FROM CHARTS TO CODE: A HIERARCHICAL BENCH-
MARK FOR MULTIMODAL MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Chart2Code, a new benchmark for evaluating the chart understanding
and code generation capabilities of large multimodal models (LMMs). Chart2Code
is explicitly designed from a user-driven perspective, capturing diverse real-world
scenarios and progressively increasing task difficulty. It consists of three levels:
Level 1 (Chart Reproduction) reproduces charts from a reference figure and user
query; Level 2 (Chart Editing) involves complex modifications such as changing
chart types or adding elements; and Level 3 (Long-Table to Chart Generation)
requires models to transform long, information-dense tables into faithful charts
following user instructions. To our knowledge, this is the first hierarchical bench-
mark that reflects practical chart2code usage while systematically scaling task
complexity. In total, Chart2Code contains 1,947 tasks across 22 chart types, paired
with multi-level evaluation metrics that assess both code correctness and the visual
fidelity of rendered charts. We benchmark 25 state-of-the-art LMMs, including
both proprietary and the latest open-source models such as GPT-5, Qwen2.5-VL,
InternVL3/3.5, MiMo-VL, and Seed-1.6-VL. Experimental results demonstrate
that even the strongest models struggle to generalize across levels and chart types,
highlighting the significant challenges posed by Chart2Code. We anticipate this
benchmark will drive advances in multimodal reasoning and foster the development
of more robust and general-purpose LMMs.

1 INTRODUCTION

Charts are one of the most powerful tools for communicating complex ideas. From scientific
publications to business reports, they distill large amounts of structured data into clear and persuasive
visuals. With the rapid progress of large multimodal models (LMMs) (OpenAl, 2025; Anthropic,
2025), it becomes increasingly realistic to envision Al systems that not only interpret visual charts
(Wang et al., 2024b) but also generate executable plotting code, a task we refer to as chart-to-code
(chart2code). Such capabilities can significantly enhance productivity by automating visualization
creation, enabling reproducibility.

Yet, the reality of how people use charts tells a different story. Users rarely stop at simple chart
reproduction—they need to edit figures by changing chart types, merging datasets, or adding new
elements; they often work with long tables that must be distilled into interpretable plots; and
they expect precise control over layout and style to ensure clarity. On the other hand, current
LMMs (OpenAl, 2025; Anthropic, 2025; Deitke et al., 2024) achieve impressively high scores on
existing chart2code benchmarks Yang et al. (2025a); Zhao et al. (2025b), suggesting that the problem
is close to being solved. However, when applied to these more common and demanding scenarios,
the very same models often struggle, revealing substantial gaps in their practical ability (refer to
Appendix B for examples). This discrepancy creates a mismatch between reported benchmark
performance and real-world utility, highlighting the need for a benchmark that more comprehensively
reflects everyday chart2code challenges.

Motivated by this observation, we introduce Chart2Code (Figure 1), a new benchmark designed to
rigorously evaluate chart generation capabilities of LMMs under progressively challenging conditions.
Chart2Code consists of three levels: Level 1 (Chart Reproduction) targets mimicking a reference
figure and instruction; Level 2 (Chart Editing) requires complex and precise editing, such as
changing chart types or adding new elements; Level 3 (Long-Table to Chart Generation) presents

Level-1 (Chart Reproduction) :

Setting 1: Direct Chart Reproduction 1 Setting 2: Customized Data from Raw Data

Setting 2: Customized Data from Figure Data

reference image.

Instruction: Please generate the Python
code that can reproduce the provided

Instruction: Please generate Python code that can perfectly
reproduce the provided reference image based on the given
data and instructions.

from the source image, replicates the style from the reference

Instruction: Please generate Python code that extracts data
image, and follows the provided instructions to create the plot.

'Reference Chart

Predicted Code:

..ax.set_facecolor('#f2f2f2)
cf = ax.contourf(X, Y, Z,
levels=levels, cmap='RdBu_r’,
extend="both”)

cs = ax.contour(X, Y, Z,
levels=levels, colors='black’,

5)e

linestyles="dotted’,linewidths=0

. : Reference Chart

Rendered Chart

2020, 2022]

57.0

21.0]

Large Multimodal Model

l Predicted Code

edgecolor="uhite’,
1abel=" Facebook”)
ax.bar(tiktok, t_share,

edgecolor="white’)
ax.bar(twitter,
share, color=tu_color)

Text-format table data
Years=[1990, 2000, 2010,
Americas=[7.5,8.2,8.0,6.8
Euroie:[9.9,7. 8,7.5,5.8,5

Fl

Asia=[8.0,10.5,17.0,20.5,

ax.bar(instagran, share,
bar_width, color=f_Color

bar_width, color=t_Color,

Chart

Table Figure

Please Normalize the
various environmental
from 2019

to 2023 and plot

parameter.

Rendered Chart '

i
H

a

| “*%.. radar chart to compare
the proportion of each

Large Multimodal Model

Predicted Code

..ax.plot(h_angle, r,
marker="0", markersize=6,
markerfacecolor="white’,
markeredgecolor="#9370DB",
markeredgewidth=1.5)
ax.text(h_angle + 0.1, r,
£'{r:.1f}", color='black’,

fontsize=12,

ha='left', va='center’)..

Instruction

Please modify the colors in
the chart to differentiate

between proprietary and
open-source models and
remove the trend line.
Additionally, create a bar

chart below the main plot to
aggregate the performance of
open-source and proprietary

Level-2 (Chart Editing)

Reference Chart

Predicted Code

Schelling Points by Model

[MM

ax2.bar(x2 - width/2,
avg_open, width,
color=['#d1495b ",
'#f42261', '#b8bSa7’])...
ax2.bar(x2 + width/2,
avg_prop, width,
color=['#ff8fab’,
"#FFC999", ' #f2f0e6'])
axl.bar(x - width, simple,
width, g
color=bar_colors_simple)

Rendered Chart

models across different task ax1.plot(x-width, trend,

types. linestyle='--?)
Level-3 (Long Table to Chart)
Long-context Predicted Code Rendered Chart

Instruction Reference Chart

\ Table Data
Plot using the provided CSV

ax.bar(x, medium_err,

data and instructions, error_kw=dict(ecolor=medium_c
replicating the style of the - olor, lw=1.5, capsize=4,
reference image. S Mm > ‘”ﬂ"k’i's?;m _—

| have an Excel spreadsheet EELIRER © Ty At

width, yerr=err)
ax.scatter(x[e], y[e], s=s[e],
c=colors[@], marker=‘0’)

to analyze, which contains
two columns...

Figure 1: Chart2Code covers three progressively challenging levels: reproduction, editing, and
long-table to chart generation. It provides a user-driven and diverse benchmark that better reflects
real-world chart2code demands.

the most demanding setting, where models must convert long, unprocessed data tables into faithful
charts from user instructions. This hierarchical design reflects real-world usage while progressively
increasing difficulty, and its distinctions from prior benchmarks are highlighted in Table 1.

We comprehensively benchmark 25 state-of-the-art LMMs, including both proprietary and open-
weight models, across the three levels of Chart2Code. Our results show that while LMMs demonstrate
promising capabilities on simple reproduction tasks, their performance deteriorates sharply on
complex editing and long-context data-to-chart generation. Together, these findings reveal the
unsolved challenges of chart2code generation and point to future directions for building more reliable
visualization assistants. In summary, our contributions are threefold:® We present Chart2Code, the
first hierarchical benchmark targeting chart2code generation with progressively more challenging
tasks. @ We propose multi-level evaluation protocols that jointly assess code executability and visual
fidelity, offering a comprehensive lens on model performance. ® We provide an extensive empirical
study across 25 mainstream LMMs, yielding new insights into their strengths, weaknesses, and design
trade-offs for chart generation.

2 RELATED WORK

Large Multimodal Models. Thanks to the success of proprietary LMMs such as GPT-5 (OpenAl,
2025), Gemini-2.5-Pro (Comanici et al., 2025), and Claude-Sonnet-4 (Anthropic, 2025), we see the
dawn of building AI agents for addressing realistic applications. In the academic community, we see
enormous excellent open-source models: MiMo-VL (Xiaomi & Team, 2025), QwenVL-series (Bai

Table 1: Comparison of existing chart-to-code benchmarks. Ref. Fig.: Reference Figure; Instr.:
Instruction; Text Data: Text-format data; Fig. Data: Figure-format data; L1: Chart reproduction; L2:
Chart editing; L3: Long-table-to-chart generation; NL: Natural language.

Benchmark | Input Type | Task Cat. | Output | Metric
| Ref. Fig. Instr. TextData Fig. Data | LI L2 L3 | | Rule-based GPT-score

CharXiv (Wang et al., 2024b) X v X X X X X NL v X
Plot2Code (Wu et al., 2025) v v X X VAR S { Code X v
AcademiaChart (Zhang et al., 2024) v v X X v X X Code v v
Chartmimic (Yang et al., 2025a) v v X X o XX Code v v
ChartEdit (Zhao et al., 2025b) v v X X X v X Code X v
Chart2Code (Ours) | v v v v | v v /| Code | v v

et al., 2025; Wang et al., 2024a), and InternVL-series (Wang et al., 2025; Zhu et al., 2025), MolMo
(Deitke et al., 2024), Kimi-VL (Team et al., 2025) LLaVA-series (Li et al., 2024a; Liu et al., 2024; Li
et al., 2024b), Deepseek-VL (Lu et al., 2024), and GLM-4V (GLM et al., 2024).

Agentic Benchmarks. The rapid progress of foundation LLMs and LMMs has motivated the
creation of diverse agentic benchmarks, spanning GUI automation (Xie et al., 2024; Zhao et al.,
2025a; Lin et al., 2024; Koh et al., 2024), agentic coding (Jimenez et al., 2024; Yang et al., 2025b),
tool use (Yao et al., 2025), Al research assistance (Nathani et al., 2025), and chart reasoning (Wang
et al., 2024b). We focus on chart2code, a practical task central to everyday workflows for researchers
and professionals. Despite progress, even the best proprietary LMMs still fail to generate faithful
charts from long, raw tables, underscoring the need for future modeling advances.

Chart Understanding to Code Generation. Chart understanding has evolved through a series of
benchmarks that progressively expand task complexity. ChartQA (Masry et al., 2022) first established
large-scale visual question answering over charts, combining queries with logical and visual reasoning.
ChartXiv (Wang et al., 2024b) advanced this line by introducing scientific charts with expert-designed
questions, further exposing the gap between multimodal models and human performance. Moving
beyond QA, Chart2Code benchmarks address faithful chart generation. ChartMimic (Yang et al.,
2025a) formalized this by requiring code synthesis from chart images and instructions, while ChartEdit
(Zhao et al., 2025b) emphasized interactive modification, where models must edit chart-rendering
code following natural-language instructions. Extending chart generation more generally, StarVector
(Rodriguez et al., 2025) proposed a vision-language approach to directly produce scalable vector
graphics from visual or textual inputs. Although GPT-40 achieves high scores on ChartMimic
(83.2) and ChartEdit (93.6), it still struggles with realistic chart2code tasks, motivating a new, more
challenging benchmark for reliable evaluation.

3 CHART2CODE: FROM VISUAL CHARTS TO CODE

3.1 TASK DEFINITION OF CHART2CODE

Chart2Code can be represented as: C = f(R, I, D) where, R is the reference chart (e.g., screenshot),
I is the instruction and C is the Python code generated by LMM (f). D represents optional input data
types, Chart2Code supports three kinds of data formats: textual data, image data (e.g., screenshot),
and Excel files. To ensure rigor and comprehensiveness, we designed three tasks of increasing
difficulty.

Level 1 (Chart Reproduction): This task consists of two subsettings. The first setting requires the
LMM to directly generate the executable code that can reproduce the reference chart (R). This task
primarily explores the model’s visual understanding capabilities. The second setting requires the
LMM to extract the required table data from the data file D and generate Python code based on the
style and format of the given reference chart (R). It is closely aligned with real-world chart creation
needs and not included in previous studies (Yang et al., 2025a; Wu et al., 2025; Zhang et al., 2024).

Level 2 (Chart Editing): At this level, the LMM edits the reference chart (R) as instructed, with
operations like style changes, type swaps, data edits, or multi-subplot generation. The LMM is
expected to generate code that meets the editing requirements and adheres to the style and format of
chart.

Level 3 (Long-Table to Chart Generation): The final level asks the LMM to accurately gather the
target data points from the extremely long data and unprocessed sheet and then produce the executable
code, referencing the style and format of the given reference chart (R). It is the hardest task, which
targets the most realistic scenario in data visualization or business presentations, assuming the user is
not a data visualization expert.

3.2 DATA CURATION AND ANNOTATION

3.2.1 DATA CURATION

Chart Data: Our chart figure sources primarily consist of three aspects. First, we collected approxi-
mately 5,000 paper charts from Arxiv, spanning from January 2024 to July 2025, covering various
fields such as CSEE, Physics, Statistics, and Economics, to ensure diversity and modernity in the
chart types. Second, we gathered 1,000 example charts from function libraries such as Matplotlib,
Seaborn, WordCloudX, Scipy, as well as Matlab plotting example tutorials. Finally, we filtered 300
difficult charts from the ChartMimic (Yang et al., 2025a) dataset.

Raw Data: Our benchmark collects raw data from sources such as Kaggle, Annual Reports, and
publicly available data from various company websites. The raw data includes Excel spreadsheets,
figures, text, and other formats, covering multiple domains such as corporate financial reports, flight
route data, weather data, GDP data, and car sales figures. Additionally, we have intentionally selected
data of varying lengths to test the LLM’s ability to analyze and process long text data.

3.2.2 DATA FILTERING

Chart Data: We propose a “gathering-distribution” data selection process. First, we gather data from
various sources into a chart pool, which is then roughly filtered by 10 undergraduate computer science
students based on chart type and information complexity. Based on this initial selection, we reduce
the data to 3,000 charts to ensure that the resulting data contains a diverse range of visual elements
and chart types. Next, the gathered data is distributed by category to 5 experts with many years of
experience in Python plotting for independent evaluation. The evaluation criteria are refined into
three dimensions: data complexity, visual complexity, and programming complexity. Each dimension
is independently assessed to select more valuable charts as part of the benchmark data. Finally, the
charts from various categories are aggregated to form the 719 reference figures in the benchmark.

Raw Data: Since the raw data we collected contains various data formats, we first use automated
scripts to filter out the raw data that exhibits rich numerical performance and is suitable for plotting.
After that, we conduct manual checks to preserve the diversity of the raw data as much as possible.
The final selection includes 39 Excel files, 80 raw data figures, and 36 raw data text files.

3.2.3 DATA ANNOTATION

During the data annotation process for the three-level tasks, we employed an interactive data anno-
tation method based on Python scripts and agents, which we refer to as the human-Al interactive
annotation process. Specifically, in the level 1 data annotation process, annotators, with the assistance
of the LMM, recreate the selected data by writing Python code. The data generated here directly
serves as the first setting of the Level 1 task. Subsequently, based on the 719 scripts, annotators select
and modify suitable chart types using the data from the 80 raw table figures and 36 raw table text
files, resulting in 108+36 customized entries for the second setting of the task.

In the Level 2 annotation process, annotators first categorize and summarize chart editing operations
commonly encountered in real-world scenarios. They then modify the code with the help of prompt
engineering and Python code injection, leveraging the programming capabilities of LLM. While the
LLM may lack proficiency in the chart2code task, its programming ability is exceptional. Through
this process, we obtained over 4,700 edited and modified scripts, which were further filtered through
the data selection process, ultimately yielding 925 high-quality Level 2 data entries.

For Level 3 data annotation, annotators first analyzed the content of the 39 diverse data tables,
formulated statistical data requirements, and extracted and processed the data from the tables. This
process resulted in 150 Level 3 data entries.

Figure 2: Collected charts distribution.

Level 1 (Chart Reproduction)
44.56%

Level 2 (Chart Editing)
47.70%

Table 2: Deatiled data statistic.

