizontally at the top; apply dashed line
styles as in the reference image, and mimic the marker shapes from the reference image.
Reference figure:

Data figure:

GT Code:

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams.update({
’font.family’: ’sans-serif’,
’font.sans-serif’: [’Arial’]

})

names = [’Dr. Ruey-Bin Kao’, ’Julien Mininberg’, ..., ’Eva Manolis’]
fees = [81250, 38599, ..., 90307]
stock_awards = [199997, 199995, ..., 199997]
total = [281247, 238594, ..., 290304]

x = np.arange(len(names))
fig, ax = plt.subplots(figsize=(12, 6))

ax.grid(axis=’y’, linestyle=’--’, alpha=0.7)
ax.bar(x - 0.25, fees, 0.25, label=’Fees Earned’, color=’#1f77b4’, alpha=0.8)
ax.bar(x, stock_awards, 0.25, label=’Stock Awards’, color=’#4c9dbd’, alpha=0.8)
ax.bar(x + 0.25, total, 0.25, label=’Total Compensation’, color=’#e0e0e0’, alpha=0.8)

ax.plot(x, fees, ’--o’, color=’#1f77b4’, label=’Fees Line’)
ax.plot(x, stock_awards, ’--o’, color=’#ff7f0e’, label=’Stock Awards Line’)
ax.plot(x, total, ’--o’, color=’#2ca02c’, label=’Total Line’)
ax.set_xticks(x)
ax.set_xticklabels(names, rotation=45, ha=’right’)
ax.set_ylabel(’Compensation ($)’)

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels, loc=’upper center’, bbox_to_anchor=(0.5, 1.15), ncol=3)

plt.tight_layout()
plt.show()

GT Figure:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

I.2 LEVEL 2

Level 2 sample 1

Instruction: Use GridSpec to create a complex 1+2 layout. The top section will feature a large subplot (spanning the entire width) to display "raincloud
plots" (half-violin plots + box plots + scatter plots) for all four categories... enabling an in-depth comparison of these two distinctly different distributions.
On this basis: - Set the overall canvas size to 14 inches wide × 10 inches high. - Continue using four fixed colors: light orange ‘#FFC0A0‘, light green
‘#B0E0B0‘, light purple ‘#B9A0E0‘, and beige ‘#FFE4C4‘. Use a red line to mark the mean value in the histograms. - Use a GridSpec layout with two
rows and two columns. The first row spans both columns for the top plot, while the second row places the two histograms side by side, one in each column.
The row height ratio should be explicitly set to 2:1. - Rotate the X-axis tick labels of the top subplot counterclockwise by 20 degrees. - Maintain a white
background and gray grid lines (‘#D3D3D3‘).
Reference figure:

GT Code:

== line_19 figure code ==
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.gridspec as gridspec

== line_19 figure data ==
epochs = np.arange(1, 31)

FinTabNet variants
ftn_a1 = np.array([...
...

== Data Processing for Dashboard ==
1. Group data
fintabnet_group_data = np.array([ftn_a1, ftn_a2, ftn_a3, ftn_a4, ftn_a5, ftn_a6])
pt1m_based_group_data = np.array([pubtables, pt1m_av1, pt1m_av6])
all_models_data = np.vstack([fintabnet_group_data, pt1m_based_group_data])
all_models_labels = [’FTN.a1’, ’FTN.a2’, ’FTN.a3’, ’FTN.a4’, ’FTN.a5’, ’FTN.a6’, ’PubTables’, ’

PT1M+FTN.av1’, ’PT1M+FTN.av6’]
...
3. Final performance data
...
4. Significant surpass point
diff = pt1m_av6 - pubtables
surpass_margin = 0.05
surpass_epoch_idx = np.where(diff > surpass_margin)[0]
first_surpass_epoch = epochs[surpass_epoch_idx[0]] if len(surpass_epoch_idx) > 0 else None

...
Plot 3: Key Model Showdown

...
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.savefig("./datasets/line_19.png")
plt.show()

GT figure:

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Level 2 sample 2

Instruction: Create a comprehensive, dashboard-style analytical view that juxtaposes raw data trends, statistical distributions, and localized details.
1. Layout Modifications: Use ‘GridSpec‘ to create a complex 2x2 grid layout. The top-left main plot (spanning the 1st row and 1st column) is a composite
chart (three CCA lines + CKA bar chart). The top-right subplot (spanning the 1st row and 2nd column) is a box plot, used to display the overall data
distribution of four data series (cca_top1, cca_top3, cca_top10, cka). The large bottom plot (spanning the 2nd row and all columns) is a
"zoomed-in" view of the main plot, specifically focusing on the "Center Layer" in the range of 10 to 20 for the CCA line chart details.
2. Chart Type Conversion and Combination: In the top-right subplot, create a box plot for each of the four datasets and set appropriate labels. In the bottom
zoomed-in plot, only draw the three CCA line charts and omit the CKA bar chart to emphasize the localized CCA dynamics. ...
Additional Requirements: – Set the canvas size to 15×10 inches. – Use a 2×2 ‘GridSpec‘ layout with width ratios ‘[2,1]‘ and height ratios ‘[1,1]‘. The
top-left main plot occupies the 1st row and 1st column, the top-right box plot occupies the 1st row and 2nd column, and the bottom zoomed-in plot spans
the 2nd row across all columns... – For the box plots, use a fill color of ‘#d3d3d3‘, black borders, and red median lines. – For the zoomed-in region
rectangle, use a gray fill with transparency 0.2, a red dashed border, and red dashed connecting lines.
Reference figure:

GT Code:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.patches import Rectangle, ConnectionPatch
import numpy as np

layers = list(range(2, 30))
cca_top1 = [0.997, 0.997, ...
Create figure with constrained layout
fig = plt.figure(figsize=(15, 10), constrained_layout=True)
gs = gridspec.GridSpec(2, 2, width_ratios=[2, 1], height_ratios=[1, 1], figure=fig)
...
ax_main_twin = ax_main.twinx()

--- Main Plot (Top-Left) ---
bar_width = 0.6
...
labels = [h.get_label() for h in handles]
ax_main.legend(handles, labels, loc=’lower center’, ncol=4, fontsize=10, bbox_to_anchor=(0.5,

-0.25))

--- Box Plot (Top-Right) ---
data_for_boxplot = [cca_top1, cca_top3, cca_top10, cka]
box_labels = [’CCA:Top 1’, ’CCA:Top 3’, ’CCA:Top 10’, ’CKA’]
...
ax_box.grid(True, axis=’y’, linestyle=’--’, linewidth=0.5, alpha=0.7)

--- Zoomed Plot (Bottom) ---
zoom_range = (10, 20)
ax_zoom.plot(layers, cca_top1, color=’#1f77b4’, marker=’o’, markersize=6, lw=1.5)
...
ax_zoom.grid(True, linestyle=’--’, linewidth=0.5, alpha=0.7)

--- Visual Connection ---
rect = Rectangle((zoom_range[0], 0.84), zoom_range[1] - zoom_range[0], 1.002 - 0.84,

facecolor=’grey’, alpha=0.2, edgecolor=’red’, linestyle=’--’)
...
fig.add_artist(con2)

plt.show()

GT figure:

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Level 2 sample 3

Instruction: Create a comprehensive, dashboard-style multi-panel analysis plot to deeply explore the relationships between model performance, tool wear
growth, and model comparisons. The specific requirements are as follows:
Reference figure:

GT Code:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.gridspec as gridspec

np.random.seed(0)
runs = np.arange(5, 15)
mean35 = [2.5, ..
std35 = [0.5,...