Statistic

Number

GT Charts

Total charts

-Level 1/2/3 charts
Unique charts

- Unique Level 1/2/3 charts

1,911
836/925/150
804
71970785

Instructions

Total instructions

- Level 1/2/ 3 instructions

Unique instructions

- Unique instructions - Level 1/2/3
Maximum instruction length - Level 1/2/3
Average instruction length - Level 1/2/3

1,947
872/925/150
1,220

1457925/ 150
2247544 /390
137.8/307.6/178.9

GT Code (Lengths/Lines)

Maximum code length - Level 1/2/3
Average code length - Level 1/2/3
Maximum code lines - Level 1/2/3
Average code lines - Level 1/2/3

96,563 /7,855 /790,130
2,621.6/2,880.6/29,899.8
842/219/388
69.9/829/51.3

Extremely Long-Table Data
Total Excel files

Average lines per file
Maximum lines

Average data entries
Maximum data entries

37
606.7
3,023

8,329.3
51,391

3.3 DATA STATISTICS AND ANALYSIS

Chart2Code comprises 1,947 tasks across three levels—872/925/150 for L1/L.2/L3—spanning 22/18/12
chart families (e.g., radar, heatmap, scatter, box, tree, error-bar, pie, multidiff; see Fig. 2). To
maximize diversity, Level 1 emphasizes unique charts (719 unique). Level 2 reuses Level 1 charts
with at least one edit instruction per chart, resulting in 925 unique, non-duplicated edits. Level 3
(LT2Chart) includes 85 charts and 150 instructions derived from web-sourced long tables, making
annotation and ground-truth code especially challenging. As summarized in Tab. 2, the instruction
scale and substantial code lengths highlight the breadth and difficulty of Chart2Code.

3.4 EVALUATION

To comprehensively evaluate the performance of various models on the Chart2Code benchmark, we
first establish the code executability rate as the primary evaluation metric. This directly measures
the model’s ability to generate functional visualization code, and its calculation is detailed in equa-
tion 1. Secondly, we introduce a multi-level, multi-dimensional evaluation method to assess model
performance at both the code-level and the chart-level.

At the code-level, we propose a ‘base evaluation’ method that calculates the similarity of visual
outcomes by parsing and matching matplotlib.Figure objects across eight dimensions. Our
‘base evaluation’ method offers faster assessment, more comprehensive dimensions, and superior
evaluation performance (see Appendix E.2 for details). Similarly, to provide a broader code assess-
ment, we employ GPT-5-mini (OpenAl, 2025) to score the code without execution, assessing its
prospective visual output to derive a comprehensive LLM-score (see Appendix E.3 for details).

At the chart-level, we similarly use GPT-5-mini to assess the predicted charts, yielding an LMM-
score. Although LLMs like GPT-5 may not excel at the Chart2Code generation task itself, they
possess a keen ability to judge the similarity between both code and charts. The direct evaluation of
charts is most aligned with human intuition, making it more suitable as the final evaluation score.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Models. We conducted tests on 25 widely-used open-source models and proprietary models to evalu-
ate their performance on our benchmark. For the open-source models, we selected 12 representative
vision-language models, with total parameters ranging from 7B to 72B, including: Qwen2-VL (7B,
72B), Qwen2.5-VL (7B, 72B), Deepseek-VL (7B), Kimi-VL (7B), MiMo-VL-SFT (7B), MiMo-VL-
RL (7B), InternVL-2.5 (8B, 38B), InternVL-3 (8B, 38B), InternVL-3.5 (8B, 38B), GLM-4V (9B),

Table 3: Evaluation results on Chart Reproduction (Level 1) with various LMMs. Each task
includes a reference chart as input. DR: input without the table data. CRD: input with customized
text-format table data. CFD: input with customized figure-format table data. Exec. Rate: execution
rate; We use GPT-5-mini as the base model for both LLLM-score and LMM-score;

Model Direct Mimic(DR) Customize Raw Data(CRD) Customize Figure Data(CFD)
Exec.Rate LLM-Score LMM-Score | Exec.Rate LLM-Score LMM-Score | Exec.Rate LLM-Score LMM-Score
Proprietary
Gemini-2.5-Pro 90.4 0.6286 0.3807 100 0.6763 0.2661 87.04 0.6145 0.2214
Claude-Sonnet-4 96.38 0.5629 0.2553 97.2 0.4878 0.236 88.89 0.5538 0.2273
GPT-5 87.48 0.6334 0.3575 944 0.6070 0.2238 85.19 0.6082 0.2382
Seed-1.5-VL 85.81 0.5536 0.2341 97.2 0.6325 0.2662 65.74 0.5756 0.1962
Seed-1.6-VL 84.70 0.5237 0.8117 94.4 0.6525 0.2503 83.96 0.5978 0.2075
Open-Source LMMs (non-thinking)
LLaVA-OV-Qwen2-7B-SI 32.82 0.1820 0.0154 11.11 0.4225 0.1550 0
LLaVA-OV-Qwen2-7B-OV 11.13 0.2651 0.0376 5.56 0.4213 0.0825 0 - -
DeepSeek-VL-7B 48.68 0.2854 0.0431 61.11 0.5374 0.1114 10.19 0.2539 0.0145
kimi-VL-A3B 68.85 0.4409 0.1374 7222 0.5887 0.2081 61.11 0.4641 0.1379
Qwen2-VL-7B 64.39 0.3364 0.0664 75.00 0.5950 0.1367 30.56 0.4235 0.0519
Qwen2-VL-72B 75.66 0.4368 0.1207 80.56 0.6082 0.1628 51.85 0.5518 0.1373
InternVL-2.5-8B 66.89 0.3348 0.0723 80.56 0.5712 0.1183 37.74 0.5715 0.0568
InternVL-2.5-38B 86.23 0.4577 0.1463 0 - - 0 - -
InternVL-3-8B 66.34 0.4371 0.1389 86.11 0.6169 0.1732 5741 0.4450 0.1028
GLM-4V-9B 72.18 0.2881 0.0459 66.67 0.5628 0.1183 44.74 0.2904 0.0130
Intern-VL-3.5-8B 66.34 0.4371 0.1389 86.11 0.6169 0.1732 5741 0.4450 0.1028
MiMo-VL-7B-RL 37.83 0.5439 0.2316 69.44 0.6068 0.2421 41.67 0.4962 0.1407
MiMo-VL-7B-SFT 44.65 0.4959 0.1983 69.44 0.6237 0.1852 46.30 0.5155 0.1732
Qwen2.5-VL-7B 65.64 0.4197 0.0994 75.00 0.5952 0.1515 44.44 0.5952 0.091
Qwen2.5-VL-72B 65.36 0.5118 0.1893 100 0.6273 0.1989 37.96 0.5532 0.1688
Open-Source LMMs (thinking)
MiMo-VL-7B-RL 55.77 0.5261 0.2294 69.44 0.6053 0.2582 33.33 0.5807 0.2172
MiMo-VL-7B-SFT ‘ 50.35 0.6555 0.2130 86.11 0.6644 0.2248 ‘ 38.89 0.5578 0.1455

LLAVA-onevision-si (7B), LLAVA-onevision-ov (7B), Molmo (7B). For proprietary models, we
selected the five most popular multimodal large models, including: Gemini-2.5-pro, Claude-sonnet-4,
GPT-5, Seed-1.5-VL, and Seed-1.6-VL.

Configuration. All experiments were conducted on NVIDIA V100 GPUs. Qwen2-VL-7B and
Qwen2.5-VL-7B models were executed on a single GPU. MiMo-VL-SFT, MiMo-VL-RL, and
LLaVA-OneVision (LLaVA-OV) required two GPUs, with inference parallelized across devices due
to memory constraints. Similarly, the InternVL series (2.5-VL-8B, 3-VL-8B, 3.5-VL-8B), Kimi-VL,
DeepSeek-VL, and GLM-4V models were evaluated using two GPUs with model parallelism. We
set the maximum output length to 8,192 tokens for Level 1 and 2, and 32,768 tokens for Level 3.
Empirically, non-thinking models required only 4,096 tokens, with negligible truncation except for
the largest InternVL-3.5-38B model. The decoding temperature was fixed at 0.1 across all models.
To preserve visual fidelity, we fed images at their native resolution and used the maximum input pixel
setting supported by each model to ensure complete processing of chart details.

4.2 MAIN EXPERIMENTAL RESULTS
4.2.1 LEVEL-WISE COMPARISON OF MODELS

Level 1. As shown in Tab. 3, proprietary models lead across Direct Mimic (DM), Customize Raw
Data (CRD), and Customize Figure Data (CFD), achieving high executability but only moderate
visual fidelity—for example, Gemini-2.5-Pro reaches 90.4/100/87.04% ER on DM/CRD/CFD while
LMM-Scores stay around 0.22-0.38. CRD is “easy to run” (e.g., Gemini and Qwen2.5-VL-72B
at ~100% ER) yet still low-fidelity (=0.15-0.27), confirming execution # fidelity. CFD is the
hardest: top proprietary models keep >85% ER but LMM-Scores remain ~0.22—-0.24, and many
open-source models drop sharply (some 0 ER). Larger open-source backbones (Qwen2/2.5-VL-72B,
InternVL-3-8B/38B) close part of the execution gap but not the fidelity gap. A notable outlier is
Seed-1.6-VL with DM LMM-Score ~0.812, suggesting evaluator/model calibration effects.

Level 2. The results are presented in Tab. 4. Proprietary models sustain ~90% ER (Gemini 90.49,
Claude 90.92, GPT-5 90.59) and excel on code-level subskills—especially Layout/Type ~0.95-
0.96—yet figure-level remains modest (~0.18-0.22), evidencing a persistent gap between syntactic
compliance and rendered-image fidelity. Strong open-source systems improve executability (e.g.,
Qwen2.5-VL-72B 71.89%) with solid code-level scores (Layout ~0.94, Type ~0.92), but figure-level
still lags (0.12-0.14). Smaller backbones struggle (e.g., LLaVA-OV-Qwen2-7B variants <2.71%

Table 4: Evaluation results on Chart Editing (Level 2) with various LMMs.

Model Exec. Code-Level Chart-Level
Rate | Color Grid Layout Legend Visual Data Text Type LLM-Score | LMM-Score
Proprietary
Gemini-2.5-Pro 90.49 | 0.6284 0.8958 0.9606 0.5269 0.4988 0.7564 0.6195 0.9638 0.5725 0.2134
Claude-Sonnet-4 90.92 | 0.5871 0.8330 0.9591 0.4878 04640 0.6782 0.5724 0.9575 0.5318 0.1844
GPT-5 90.59 | 0.5898 0.8548 0.9509 0.4939 0.4643 0.7040 0.5962 0.9602 0.5658 0.2201
Seed-1.5-VL 63.46 | 0.5213 0.8418 0.9530 0.4599 04400 0.7013 0.7175 0.9433 0.5148 0.1547
Seed-1.6-VL 7222 | 0.5359 0.8117 0.9485 0.4926 04275 0.6888 0.7324 0.9441 0.5179 0.1634
Open-Source LMMs (non-thinking)
LLaVA-OV-Qwen2-7B-SI 1.30 | 0.3507 0.6964 0.7833 0.4074 0.3002 0.5249 0.4871 0.7889 0.3157 0.0875
LLaVA-OV-Qwen2-7B-OV 271 | 03216 05933 0.7138 0.4667 0.2111 0.5592 0.5041 0.8080 0.3607 0.0284
DeepSeek-VL-7B 2251 | 0.2625 0.6403 0.7273 0.2541 0.1797 0.4121 0.4572 0.8048 0.2600 0.0322
kimi-VL-A3B 49.73 | 0.4055 0.7376 0.9069 0.3633 0.3176 0.5876 0.5915 0.9131 0.3776 0.0838
Qwen2-VL-7B 24.86 | 0.2859 0.6116 0.7736 0.2900 0.2221 0.4602 0.4881 0.8124 0.3215 0.0519
Qwen2-VL-72B 57.73 | 04161 0.7972 09044 0.3581 0.3276 0.6149 0.5748 0.9129 0.3949 0.0898
InternVL-2.5-8B 21.08 | 0.3343 0.7165 0.8388 0.3213 0.2741 0.5378 0.5488 0.8423 0.3391 0.0611
InternVL-2.5-38B 69.47 | 0.2625 0.6403 0.7273 0.2541 0.1797 0.4121 0.4572 0.8048 0.2600 0.0322
InternVL-3-8B 4.65 | 03609 0.6094 09408 0.3393 0.3454 0.5581 0.5313 0.8533 0.3504 0.073
InternVL-3-38B 61.51 | 04818 0.7954 0.9406 0.4281 0.3841 0.6476 0.6544 0.9216 0.4543 0.1205
GLM-4V-9B 10.49 | 0.2085 0.6869 0.7771 0.2470 0.2016 0.4616 0.4904 0.7598 0.2975 0.0533
Intern-VL-3.5-8B 25.62 | 04218 0.7590 0.8975 0.3849 0.3670 0.6290 0.6530 0.9181 0.4072 0.1062
MiMo-VL-7B-RL 16.54 | 0.4454 0.8706 0.9260 04376 04014 0.6421 0.6530 0.6707 0.9172 0.4713
MiMo-VL-7B-SFT 2227 | 04435 0.7581 0.8888 0.3982 0.3891 0.6335 0.6558 0.9371 0.4510 0.1203
Qwen2.5-VL-7B 33.84 | 0.286 0.612 0.774 0.290 0.222 0.460 0.488 0.81 0.3651 0.0759
Qwen2.5-VL-72B 71.89 | 0.5109 0.8470 0.9492 04606 0.4127 0.6653 0.6808 0.9362 0.4782 0.1437
Open-Source LMMs (thinking)
MiMo-VL-7B-RL 28.32 | 0.5157 0.7643 09452 04226 04246 0.7014 0.6854 0.9489 0.4844 0.1510
MiMo-VL-7B-SFT ‘ 23.57 ‘ 0.4746 0.7545 0.9269 0.3838 0.3741 0.6769 0.6574 0.9351 0.4583 0.1367

Table 5: Evaluation results on Long-Table to Chart task (Level 3) with various LMMs.

Model Exec. Code-Level Figure-Level

Rate | Color Grid Layout Legend Visual Data Text Type LLM-Score ‘ LMM-Score
Proprietary

Gemini-2.5-Pro 29.33 | 07276 0.9733 1.0000 0.7727 0.6701 0.7880 0.8291 0.9470 0.3516 0.0361

Claude-Sonnet-4 | 38.00 | 0.5676 0.7963 1.0000 0.8148 03731 0.5881 0.7175 0.9062 0.5125 0.007

GPT-5 38.00 | 0.5676 0.7963 1.0000 0.8148 0.3731 0.5881 0.7175 0.9062 0.5125 0.0362

Seed-1.5-VL 18.67 | 0.7252 0.8929 1.0000 0.8869 0.5502 0.7182 0.7804 0.9690 0.0000 0.0611

Seed-1.6-VL 40.00 | 0.7030 0.8833 1.0000 0.7972 0.5396 0.7956 0.8128 0.9244 0.0000 0.0547

ER). “Thinking” helps procedure more than pixels: MiMo-VL-7B-RL ER improves 16.54—28.32,
and MiMo-VL-7B-SFT figure-level nudges 0.1203—0.1367, but absolute fidelity remains low; the
unusually high 0.4713 figure-level for MiMo-VL-7B-RL (non-thinking) merits.

Level 3. Tab. 5 presented the results. Coverage is limited because the benchmark is very hard: only
a couple of open-source models could even complete inference, and on the proprietary side, five
models were run, but overall ER is still <50%, primarily due to long-context inputs exceeding the
maximum input limits. Among those that ran, ER drops to 29—40% (e.g., Gemini 29.33%), while
code-level stays strong (Layout = 1.0; high Grid/Type), indicating structurally plausible code under
long context. However, figure-level fidelity collapses (Gemini 0.0361, Claude 0.007, GPT-5 0.0362;
Seed-1.5/1.6-VL 0.061/0.055), showing that turning lengthy raw tables into pixel-accurate charts is
the main bottleneck; the Seed rows also show LLM-Score = 0 with non-zero LMM-Score, hinting at
evaluator/model coupling or edge-case artifacts that warrant robustness checks.

4.2.2 ANALYSIS

Execution vs. Complexity: From level 2 to Level 3, ER for proprietary systems drops from 90% in
Tab. 4 to 29-40% on Level 3 (Gemini 29.33, Claude 38.00, GPT-5 38.00 in Tab. 5). This mirrors
the jump in reasoning load (long-context/table parsing, multi-constraint edits), showing that being
able to run code at level 2 does not translate to robust end-to-end success at Level 3. We concluded
execution success declines steeply with task complexity, even for top proprietary models.

Code vs. Visual Fidelity: On level 2 (Tab. 4), proprietary models score very high on Layout/Type
(e.g., Gemini 0.9606/0.9638, Claude 0.9591/0.9575, GPT-5 0.9509/0.9602), yet figure-level GPT-
Score is only 0.18-0.22 (Gemini 0.2134, Claude 0.1844, GPT-5 0.2201). On Level 3 (Tab. 5),

Difficulty Levels of Level 1 Difficulty Levels of Level 2 Difficulty Levels of Level 3

- & 1 0.196 1 X 0.088 X
o257 R 05 25 035 2% 0.077 0.077 o

ce
oA~ 0221 0287 0206 0.238 WS 0.304 0178 ok~ 0042 0.057 0.053
e ™ aute S aude S

RS 0436 | 0384 m JRAEE 0207 m 030 Gpro- 0.050 0043 0044 0047

04 0.08
- 0259 0230 0.226 L= 0179 0199 0.149 - 0.051 0.043
oot ® seetA®
0.050

T8

peerse®

025
X T8 [FIINN - 0.015
peerse® Deel
.98 - [FIINN 0015
v 0.040 08 e

X 388 7 0.184
0.048 25

388
\mem“’l's

338 0160 0142 -
e 015 e

02 E 0.060 | 0.010 0.050 B
44 8
2T 0.063 0000 | 0070 0.0 e e

o]
Qwaﬂ.wﬁ 010 Owa“,l_\,vna

728
0.071 0.061 LTS m 8
e T - - 01 oue?® eV
1 0.248 A28 0.05 8
s w2 ez i
Qw
RV

v m o0 m Ca m [

| 00 0.00

M‘\’LJB_;{L - 0203 0.180
v

"
iV i

EASY MEDIM HARD Overal EASY MEDIUM HARD Overall

EASY MEDIUM HARD Overall

Figure 3: Correlation of the model performance (i.e, LMM-score) on different manually annotated
difficulty levels (i.e., Easy, Medium, Hard) on Level 1, 2, 3, respectively.

LLM-score 030 LMM-score
071 @ Proprietary : W Proprietary
@ Open-Source 0.254 s @ Open-Source
064 CPT emini-2.5-Pro 020 By
.20 4 Gemini-2.5-Pro
S s smars_g g o B e
o ° VL]] Mito-vL QHRE VT 20
2 © O Quen25vL-728 H 0.15 3\! eed-15-VL SeediloNT
04 pou 010 [¢]
: InternVL-3-88 1104 Qwen2.5-VL-78
03 ° .Qwanz-vws. CQwen2.5-VL-1B GLM-4V-4B @internv/L-3-88
31 @ 2]
GLM-4V-9B 0.05 awen2-VL-7B
0.2 T T r r T 0.00 T T r r r T T r
0.3 0.4 05 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08
Level 1 Level 1

Figure 4: Left: Both proprietary and open-source models generalize well on Level 1 and Level 2
tasks when calculating the LLM-score for predicted code assessment. Right: Proprietary models tend
to obtain higher LMM-scores on the Level 1 task rather than the Level 2, while open-source models
perform poorly on both tasks (scores are lower than 0.5).

the gap widens: code-level remains strong (e.g., Layout = 1.0000 across models), but LMM-Score
collapses (Gemini 0.0361, Claude 0.007, GPT-5 0.0362, Seed1.5/1.6-VL 0.0611/0.0547). This
demonstrates that while code-level compliance is generally high, it does not guarantee pixel-level
visual correctness, making figure-level fidelity the primary bottleneck.

Chart Reproduction Challenge: In Tab. 3, proprietary models still execute but with lower
fidelity (e.g., Gemini CFD ER 87.04 with LMM-Score ~0.22; Claude 88.89/0.227; GPT-5
85.19/0.238). Open-source models suffer larger drops (e.g., InternVL-3-8B 57.41/0.103, Qwen2-VL-
72B 51.85/0.137; several models hit 0 ER). Compared to DM/CRD in the same table, CFD exposes
weaknesses in axis/series alignment, legend consistency, scaling, and style carry-over. We concluded
reproducing existing charts (CFD) is the hardest subtask in Levell.

Scaling Open-Source Backbones: In Tab. 4, Qwen2.5-VL-72B reaches 71.89 ER with strong
code-level, yet figure-level is only 0.1437; InternVL-3-38B shows 61.51 ER and similar code-
level strength (Layout 0.9406, Type 0.9216), but figure-level remains 0.1205. This contrasts with
proprietary models’ ~90% ER and still-low figure-level (=0.18-0.22), underscoring that fidelity, not
executability, is the persistent gap. These result shows larger open-source backbones close part of
the execution gap on level 2, but figure-level fidelity gains are modest.

Thinking Helps Procedural Compliance: On level 2 (4), MiMo-VL-7B-RL ER rises from 16.54
— 28.32 when enabling thinking; MiMo-VL-7B-SFT nudges 22.27 — 23.57. LLM-side (code-level
GPT-Score) also improves slightly. However, figure-level remains low or mixed (e.g., MiMo-SFT
0.1203 — 0.1367; MiMo-RL thinking row lacks figure-level). The net effect suggests that chain-of-
thought/planning aids procedural compliance, yet post-render pixel-level exactness requires additional

mechanisms (e.g., render-then-verify loops). This indicates “Thinking” variants help instruction
following and executability, but visual fidelity improvements are inconsistent.

Metric Sensitivity: In Level 1 (Tab. 3), Seed-1.6-VL shows an unusually high DM LMM-Score
~0.812, far above peers. In level 2 (Tab. 4), MiMo-VL-7B-RL (non-thinking) reports an unusually
high figure-level 0.4713, exceeding proprietary models (~0.18-0.22). In Level 3 (Tab. 5), Seed1.5/1.6-
VL LLM-Score = 0.0000 despite non-zero LMM-Scores (0.0611/0.0547). These inconsistencies
motivate robustness checks (multi-crop/image-space perturbation, secondary scorers, human spot-
checks) and a discussion on metric sensitivity to style choices. Several metric anomalies indicate
evaluator calibration and model-evaluator coupling effects that merit auditing.

Table-to-Chart Gap: On Level 1 CRD (Tab. 3), multiple models achieve very high ER (e.g.,
Gemini 100; Qwen2.5-VL-72B 100), yet LMM-Score remains low (0.15-0.27 across models).
On level 2 (Tab. 4), code-level Data/Text/Type scores are solid for leading models (e.g., Gemini
0.756/0.620/0.964, GPT-5 0.704/0.596/0.960), but figure-level stays around 0.18-0.22, highlighting
the gap between semantic correctness and visual exactness. Table to chart is relatively “easy to
execute” but still hard to render faithfully.

4.3 DISCUSSION.

Model Performance Across Manually Defined Difficulty Levels. In this experiment, we ask the
human labeler to split each level into easy, medium and hard, in total three levels, and each subset
contains 30 samples. As shown in Figure 3, model performance exhibits a clear correlation with
manually annotated difficulty levels across all benchmark stages. On Level 1, proprietary models (e.g.,
GPT-5, Gemini-2.5-Pro, Claude-Sonnet-4) maintain relatively strong scores across Easy, Medium,
and Hard subsets, though the overall fidelity remains moderate. In contrast, most open-source
models show low scores and struggle particularly on harder cases. On Level 2, performance declines
noticeably even for proprietary models, with overall scores dropping to ~0.20-0.26 and sharper
degradation from Easy to Hard, indicating sensitivity to increased editing complexity. By Level 3,
almost all models fail regardless of difficulty level: LMM-scores converge near zero, showing that
long-context table-to-chart generation overwhelms current systems. These trends suggest that while
models can partially track difficulty scaling on simpler tasks, the hardest scenarios effectively
collapse their ability to produce faithful visualizations.

Code Generalization Holds, Visual Fidelity Lags. As shown in Figure 4, the performance trends
differ substantially when measured by LLM-score versus LMM-score. On the left, both proprietary
and open-source models generalize reasonably well from Level 1 to Level 2 when evaluated with
LLM-score, indicating that code-level syntax and structure can often be preserved across tasks. On
the right, however, the LMM-score reveals a sharper divide: proprietary models achieve relatively
higher visual fidelity on Level 1 than on Level 2, whereas open-source models perform poorly on both
levels, with most scores remaining below 0.5. This contrast highlights that while models can maintain
code-level compliance, translating such compliance into pixel-level faithful renderings remains a key
unsolved challenge, particularly for open-source systems.

5 CONCLUSION AND LIMITATIONS

We presented Chart2Code, a hierarchical benchmark for chart-to-code generation that spans three
progressively challenging levels: chart reproduction, chart editing, and long-table to chart generation.
Our large-scale evaluation of 25 state-of-the-art LMMs shows a clear trend: while current models
manage simple reproduction reasonably well, they struggle with complex editing and long-context
visualization, exposing substantial gaps in practical capability. These findings underscore the unsolved
challenges of chart-to-code generation and call for models with stronger reasoning, generalization,
and robustness. Despite its contributions, Chart2Code has two key limitations. First, all tasks are
currently in English; extending to multilingual chart2code remains an open and important direction.
Second, our evaluation relies on large language models as judges to assess code correctness and
visual fidelity. While this enables scalable and nuanced evaluation, it may introduce inaccuracies or
biases compared to fully human assessment. Future work will explore multilingual expansion and
more reliable evaluation protocols, further enhancing the benchmark’s coverage and trustworthiness.

ETHICS STATEMENT

This work introduces a benchmark for chart-to-code generation without involving any sensitive
personal data or human subject experiments. All datasets are derived from publicly available or
synthetically generated tables and charts, ensuring compliance with privacy and legal considerations.
We acknowledge potential risks of misuse (e.g., generating misleading visualizations), and therefore
release the benchmark with clear documentation and intended use guidelines. We affirm adherence to
the ICLR Code of Ethics throughout the research process.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. Detailed dataset construction steps,
task definitions, and evaluation protocols are described in Section 3. Implementation details of
experiments, including hyperparameters and evaluation scripts, are provided in Appendix. In addition,
we release the benchmark dataset and evaluation code as anonymous supplementary materials to
enable independent verification of our results.

REFERENCES

Anthropic. Introducing claude 4. Preprint, 2025. URL https://www.anthropic.com/
news/claude-4.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jiangiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. arXiv e-prints, pp. arXiv—2409,
2024.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu,
Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen
Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models
from glm-130b to glm-4 all tools, 2024.

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, et al. Seed1.5-vl technical report. arXiv preprint arXiv:2505.07062,
2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

10

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2502.13923
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024b.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen WU, Mingyi Yan, Zhengyuan Yang, Lijuan
Wang, and Mike Zheng Shou. VideoGUI: A benchmark for GUI automation from instructional
videos. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=jSKtxmxcOM.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26296-26306, June 2024.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan.
Deepseek-vl: Towards real-world vision-language understanding, 2024.

Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
Association for Computational Linguistics: ACL 2022, pp. 2263-2279, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL
https://aclanthology.org/2022.findings—acl.177.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens,
Mikhail Plekhanov, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Nicolaus Foerster, Yoram
Bachrach, William Yang Wang, and Roberta Raileanu. MLGym: A new framework and benchmark
for advancing Al research agents. In Second Conference on Language Modeling, 2025. URL
https://openreview.net/forum?id=ryTr83DxRq.

OpenAl. Gpt-5 system card. Preprint, 2025. URL https://openai.com/index/
introducing-gpt-5/.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Pedersoli. Starvector: Generating scalable vector
graphics code from images and text. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 16175-16186, June 2025.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Mengfan
Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu, Sihan
Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin Xu,
Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinhao Li, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao,
Yidao Qin, Yimin Chen, Yiping Bao, Yiqgin Wang, Yongsheng Kang, Yuanxin Liu, Yuhao Dong,
Yulun Du, Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng
Zhang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, Ziwei Chen, and Zongyu Lin. Kimi-vl
technical report, 2025. URL https://arxiv.org/abs/2504.07491.

Seed Team. Seedl.6 tech introduction. Preprint, 2025. URL https://seed.bytedance.
com/en/seedl_6.

11

https://openreview.net/forum?id=jSKtxmxc0M
https://aclanthology.org/2022.findings-acl.177
https://openreview.net/forum?id=ryTr83DxRq
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2504.07491
https://seed.bytedance.com/en/seed1_6
https://seed.bytedance.com/en/seed1_6

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Dangi Chen. Charxiv:
Charting gaps in realistic chart understanding in multimodal LLMs. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2024b. URL https:
//openreview.net/forum?id=cy8mg7QYae.

Chengyue Wu, Zhixuan Liang, Yixiao Ge, Qiushan Guo, Zeyu Lu, Jiahao Wang, Ying Shan, and
Ping Luo. Plot2Code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Findings of the Association for Computational Linguistics: NAACL 2025, pp. 3006-3028,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-
8-89176-195-7. doi: 10.18653/v1/2025 findings-naacl.164. URL https://aclanthology.
org/2025.findings—-naacl.164/.

LCT Xiaomi and Core Team. Mimo-vl technical report. arXiv preprint arXiv:2506.03569, 2025.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=tN61DTr4Ed.

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran XU, Xinyu
Zhu, Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang.
Chartmimic: Evaluating LMM’s cross-modal reasoning capability via chart-to-code genera-
tion. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=sGpCzsfdlK.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. SWE-bench multimodal: Do ai systems generalize to visual software domains? In
The Thirteenth International Conference on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=riTiqg3i21b.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R Narasimhan. {τ}-bench: A benchmark
for \underline{ T }ool-\underline{ A } gent-\underline{ U } ser interaction in real-world domains. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=roNSXZpUDN.

Zhehao Zhang, Weicheng Ma, and Soroush Vosoughi. Is GPT-4V (ision) all you need for
automating academic data visualization? exploring vision-language models’ capability in
reproducing academic charts. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 8271-
8288, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.485. URL https://aclanthology.org/2024.
findings-emnlp.485/.

Henry Hengyuan Zhao, Kaiming Yang, Wendi Yu, Difei Gao, and Mike Zheng Shou. Worldgui:
An interactive benchmark for desktop gui automation from any starting point, 2025a. URL
https://arxiv.org/abs/2502.08047.

Xuanle Zhao, Xuexin Liu, Haoyue Yang, Xianzhen Luo, Fanhu Zeng, Jianling Li, Qi Shi, and Chi
Chen. Chartedit: How far are mllms from automating chart analysis? evaluating mllms’ capability
via chart editing. arXiv preprint arXiv:2505.11935, 2025b.

12

https://openreview.net/forum?id=cy8mq7QYae
https://openreview.net/forum?id=cy8mq7QYae
https://aclanthology.org/2025.findings-naacl.164/
https://aclanthology.org/2025.findings-naacl.164/
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=roNSXZpUDN
https://openreview.net/forum?id=roNSXZpUDN
https://aclanthology.org/2024.findings-emnlp.485/
https://aclanthology.org/2024.findings-emnlp.485/
https://arxiv.org/abs/2502.08047

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

13

LLM Usage Statement 15

User-Centric Case Studies 15
Data Curation 19

C.0.1 ChartImageData, 19
C.l1 rawdatafiltering e 20
More Analysis 21
Metric Details 22
E.1 Overall e 22
E.2 BaseEvaluation e e e e 22

E.2.1 ColorScore i e e e 23

E22 gridScore 24

E.2.3 LayoutSCore v v i v v it e et e e e e e e e e e 25

E24 Legendscore v v i i v i i e e e e e 26

E.2.5 dataparameter SCOre v v v v v v v i e e e e e e e 27

E.2.6 visual parameter SCOre i i e e e e e e e e 28

E.2.7 typescore o i i e e e e e e e e e e e e e 29

E2.8 texXtscore i v v i i e e e e e e e e e 30
E.3 LLM-Evaluation ittt e 31
E4 LMM-Evaluation e e e 31
Run configurations 33
Open-Source Model Components 34
Model License 35
Model Source 35
L1 devel 1 e e e e e e e 36
L2 devel2 . . o o e e e 41
L3 devel3 . . . o e e e 46
Evaluation Code 50
Jo1 color . o . o e e e e e e 50
J2 0 Grid . . e e e 51
J3 Layout. . . . o e e e e e e e 52
J4 Legend e e e e 53
J5 Visual e e e 54
JJo Data e e e e e e 54

J7 Text e e e e .. 56

J8 Type e C e e e .. 57
K Prompt 58
K.1 generation Prompt. e e e ... 58
K.2 LLM-Score Prompt e e e ... 61

A LLM USAGE STATEMENT

We disclose the use of Large Language Models (LLMs) in this research in several capacities.