fig = plt.figure(figsize=(18, 10))
gs = gridspec.GridSpec(2, 2, width_ratios=[3, 2], height_ratios=[1, 1])

pos1 = runs - 0.2
pos2 = runs + 0.2
..
vp1 = ax_main.violinplot(data35, positions=pos1, widths=0.4, showmedians=True)
ax_main.grid(True, linestyle="--", alpha=0.6)
ax_main.set_title("A) Model Performance Distribution vs. Tool Wear", fontsize=16, loc=’left’)

ax_wear = ax_main.twinx()
ax_wear.plot(runs, tool_wear, color="red", marker="o", markersize=6, linewidth=2)
ax_wear.set_ylabel("Tool Wear (mm)", color="red", fontsize=14)
...
ax_growth.grid(axis=’y’, linestyle=’--’, alpha=0.6)

median35 = [np.median(d) for d in data35]
median4 = [np.median(d) for d in data4]

highlight_run_idx = max_growth_idx + 1
ax_compare.scatter(median35, median4, c=runs, cmap=’viridis’, s=60, alpha=0.8)
...
ax_compare.grid(True, linestyle=’--’, alpha=0.6)
ax_compare.text(0.95, 0.05, ’GPT-4 Better’, transform=ax_compare.transAxes,

ha=’right’, va=’bottom’, fontsize=12, color=’green’, style=’italic’)
...
ax_main.annotate(’Max Wear Growth’, xy=(max_growth_run, 4.0), xytext=(max_growth_run, 5.0),

arrowprops=dict(facecolor=’#e31a1c’, shrink=0.05, width=1.5, headwidth=8),
fontsize=12, color=’#e31a1c’, ha=’center’, bbox=dict(boxstyle="round,pad=0.3", fc="

white", ec="#e31a1c", lw=1))

fig.suptitle("Comprehensive Analysis of LLM-based Digital Twin Performance", fontsize=20, y=0.98)
plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.show()

GT figure:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Level 2 sample 4

Instruction:
1. Use ‘GridSpec‘ to create a complex dashboard-style layout: - The left side contains a main plot occupying a 2x2 space. - The right side contains two
subplots, each occupying a 1x1 space.
2. **Main Plot (Left Side)**: - Retain the original bar chart and exponential trend line. - Display the absolute values and trends of the annual research
count.
3. **Top-Right Subplot**: - Convert the original data into an area chart. - Show the cumulative total of research counts to analyze the expansion of overall
scale.
4. **Bottom-Right Subplot**: - Use a donut chart to display the proportion of research counts from the last three years (2022–2024) relative to their total. -
Highlight the distribution of recent contributions.
5. Add titles to all subplots and ensure a unified visual style for clear communication and coordinated layout.
Additional Modifications: - Adjust the overall canvas size to 16 inches × 9 inches. - Configure the layout as ‘GridSpec(2,3)‘: - The main plot occupies
the first and second columns of all rows. - The top-right subplot is placed in the first row, third column. - The bottom-right subplot is placed in the second
row, third column. - **Styling**: - Main plot bar color: ‘’#1a5276’‘. - Main plot trend line color: ‘red‘. - Area chart fill color: ‘’#5dade2’‘, line color:
‘’#1a5276’‘. - Donut chart colors: ‘[’#1abc9c’, ’#f1c40f’, ’#e74c3c’]‘. - Donut chart percentage text: white and bold. - Overall title font: size 22, bold. -
Subplot titles font: size 16. - Axis titles font: size 14. - Tick labels font: size 12. - Top-right chart annotations font: size 12, bold. - Donut chart center text
font: size 14, bold. - Pie chart percentage text font: size 8, bold.
Reference figure:

GT Code:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

years = np.array([2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024])
x = np.arange(len(years))
...
gs = gridspec.GridSpec(2, 3, figure=fig)
ax1 = fig.add_subplot(gs[:, 0:2])
...
ax1.set_xlabel(’Year’, fontsize=14, color=’grey’)
ax1.set_ylabel(’Number of Studies’, fontsize=14, color=’grey’)
...
for spine in [’top’, ’right’]:

ax2.spines[spine].set_visible(False)
ax2.grid(axis=’y’, linestyle=’--’, alpha=0.7)
ax2.text(years[-1], cumulative_y[-1], f’ Total:\n {cumulative_y[-1]}’, ha=’right’, va=’top’,

fontsize=12, fontweight=’bold’)

colors = [’#1abc9c’, ’#f1c40f’, ’#e74c3c’]
wedges, texts, autotexts = ax3.pie(last_3_years_data,...
ax3.add_artist(centre_circle)
ax3.set_title(’Contribution in Last 3 Years’, fontsize=16, pad=10)
ax3.text(0, 0, f’Total:\n{sum(last_3_years_data)}’, ha=’center’, va=’center’, fontsize=14,

fontweight=’bold’)
plt.setp(autotexts, size=8, weight="bold", color="white")

plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.show()

GT figure:

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Level 2 sample 5

Instruction:
Create a 2x2 dashboard to comprehensively compare model performance.
1. **Top-left plot (Performance Trend Comparison):** Divide the models into two groups: ’FinTabNet’ and ’PT1M-based’. ...
2. **Top-right plot (Final Performance Ranking):** Use a horizontal bar chart to show the final accuracy of all 9 models at the last epoch..y.
3. **Bottom-left plot (Key Model Showdown):** Plot the performance curves of the best model ‘pt1m_av6‘ and the baseline model ‘pubtables‘ separately.
Identify the epoch where ‘pt1m_av6‘ first surpasses ‘pubtables‘ by more than 0.05 in accuracy, and use ‘axvspan‘ to highlight the region from ...
4. **Bottom-right plot (Performance vs. Stability):** Create a scatter plot where the X-axis represents the average accuracy of each model (mean over 30
epochs), and the Y-axis represents the standard deviation of accuracy. This plot evaluates whether high performance is accompanied by high instability.
Add text labels to the best-performing, most stable, and most unstable models on the plot.
— Additional Modifications: - Set the overall canvas size to 16×12 inches. - Use a 2-row, 2-column ‘GridSpec‘ layout with row spacing of 0.4 and column
spacing of 0.3. - Use a bold font size of 20 for the main title, regular font size of 12 for subplot titles, axis labels, and tick marks, and font size of 10 for
legends... and semi-transparency. Use font size 9 for labels and adjust them horizontally by 0.002. - Use dashed grid lines with approximately 30
Reference figure:

GT Code:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.gridspec as gridspec

data = {
"TopK_65k_256": [-0.4625, -0.4049, ...

clean_data = {k: [x for x in v if x is not None] for k, v in data.items()}
...
fig.suptitle("Comprehensive Analysis of Pearson Correlation", fontsize=20, fontweight=’bold’)

--- Top Plot: Raincloud Plot ---
order = ["TopK_65k_256", "MatryoshkaTopk_65k_256", "GemmaScope_65k", "Random_init_65k_256"]
colors = ["#FFC0A0", "#B0E0B0", "#B9A0E0", "#FFE4C4"]
...
Jittered points
sns.stripplot(x="SAE Type", y="Pearson Correlation", data=df, order=order, ax=ax_main,..