First, during the preparation of this manuscript, we utilized an LLM for grammatical correction and
stylistic refinement to improve the paper’s readability.

Second, and central to our methodology, multiple LLMs served as the subjects of our experiments to
test our proposed benchmark. Furthermore, the evaluation metrics for our benchmark involved using
an LLM to assess the comprehensive quality of the results.

We explicitly state that we have never relied on LLMs to generate core research ideas, methodologies,
experimental designs, or conclusions. All technical contributions and analyses presented herein are
the original work of the authors.

B USER-CENTRIC CASE STUDIES

In this section, we showcase representative examples that reflect scenarios commonly encountered
by human users. One example is a Level 2 task ("Error Sample"), where the model must not only
generate chart code but also edit the original data to produce the target visualization. We observe that
most Large Multimodal Models (LMM) fail on this seemingly routine setting, which highlights their
difficulty in handling tasks that are trivial for humans.

Moreover, as illustrated in the subsequent cases ("LLM capability exploration"), existing LMMs
often produce wrong answers even for basic perception tasks, such as recognizing image content
or extracting key chart information. These failures indicate that if models cannot reliably solve
such everyday scenarios, it is even less likely they can succeed in the more complex challenge of
chart2code.

Error Sample

Instruction: Analyze inventory distribution by category. - Highlight sufficient inventory in ’Grooming Tools’ and ’Kids’ Clothing’ - Highlight insufficient
inventory in *Toys & Games’ and 'Books & Stationery’ - Use separate colored sections in the chart to distinguish these two groups Generate runnable
Python code matching the uploaded image style.

Data text:

{

"Grooming Tools": {"in_stock": 15.2, "out_of_stock": 14.8},
"Kids’ Clothing": {"in_stock": 12.5, "out_of_stock": 13.2},
"Toys & Games": {"in_stock": 8.3, "out_of_stock": 9.1},

"Books & Stationery": {"in_stock": 7.1, "out_of_stock": 8.2},
"Health & Wellness": {"in_stock": 6.8, "out_of_stock": 7.4},
"Cameras & Accessories": {"in_stock": 6.5, "out_of_stock": 7.0},
"Beauty & Personal Care": {"in_stock": 6.2, "out_of_stock": 6.7},
"Men’s Clothing": {"in_stock": 5.9, "out_of_ stock": 6.3},
"Women’s Clothing": {"in_stock": 5.4, "out_of_stock": 6.0},
"Shoes & Footwear": {"in_stock": 5.1, "out_of_stock": 5.8}

}

Reference Figure

GT Figure

15

Doubao-Seed-1.6:

Data analysis statistics are incorrect; colors have not properly
mimicked the style; the pie chart should be a donut chart.

Claude Sonnet 4:

style; the data extraction is incorrect; the legend style is wrong.

.‘ -"‘ One sub-figure is missing; the colors do not follow the reference

Color style error; data analysis error.

Gemini-2.5-pro:

— \ = . 5 The image is highly faithful; the data analysis is correct; there
’ are minor flaws but acceptable.

LLM capability exploration

Question: Please, based on this image, tell me if there is any title text in the picture? If so,
what is its position, is it single or multiple lines, and what are its size and color?
Figure:

Kitchen Boil Kettle
Ours (pix2pred)
VLM subselect
No subselect

No feat. el

No visual H
No invent
VLM feat. pred
ViLa

ViLa fewshot]

o
w
o
=
o
o

Answer: Yes; Upper; Single; fontsize=12; Black;

Doubao-1.5-thinking-vision-pro: Yes; Upper; Single; fontsize=14; Black;

Qwen2.5-VL-72B: Yes; Center top; Single; fontsize=14-16; Black;

Claude-opus-4: Yes; Center top; Single; Large; Black;

Gemini-2.5-pro: Yes; Center top; Multiple; Large; Black;

GPT-5: Yes; Center top; Single; fontsize=16; Black;

LLM capability exploration

Question: Please describe the arrangement and relative position of the legend in this chart: Is
it arranged horizontally, vertically, or in a grid? Which side of the main graph is it located on
(top, bottom, left, right, or embedded within)?

Figure:

60

—e— DUET-IF (ours)
—e— DUET-UR
—e— DUET-RH
== Uniform weights

a0

Answer: Horizontally(N*1); Lower right;

Doubao-1.5-thinking-vision-pro: Horizontally(N*1); Upper right;

Qwen2.5-VL-72B: Horizontally(N*1); Lower right;

17

Claude-opus-4: Horizontally(N*1); Middle right;

Gemini-2.5-pro: Horizontally(N*1); Middle right;

GPT-5: Horizontally(N*1); Right;

LLM capability exploration

Question: Please describe the grid lines in this chart: Are they horizontal, vertical, or both?
Are the lines dashed or solid?
Figure:

Answer: Only horizontal grid lines; Dashed line;

Doubao-1.5-thinking-vision-pro: Only horizontal grid lines; Solid line;

Qwen2.5-VL-72B: Only horizontal grid lines; Dashed line;

Claude-opus-4: Only horizontal grid lines; Solid line;

Gemini-2.5-pro: Only horizontal grid lines; Dashed line;

GPT-5: Only horizontal grid lines; Dashed line;

LLM capability exploration

Question: Please describe the primary tick marks on the axes of this chart: whether they
exist, their thickness and orientation (facing outward or inward), as well as the position and
rotation angle of the tick labels.

Figure:

= MO-ODPO Win Rate = Ties Basehne Win Rate

172, 5 2251
42.6[J140.5 37 3
s a1 °

> “v S N

& Qo o<z~

0
Q Q'
(a) Anthropic-HH (b) TL:DR Summanz:mon

Answer: No; Lower; 45 degrees.

,
\

Doubao-1.5-thinking-vision-pro: Implied; Lower; O degrees.

Qwen2.5-VL-72B: No; Lower; 0 degrees.

Claude-opus-4: No; Lower; 0 degrees.

Gemini-2.5-pro: No; Lower; 0 degrees.

GPT-5: No; Lower; 0 degrees.

C DATA CURATION

To construct a comprehensive and challenging chart benchmark, we collected a rich dataset of chart
images and their corresponding raw data from multiple sources.

C.0.1 CHART IMAGE DATA

Our chart image library is primarily composed of three parts, designed to cover a wide range of chart
types, visual styles, and information densities.

* Charts from Academic Literature: We extracted chart images from approximately 5,000 PDF
documents by crawling and parsing papers from the preprint server arXiv using automated scripts.
These publications span from January 2024 to July 2025 and cover multiple disciplines, including
computer science, physics, statistics, and economics, timestamps distribution of chart sources from

19

ArXiv Paper Collection by Month

» [+
[} [}
o o

Number of Papers
n
o
o

mmﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬂﬂﬂll

Qﬂf (,'1/ (,'L s (\,’1' \,’1/ i s Kﬂ/ 451/
S A 0" o & \} » o«
Collection Period

(=]

Figure 5: Timestamps distribution of chart sources from arxiv preprint.

arxiv preprint 5. This ensures that our dataset not only includes common statistical charts but also
covers the highly customized and information-dense visualizations frequently found in academic
research, guaranteeing both diversity and state-of-the-art relevance.

* Examples from Programming Communities and Tutorials: To include ‘“standard” charts
generated directly from code, we collected 1,000 example charts from the official documentation
and tutorials of several mainstream data visualization libraries. Sources include official plotting
examples from Matplotlib, Seaborn, Plotly, WordCloudX, Scipy, and Matlab. This portion of the
data provides a set of stylistically consistent and high-quality “golden standard” references for the
benchmark.

» Existing Chart Datasets: To further increase the difficulty of the benchmark, we selected 300 of
the most structurally and elementally challenging complex charts from the existing ChartMimic
(Yang et al., 2025a) dataset, based on its inherent difficulty labels and our own pre-assessment.

Preliminary Collection and Deduplication: First, we gathered all charts from the three aforemen-
tioned sources into a unified database. We then performed preliminary automated deduplication and
format standardization.

Coarse Filtering: We recruited 10 senior undergraduate students majoring in computer science to
conduct an initial screening of the chart pool. The screening criteria were primarily based on the
clarity of the chart type (i.e., whether it is a common chart type) and its information complexity (e.g.,
the number of data series, density of text labels). This stage aimed to quickly eliminate ambiguous,
overly simplistic, or low-quality images, reducing the dataset size from approximately 6,300 to 3,000.

Expert Evaluation and Annotation: We invited five doctoral students and researchers, each with
over three years of experience in data visualization, to serve as experts for a fine-grained evaluation
of the filtered charts. We assigned the charts to the experts by category (e.g., line charts, bar charts,
scatter plots) and asked them to independently score each chart from 1 to 5 across three dimensions:
Data Complexity: Refers to the dimensional and structural complexity of the underlying data
required for the chart. Visual Complexity: Refers to the richness of visual elements in the chart,
such as markers, colors, annotations, and dual axes. Programming Complexity: Refers to the
programming skills and volume of code required to reproduce the chart, such as the need for complex
layouts or custom functions. Final Adjudication: We selected charts that achieved a high composite
score across the three dimensions and had high inter-rater agreement (> 0.8). For charts with
disagreements, two core researchers made the final decision. Through this process, we finalized a set
of 719 high-quality reference charts.

C.1 RAW DATA FILTERING

Automated Preprocessing: We developed automated scripts to parse raw data files in various formats
(e.g., Excel, CSV, TXT, JSON). These scripts prioritized the selection of data tables that contain
abundant numerical, time-series, or categorical information suitable for visualization.

Manual Verification and Diversity Preservation: Subsequently, we manually reviewed the data
filtered by the scripts, discarding any incomplete or poorly formatted data. During this process,
we placed special emphasis on preserving the diversity of data sources and domains to ensure the
final dataset was not biased towards any specific field. Ultimately, we constructed a raw database
containing 39 Excel files, 80 structured data files (such as CSVs), and 36 semi-structured text files.

20

(b) LMM-Score for Chart Evaluation
0.00 ! 0.00 0.05

(a) LLM-Score for Code Evaluation
Kimi-VL 0.00 062

InternVL-3.5-8B 1 O. 0.00 0.62 0.01 0.00

Deepseek-VL 0.00 0.00 0.04 X . 0.00

0.09 l K 0.08

Qwen-2-VL-72B 0.00

Qwen-2.5-VL-728 ! 000 o000 il 005 012 003] 0.00
Claude-Sonnet-4 068 0.71 i 075 -

0.00 | 0.62 -

Gemini-2.5-pro . 083 0.77 0.81 | 0.66
GPT-5 084 079 . 0.68 | 0.61

Seed-1.6-VL [[NalN 045 . 0.72 Wl
Seed-1.5-VL 0.72 K3 . 0.69

Figure 6: Analysis of model performance on different task cases with LLM-score and LMM-score.

D MORE ANALYSIS

Discrepancy Between LLM-Score and LMM-Score. Figure 6 illustrates model performance
across ten representative task cases, evaluated by both LLM-score for code quality (left) and LMM-
score for rendered chart fidelity (right). A clear discrepancy emerges: proprietary models such as
GPT-5, Gemini-2.5-Pro, and Claude-Sonnet-4 achieve consistently high LLM-scores across most
tasks (often >0.7), indicating strong code-level compliance. However, their corresponding LMM-
scores are much lower (typically <0.35), showing that syntactically correct code often fails to
produce visually faithful charts. Open-source models, in contrast, underperform on both metrics,
with particularly low LMM-scores across all tasks. This contrast highlights that current models
generalize relatively well at the code level but remain fundamentally limited in achieving pixel-level
chart fidelity, especially on diverse and challenging task cases.

21

E METRIC DETAILS

E.1 OVERALL

To better evaluate the performance of different models, we conduct comparative assessments from
two levels: the code-level and the chart-level. Throughout the evaluation process, we first examine
the executability of the generated code. The execution rate is defined as the ratio between the number
of executable code snippets that successfully generate images (s) and the total number of tasks ().
Formally, the execution rate is expressed as:

exec_rate = ; (1

The execution rate is reported as a percentage.

At the code-level, we first extract plotting elements from the matplotlib.Figure object and
propose eight evaluation dimensions as the base evaluation. The detailed specifications are given
in E.2. Subsequently, we leverage gpt—5-mini to perform a holistic similarity assessment of the
code’s visualization results, thereby providing a more reliable confidence score at the code level. We
refer this as LLM-Score.

At the chart-level, we input the executable code into gpt-5-mini for image-based evaluation.
By designing specific prompts, the large multimodal model (LMM) assesses multiple dimensions
and produces an aggregated score. This chart-level evaluation offers an intuitive similarity measure
of the visual outputs, thereby serving as a direct indicator of model performance. We refer this as
LMM-Score. The implementation details of these two evaluation mechanisms are described as
follows.

E.2 BASE EVALUATION

To evaluate visualization effects from the code perspective, we investigated commonly used Python
plotting libraries and found that Seaborn, Matplotlib, NetworkX, and WordCloud all rely on Mat-
plotlib’s underlying plotting functions. When using these libraries for plotting, a Figure object
is generated in memory, which contains all the elements of the plot. This implies that we can
extract all visualization-related elements from the Figure object and compare the GT_code with
the generated_code to evaluate their visualization effects.

More Efficient. Unlike ChartMimic (Yang et al., 2025a), which depends on code tracers and code
injection, our evaluation method is substantially more efficient. In practice, ChartMimic must execute
both the GT_code and generated_code for each evaluation dimension, resulting in up to twelve
executions for a single generated_code. This process incurs significant computational overhead in
both time and memory. By contrast, our method executes the GT_code and generated_code only
once, caches their corresponding Figure objects, and then evaluates multiple dimensions directly on
these objects, thereby greatly reducing execution cost.

More General. In comparison to ChartMimic’s (Yang et al., 2025a) hard-coded rules, which exhibit
limited adaptability and strong dependence on specific Matplotlib versions, our evaluation method is
inherently more general. ChartMimic enforces rule-based matching of plotting elements, which not
only imposes strict version constraints but also leaves many elements unsupported. Our approach
instead parses the Figure object directly, which comprehensively encapsulates all elements in
memory, ensuring greater robustness and version independence.

More Versatile. Whereas ChartMimic (Yang et al., 2025a) is restricted to a narrow set of functions
from specific libraries, our method offers broad applicability. By operating directly on core Matplotlib
objects, our approach seamlessly extends to all visualization libraries that build upon Matplotlib’s
primitives, thereby achieving substantially stronger cross-library generalization.

More Precise. Unlike ChartMimic (Yang et al., 2025a), which evaluates function call patterns rather
than visual outputs, our method emphasizes the visualization results themselves. ChartMimic leaves
a gap between code execution and rendered charts, while our approach directly inspects visual objects
such as Line and Patch. This enables a more faithful and precise evaluation of visualization
quality at the code-to-visualization level.

22

E.2.1 COLOR SCORE

Traditional approaches typically treat all colors in a chart as an unordered set, neglecting the binding
relationship between colors and specific data items(Yang et al., 2025a). To address this issue, we
propose an efficient and more professional method for color extraction strategy designed to parse
colors and their corresponding semantic information from Matplotlib’s graphical objects Figure.
This strategy decomposes the chart into different types of visual elements and organizes the extracted
color information into a structured mapping, which can be expressed as:

{ElementType — {DataKey — HexColor}})
where:

* ElementType: Refers to the object to which the color is applied, such as the fill color of
a bar chart (patch_face), the line color of a line chart (1ine_color), the color of a
scatter plot (scatter_color), or the background of the axes (axes_bg).

» DataKey: Refers to the specific data entity bound to the color. This is typically the label in
the legend, the tick label on the axis, or the content of a text element.

e HexColor: The standardized hexadecimal color code.

After obtaining the structured color data, we design a set of weighted evaluation metrics to quantify
the color fidelity between generated_code and GT_code. The core principle of this evaluation is that
not all colors are equally important. For example, errors in the colors of data series are more severe
than errors in the colors of axis grid lines.

To this end, we introduce element-type weights (w;), assigning a predefined weight to each
ElementType t. Core data elements (e.g., patch_face, 1line_color) are assigned high
weights (e.g., 1.0), whereas auxiliary or decorative elements (e.g., figure_bg, spine) are as-
signed lower weights (e.g., 0.01).

The evaluation is performed only on the element types and data keys shared by both gener-
ated_code(gen) and GT_code(gt). This ensures a valid comparison, avoiding mismatches such
as comparing a line color in generated with a bar color in gt_code.

The total weighted similarity S, serves as the core of our model, and is computed as:

Stotal = Z Z W 'U(Cgen,t,ka Cgt,t,k})7 3)

teETgenNTys kEK gen,t MK gt ¢t
where:

» Tyen and T, denote the sets of all element types present in the generated chart and the
ground-truth chart, respectively.

* Kgen,t and K 4 denote the sets of all data keys under element type ¢ in the generated and
ground-truth charts, respectively.

* wy is the predefined weight for element type .

* Cyen,t,k and Cyq ¢ 1, are the colors corresponding to element type ¢ and key k in the generated
and ground-truth charts, respectively.

* 0(C1, Cs) is a function measuring the similarity between two hexadecimal colors.

The color similarity function o (C1, C5) is used to quantify the visual closeness between two colors.
In our implementation, we adopt a normalized reversed Euclidean distance in the RgenB color space
to compute similarity.

First, the hexadecimal color C'is converted into its RGB representation (R, G, B). The Euclidean
distance between two colors Cy and C5 is defined as:

d(C1,C2) = (R1 — R2)* + (G1 — G2)* + (B1 — By)*.)
The maximum possible distance in the RGB space corresponds to the distance between (0, 0, 0) and

(255,255, 255), i.e.,
inax = 3 - 2552. 3)

23

We then normalize the distance d and transform it into a similarity score o within the range [0, 1]:

U(Cl,cz)zl—w- (6)

dmax

When two colors are identical, o = 1.0; when they differ maximally, o = 0.0.

To provide comprehensive and interpretable evaluation results, we map the computed total weighted
similarity (Si1) to three standard metrics widely used in the information retrieval domain: Precision,
Recall, and F1-Score.

Total Weight: We first compute the total weights of the generated chart and the ground-truth chart,
representing the maximum theoretically achievable similarity score.

Wgen = E E We, Wgt = E E Wt. (7)
teTgen k€K gen, ¢ tETy k€K g1

Precision: Measures the accuracy of all color elements in the generated chart. It answers the question:
“Among all generated colors, what proportion is correct?”

.. Stotal
Precision = . 8
Wyen ®)

Recall: Measures the extent to which all color elements in the ground-truth chart are correctly
reproduced in the generated chart. It answers the question: “Among all required colors, what
proportion has been correctly generated?”

&)

F1-Score: The harmonic mean of Precision and Recall, providing a single comprehensive evaluation

score.

Fl-Score — 2- Prf:c.ision . Recall' (10)
Precision + Recall

E.2.2 GRID SCORE

We define a structured Grid State Descriptor. For each subplot ax in a chart, we extract the visibility
of its X-axis and Y-axis grid lines, and encode them as a Boolean dictionary:

{"%x_grid_visible’ :bool, 'y_grid_visible’ : bool}. (11)

We traverse all Axes objects within a Figure, and for each subplot where at least one grid line
(X-axis or Y-axis) is visible, we generate a grid state descriptor. Ultimately, the grid configuration of
an entire chart is abstracted as a list of such descriptors, which can be mathematically regarded as a
multiset.

For example, in a Figure with two subplots, where the first subplot has only Y-axis grid lines and
the second subplot has both X-axis and Y-axis grid lines, the grid configuration is represented as:

{"x_grid_visible’ :False, 'y_grid_visible’ : True}, (12)
{"x_grid_visible’ : True, 'y_grid_visible’ : True}

This structured representation is not only precise but also completely ignores the specific styles of
grid lines (e.g., color, linewidth). Instead, it focuses solely on their presence, which captures the core
semantics and makes the evaluation more robust.

After extracting the multisets of grid state descriptors from the generated figure (Ggen) and the
ground-truth figure (G), we further use the F1 metric to measure the accuracy of this parameter.

We define the following notations:

24

* Glgen: the multiset of grid state descriptors extracted from the generated figure.
* Gy the multiset of grid state descriptors extracted from the ground-truth figure.

The number of true positives (TP) is defined as the cardinality of the intersection between the two
multisets:
TP = |Ggen N Gyl (13)

True Positives (TP) A true positive is defined as a grid state descriptor that appears in G ., and
exactly matches one in G 4. The total number of true positives is given by the size of the intersection
of these two multisets:

TP = |Ggen NGyl (14)

Precision Precision measures the proportion of correctly activated grid configurations among all

grid configurations in the generated figure (i.e., those that also exist in the ground-truth figure):
TP |Ggen NGyl

|Ggenl |Ggenl

Precision =

15)

If |Ggen| = 0, we define Precision = 1.0.

Recall Recall measures the proportion of required grid configurations in the ground-truth figure that
are successfully reproduced in the generated figure:

TP |Ggen NGyl

Recall = =
| th | | th |

(16)

If |Gg¢| = 0, we define Recall = 1.0.

F1-Score The F1-score, as the harmonic mean of precision and recall, provides a single comprehensive

metric:

Precision - Recall
F1-S =2. . 17
core Precision + Recall (an

E.2.3 LAYOUT SCORE

For each individual subplot (i.e., an Axes object) in a chart, we create a unique and quantitative
Layout Descriptor. This descriptor fully defines the size and position of the subplot within a virtual
grid (GridSpec). Instead of relying on pixel coordinates, we extract the underlying structural
information from Matplotlib’s Subplot Spec object.

For each subplot ax in a Figure, we extract the following six key parameters to construct its layout
descriptor D:

* nrows (R): the total number of rows in the corresponding GridSpec.

* ncols (C): the total number of columns in the corresponding GridSpec.

* row_start (rs): the starting row index of the grid cells occupied by the subplot.

* row_end (r.): the ending row index of the grid cells occupied by the subplot.

* col_start (cs): the starting column index of the grid cells occupied by the subplot.

* col_end (c.): the ending column index of the grid cells occupied by the subplot.
Thus, the layout of each subplot can be precisely represented as a 6-tuple:

D = (Ra C,’I’S,?"E,CS,CG). (18)

By traversing all Axes objects in a Figure, the overall layout can be abstracted as a multiset of
these layout descriptors D, denoted as L.

We define the following notation:

* Lgep: the multiset of layout descriptors extracted from the generated figure.

25

* Lgr: the multiset of layout descriptors extracted from the ground-truth figure.

True Positives (TP) A true positive represents a layout descriptor that exists in L., and exactly
matches one in Lg;. The total number of true positives is defined as the size of the intersection of
these two multisets:

TP = |Lgen N Lt (19)

This indicates the number of subplots that are correctly generated and placed in the correct positions.

Precision Precision measures the proportion of correctly generated subplots among all generated
subplots:
TP Lyen NL
Precision = _ [Bgen O L] (20)
[Lgen| | Lgen|

Here, | L., | denotes the total number of subplots in the generated figure. A low precision indicates
that the model produced redundant or incorrectly placed subplots.

Recall Recall measures the proportion of required subplots in the ground-truth figure that were
successfully generated:
TP |Lgen N Lyl

Recall = =
|Lgt | | Lgt |

2

Here, | Ly;| denotes the total number of subplots in the ground-truth figure. A low recall suggests that
the model failed to generate all required subplots.

F1-Score The F1-score, as the harmonic mean of precision and recall, provides a single balanced
metric for evaluating the overall quality of the layout:
Precision - Recall

F1-Score = 2 - — (22)
Precision + Recall

E.2.4 LEGEND SCORE

We propose a Dual-Constraint Matching Framework for Legend Evaluation. This framework de-
composes legend evaluation into independent assessments of the semantic and spatial properties of
each individual legend entry, and quantifies the consistency between the generated and ground-truth
figures through a flexible matching algorithm. Consequently, it provides a more comprehensive and
robust evaluation scheme.

Our method does not treat the legend as a single entity but decomposes it into a collection of
independent legend entries. For each visible legend object in the chart, we traverse all its text labels
and create an atomic, structured Legend Descriptor for each label.

The descriptor D is defined as a 2-tuple that captures both semantic and spatial information:
D= (t,B) (23)

where:

* tis a string representing the textual content of the legend entry. This element captures the
semantic correctness of the legend.

* B is a 4-tuple (xg,yo,x1,y1) representing the bounding box of the entire legend object
containing the text entry, expressed in the screen rendering coordinate system. This element
captures the spatial correctness of the legend.

By traversing all legends from both the Axes objects and the Figure object itself, we can extract
all visible legend entries of a chart and represent them collectively as a multiset of descriptors D,
denoted as L.

After extracting the multisets of legend descriptors L., and L4 from the generated and ground-truth
figures, respectively, we design a dual-constraint matching algorithm to compute their similarity. The
algorithm can flexibly operate in two modes: semantic-only matching or combined semantic and
spatial matching.

26

A descriptor Dgepn, = (tgen, Bgen) from L., matches a descriptor Dy = (tg¢, Bgt) from L if and
only if one or both of the following constraints are satisfied:

Semantic Constraint: The text content of the two descriptors must be identical:

tgen, = tgt . (24)

Positional Constraint: The bounding boxes of the legend objects containing the descriptors must
have a positive intersection area:

Areainte’r‘section(Bgen7 Bgt) > 0. (25)

For two bounding boxes By = (x1,0,%1,0, %1,1,¥1,1) and By = (22,0, Y2,0, T2,1, Y2,1), the intersec-
tion area is computed as:
x4 = max(x1,0,22,0)
Yya = maX(yl,O, yz,o)
rxp =min(zy1,%21)
Yp = min(yl,layQ,l)
Areaintersectz’on = max((), B — IA) : max(O, YyB — yA)

(26)

The algorithm finds unique matching pairs that satisfy the above constraints (removing matched

descriptors from the pool) and computes the total number of true positives (TP). Based on TP, we

perform the final quantitative evaluation using standard precision, recall, and F1-score metrics:
Precision - Recall

TP
Recall = ——, F1-Score =2 - 27

Precision — — LT .
recision |Lgenl’ |Lgt|’ Precision + Recall

E.2.5 DATA PARAMETER SCORE

The primary goal of data visualization is to faithfully and accurately convey the underlying data. We
introduce an evaluation framework designed to quantify the fidelity of a chart’s data parameters. This
framework inspects the chart at a deep level, directly verifying the correctness of its underlying data.

The first step of the framework is to identify and extract the data parameters that directly define the
data representation of the chart. Through introspection of Matplotlib plotting elements, we categorize
these parameters into distinct types. The set of data parameters, denoted as K 4444, 1S explicitly
defined as:

K gata = {"xdata’, ’ydata’, offsets’, "xy’, verts’, "width’, height’, ’sizes’ }. (28)
These parameters directly correspond to the geometric and positional properties of chart elements:

* For line plots (Line2D), we extract xdata and ydata.

* For bar charts (Rectangle), we extract the lower-left corner coordinates xy, as well as
width and height.

* For filled plots (Polygon), we extract all vertex coordinates verts.

* For scatter plots (Col lection), we extract the center coordinates o f £ set s and the point
sizes sizes.

Through this process, each chart is decomposed into a multiset E' of element-parameter dictionaries.

Data parameters, especially those represented as arrays, cannot be compared using simple equality
operators. To robustly handle variations in data point ordering or floating-point precision, we define a
dedicated similarity function S(vy, v2). The core logic for data parameters is as follows:

Numeric Type: For scalar values, we use numpy . 1 sclose to determine whether two floating-point
numbers are approximately equal within a tolerance e:

S(v1,v2) = {

1 if|’l}1—1)2‘§6

29
0 otherwise (29)

27

Array-like Type: For array data, which is crucial for evaluating data parameters, we adopt the
Jaccard similarity coefficient to measure the overlap between the contents of two arrays. Let V; and
V> denote the sets of elements in v; and vs, respectively:

VinNnV;
S(v1,v5) = M (30)

This method is insensitive to the order of data points and accurately reflects the true content overlap
between two datasets.

After quantifying the similarity between parameters, we employ a two-stage algorithm to compute
the final evaluation metrics.

Element Matching: To address differences in element order and quantity across charts, we use a
greedy optimal matching algorithm. For each element ey; in the ground-truth chart, the algorithm
searches among elements of the same type in the generated chart to find the best match e}, that
maximizes the total similarity across all parameters. This matching is performed globally, considering
all parameter types. The result is a set of successful matches:

M = {(egen,egt)}- (31)

Data Metric Computation: Once the matching set M is obtained, we focus exclusively on data
parameters to aggregate the scores. The total true positive score for the data dimension, T Py, s
computed as the sum of similarities across all matched pairs. We iterate over the union of keys to
ensure penalties for missing or extra parameters:

TP=) > S(egen k], eqtlK]) (32)

(egen,egt)EM kE(keys(egen)Ukeys(egt))NKaata

Next, we count the total number of data parameters in the generated chart and the ground-truth
chart, denoted as Nyqta,gen and Nyqtq, i, Tespectively. Finally, we compute the precision, recall, and
F1-score for the data dimension:

Precisi TP
recision = ———,
Ndata,gen
TP
Recall = ——, (33)
Ndata,gt
Fl-Score — 2. Precision - Recall

Precision + Recall’

E.2.6 VISUAL PARAMETER SCORE

The visual style of a chart is also an important component of chart reproduction quality. Visual style is
governed by a set of visual parameters, such as line styles, marker shapes, element transparency, and
so on. Correct usage of these parameters not only affects the aesthetic quality and professionalism
of the chart, but also directly determines whether it adheres to specific design guidelines or user
instructions. We propose a framework, running in parallel with the data parameter evaluation,
specifically designed to quantify the consistency of a chart with respect to its visual parameters.

This framework builds upon the parameterized representation established in E.2.5. After extracting
all parameters of an element, we identify the set of visual parameters (K, ;syq1) by exclusion. A
parameter key k is classified as a visual parameter if it satisfies:

k ¢ Kdata and k % Kignore (34)
where K 4444 18 the predefined set of data parameters, and K;gpore is the set of parameters handled by

other evaluators (e.g., color). Typical visual parameters include: * 1inestyle’,’ linewidth’,
"marker’,’markersize’,”alpha’, and so on. The extraction process is performed in parallel

28

with that of the data parameters, but subsequent evaluation computations focus exclusively on this
subset of parameters.

We employ the same general similarity function S(v1, vg) introduced in the equation 29 and equa-
tion 30 to compare the values of visual parameters. Its robustness is equally applicable to various
data types of visual parameters:

* String type: For parameters such as 1linestyle (e.g.,’-’ vs '=") ormarker (e.g., 0’ vs
’x’), the function performs a direct string equality comparison.

* Numeric type: For parameters such as 1inewidth (e.g., 1.5 vs 2.0) or alpha (e.g., 0.8
vs 1.0), the function uses numpy . isclose to perform a tolerance-based comparison.

This consistent definition of similarity ensures intrinsic coherence across different evaluation dimen-
sions.

Element Matching: We reuse the set of matched element pairs M = {(egen, €4¢)} obtained through
the greedy optimal matching algorithm. This implies that the matching of elements is determined
based on their overall similarity (data + visual), consistent with human perception — we always
perceive an element as a whole. Establishing a match indicates that both the data and visual aspects
will be evaluated for that pair.