Boxplot
sns.boxplot(x="SAE Type", y="Pearson Correlation", data=df, order=order, ax=ax_main,
...
ax_main.tick_params(axis=’x’, labelsize=12, labelrotation=-20)
ax_main.tick_params(axis=’y’, labelsize=12)

--- Bottom-Right Plot: Histogram for Random_init ---
random_data = df[df["SAE Type"] == "Random_init_65k_256"]["Pearson Correlation"]
...
sns.despine(fig=fig)
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()

GT figure:

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

I.3 LEVEL 3

Level 3 sample 1

Instruction: I have an Excel spreadsheet to analyze, which contains fuel types and corresponding horsepower values. Please generate a plotting code based
on the style of the grouped box plot I uploaded to display the horsepower distribution for different fuel types. Use a canvas size precisely 13 inches wide and
8 inches high, with the color scheme set to Set3. The entire chart should contain only one subplot, without complex layouts like GridSpec. The title should
be "Horsepower by Fuel Type," the X-axis label should be "Fuel Type," and the Y-axis label should be "Horsepower (hp)." Keep all text at Matplotlib’s
default font size and style; rotate the X-axis tick labels 45 degrees; finally, apply a tight layout to ensure there is no excess whitespace between elements.
Reference Figure:

GT Code:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

data_x_groups = [’plug in hyrbrid’, ’Petrol’, ’Diesel’, ’Hybrid’, ...]
data_y_values = [963.0, 563.0, 381.0, 1160.0, ...]

df = pd.DataFrame({
’fuel_types’: data_x_groups,
’horsepower_num’: data_y_values

})

plt.figure(figsize=(13, 8))

sns.boxenplot(data=df, x=’fuel_types’, y=’horsepower_num’, palette=’Set3’)

plt.title(’Horsepower by Fuel Type’)
plt.xlabel(’Fuel Type’)
plt.ylabel(’Horsepower (hp)’)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

GT Figure:

Level 3 sample 2

Instruction: Based on the Excel table to be analyzed, mimic the drawing style of the image I uploaded as an attachment to create a scatter plot of Email1
length and Email2 length. The specific requirements are as follows: 1. Set the image size to 8 inches wide and 8 inches high; 2. Use cross-shaped markers
for the scatter plot, with a fixed size of 200, a marker border width of 2, and map the "coolwarm" color scheme starting from sample index 1; 3. Add a color
bar on the right side, with a gap of 0.05 between the color bar and the main plot, and set the aspect ratio to 1:30; 4. Add gray dashed arrows on the color
bar, with the arrow style as "→", line type as dashed, line width of 2, pointing from above (2.8) to below (2.8) on the color bar scale; 5. Replace the color
bar label with "Index", rotate it vertically by 90 degrees, font size 14, bold; 6. The main title of the chart is "(a) Correlation of Email1 and Email2 Lengths",

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

font size 24, bold, 20 units from the top edge, with a vertical position set to 1.05; 7. Both the horizontal axis title "Email1 Length" and the vertical axis title
"Email2 Length" should use font size 18, bold style, with a distance of 10 units from the axis labels; 8. Fix the axis range from 10 to 40, adjust the tick
label font size to 14, and do not display grid lines.
Reference Figure:

GT Code:

import numpy as np
import matplotlib.pyplot as plt

Data: lengths of Email1 and Email2
email1_len = np.array([18, 20, ...
email2_len = np.array([26, 23, ...

Color by index
t = np.arange(1, len(email1_len) + 1)

Plot
fig, ax = plt.subplots(figsize=(8, 8))
sc = ax.scatter(email1_len, email2_len, c=t, cmap=’coolwarm’, s=200, marker=’x’, linewidths=2)
..
ax.set_title(

’(a) Correlation\nof Email1 and Email2 Lengths’,
fontsize=24, fontweight=’bold’, pad=20, y=1.05

)
ax.set_xlabel(’Email1 Length’, fontsize=18, fontweight=’bold’, labelpad=10)
ax.set_ylabel(’Email2 Length’, fontsize=18, fontweight=’bold’, labelpad=10)
...
ax.grid(False)

plt.tight_layout()
plt.show()

GT Figure:

Level 3 sample 3

Instruction: I have an Excel spreadsheet to analyze, which contains two columns of data: “mental_health_history” and “depression.” I want to compare the
distribution of depression scores between groups with and without a mental health history, mimicking the style of the image I uploaded as an attachment,
and generate a box plot with a width of 10 inches and a height of 6 inches: - Use fill color "#FFA07A" for the group without a mental health history and
"#20B2AA" for the group with a mental health history. The box edges, whiskers, caps, and median line colors should be "#CC8062" and "#1A8E88"
(corresponding to the two groups). - Do not display outliers; - Plot scatter points offset by 0.2 on either side of the box, with scatter point colors matching
the corresponding box fill color. The point edge color should be white, with an edge width of 0.5, size 50, opacity 0.8, and add random jitter of ±0.04

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

horizontally; - Set the overall background color to "#E5F7FD," grid line color to white, and style to solid lines; - X-axis tick labels should be "No History"
and "With History," with a font size of 14; - Y-axis should display a range from 0 to 30 with a step of 5, and tick label font size should be 14; - Y-axis title
should be "Depression Score," with a font size of 18 and bold; - Finally, call automatic layout adjustment to prevent label overlap.
Reference Figure:

GT Code:

import json
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors

Load data from JSON
data_json = ’’’
{"x": ["0", "1", ...
’’’
data = json.loads(data_json)
...

Define groups and labels
groups = [0, 1]
group_labels = [’No History’, ’With History’]

Define colors
colors = ["#FFA07A", "#20B2AA"]
dark_colors = [mcolors.to_hex(np.clip(np.array(mcolors.to_rgb(c)) * 0.8, 0, 1)) for c in colors]

Set theme
sns.set_theme(...

Plot
fig, ax = plt.subplots(figsize=(10, 6))
box_offset = +0.2
point_offset = -0.2
jitter = 0.04

for i, g in enumerate(groups):
vals = df.loc[df[’mental_health_history’] == g, ’depression’].values
Boxplot
ax.boxplot(...

Customize axes
ax.set_xticks(range(len(groups)))
ax.set_xticklabels(group_labels, fontsize=14)
...

plt.tight_layout()
plt.show()

GT Figure:

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Figure 7: Selected charts of the Chart2Code.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

J EVALUATION CODE

J.1 COLOR

Color evaluation code

class ColorEvaluator:
TYPE_WEIGHTS = {

’patch_face’: 1.0,
’line_color’: 1.0,
’scatter_color’: 1.0,
’scatter_palette’: 0.7,
’text_color’: 1.0,
’poly3d_palette’: 0.7,
’patch_edge’: 0.01,
’axes_bg’: 0.01,
’figure_bg’: 0.01,
’spine’: 0.01,
’tick_label’: 0.05,
’axis_label’: 0.05,
’title’: 0.05,
’legend_text’: 0.05,
’legend_bg’: 0.01,

}
DEFAULT_WEIGHT = 0.1

def __init__(self) -> None:
self.metrics = ColorMetrics()

def __call__(self, gen_fig: Optional[Figure], gt_fig: Optional[Figure]) -> ColorMetrics:
if gen_fig is None or gt_fig is None:

self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "can not find Figure "
return self.metrics

try:
generation_data = self._extract_colors_from_figure_expert(gen_fig)
gt_data = self._extract_colors_from_figure_expert(gt_fig)
self._calculate_metrics(generation_data, gt_data)

except Exception as e:
logger.error(f"color evaluate error: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_colors_from_figure_expert(self, figure: Figure) -> Dict[str, Dict[str, str]]:

extracted_data = defaultdict(dict)
fallback_counters = defaultdict(int)

if color := convert_color_to_hex(figure.patch.get_facecolor()): extracted_data[’figure_bg’][
’figure’] = color

for ax in figure.axes:
if color := convert_color_to_hex(ax.patch.get_facecolor()): extracted_data[’axes_bg’][f’

ax_{id(ax)}’] = color

if ax.get_legend():
for handle, label in zip(ax.get_legend().legend_handles, ax.get_legend().get_texts()):

key = label.get_text()
color = None
if hasattr(handle, ’get_facecolor’): color = convert_color_to_hex(handle.