Visual Metric Computation: Given the set of matched pairs M, we focus exclusively on the visual
parameters to aggregate the scores. We compute the total true positive score for the visual dimension
(T Pyisual), defined as the sum of visual parameter similarities across all matched pairs:

TPyiswar = Y > S(egenlk], egelE]) (35)

(egen.egt)EM ke (keys(egen)Ukeys(egt))NK yisual

Similarly, we count the total number of visual parameters in the generated and ground-truth charts,
denoted as Nyisual,gen ad Nyjsuai,gt> respectively. Finally, the precision, recall, and F1-score for
the visual dimension are computed as:

.. TPvisual
Precisionyjsyq = ——mm,
Nvisual,gen
Tpvisual
Recallyjsyar = ~ (36)
N’uisual,gt

Precision,sya; - Recally;syar
F1 -Scorevisual =

Precisiony;isyar + Recallyisual

E.2.7 TYPE SCORE

We propose an evaluation framework based on Artist Class Introspection. Unlike methods that rely
on the visual rendering of charts, this framework directly inspects the object model constructed in
memory by the plotting library (Matplotlib). By examining the core drawing artists (i.e., primitive
graphical objects) and their associated classes, the framework deterministically and robustly infers
the composition of a chart. The key idea is that Matplotlib employs different classes of artist objects
for different types of plots. For example, a line plot is rendered using Line2D objects, whereas a bar
chart is rendered using Rectangle objects. Leveraging this intrinsic correspondence, we can infer
the chart types present in a figure by identifying which classes of artist objects it contains.

Our algorithm operates by traversing all subplots (Axes) within a matplotlib.Figure ob-
ject and inspecting the list of artists contained in each subplot (e.g., ax.lines, ax.patches,
ax.collections,etc.).

The algorithm aggregates all detected chart types within a figure into a set. This set-based representa-
tion has a significant advantage: it naturally supports the identification and evaluation of composite
charts. For example, a chart that overlays a line plot on top of a bar chart will be recognized as
containing both bar_or_hist and 1ine.

29

The number of true positives is defined as the size of the intersection between the two sets, that is, the
number of chart types present in both the generated chart and the reference chart:

TP = |Tyen N T (37)

Precision measures the proportion of correct chart types among all generated chart types:

TP |Tgen N Ty

Precision = = (38)
| Teen |Teen
where |Tyen| denotes the total number of distinct chart types detected in the generated chart.
Recall measures the proportion of reference chart types that are successfully generated:
TP Toen N T,
Recall = _ Taen N T (39)

T

Tl

where |Ty| denotes the total number of distinct chart types in the reference chart.

The F1-Score is the harmonic mean of precision and recall, providing a comprehensive evaluation

metric:

Fl-Score — 2- Prf:c'ision - Recall (40)
Precision + Recall

E.2.8 TEXT SCORE

We propose a text evaluation framework based on semantic categorization and fuzzy matching. In
this framework, all textual elements in a chart are categorized according to their functional roles, and
a fuzzy matching algorithm based on edit distance is applied among texts within the same category.
This enables a quantitative evaluation of chart text that is both strict and robust.

To achieve precise evaluation of textual roles, we first design an extractor (_extract_texts_from_figure)
that introspects the matplot 1ib Figure object to identify and classify all visible textual elements.
Instead of treating all texts as an undifferentiated set, we categorize them into predefined semantic
classes.

Through this process, the entire textual content of a chart is transformed into a structured Text Map,
denoted as 7. Its form is a dictionary that maps each category name to the list of text strings belonging
to that category: T = {¢ — [t1,t2,...]}. For example, Ty represents the list of all subplot titles
in the figure. This categorization mechanism ensures context-aware evaluation and prevents, for
instance, an axis label from being incorrectly compared with a title.

After obtaining the text maps of the generated chart and the reference chart, T, and Ty, we designed
an evaluation algorithm to quantify their consistency. To tolerate minor textual differences, we adopt
the Levenshtein Ratio as the similarity function between two strings s and s, denoted as Sy, (s1, s2).
This function is based on computing the minimum number of single-character edits (insertions,
deletions, or substitutions) required to transform one string into the other (i.e., the Levenshtein
Distance), and normalizes the value to the interval [0, 1]:

LevenshteinDistance(s1, s2)

Sr(s1,82) = 41

max(|s1], |s2)

A higher value of Sy, indicates greater similarity between the two strings. Identical strings achieve a
similarity of 1.

Our evaluation algorithm operates independently within each semantic category. For each category c,
the algorithm searches for the best match ¢, for every generated text {gen € Tgen,c from the available

reference texts Ty ., such that St (tgen, t4¢) is maximized. To prevent one-to-many matches, once a
reference text is matched, it is removed from the candidate pool.

We then accumulate the similarity scores of all best matches across all categories to obtain a total
similarity score (1" Pcqre), Which can be regarded as a weighted sum of “true positives™:

30

TPee=»_, Y. max Sp(tgente) (42)

tgt €T
ceC toen €T gen, c g ghe

where C denotes the union of all text categories present in both charts, and Té is the set of unmatched

reference texts in category c.

t,c

Finally, we compute the total number of generated and reference texts (Ngen and Ng), and derive the
Precision, Recall, and F1-Score as follows:

TPSCOI”E

gen

Precision = 5 Ngen - Z ‘Tgen,c| (43)

TRcore

gt

Recall =

, Na=> [Ty (44)
C

Fl-Score — 2- Prfec.ision - Recall 45)
Precision + Recall

E.3 LLM-EVALUATION

This study designs and implements a multi-dimensional visualization code evaluation framework
based on Large Language Models (LLMs). The framework does not execute code or render images;
instead, it leverages the powerful code understanding and reasoning capabilities of LLMs to perform
static analysis directly on the source code of both the generated and reference scripts. By decomposing
the complex problem of “visual similarity” into a series of well-defined and mutually orthogonal
evaluation dimensions, and by designing strict scoring instructions for each, our framework provides
a comprehensive, in-depth, and interpretable quantitative assessment of chart code quality.

We deconstruct the ambiguous task of “code quality” assessment into six specific and independent
evaluation dimensions, denoted as D,. This approach makes the LLM’s evaluation task more focused
and renders the final results more diagnostic and interpretable. The six dimensions are defined as
follows:

* Data Handling and Transformation: Evaluates the logic for processing, calculating, and
transforming raw data prior to plotting.

¢ Chart Type and Mapping: Evaluates the choice of core plotting functions and the mapping
of data columns to visual channels (e.g., X-axis, y-axis, size, color).

* Visual Aesthetics: Evaluates the settings of purely visual style parameters, such as colors,
line styles, and markers.

* Labels, Titles, and Legend: Evaluates the presentation and content of all textual elements.

* Figure Layout and Axes: Evaluates the canvas size, subplot structure, axis ranges, and
scales.

* Auxiliary Elements and Ticks: Evaluates the configuration of auxiliary elements such as
grid lines, reference lines, and axis spines.

The evaluation prompt is in K.2

E.4 LMM-EVALUATION

The ultimate criterion for evaluating automatically generated charts should be human visual perception.
Although programmatic evaluation and source code analysis can technically ensure the correctness
of chart components and parameters, they may not fully capture all visual details, artifacts, or the
overall aesthetic coherence in the final rendered image. To establish an evaluation system that more
closely approximates a "gold standard," we argue for the necessity of directly assessing the final
visual output—the chart image itself.

31

To this end, this study designs and implements a holistic chart image evaluation framework based on
Vision-Language Models (VLMs). This framework utilizes advanced multimodal large models by
simultaneously providing them with both the reference and the generated images, supplemented by a
set of rigorous evaluation instructions, to directly quantify the visual similarity between the two. This
end-to-end visual evaluation method can capture a wide range of discrepancies, from macroscopic
layout to microscopic pixel-level differences, thereby providing a comprehensive and holistic quality
score. Here, we adopt a holistic evaluation approach, assessing all visual aspects in a single call. To
ensure rigor, we extend and reinforce the philosophy of a deduction-based scoring system. The
instructions require the model to assume a perfect score of 100, and then to deduct points for every
visual discrepancy it finds between the two images.

The evaluation prompt is in K.2

32

F RUN CONFIGURATIONS

During the experiment, the parameter settings for various open-source and proprietary models were
as follows. For details, please refer to the table below:

Table 6: Run configurations for all models. Unset values indicate that their default values are being
used. For Proprietary models, we are unable to use a Top-P of exactly 1 due to their API settings, and
we end up using a value of 0.99999. Temp. denotes temperature. We use model pages’ code to set up
the run configurations whenever possible.

Model Version/HF Checkpoint ‘ Do Sample level 12Max level 3 Max Temp. Top-P

Proprietary Multimodal Large Language Models

GPT-5 OpenAl (2025) gpt-5-2025-08-07 default 55000 0 1

Claude 4 Sonnet Anthropic (2025) claude-4-sonnet-20250523 default 55000 0 1

Gemini-2.5-pro Comanici et al. (2025) gemini-2.5-pro-20250617 default 55000 0 1

doubao-seed-1-5 Guo et al. (2025) seedl.5-VL-20250513 default 16000 0 1

doubao-seed-1-6 Team (2025) seedl.5-VL-20250625 default 32768 0 1

Open-Source Multimodal Large L Models

Qwen2-VL-7B Wang et al. (2024a) Qwen/Qwen2-VL-7B-Instruct True 8192 32768 0.1 0.95
Qwen2-VL-72B Wang et al. (2024a) Qwen/Qwen2-VL-72B-Instruct True 8192 32768 0.1 0.95
Qwen2.5-VL-7B Bai et al. (2025) Qwen/Qwen2.5-VL-7B-Instruct True 8192 32768 0.1 0.95
qwen2.5-VL-72B Bai et al. (2025) Qwen/Qwen2.5-VL-72B-Instruct True 8192 32768 0.1 0.95
deepseek-VL-7B Lu et al. (2024) deepseek-ai/deepseek-vl-Tb-base True 8192 32768 0.1 0.95
kimi-VL-A3B Team et al. (2025) moonshotai/Kimi-VL-A3B-Thinking True 8192 32768 0.1 0.95
MiMo-VL-7B-RL Xiaomi & Team (2025) XiaomiMiMo/MiMo-VL-7B-RL-2508 True 8192 32768 0.1 0.95
MiMo-VL-7B-SFT Xiaomi & Team (2025) XiaomiMiMo/MiMo-VL-7B-SFT-2508 True 8192 32768 0.1 0.95
GLM-4-9b GLM et al. (2024) zai-org/glm-4-9b True 8192 32768 0.1 0.95
Intern-VL 2.5 8B Chen et al. (2024) OpenGVLab/InternVL2_5-8B True 8192 32768 0.1 0.95
Intern-VL 2.5 38B Chen et al. (2024) OpenGVLab/InternVL2_5-38B True 8192 32768 0.1 0.95
Intern-VL 3 8B Zhu et al. (2025) OpenGVLab/InternVL3-8B True 8192 32768 0.1 0.95
Intern-VL 3 38B Zhu et al. (2025) OpenGVLab/InternVL3-38B True 8192 32768 0.1 0.95
Intern-VL 3.5 8B Wang et al. (2025) OpenGVLab/InternVL3_5-8B True 8192 32768 0.1 0.95
Intern-VL 3.5 38B Wang et al. (2025) OpenGVLab/InternVL3_5-38B True 8192 32768 0.1 0.95
1lava-onevision-qwen2-7b-si Li et al. (2024a) lmms-lab/llava-onevision-qwen2-7b-si True 8192 32768 0.1 0.95
1lava-onevision-qwen2-7b-ov Li et al. (2024a) lmms-lab/llava-onevision-gqwen2-7b-ov True 8192 32768 0.1 0.95

33

G OPEN-SOURCE MODEL COMPONENTS

We have listed the main components of the open-source models used in our work below:

Table 7: We summarize the visual and language components of the open-source models evaluated in
our benchmark, along with the input resolutions used in our evaluation. Here, original denotes that we
use the default image size, as the corresponding models support dynamic resolution inputs. Note that
for DeepSeekVL-7B and GLM-4-9B , we apply a maximum input size constraint to accommodate

their requirements.

Model Vision Language Resolu-
Encoder Model tion
Qwen2-VL-7B Qwen2-VL ViT-14-224 Qwen2-VL-LLM-7B origianl
Qwen2-VL-72B Qwen2-VL ViT-14-224 Qwen2-VL-LLM-72B origianl
Qwen2.5-VL-7B Qwen2.5-VL ViT-14-224 Qwen2.5-VL-LLM-7B origianl
Qwen2.5-VL-72B Qwen2.5-VL ViT-14-224 Qwen2.5-VL-LLM-72B origianl

Deepseek-VL-7B

SigLIP-384-SO400M &
SAM-ViT-Base

DeepSeek-LLM-7B

1152 x 1152%

Kimi-VL-A3B MoonViT Moonlight Model origianl
MiMo-VL Qwen2.5-ViT MiMo-7B origianl
GLM-4-9B CLIP ViT-L-14-336 InternLM-7B 1120 x 1120*
InternVL-2.5-8B InternViT-6B-448px-V2_5 internlm2_5-7b-chat origianl
InternVL-2.5-38B InternViT-6B-448px-V2_5 Qwen2.5-32B-Instruct origianl
InternVL-3-8B InternViT-300M-448px-V2_5 Qwen2.5-7B origianl
InternVL-3-38B InternViT-6B-448px-V2_5 Qwen2.5-32B origianl
InternVL-3.5-8B InternViT-300M & Qwen3-8B origianl
InternViT-6B
InternVL-3.5-38B InternViT-300M & Qwen3-38B origianl
InternViT-6B
llava-onevision-qwen2-7b-si SigLIP-384-SO400M Qwen2-7B origianl
llava-onevision-qwen2-7b-ov SigLIP-384-SO400M Qwen2-7B origianl

34

H MODEL LICENSE

Table 8: Summary of licenses in models that are evaluated in CharXiv. Entries marked with “Not
Applicable” indicate that authors do not have an explicit code license displayed within the codebase

or model checkpoint page.

Name Model License Code License
GPT-5 Proprietary Proprietary
Claude 4 Sonnet Proprietary Proprietary
Gemini-2.5-pro Proprietary Proprietary
doubao-seed-1.6 Proprietary Proprietary
doubao-seed-1.5 Proprietary Proprietary
Qwen2-VL-7B gwen Apache 2.0
Qwen2-VL-72B gwen Apache 2.0
qwen2.5-VL-7B qwen Apache 2.0
qwen2.5-VL-72B gwen Apache 2.0
deepseek-VL-7B deepseek MIT
kimi-VL-A3B MIT MIT
MiMo-VL-7B-RL MIT Apache 2.0
MiMo-VL-7B-SFT MIT Apache 2.0
GLM-4-9B glm-4 Apache 2.0
Intern-VL 2.5 8B Apache-2.0 MIT
Intern-VL 2.5 38B Apache-2.0 MIT
Intern-VL 3 8B Apache-2.0 MIT
Intern-VL 3 38B Apache-2.0 MIT
Intern-VL 3.5 8B Apache-2.0 MIT
Intern-VL 3.5 38B Apache 2.0 MIT
llava-onevision-qwen2-7b-si Apache 2.0 Apache 2.0
llava-onevision-qwen2-7b-ov Apache 2.0 Apache 2.0

I MODEL SOURCE

Table 9: The release time and model source of LMMs used in our benchmark.