get_facecolor())
elif hasattr(handle, ’get_color’): color = convert_color_to_hex(handle.get_color())
if color:

if isinstance(handle, plt.Rectangle): extracted_data[’patch_face’][key] = color
else: extracted_data[’line_color’][key] = color

try:
tick_labels = [tick.get_text() for tick in ax.get_xticklabels()]
for i, patch in enumerate(ax.patches):

if color := convert_color_to_hex(patch.get_facecolor()):
key = tick_labels[i] if i < len(tick_labels) and tick_labels[i] else None
if not key: key = f"patch_{fallback_counters[’patch_face’]}"; fallback_counters[

’patch_face’] += 1
if key not in extracted_data[’patch_face’]: extracted_data[’patch_face’][key] =

color
if e_color := convert_color_to_hex(patch.get_edgecolor()):

key = tick_labels[i] if i < len(tick_labels) and tick_labels[i] else f"
patch_edge_{i}"

extracted_data[’patch_edge’][key] = e_color
except Exception as e: logger.warning(f"handing Patches error: {e}")

try:
for line in ax.lines:

if color := convert_color_to_hex(line.get_color()):
key = line.get_label()

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

if not key or key.startswith(’_’): key = f"line_{fallback_counters[’line_color
’]}"; fallback_counters[’line_color’] += 1

if key not in extracted_data[’line_color’]: extracted_data[’line_color’][key] =
color

except Exception as e: logger.warning(f"handing Lines error: {e}")

try:
for collection in ax.collections:

colors = collection.get_facecolors()
if len(colors) == 0: continue

if len(set(map(tuple, colors))) == 1:
if color := convert_color_to_hex(colors[0]):

key = collection.get_label()
if not key or key.startswith(’_’): key = f"scatter_group_{fallback_counters[’

scatter_color’]}"; fallback_counters[’scatter_color’] += 1
if key not in extracted_data[’scatter_color’]: extracted_data[’scatter_color’

][key] = color

else:
for c in {convert_color_to_hex(c) for c in colors if c is not None}:

key = f"palette_color_{fallback_counters[’scatter_palette’]}";
fallback_counters[’scatter_palette’] += 1

extracted_data[’scatter_palette’][key] = c
except Exception as e: logger.warning(f"handle Collections error: {e}")

try:
for text in ax.texts:

if color := convert_color_to_hex(text.get_color()):
key = text.get_text()
if key: extracted_data[’text_color’][key] = color

except Exception as e: logger.warning(f"handle Texts error: {e}")

if (color := convert_color_to_hex(ax.title.get_color())): extracted_data[’title’][’title’
] = color

if (color := convert_color_to_hex(ax.xaxis.label.get_color())): extracted_data[’
axis_label’][’xlabel’] = color

if (color := convert_color_to_hex(ax.yaxis.label.get_color())): extracted_data[’
axis_label’][’ylabel’] = color

return dict(extracted_data)

J.2 GRID

Grid evaluation code

class GridEvaluator:
def __init__(self) -> None:

self.metrics = GridMetrics()

def __call__(self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) -> GridMetrics:
if gen_fig is None or gt_fig is None:

self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not get a valid Figure object"
return self.metrics

try:
generation_grids = self._extract_grids_from_figure(gen_fig)
gt_grids = self._extract_grids_from_figure(gt_fig)
self._calculate_metrics(generation_grids, gt_grids)

except Exception as e:
logger.error(f"Error during grid evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_grids_from_figure(self, fig: plt.Figure) -> List[Dict]:
"""Directly extracts grid information from a Figure object."""
grids = []
for ax in fig.axes:

x_grid_visible = any(line.get_visible() for line in ax.get_xgridlines())
y_grid_visible = any(line.get_visible() for line in ax.get_ygridlines())
if x_grid_visible or y_grid_visible:

grids.append({
’x_grid_visible’: x_grid_visible,
’y_grid_visible’: y_grid_visible

})
return grids

def _calculate_metrics(self, generation_grids: List[Dict], gt_grids: List[Dict]) -> None:
"""Calculates precision, recall, and F1-score for grid usage."""
if not generation_grids and not gt_grids:

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.f1 = 1.0
return

if not gt_grids or not generation_grids:
self.metrics.precision = 0.0; self.metrics.recall = 0.0; self.metrics.f1 = 0.0
return

n_correct = 0
gt_grids_copy = gt_grids.copy()
for gen_grid in generation_grids:

if gen_grid in gt_grids_copy:
n_correct += 1
gt_grids_copy.remove(gen_grid)

self.metrics.precision = n_correct / len(generation_grids) if generation_grids else 1.0
self.metrics.recall = n_correct / len(gt_grids) if gt_grids else 1.0
if self.metrics.precision + self.metrics.recall > 0:

self.metrics.f1 = 2 * self.metrics.precision * self.metrics.recall / (self.metrics.
precision + self.metrics.recall)

else:
self.metrics.f1 = 0.0

J.3 LAYOUT

Layout evaluation code

class LayoutEvaluator:
def __init__(self) -> None:

self.metrics = LayoutMetrics()

def __call__(self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure], gen_file_path:
str, gt_file_path: str) -> LayoutMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not get a valid Figure object"
return self.metrics

try:
generation_layouts = self._extract_layout_from_figure(gen_fig, gen_file_path)
gt_layouts = self._extract_layout_from_figure(gt_fig, gt_file_path)
self._calculate_metrics(generation_layouts, gt_layouts)

except Exception as e:
logger.error(f"Error during layout evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_layout_from_figure(self, fig: plt.Figure, file_path: str) -> List[Dict]:
if "/graph" in file_path:

return [dict(nrows=1, ncols=1, row_start=0, row_end=0, col_start=0, col_end=0)]
layout_info = []
for ax in fig.axes:

spec = ax.get_subplotspec()
if spec is None: continue
gs = spec.get_gridspec()
nrows, ncols = gs.get_geometry()
row_start, row_end = spec.rowspan.start, spec.rowspan.stop - 1
col_start, col_end = spec.colspan.start, spec.colspan.stop - 1
layout_info.append(dict(

nrows=nrows, ncols=ncols,
row_start=row_start, row_end=row_end,
col_start=col_start, col_end=col_end

))
return layout_info

def _calculate_metrics(self, generation_layouts: List[Dict], gt_layouts: List[Dict]) -> None:
if not generation_layouts and not gt_layouts:

self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.f1 = 1.0
return

if not gt_layouts or not generation_layouts:
self.metrics.precision = 0.0; self.metrics.recall = 0.0; self.metrics.f1 = 0.0
return

n_correct = 0
gt_layouts_copy = gt_layouts.copy()
for layout in generation_layouts:

if layout in gt_layouts_copy:
n_correct += 1
gt_layouts_copy.remove(layout)

self.metrics.precision = n_correct / len(generation_layouts) if generation_layouts else 1.0
self.metrics.recall = n_correct / len(gt_layouts) if gt_layouts else 1.0
if self.metrics.precision + self.metrics.recall > 0:

self.metrics.f1 = 2 * self.metrics.precision * self.metrics.recall / (self.metrics.
precision + self.metrics.recall)

else:
self.metrics.f1 = 0.0

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

J.4 LEGEND

Legend evaluation code

class LegendEvaluator:
def __init__(self, use_position: bool = True) -> None:

self.metrics = LegendMetrics()
self.use_position = use_position

def __call__(self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) ->
LegendMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not get a valid Figure object"
return self.metrics

try:
gen_fig.canvas.draw()
gt_fig.canvas.draw()
generation_legends = self._extract_legends_from_figure(gen_fig)
gt_legends = self._extract_legends_from_figure(gt_fig)
self._calculate_metrics(generation_legends, gt_legends)

except Exception as e:
logger.error(f"Error during legend evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_legends_from_figure(self, fig: plt.Figure) -> List[Dict]:
legends_info = []
renderer = fig.canvas.get_renderer()
all_legends = fig.legends[:]
for ax in fig.axes:

if ax.get_legend():
all_legends.append(ax.get_legend())

for legend in set(all_legends):
if not legend or not legend.get_visible():

continue
legend_bbox = legend.get_window_extent(renderer)
for text_obj in legend.get_texts():

if text_obj.get_visible() and text_obj.get_text():
legends_info.append({

"text": text_obj.get_text(),
"bbox": (legend_bbox.x0, legend_bbox.y0, legend_bbox.x1, legend_bbox.y1)