Model | Release Time | Source

Closed-source Models
GPT-5 2025-08-07 https://openai.com/zh-Hans-CN/index/introducing-gpt-5/
Claude 4 Sonnet 2025-05-23 https://www.anthropic.com/news/claude-4
Gemini-2.5-pro 2025-06-17 https://deepmind.google/models/gemini/pro/
doubao-seed-1.5 2025-05-11 https://www.volcengine.com/product/doubao
doubao-seed-1.6 2025-06-11 https://www.volcengine.com/product/doubao

Open-source Models
Qwen2-VL-7B 2024-09-18 https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
Qwen2-VL-72B 2024-09-18 https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
qwen2.5-VL-7B 2025-01-26 https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
qwen2.5-VL-72B 2025-01-26 https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
deepseek-VL-7B 2024-03-09 https://huggingface.co/deepseek-ai/deepseek-vl-Tb-base
kimi-VL-A3B 2024-08-20 https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking
MiMo-VL-7B-RL 2025-08-10 https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-RL-2508
MiMo-VL-7B-SFT 2025-08-10 https://huggingface.co/XiaomiMiMo/MiMo~VL-7B-SFT-2508
GLM-4-9B 2024-06-19 https://huggingface.co/zai-org/glm-4-9b
Intern-VL 2.5 8B 2024-11-21 https://huggingface.co/OpenGVLlab/InternVL2_5-8B
Intern-VL 2.5 38B 2024-11-21 https://huggingface.co/OpenGVLab/InternVL2_5-38B
Intern-VL 3 8B 2025-04-10 https://huggingface.co/OpenGVLlab/InternVL3-8B
Intern-VL 3 38B 2025-04-10 https://huggingface.co/OpenGVLab/InternVL3-38B
Intern-VL 3.5 8B 2025-08-25 https://huggingface.co/OpenGVLlab/InternVL3_5-8B
Intern-VL 3.5 38B 2024-08-25 https://huggingface.co/OpenGVLab/InternVL3_5-38B
llava-onevision-qwen2-7b-si | 2024-07-29 https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-si
llava-onevision-qwen2-7b-ov | 2024-07-25 https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

35

https://openai.com/zh-Hans-CN/index/introducing-gpt-5/
https://www.anthropic.com/news/claude-4
https://deepmind.google/models/gemini/pro/
https://www.volcengine.com/product/doubao
https://www.volcengine.com/product/doubao
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
https://huggingface.co/deepseek-ai/deepseek-vl-7b-base
https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking
https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-RL-2508
https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-SFT-2508
https://huggingface.co/zai-org/glm-4-9b
https://huggingface.co/OpenGVLab/InternVL2_5-8B
https://huggingface.co/OpenGVLab/InternVL2_5-38B
https://huggingface.co/OpenGVLab/InternVL3-8B
https://huggingface.co/OpenGVLab/InternVL3-38B
https://huggingface.co/OpenGVLab/InternVL3_5-8B
https://huggingface.co/OpenGVLab/InternVL3_5-38B
https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-si
https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

I.1 LEVEL1

Level 1 Direct sample 1

Instruction: You are a Python developer proficient in data visualization, with expertise in using libraries such as Matplotlib, NetworkX, Seaborn, and
others.I have a plot generated by Python code, but I don’t have the corresponding code that generated this plot. Your task is to generate the Python code that
can perfectly reproduce the picture based on the image I provide.

Here are the requirements for the task: 1. Data Extraction: Extract the actual data from the provided image. Based on the visual features of the plot, you
must infer the data and recreate the plot. 2. Recreate the Image: Generate the Matplotlib code that reproduces the image exactly as it appears, including all
elements such as: - Plot type (scatter, line, bar, etc.) - Axis labels and titles - Colors, markers, line styles, and other visual styles - Any legends, annotations,
or gridlines present in the image 3. Self-contained Code: The Python code should be complete, executable, and self-contained. It should not require any
external data files or variables not already present in the code. Your objective is to extract the any necessary details from the image and generate a Python
script that accurately reproduces the plot.

Now, please generate the Python code to reproduce the picture below.

Reference figure:

(@) Evaluation capabilties (6) Evaluation datasets (0) Overview of evaluation results
£ P 25

i, T s
“ "
. e Capailies s Oatasets B
N o A o ’. T iy /) i
- o i = R
LS, e me .. = -
s St = Sy \ TS e
e %Sjwm S o B D e
g b ; %
FPEUINS hst
Y FAAE I

GT Code:

== CB_38 figure code ==

import matplotlib.pyplot as plt
import numpy as np

import matplotlib.colors as mcolors

== CB_38 figure data =
capabilities = {
’Basic_Knowledge’: [
’Vocabulary’, ’‘Syntax’, ’Semantics’, ’Discourse’, ’Logic’, ’Math, Reasoning’
Jpoool
datasets =
def lighten_color(color, amount=0.5):
rgb = mcolors.to_rgb(color)
return tuple(rgb[i] + (1.0 - rgb[i]) = amount for i in range(3))

inner_a, size_a, col_a, outer_a, osize_a, ocol_a = prepare_sunburst (capabilities
inner_b, size_b, col_b, outer_b, osize_b, ocol_b = prepare_sunburst (datasets)

== figure plot ==

fig = plt.figure(figsize=(18.0, 6.0))

plt.subplots_adjust (left=0.05, right=0.85, wspace=0.7)

—— (a) Evaluation capabilities sunburst --
axl = fig.add_subplot (1, 3, 1)

wedgesl, _ = axl.pie(size_a, radius=0.8, labels=None, startangle=90, colors=col_a, wedgeprops=dict
(width=0.3, edgecolor=’white’))

centre = plt.Circle((0, 0), 0.5, color=’lightgray’, linewidth=0

axl.add_artist (centre)

axl.text (0, 0, 'Explicit\nSemantics’,
ha=’center’, va=’'center’, fontsize=10, weight=’'bold’)

axl.set (aspect='"equal’

axl.set_title(’ (a)_Evaluation _capabilities’, fontsize=12, pad=45

axl.legend(wedgesl, inner_a, title=’Capabilities’, loc=’center left’, bbox_to_anchor=(1.3, 0.5),
fontsize=9, frameon=False)

—-— (b) Evaluation datasets sunburst --

centre2 = plt.Circle((0, 0), 0.5, color=’lightgray’, linewidth=0)
ax2.add_artist (centre2)

—— (c) Overview of evaluation results (radar) —--

ax3 = fig.add_subplot (1, 3, 3, projection=’polar’)

N = len(categories)

angles = np.linspace(0, 2xnp.pi, N, endpoint=False).tolist ()
angles += angles[:1]

ax3.xaxls.set_ticks (angles[:-1])
ax3.set_xticklabels ([])
ax3.grid(True, linestyle=’:')

ax3.set_yticks([0.2, 0.4, 0.6, 0.8, 1.0])
ax3.set_ylim(0, 1)

ax3.set_title(’ (c) _Overview_of evaluation results’, fontsize=12, pad=45
ax3.legend(loc='lower_center’, bbox_to_anchor=(0.5, -0.5), ncol=3, fontsize=7, frameon=False)

36

1944

Level 1 Direct sam

1945
1946 Instruction: You are a Python developer proficient in data visualization, with expertise in using libraries such as Matplotlib, NetworkX, Seaborn, and
1947 others.I have a plot generated by Python code, but I don’t have the corresponding code that generated this plot. Your task is to generate the Python code that
can perfectly reproduce the picture based on the image I provide.
1948 Here are the requirements for the task: 1. Data Extraction: Extract the actual data from the provided image. Based on the visual features of the plot, you
must infer the data and recreate the plot. 2. Recreate the Image: Generate the Matplotlib code that reproduces the image exactly as it appears, including all
1949 elements such as: - Plot type (scatter, line, bar, etc.) - Axis labels and titles - Colors, markers, line styles, and other visual styles - Any legends, annotations,
or gridlines present in the image 3. Self-contained Code: The Python code should be complete, ble, and self-contained. It should not require any
1950 external data files or variables not already present in the code. Your objective is to extract the any necessary details from the image and generate a Python
1951 script that accurately reproduces the plot.
Now, please generate the Python code to reproduce the picture below.
1952 Reference figure:
1953
— o2 maxvalue
1954 N
B industry_proxinity
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964 :
1965 e 10
1966
1967 GT Code:
1968
import numpy as np
1969 import matplotlib.pyplot as plt
1970 hours = np.arange (24)
1971 angles = 2 x np.pi * hours / 24
1972 stationary = ...
bus_counts = np.array (...
1973
fig = plt.figure(figsize=(10,10
1974 g=p g (fig (10,10))
1975 for th in angles:
ax.plot ([th, th], [0, 160], color='grey’, linewidth=0.5)
1976
baseline = 100
1977 theta = np.linspace (0, 2+np.pi, 360)
ax.plot (theta, np.full_like(theta, aseline), inestyle='--', color= ack’, inewidth=
1978 lot (th full_like(th b line), 1i le="——' 1 'black’, 1i idth=1)
inner_circle = np.mean(no2)
1979 ax.plot (theta, np.full_like (theta, inner_circle), linestyle=’'--', color=’grey’, linewidth=1)
1980 ax.text (0, 0, r’NO$_2$Clock’, fontsize=18, fontweight='bold’, ha=’center’, va='center’)
1981 bar_width = 2+np.pi/24 * 0.2
1982 offsets = np.array([-1.5, -0.5, 0.5, 1.5]) % bar_width
for vals, off, color, label in zip(
1983 [stationary, bus_counts, truck_counts, industry_ proximity],
offsets,
1984 ["tab:blue’,’tab:red’,’lightpink’,’skyblue’], ..
1985 ax.bar (angles + off, vals x 100, bottom=baseline, width=bar_width, color=color, label=label)
1986 scale = 0.8
no2_scaled = baseline + (no2 - baseline) * scale
1987 1n, = ax.plot(angles, no2_scaled, color=’black’, linewidth=2, label=’NO2 _max, value’)
1988 ax.fill (angles, no2_scaled, color='grey’, alpha=0.7)
1 989 for ang, orig_val, r in zip(angles, no2, no2_scaled):
ax.text (ang, r + 2, f’{orig_val}’, ha=’center’, va='bottom’, fontsize=8, color='black’)
1990
ax.text (np.deg2rad(30), baseline+l5, ’+ve’, fontsize=14, fontweight=’'bold’, ha='center’)
1991 ax.text (np.deg2rad(30), baseline-15, ’-ve’, fontsize=14, fontweight=’'bold’, ha=’center’)
1 992 ax.legend(loc='upper_right’, bbox_to_anchor=(1.1,1.1), fontsize=10)
1993
plt.show ()
1994
1995
1996
1997

37

Level 1 Direct s le 3

Instruction: You are a Python developer proficient in data visualization, with expertise in using libraries such as Matplotlib, NetworkX, Seaborn, and
others.I have a plot generated by Python code, but I don’t have the corresponding code that generated this plot. Your task is to generate the Python code that
can perfectly reproduce the picture based on the image I provide.

Here are the requirements for the task: 1. Data Extraction: Extract the actual data from the provided image. Based on the visual features of the plot, you
must infer the data and recreate the plot. 2. Recreate the Image: Generate the Matplotlib code that reproduces the image exactly as it appears, including all
elements such as: - Plot type (scatter, line, bar, etc.) - Axis labels and titles - Colors, markers, line styles, and other visual styles - Any legends, annotations,
or gridlines present in the image 3. Self-contained Code: The Python code should be complete, executable, and self-contained. It should not require any
external data files or variables not already present in the code. Your objective is to extract the any necessary details from the image and generate a Python
script that accurately reproduces the plot.

Now, please generate the Python code to reproduce the picture below.

Reference figure:

Cloud Service Adoption Across Industries

Tech Startup Financial Services Healthcare Retail Manufacturing
Networking Storage Networking Storage Networking Storage Networking Storage Networking Storage

.
-~ mm

AIML Security AMC Security AML Security
Compie it Hochins, Coniners
Storage - Object, Block, e Storage
Networking. VPC Loag Balancers, CON
Database - S0L, NoSal. Doto Warehauses
AIML - Machine Learing Services
Secuiy - 1AM, Encryption WAr
Education Government Media Logistics Energy
Networking Storage Networking Storage Networking Storage Networking Storage Networking Storage

X
Databal pmpute

AUML Security AMC Security AUML Security AMC Security AUML Security
GT Code:
import matplotlib.pyplot as plt
import numpy as np
== New radar figure data ==
labels = [’Compute’, ’Storage’, ’Networking’, ’Database’, ’'AI/ML’, ’Security’]
num_metrics = len(labels)

angle of each axis in the plot (in radians)

angles = np.linspace(0, 2 % np.pi, num_metrics, endpoint=False).tolist ()
complete the loop

angles += angles[:1]

Values for each industry’s cloud service adoption (0-100 scale)
data =

industries = list (data.keys())
New modern color scheme

colors = °
== figure plot

fig, axes = plt.subplots (2, 5,
figsize=(15.0, 9.0), # Slightly larger for readability
subplot_kw=dict (polar=True))

axes = axes.ravel ()

for ax, name in zip(axes, industries):
vals = datal[name]
close the loop
vals_loop = vals + vals[:1]
i = industries.index (name)

ax.set_yticks (rticks)
ax.set_yticklabels ([f"{int (x)}" for x in rticks], fontsize=8)
ax.set_ylim(0, max_val % 1.1) # Add a small buffer to max_val

title
ax.set_title(name, fontsize=12, fontweight='bold’, pad=10)

light grid
ax.grid(color='gray’, linestyle=’--’, linewidth=0.5, alpha=0.7)
ax.spines[’polar’].set_linewidth(1.0)

plt.tight_layout (rect=[0, 0, 1, 0.96]) # Adjust layout to make space for a potential suptitle
plt.suptitle(’Cloud Service Adoption Across_Industries’, fontsize=16, fontweight=’'bold’, y=0.99)
plt.savefig("./datasets_level2/radar_15.png", bbox_inches="tight", dpi=300) # Save the figure
plt.show()

38

Level 1 Cus

zed (raw data) sample 1

Instruction: I want to use a heatmap to show the variation range of each category for each month, with the horizontal axis representing time and the
vertical axis representing the three categories: Energy, Metals, and Food. The color intensity represents the magnitude of the variation. Please refer to the
uploaded image style to generate runnable Python code.

Reference figure:

Compute utilization (%)

16k

50 100
Utilization (%)

Raw data: "dates": ["2020-01-01", "2020-02-01", ... "2024-08-01", "2024-09-01"], "commodities": ["Energy", "Metals", "Food" |, "values": [[4.7, ...
81116, ..-471,[88,..-031]
GT Code:

import numpy as np
import matplotlib.pyplot as plt

Data

dates =

commodities = ["Energy", "Metals", "Food"]
values =

data = np.array(values)

Plot
fig, ax = plt.subplots(figsize=(14, 6))
fig.subplots_adjust (bottom=0.25)

Determine symmetric range around zero
max_abs = np.max (np.abs (data)
im = ax.imshow(data, cmap='RdY1lBu_r’, aspect=’auto’, vmin=-max_abs, vmax=max_abs)

Labels and title
ax.set_xlabel ('Month’, fontsize=14)
ax.set_title(’Monthly Commodity, Price Change_ (%)’, fontsize=16, fontweight="bold’)

Gridlines

ax.set_xticks (np.arange (data.shape[l] + 1) - 0.5, minor=True)
ax.set_yticks (np.arange (data.shape[0] + 1) - 0.5, minor=True)
ax.grid(which='minor’, color='white’, linestyle=’-’, linewidth=2)
ax.tick_params (which='minor’, bottom=False, left=False)

Colorbar

cbar = fig.colorbar(im, ax=ax, orientation=’horizontal’, pad=0.3, aspect=40, shrink=0.8)
cbar.set_label (’Change_ (%)’, fontsize=12)

cbar.ax.tick_params (labelsize=12)

plt.show ()
GT Figure:
Monthly C dity Price Ch (%)

Energy

Metals

Food

R R R R R R R R R R R R R R R B T
Month

|
3
5

!
IS
S

|
N
5

[20
Change (%)