})
return legends_info

def _calculate_metrics(self, generation_legends: List[Dict], gt_legends: List[Dict]) -> None:
if not generation_legends and not gt_legends:

self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.f1 = 1.0
return

if not gt_legends or not generation_legends:
self.metrics.precision = 0.0; self.metrics.recall = 0.0; self.metrics.f1 = 0.0
return

n_correct = 0
gt_legends_copy = gt_legends.copy()
for gen_legend in generation_legends:

best_match = None
for gt_legend in gt_legends_copy:

if gen_legend["text"] == gt_legend["text"]:
if self.use_position:

gen_box, gt_box = gen_legend["bbox"], gt_legend["bbox"]
xA = max(gen_box[0], gt_box[0]); yA = max(gen_box[1], gt_box[1])
xB = min(gen_box[2], gt_box[2]); yB = min(gen_box[3], gt_box[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
if interArea > 0:

best_match = gt_legend
break

else:
best_match = gt_legend
break

if best_match:
n_correct += 1
gt_legends_copy.remove(best_match)

self.metrics.precision = n_correct / len(generation_legends) if generation_legends else 1.0
self.metrics.recall = n_correct / len(gt_legends) if gt_legends else 1.0
if self.metrics.precision + self.metrics.recall > 0:

self.metrics.f1 = 2 * self.metrics.precision * self.metrics.recall / (self.metrics.
precision + self.metrics.recall)

else:
self.metrics.f1 = 0.0

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

J.5 VISUAL

Visual evaluation code

J.6 DATA

Data evaluation code

--- V10: Hardened Evaluator Class with Strict Logic ---
class ParameterEvaluator:

def __init__(self) -> None:
self.metrics = ParameterMetrics()
self.DATA_PARAM_KEYS = {’xdata’, ’ydata’, ’offsets’, ’xy’, ’verts’, ’width’, ’height’, ’

sizes’}
self.IGNORED_PARAMS = {’color’, ’c’, ’colors’, ’label’, ’labels’, ’edgecolor’, ’facecolor’}

def __call__(self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) ->
ParameterMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not get a valid Figure object"
return self.metrics

try:
gen_params = self._extract_params_from_figure(gen_fig)
gt_params = self._extract_params_from_figure(gt_fig)
self._calculate_strict_metrics(gen_params, gt_params)

except Exception as e:
logger.error(f"Error during parameter evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_params_from_figure(self, fig: plt.Figure) -> List[Dict]:
extracted_params = []
for ax in fig.axes:

for line in ax.lines:
params = {

’type’: ’line’, ’xdata’: np.array(line.get_xdata()).tolist(), ’ydata’: np.array(
line.get_ydata()).tolist(),

’linestyle’: line.get_linestyle(), ’linewidth’: line.get_linewidth(), ’marker’:
line.get_marker(),

’markersize’: line.get_markersize(), ’alpha’: line.get_alpha()
}
extracted_params.append(params)

--- HERE IS THE FIX ---
Differentiate between different types of patches
for patch in ax.patches:

params = {’alpha’: patch.get_alpha()}
If it’s a Rectangle (from bar, hist), get width and height
if isinstance(patch, Rectangle):

params.update({
’type’: ’rectangle_patch’,
’xy’: np.array(patch.get_xy()).tolist(),
’width’: patch.get_width(),
’height’: patch.get_height(),

})
extracted_params.append(params)

If it’s a Polygon (from fill, violinplot), get vertices
elif isinstance(patch, Polygon):

params.update({
’type’: ’polygon_patch’,
’verts’: np.array(patch.get_xy()).tolist(),

})
extracted_params.append(params)

Can add more patch types here (e.g., Circle, Ellipse) if needed

for collection in ax.collections:
params = {’type’: ’collection’, ’alpha’: collection.get_alpha()}
if hasattr(collection, ’get_offsets’):

params[’offsets’] = np.array(collection.get_offsets()).tolist()
if hasattr(collection, ’get_sizes’):

params[’sizes’] = np.array(collection.get_sizes()).tolist()
if len(params) > 2: # Check if any data was actually added besides type and alpha

extracted_params.append(params)
return extracted_params

def _calculate_value_similarity(self, val1: Any, val2: Any) -> float:
"""Strictly compares two values, handling numerics, strings, and lists/arrays."""

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

if val1 is None and val2 is None: return 1.0
if val1 is None or val2 is None: return 0.0
try:

if isinstance(val1, str): val1 = float(val1)
if isinstance(val2, str): val2 = float(val2)

except (ValueError, TypeError): pass

if isinstance(val1, (int, float, np.number)) and isinstance(val2, (int, float, np.number)):
return 1.0 if np.isclose(val1, val2) else 0.0

if isinstance(val1, (bool, str)):
return 1.0 if str(val1) == str(val2) else 0.0

if isinstance(val1, (list, np.ndarray)):
if not isinstance(val2, (list, np.ndarray)): return 0.0
if not len(val1) and not len(val2): return 1.0
if not len(val1) or not len(val2): return 0.0
try:

v1 = np.asarray(val1, dtype=float).flatten()
v2 = np.asarray(val2, dtype=float).flatten()
intersection = np.intersect1d(v1, v2).size
union = np.union1d(v1, v2).size
return intersection / union if union > 0 else 1.0

except (ValueError, TypeError):
set1, set2 = set(str(v) for v in val1), set(str(v) for v in val2)
return len(set1.intersection(set2)) / len(set1.union(set2)) if set1.union(set2) else

1.0
return 0.0

def _calculate_strict_metrics(self, gen_elements: List[Dict], gt_elements: List[Dict]):
if not gen_elements and not gt_elements:

self.metrics.data_metrics = self.metrics.visual_metrics = ScoreBlock(1.0, 1.0, 1.0)
return

total_data_score, total_visual_score = 0.0, 0.0
gt_data_count, gt_visual_count = 0, 0
gen_data_count, gen_visual_count = 0, 0

unmatched_gen_elements = gen_elements[:]
for gt_elem in gt_elements:

best_score, best_match_index = -1.0, -1
for i, gen_elem in enumerate(unmatched_gen_elements):

if gt_elem.get(’type’) == gen_elem.get(’type’):
current_score = sum(self._calculate_value_similarity(gt_elem.get(k), gen_elem.get(k

)) for k in gt_elem if k != ’type’)
if current_score > best_score:

best_score, best_match_index = current_score, i

if best_match_index != -1:
matched_gen_elem = unmatched_gen_elements.pop(best_match_index)
all_keys = set(gt_elem.keys()) | set(matched_gen_elem.keys())
for key in all_keys:

if key in self.IGNORED_PARAMS or key == ’type’: continue
category = ’data’ if key in self.DATA_PARAM_KEYS else ’visual’
gt_val, gen_val = gt_elem.get(key), matched_gen_elem.get(key)
score = self._calculate_value_similarity(gt_val, gen_val)
if category == ’data’: total_data_score += score
else: total_visual_score += score

for key in gt_elem:
if key in self.IGNORED_PARAMS or key == ’type’: continue
if key in self.DATA_PARAM_KEYS: gt_data_count += 1
else: gt_visual_count += 1

for gen_elem in gen_elements:
for key in gen_elem:

if key in self.IGNORED_PARAMS or key == ’type’: continue
if key in self.DATA_PARAM_KEYS: gen_data_count += 1
else: gen_visual_count += 1

data_p = total_data_score / gen_data_count if gen_data_count > 0 else 1.0 if not
gt_data_count else 0.0

data_r = total_data_score / gt_data_count if gt_data_count > 0 else 1.0 if not
gen_data_count else 0.0

data_f1 = 2 * (data_p * data_r) / (data_p + data_r) if (data_p + data_r) > 0 else 0.0
self.metrics.data_metrics = ScoreBlock(data_p, data_r, data_f1)

visual_p = total_visual_score / gen_visual_count if gen_visual_count > 0 else 1.0 if not
gt_visual_count else 0.0

visual_r = total_visual_score / gt_visual_count if gt_visual_count > 0 else 1.0 if not
gen_visual_count else 0.0

visual_f1 = 2 * (visual_p * visual_r) / (visual_p + visual_r) if (visual_p + visual_r) > 0
else 0.0

self.metrics.visual_metrics = ScoreBlock(visual_p, visual_r, visual_f1)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

J.7 TEXT

Text evaluation code

class TextEvaluator:
def __init__(self) -> None:

self.metrics = TextMetrics()

def __call__(self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) -> TextMetrics:
if gen_fig is None or gt_fig is None:

self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not get a valid Figure object"
return self.metrics

try:
generation_texts = self._extract_texts_from_figure(gen_fig)
gt_texts = self._extract_texts_from_figure(gt_fig)
self._calculate_metrics(generation_texts, gt_texts)

except Exception as e:
logger.error(f"Error during text evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_texts_from_figure(self, fig: plt.Figure) -> Dict[str, List[str]]:
"""Extracts and categorizes all text elements from a Figure object."""
texts = {

"title": [], "xlabel": [], "ylabel": [], "tick_label": [],
"suptitle": [], "legend_text": [], "annotation": []

}
if fig._suptitle and fig._suptitle.get_text():

texts["suptitle"].append(fig._suptitle.get_text())

for ax in fig.axes:
if ax.title.get_text():

texts["title"].append(ax.title.get_text())
if ax.xaxis.label.get_text():

texts["xlabel"].append(ax.xaxis.label.get_text())
if ax.yaxis.label.get_text():

texts["ylabel"].append(ax.yaxis.label.get_text())

for label in ax.get_xticklabels() + ax.get_yticklabels():
if label.get_text():

texts["tick_label"].append(label.get_text())

if legend := ax.get_legend():
for text in legend.get_texts():

if text.get_text():
texts["legend_text"].append(text.get_text())

for text in ax.texts: # Annotations and ax.text()
if text.get_text():

texts["annotation"].append(text.get_text())

Filter out empty lists
return {k: v for k, v in texts.items() if v}

def _calculate_metrics(self, generation_texts: Dict[str, List[str]], gt_texts: Dict[str, List[
str]]) -> None:

"""Calculates strict metrics based on categorized text similarity."""
if not generation_texts and not gt_texts:

self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.f1 = 1.0
return

total_similarity_score = 0.0
total_gt_text_count = sum(len(texts) for texts in gt_texts.values())
total_gen_text_count = sum(len(texts) for texts in generation_texts.values())

all_categories = set(gt_texts.keys()) | set(generation_texts.keys())

for category in all_categories:
gt_list = gt_texts.get(category, [])
gen_list = generation_texts.get(category, [])

if not gt_list or not gen_list:
continue

Find best match for each generated text using Levenshtein ratio
unmatched_gt = gt_list[:]
for gen_text in gen_list:

if not unmatched_gt: break
best_score = -1
best_match_index = -1
for i, gt_text in enumerate(unmatched_gt):

score = levenshtein_ratio(gen_text, gt_text)
if score > best_score:

best_score = score
best_match_index = i

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

if best_match_index != -1:
total_similarity_score += best_score
unmatched_gt.pop(best_match_index)

self.metrics.precision = total_similarity_score / total_gen_text_count if
total_gen_text_count > 0 else 1.0 if not gt_texts else 0.0

self.metrics.recall = total_similarity_score / total_gt_text_count if total_gt_text_count >
0 else 1.0 if not generation_texts else 0.0

if self.metrics.precision + self.metrics.recall > 0:
self.metrics.f1 = 2 * self.metrics.precision * self.metrics.recall / (self.metrics.

precision + self.metrics.recall)
else:

self.metrics.f1 = 0.0

J.8 TYPE

Type evaluation code

class ChartTypeEvaluator:
def __init__(self) -> None:

self.metrics = ChartTypeMetrics()

def __call__(self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) ->
ChartTypeMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not get a valid Figure object"
return self.metrics

try:
generation_chart_types = self._extract_chart_types_from_figure(gen_fig)
gt_chart_types = self._extract_chart_types_from_figure(gt_fig)
self._calculate_metrics(generation_chart_types, gt_chart_types)

except Exception as e:
logger.error(f"Error during chart type evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_chart_types_from_figure(self, fig: plt.Figure) -> Dict[str, int]:
"""
(V11 - Strict Version) Identifies chart types by inspecting the specific
classes of artists present in a Figure object.
"""

types = set()
for ax in fig.axes:

Check for specific artist types to identify plot types
if any(isinstance(artist, Line2D) for artist in ax.lines):

types.add(’line’)
if any(isinstance(artist, Rectangle) for artist in ax.patches):

types.add(’bar_or_hist’)
if any(isinstance(artist, Wedge) for artist in ax.patches):

types.add(’pie’)
if any(isinstance(artist, PathCollection) for artist in ax.collections):

types.add(’scatter’)
if any(isinstance(artist, PolyCollection) for artist in ax.collections):

types.add(’fill_or_stack’) # e.g., fill_between, stackplot, violinplot
if any(isinstance(artist, QuadMesh) for artist in ax.collections):

types.add(’heatmap_or_grid’) # e.g., pcolormesh, hist2d
if any(isinstance(artist, plt.matplotlib.image.AxesImage) for artist in ax.images):

types.add(’image’)

Convert set to the Counter-like dictionary format for consistency
return {chart_type: 1 for chart_type in types}

def _calculate_metrics(self, generation_chart_types: Dict[str, int], gt_chart_types: Dict[str,
int]) -> None:

"""Calculates strict metrics based on the sets of detected chart types."""
if not generation_chart_types and not gt_chart_types:

self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.f1 = 1.0
return

gen_types_set = set(generation_chart_types.keys())
gt_types_set = set(gt_chart_types.keys())

True Positives: Types present in both ground truth and generation
n_correct = len(gen_types_set.intersection(gt_types_set))

Total number of types detected in the generated plot
total_generated = len(gen_types_set)
Total number of types that should have been in the plot
total_gt = len(gt_types_set)

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

self.metrics.precision = n_correct / total_generated if total_generated > 0 else 1.0 if not
gt_types_set else 0.0

self.metrics.recall = n_correct / total_gt if total_gt > 0 else 1.0 if not gen_types_set
else 0.0

if self.metrics.precision + self.metrics.recall > 0:
self.metrics.f1 = 2 * self.metrics.precision * self.metrics.recall / (self.metrics.

precision + self.metrics.recall)
else:

self.metrics.f1 = 0.0

K PROMPT

K.1 GENERATION PROMPT

DM_prompt

"""You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, and others.I have a
plot generated by Python code, but I don’t have the
corresponding code that generated this plot. Your task
is to generate the Python code that can perfectly

reproduce the picture based on the image I provide.

Here are the requirements for the task:
1. **Data Extraction**: Extract the actual data from the

provided image. Based on the visual features of the
plot, you must infer the data and recreate the plot.

2. **Recreate the Image**: Generate the Matplotlib code
that reproduces the image exactly as it appears,
including all elements such as:

- Plot type (scatter, line, bar, etc.)
- Axis labels and titles
- Colors, markers, line styles, and other visual styles
- Any legends, annotations, or gridlines present in the

image
3. **Self-contained Code**: The Python code should be

complete, executable, and self-contained. It should
not require any external data files or variables not
already present in the code.

Your objective is to extract the any necessary details
from the image and generate a Python script that
accurately reproduces the plot.

Now, please generate the Python code to reproduce the
picture below.

The output format must be strictly as follows:

‘‘‘python
Your Python code here to reproduce the image.
‘‘‘
"""

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

CRD_template

You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, and others. Your
task is to generate Python code that can perfectly
reproduce a plot based on a reference image, a natural
language instruction, and the corresponding data.

Here are the requirements for the task:
1. **Use Provided Data**: You must use the data provided

below in the generated code. Do not infer data from
the image.

2. **Follow Instructions**: Adhere to the specific
plotting instructions provided.

3. **Match Reference Image Style**: Use the reference
image to understand the required visual style (colors,
markers, line styles, labels, titles, legends, etc.)

and replicate it as closely as possible.
4. **Self-contained Code**: The Python code should be

complete, executable, and self-contained. It should
not require any external data files. All data must be
included within the script.

Instruction:
{instruction_text}

Data:
{data_text}

Now, based on the instruction, the data, and the
reference image below, please generate the Python code.
The output format must be strictly as follows:

"""

CFD_prompt

You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, and others.

Your task is to generate Python code that reproduces a
plot. You will be given specific instructions, a data
source image, and a style reference image.

Here are the general requirements:
1. **Data Extraction**: Extract the necessary data from

the ’data source image’.
2. **Style Replication**: Replicate the visual style (

colors, markers, layout, etc.) from the ’style
reference image’.

3. **Follow Instructions**: Adhere to the specific
instructions provided for the task.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

4. **Self-contained Code**: The Python code must be
complete, executable, and self-contained, without
needing external data files.

Specific Task Instructions:
{task_instructions}

Now, using the data from the data source image and
applying the style from the reference image according
to the instructions, please generate the Python code.

The output format must be strictly as follows:

‘‘‘python
Your Python code here to reproduce the image.
‘‘‘
"""

level2_prompt

"""You are an expert Python developer specializing in
data visualization with libraries like Matplotlib. I
have an image of a plot and a set of instructions to
modify it. Your task is to generate the Python code
that would produce the *modified* plot.

Here are the requirements:
1. **Understand the Base Image**: Analyze the provided

image to understand the original plot’s data and
structure.

2. **Apply Edits**: Carefully read the instructions
provided below and apply them to the base plot.

3. **Generate Modified Code**: Generate a single, self-
contained, and executable Python script that produces
the final, edited visualization. The code should not
require any external data files.

Editing Instructions:

{instructions}

Your objective is to generate a Python script that
accurately reproduces the plot *after* applying the
given instructions. The output format must be strictly
a Python code block.

‘‘‘python
Your Python code here to generate the MODIFIED image.
‘‘‘

"""

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

level3_prompt

"""You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, pandas, and others.

Your task is to generate Python code that creates a plot
based on the provided data and instructions. You will
be given specific instructions, data in text format (
extracted from an Excel file), and a style reference
image.

Here are the general requirements:
1. **Use Provided Data**: The data you need to plot is

provided below in CSV format. Each sheet from the
original Excel file is clearly marked. You should use
libraries like pandas and io.StringIO to parse this
CSV data.

2. **Style Replication**: Replicate the visual style (
colors, markers, layout, fonts, etc.) from the ’style
reference image’.

3. **Follow Instructions**: Adhere to the specific
instructions provided for the task.

4. **Self-contained Code**: The Python code must be
complete, executable, and self-contained. The data
should be defined directly within the code (e.g., in a
pandas DataFrame loaded from a string), without

needing to read any external files.

Specific Task Instructions:
{task_instructions}

Data from Excel File (in CSV format):
{excel_data_string}

Now, using the data provided above and applying the style
from the reference image according to the

instructions, please generate the Python code.
The output format must be strictly as follows:

‘‘‘python
Your Python code here to reproduce the image.
‘‘‘
"""

K.2 LLM-SCORE PROMPT

System Prompt

You are an exceptionally strict and meticulous image
analyst. Your task is to evaluate the visual
similarity of two chart images. You must be extremely
critical. Any deviation, no matter how small, must be
penalized heavily. A perfect score is reserved only

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

for images that are visually indistinguishable to the
human eye. Your analysis must be based solely on the
visual information in the images provided.

Compare the ’Ground Truth Image’ and the ’Generated Image
’. Based ONLY on their visual information, evaluate
their similarity.

Evaluation Rules:
1. **Strictness is Key:** Start with a perfect score of

100 and deduct points for EVERY visual difference,
including but not limited to: chart type, data points,
colors, line styles, markers, labels (content, font,

and position), titles, legends, axes (limits, ticks,
scaling), layout, aspect ratio, and any other visual
element.

2. **Identical Means Identical:** A score of 100 is ONLY
for images that are pixel-perfect or visually
indistinguishable. Even a tiny difference in line
thickness or a single different pixel color must
result in a lower score.

3. **Heavy Penalties:** Apply significant penalties for
noticeable differences. For example, a different color
map or a missing legend should lead to a large

deduction.

Return ONLY a single JSON object with two keys: "score" (
an integer from 0 to 100) and "reason" (a concise,
expert analysis in English, detailing every detected
difference that justifies the score deduction). Do not
include any other text, markdown, or explanations

outside the JSON object.

LMM-Score Prompt

You are a meticulous and strict expert Python data
visualization analyst. Your task is to compare two
Python plotting scripts and evaluate the visual
similarity of their final outputs based on a SINGLE,
specific dimension.

Your analysis must be based **solely on the provided code
**. Do not execute it. Your evaluation must be
critical and detail-oriented.

Scoring Philosophy: Assume a perfect score of 100,
then **deduct points for every deviation** you find,
no matter how minor. A score of 100 is reserved ONLY
for scripts that produce visually indistinguishable
plots.

You must return ONLY a single JSON object with two keys:
"score" (an integer from 0 to 100) and "reason" (a
concise, expert analysis in English). Do not include
any other text in your response.

"""

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

"""
’data_handling_and_transformation’: {

’prompt’: """
Critically evaluate the DATA SOURCE and its

TRANSFORMATION.
- Focus on: How the numerical data passed to

the plotting function is generated.
- Check: Hardcoded lists/arrays, ‘pandas‘ or ‘

numpy‘ array creation (e.g., ‘np.linspace
‘), data filtering (‘df[...]‘),
mathematical operations (‘np.sin(x)‘, ‘df
[’a’] * 100‘), and data aggregation.

**Scoring Rubric (Start at 100, deduct points
):**

- **-0 points:** Data generation and
transformations are functionally identical
(e.g., ‘[1, 2, 3]‘ vs ‘np.array([1, 2,

3])‘).
- **-5 points:** Trivial differences in

floating-point precision that are visually
unnoticeable (e.g., ‘np.pi‘ vs ‘3.14159‘).

- **-25 points:** Different data filtering or
selection that results in a subset or

different ordering of the same underlying
data.

- **-50 points:** A different mathematical
transformation is applied to the same base
data (e.g., ‘np.sin(x)‘ vs ‘np.cos(x)‘).

- **-75 points:** The fundamental data
sources are different (e.g., plotting ‘df
[’col_A’]‘ vs ‘df[’col_B’]‘).

- **-100 points:** Data is completely
unrelated in source, shape, and scale.

""",
’weight’: 0.20

},
’chart_type_and_mapping’: {

’prompt’: """
Critically evaluate the CORE CHART TYPE and

DATA-TO-VISUALS MAPPING.
- Focus on: The primary plotting function

call (e.g., ‘plt.plot‘, ‘ax.bar‘, ‘sns.
heatmap‘).

- Check: Which variables are mapped to which
axes (e.g., ‘x=df[’time’]‘, ‘y=df[’value
’]‘) and other visual properties (‘size=‘,
‘hue=‘).

**Scoring Rubric (Start at 100, deduct points
):**

- **-0 points:** The exact same plotting
function is used with the same data-to-
axis mappings.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

- **-15 points:** A visually similar plot
type is used (e.g., ‘plt.plot()‘ vs ‘plt.
scatter()‘).

- **-50 points:** A different plot type is
used, but it’s still plausible for the
data (e.g., ‘plt.bar()‘ vs ‘plt.plot()‘
for time series). The core data variables
on the axes are the same.

- **-75 points:** Key data mappings are
swapped or incorrect (e.g., x and y axes
are flipped; ‘x=’sales’, y=’time’‘ vs ‘x=’
time’, y=’sales’‘).

- **-100 points:** A fundamentally different
and inappropriate chart type is used (e.g
., ‘plt.pie()‘ vs ‘sns.lineplot()‘).

""",
’weight’: 0.25

},
’visual_aesthetics’: {

’prompt’: """
Critically evaluate the VISUAL AESTHETICS

like colors, markers, and line styles.
- Focus on: Explicitly set styling arguments.
- Check: ‘color‘, ‘linestyle‘ (or ‘ls‘), ‘

linewidth‘ (or ‘lw‘), ‘marker‘, ‘
markersize‘, ‘alpha‘, ‘cmap‘ (for heatmaps
/scatter), ‘palette‘ (for seaborn).

**Scoring Rubric (Start at 100, deduct points
):**

- **-0 points:** All explicit style arguments
are identical.

- **-10 points:** A minor style attribute is
different (e.g., ‘linewidth=1.5‘ vs ‘
linewidth=2.0‘, or ‘marker=’o’‘ vs ‘marker
=’x’‘).

- **-30 points:** The primary color is
different (e.g., ‘color=’blue’‘ vs ‘color
=’green’‘). Or, one uses a default color
while the other specifies one.

- **-50 points:** Multiple style attributes
are different (e.g., color and linestyle).

- **-75 points:** The overall aesthetic is
completely different (e.g., a solid blue
line vs a transparent, dashed red line
with markers).

""",
’weight’: 0.20

},
’labels_titles_and_legend’: {

’prompt’: """
Critically evaluate all TEXTUAL ELEMENTS:

labels, titles, and legends.
- Focus on: The content and presence of all

text.
- Check: ‘ax.set_title()‘, ‘ax.set_xlabel()‘,

‘ax.set_ylabel()‘, ‘fig.suptitle()‘, and

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

the ‘label‘ argument in plotting calls
used by ‘ax.legend()‘.

**Scoring Rubric (Start at 100, deduct points
):**

- **-0 points:** All text elements are
present and have identical content.

- **-5 points:** Minor, non-substantive
differences exist (e.g., "Sales Data" vs "
Sales data", or a minor typo).

- **-20 points:** A text element is present
in both, but the content is substantively
different (e.g., "Sales in 2023" vs "
Profit in 2024").

- **-40 points:** A key text element is
missing in one script (e.g., one has a
title, the other does not).

- **-60 points:** Multiple key text elements
are missing or incorrect.

- **-100 points:** No text elements are
present in one or both scripts.

""",
’weight’: 0.15

},
’figure_layout_and_axes’: {

’prompt’: """
Critically evaluate the FIGURE LAYOUT and

AXES configuration.
- Focus on: The overall canvas, subplot

structure, and axis properties.
- Check: ‘plt.figure(figsize=...)‘, ‘plt.

subplots()‘, axis limits (‘ax.set_xlim‘, ‘
ax.set_ylim‘), axis scales (‘ax.set_xscale
‘), and axis direction (‘ax.invert_yaxis()
‘).

**Scoring Rubric (Start at 100, deduct points
):**

- **-0 points:** Figure size, subplot
structure, limits, and scales are all
identical.

- **-10 points:** Figure size is different,
but the aspect ratio is similar.

- **-25 points:** Axis limits are different,
but the data range shown is largely the
same.

- **-50 points:** Axis scales are different (
e.g., ‘linear‘ vs ‘log‘). This is a major
visual change.

- **-75 points:** The subplot structure is
different (e.g., ‘subplots(1, 2)‘ vs ‘
subplots(2, 1)‘).

- **-100 points:** Completely different
layouts (e.g., single plot vs. a complex
grid of subplots).

""",
’weight’: 0.15

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

},
’auxiliary_elements_and_ticks’: {

’prompt’: """
Critically evaluate AUXILIARY elements, grid,

spines, and ticks.
- Focus on: Non-data visual elements that

provide context or structure.
- Check: ‘ax.grid()‘, ‘ax.axhline()‘, ‘ax.

axvspan()‘, ‘ax.spines[...]‘, ‘ax.
tick_params()‘, and explicit tick setting
(‘ax.set_xticks‘).

**Scoring Rubric (Start at 100, deduct points
):**

- **-0 points:** All auxiliary elements and
tick configurations are identical.

- **-15 points:** An element is present in
both but with different styling (e.g., a
solid grid vs a dashed grid). Or, tick
label formatting differs.

- **-30 points:** An important element is
present in one but missing in the other (e.
g., one script calls ‘ax.grid(True)‘ and
the other does not).

- **-50 points:** A major contextual element
is missing (e.g., a crucial ‘ax.axhline(y
=0, ...)‘ that indicates a baseline). Or,
spines are hidden in one but not the other.

- **-75 points:** Major differences in tick
locations (e.g., ‘xticks‘ are explicitly
set to different values).

""",
’weight’: 0.05

}
}

66

	Introduction
	Related Work
	Chart2Code: From Visual Charts to Code
	Task Definition of Chart2Code
	Data Curation and Annotation
	Data curation
	Data filtering
	Data Annotation

	Data Statistics and Analysis
	Evaluation

	Experiments
	Experiments Setup
	Main Experimental Results
	Level-wise Comparison of Models
	Analysis

	Discussion.

	Conclusion and Limitations
	LLM Usage Statement
	User-Centric Case Studies
	Data Curation
	Chart Image Data
	raw data filtering

	More Analysis
	Metric Details
	Overall
	Base Evaluation
	Color Score
	grid Score
	Layout score
	Legend score
	data parameter score
	visual parameter score
	type score
	text score

	LLM-Evaluation
	LMM-Evaluation

	Run configurations
	Open-Source Model Components
	Model License
	Model Source
	level 1
	level 2
	level 3

	Evaluation Code
	color
	Grid
	Layout
	Legend
	Visual
	Data
	Text
	Type

	Prompt
	generation Prompt
	LLM-Score Prompt