IS
S
o
o

39

21 " ‘
2123 vel 1 Customized (table figure) sample 1

2108 Instruction: I want to use the data from the uploaded director compensation table (PNG) and create a combination chart based on the style of the reference
2109 combination chart: the horizontal axis represents the names of the directors, the bar chart displays cash compensation, stock awards, and total compensation
respectively, and a dashed line chart highlights the trends of these three items. Thank you! Adjust the image size to match the aspect ratio of the reference
2110 image; use the dark blue, cyan, and light gray tones from the reference image; for the x-axis labels, tilt them 45 degrees and align them to the right,
mimicking the text style of the reference image; add a title centered at the top, with font effects similar to the reference image; set the y-axis scale range and
2111 intervals according to the reference image; keep the legend position consistent with the reference image, arranged horizontally at the top; apply dashed line
2112 styles as in the reference image, and mimic the marker shapes from the reference image.
Reference figure:
2113 ki o o e peie e o
2114
2115
2116 .
8
g
2117 H
2
2118
2119
2120
2121
Data figure:
2122
DIRECTOR COMPENSATION TABLE — 2024
2123
Fi E; d
2124 Paid |Er2:s: i suu:ks Awards Tostal
Name ($) ($)(1) ($)
212
5 Julien Mininberg 38,599 199,995 238,504
212
6 Andrew Miller 147,468 199,997 347,465
2127 [Mihelle ey 00,000 TTTTTASe o0y e]
Michael Loparco 24,643 166,664 191,307
2128 = > =
2129 GT Code:
2130
import numpy as np
2131 import matplotlib.pyplot as plt
2132
3 plt.rcParams.update ({
2133 ’font.family’: ’sans-serif’,
2134 ' font.sans-serif’: [’Arial’]
b
21 35 names = [’Dr._Ruey-Bin _Kao’, ’'Julien _Mininberg’, ..., ’Eva _Manolis’]
2136 fees = [81250, 38599, ..., 90307]
stock_awards = [199997, 199995, ..., 199997]
2137 total = [281247, 238594, ..., 290304
2138 X = np.arange (len(names))
2139 fig, ax = plt.subplots (figsize=(12, 6))
2140 ax.grid(axis='y’, linestyle='--’, alpha=0.7)
ax.bar(x - 0.25, fees, 0.25, label=’Fees_Earned’, color=’#1f77b4’, alpha=0.8)
2141 ax.bar (x, stock_awards, 0.25, label=’Stock_Awards’, color='#4c9dbd’, alpha=0.8)
2142 ax.bar(x + 0.25, total, 0.25, label=’Total_Compensation’, color=’#e0e0e0’, alpha=0.8)
21 43 ax.plot (x, fees, '--o’, color='#1f77b4’, label='Fees_Line’)
ax.plot (x, stock_awards, ’'--o’, color='#ff7f0e’, label=’Stock Awards_Line’)
2144 ax.plot (x, total, '--o’, color='#2cal2c’, label='Total Line’)
ax.set_xticks (x)
21 45 ax.set_xticklabels (names, rotation=45, ha=’right’)
ax.set_ylabel (' Compensation_($)’)
2146
andles, labels = ax.get_legend_handles_labels
handl label 1 d_handl labels ()
21 48 ax.legend (handles, labels, loc='upper, center’, bbox_to_anchor=(0.5, 1.15), ncol=3)
1t.tight_layout ()
2149 ’
plt.show ()
2150
GT Figure:
2151 e
2152 - el o T S e S CoEi 2 TG
2153 e Ny
2154 Lo
2155 i B OEE BN
2156 © o)
2157 -
2158
2159

40

1.2 LEVEL?2

Level 2 sample 1

Instruction: Use GridSpec to create a complex 1+2 layout. The top section will feature a large subplot (spanning the entire width) to display "raincloud
plots" (half-violin plots + box plots + scatter plots) for all four categories... enabling an in-depth comparison of these two distinctly different distributions.
On this basis: - Set the overall canvas size to 14 inches wide x 10 inches high. - Continue using four fixed colors: light orange ‘“#FFCOAQ", light green
“#BOEOBO", light purple ‘#B9AOEQ*, and beige ‘#FFE4C4°. Use a red line to mark the mean value in the histograms. - Use a GridSpec layout with two
rows and two columns. The first row spans both columns for the top plot, while the second row places the two histograms side by side, one in each column.
The row height ratio should be explicitly set to 2:1 - Rotate the X-axis tick labels of the top subplot counterclockwise by 20 degrees. - Maintain a white
background and gray grid lines (‘#D3D3D3°).

Reference figure:

ICDAR-2013.23 evaluation

e 2
e N
¥

< fabtetoz s fnabNea A LM 4 PN
v o T3 e TNerss . T+ ITNaiE

GT Code:

== line_19 figure code ==

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.gridspec as gridspec

== line_19 figure data ==
epochs = np.arange(1l, 31)

FinTabNet variants
ftn_al = np.array([...

== Data Processing for Dashboard ==

1. Group data

fintabnet_group_data = np.array([ftn_al, ftn_a2, ftn_a3, ftn_a4, ftn_a5, ftn_a6])

ptlm_based_group_data = np.array([pubtables, ptlm_avl, ptlm_avé6])

all_models_data = np.vstack([fintabnet_group_data, ptlm_based_group_datal)

all_models_labels = ['FTIN.al’, ’'FTN.a2’, ’'FTIN.a3’, ’'FIN.a4’, ’'FIN.a5’, ’'FIN.a6’, ’'PubTables’, '
PTIM+FTIN.avl’, 'PTIM+FTN.av6’]

3. Final performance data

4. Significant surpass point

diff = ptlm_av6é - pubtables

surpass_margin = 0.05

surpass_epoch_idx = np.where(diff > surpass_margin) [0]

first_surpass_epoch = epochs[surpass_epoch_idx[0]] if len(surpass_epoch_idx) > 0 else None

Plot 3: Key Model Showdown

plt.tight_layout (rect=[0, 0.03, 1, 0.95])
plt.savefig("./datasets/line_19.png")
plt.show()

GT figure:

Comprehensive Model Performance Dashboard
1. Performance Trend by Group 2. Final Accuracy Ranking (Epoch 30)

Mean Acccon
Model

— FinTabNet Group (Mean)
— PTIM-based Group (Mean)

02 o3 o0s 05 o5 07 08
Final Acccon
4. Performance vs! Stability

3 s 0 s 2 B3 E)
Epoch
3. Key Model Duel

.o FT{srmave

Surpass at Epoch 3

PubTables-1M (Baseline)
—— PTIM + FTN.av6 (Best)
significant Lead (>0.05)

20 25 30 045 050 055 065 070 075

.60
Mean Accuracy (Performance)

15
Epoch

41

Level 2 sample 2

Instruction: Create a comprehensive, dashboard-style analytical view that juxtaposes raw data trends, statistical distributions, and localized details.

1. Layout Modifications: Use ‘GridSpec* to create a complex 2x2 grid layout. The top-left main plot (spanning the 1st row and 1st column) is a composite
chart (three CCA lines + CKA bar chart). The top-right subplot (spanning the 1st row and 2nd column) is a box plot, used to display the overall data
distribution of four data series (cca_topl, cca_top3, cca_topl0, cka). The large bottom plot (spanning the 2nd row and all columns) is a
"zoomed-in" view of the main plot, specifically focusing on the "Center Layer" in the range of 10 to 20 for the CCA line chart details.

2. Chart Type Conversion and Combination: In the top-right subplot, create a box plot for each of the four datasets and set appropriate labels. In the bottom
zoomed-in plot, only draw the three CCA line charts and omit the CKA bar chart to emphasize the localized CCA dynamics. ...

Additional Requirements: — Set the canvas size to 15x10 inches. — Use a 2x2 ‘GridSpec* layout with width ratios ‘[2,1]° and height ratios ‘[1,1]°. The
top-left main plot occupies the 1st row and 1st column, the top-right box plot occupies the 1st row and 2nd column, and the bottom zoomed-in plot spans
the 2nd row across all columns... — For the box plots, use a fill color of ‘#d3d3d3°, black borders, and red median lines. — For the zoomed-in region
rectangle, use a gray fill with transparency 0.2, a red dashed border, and red dashed connecting lines.

Reference figure:

—e— CCATop1 —+— CCAop3 —- CCATop 10 KA
——

Average CCA Value
Average CKA similarity(5°)

R I R R R R R
Center Layer

GT Code:

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

from matplotlib.patches import Rectangle, ConnectionPatch
import numpy as np

layers = list (range (2, 30))

cca_topl = [0.997, 0.997,

Create figure with constrained layout

fig = plt.figure(figsize=(15, 10), constrained_layout=True)

gs = gridspec.GridSpec (2, 2, width_ratios=[2, 1], height_ratios=[1, 1], figure=fig)

ax_main_twin = ax_main.twinx()

——— Main Plot (Top-Left) —---—
bar_width = 0.6

labels = [h.get_label() for h in handles]
ax_main.legend(handles, labels, loc=’lower_center’, ncol=4, fontsize=10, bbox_to_anchor=(0.5,

-0.25))
—-—-- Box Plot (Top-Right) —---
data_for_boxplot = [cca_topl, cca_top3, cca_topl0, ckal
box_labels = [’CCA:Top1’, 'CCA:Top3’, "CCA:Top10’, ‘CKA’]

ax_box.grid(True, axis='y’, linestyle=’--’, linewidth=0.5, alpha=0.7)

——- Zoomed Plot (Bottom) —---

zoom_range = (10, 20)

ax_zoom.plot (layers, cca_topl, color=’'#1£f77b4’, marker='o’, markersize=6, lw=1.5)

ax_zoom.grid(True, linestyle=’--', linewidth=0.5, alpha=0.7)

——- Visual Connection -—-—

rect = Rectangle((zoom_range[0], 0.84), zoom_range[l] - zoom_range[0], 1.002 - 0.84,
facecolor=’'grey’, alpha=0.2, edgecolor='red’, linestyle=’'--')

fig.add_artist (con2)

plt.show()

GT figure:

Overall Trend Analysis. Data Distribution

Average CCA Value

Zoomed View (Layers 10-20)

Center Layer

42

Level 2 sample 3

Instruction: Create a comprehensive, dashboard-style multi-panel analysis plot to deeply explore the relationships between model performance, tool wear

growth, and model comparisons. The specific requirements are as follows:

Reference figure:
LLM-Based Digital Twin Dynamically Adapts to Tool Wear
=3 GPrasTubo
. - crrs
—— Toolwear 105
s
2
g, o
© E
2 E
2 <
&° g
1y 03=
2 s
S 8
)
4
g
z
1 02
o
1
I I] v 0 © B n
Runs
GT Code:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches
import matplotlib.gridspec as gridspec

np.random.seed (0)

runs = np.arange (5, 15)
mean35 = [2.5,

std35 = [0.5,...

fig = plt.figure(figsize=(18, 10))
gs = gridspec.GridSpec (2, 2, width_ratios=[3, 2], height_ratios=[1, 1])

posl = runs - 0.2

pos2 = runs + 0.2

vpl = ax_main.violinplot (data35, positions=posl, widths=0.4, showmedians=True)
ax_main.grid(True, linestyle="--", alpha=0.6)

ax_main.set_title("A) _Model, Performance Distribution_vs._Tool Wear", fontsize=16, loc='left’)

ax_wear = ax_main.twinx(
ax_wear.plot (runs, tool_wear, color="red", marker="o", markersize=6, linewidth=2)
ax_wear.set_ylabel ("Tool Wear (mm)", color="red", fontsize=14)

ax_growth.grid(axis='y’, linestyle=’--’, alpha=0.6)

median35 = [np.median(d) for d in data35]
median4 = [np.median(d) for d in data4]

highlight_run_idx = max_growth_idx + 1
ax_compare.scatter (median35, median4, c=runs, cmap='viridis’, s=60, alpha=0.8)

ax_compare.grid(True, linestyle=’--’, alpha=0.6)
ax_compare.text (0.95, 0.05, '"GPT-4_Better’, transform=ax_compare.transAxes,
ha="right’, va=’bottom’, fontsize=12, color='green’, style='italic’)

ax_main.annotate (’Max, Wear Growth’, xy=(max_growth_run, 4.0), xytext=(max_growth_run, 5.0),
arrowprops=dict (facecolor='#e3lalc’, shrink=0.05, width=1.5, headwidth=8),
fontsize=12, color=’#e3lalc’, ha='center’, bbox=dict (boxstyle="round,pad=0.3",

white", ec="#e3lalc", 1lw=l))

fig.suptitle ("Comprehensive_Analysis, of LLM-based _Digital Twin _Performance", fontsize=20, y=0.98)

plt.tight_layout (rect=[0, 0, 1, 0.95])
plt.show()

GT figure:

Comprehensive Analysis of LLM-based Digital Twin Performance

A) Model Performance Distribution vs. Tool Wear B) Tool Wear Growth Rate

An
) Median RMSE: GPT-3.5 vs. GPT-4

O run s cromn)
2 7 rromance

Growth Rate (%)

Tool Wear (mm)

025

(P-4 tedian RISE

015 P Better

Runs GPI3.5 Median RMSE

43

Level 2 sample 4

Instruction:

1. Use ‘GridSpec® to create a complex dashboard-style layout: - The left side contains a main plot occupying a 2x2 space. - The right side contains two
subplots, each occupying a 1x1 space.

2. **Main Plot (Left Side)**: - Retain the original bar chart and exponential trend line. - Display the absolute values and trends of the annual research
count.

3. **Top-Right Subplot**: - Convert the original data into an area chart. - Show the cumulative total of research counts to analyze the expansion of overall
scale.

4. **Bottom-Right Subplot**: - Use a donut chart to display the proportion of research counts from the last three years (2022-2024) relative to their total. -
Highlight the distribution of recent contributions.

5. Add titles to all subplots and ensure a unified visual style for clear communication and coordinated layout.

*#*Additional Modifications**: - Adjust the overall canvas size to 16 inches x 9 inches. - Configure the layout as ‘GridSpec(2,3)‘: - The main plot occupies
the first and second columns of all rows. - The top-right subplot is placed in the first row, third column. - The bottom-right subplot is placed in the second
row, third column. - *#Styling**: - Main plot bar color: “’#1a5276’‘. - Main plot trend line color: ‘red‘. - Area chart fill color: “’#5dade2’*, line color:
“#1a5276’ . - Donut chart colors: ‘["#1labc9c’, *#f1c40f”, *#e74c3¢’]‘. - Donut chart percentage text: white and bold. - Overall title font: size 22, bold. -
Subplot titles font: size 16. - Axis titles font: size 14. - Tick labels font: size 12. - Top-right chart annotations font: size 12, bold. - Donut chart center text
font: size 14, bold. - Pie chart percentage text font: size 8, bold.

Reference figure:
654
600-
500~ y = 80.31x - 91.143
R? = 0.9316 d
367
400 -
285
300 - g
200-
100- 9 I

2019 2020 2021 2022 2023 2024
Year

Number of Studies

GT Code:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

years = np.array([2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024])
x = np.arange (len(years))

gs = gridspec.GridSpec (2, 3, figure=fig)
axl = fig.add_subplot(gs[:, 0:2])

axl.set_xlabel (' Year’, fontsize=14, color=’'grey’)
axl.set_ylabel (' Number of_Studies’, fontsize=14, color=’grey’)

for spine in [’'top’, ’‘right’]:
ax2.spines[spine].set_visible (False)
ax2.grid(axis='y’, linestyle='--', alpha=0.7)
ax2.text (years[-1], cumulative_y[-1], £’ Total:\n {cumulative_y[-1]}’, ha='right’, va='top’,
fontsize=12, fontweight='bold’)

colors = [’#labc9c’, ’'#f1c40f’, ’#e74c3c’]

wedges, texts, autotexts = ax3.pie(last_3_years_data,...

ax3.add_artist (centre_circle)

ax3.set_title(’Contribution, in_Last 3 Years’, fontsize=16, pad=10)

ax3.text (0, 0, f’Total:\n{sum(last_3_years_data)}’, ha=’center’, va='center’, fontsize=14,
fontweight="bold’)

plt.setp(autotexts, size=8, weight="bold", color="white")

plt.tight_layout (rect=[0, 0, 1, 0.95])
plt.show ()

GT figure:

Compr i ysis of Growth (2017-2024)

Annual Number of Studies and Trend Cumulative Growth

e Erponen Tiend Total
ey 2000 Tot

0 2 022

Year

Contribution in Last 3 Years

23 20

44

Level 2 sample 5

Instruction:

Create a 2x2 dashboard to comprehensively compare model performance.

1. **Top-left plot (Performance Trend Comparison):** Divide the models into two groups: 'FinTabNet” and "PT1M-based’. ...

2. **Top-right plot (Final Performance Ranking):** Use a horizontal bar chart to show the final accuracy of all 9 models at the last epoch..y.

3. **Bottom-left plot (Key Model Showdown):** Plot the performance curves of the best model ‘ptlm_av6‘ and the baseline model ‘pubtables* separately.
Identify the epoch where ‘ptlm_av6® first surpasses ‘pubtables‘ by more than 0.05 in accuracy, and use ‘axvspan‘ to highlight the region from ...

4. **Bottom-right plot (Performance vs. Stability):** Create a scatter plot where the X-axis represents the average accuracy of each model (mean over 30
epochs), and the Y-axis represents the standard deviation of accuracy. This plot evaluates whether high performance is accompanied by high instability.
‘Add text labels to the best-performing, most stable, and most unstable models on the plot.

— Additional Modifications: - Set the overall canvas size to 16x12 inches. - Use a 2-row, 2-column ‘GridSpec* layout with row spacing of 0.4 and column
spacing of 0.3. - Use a bold font size of 20 for the main title, regular font size of 12 for subplot titles, axis labels, and tick marks, and font size of 10 for
legends... and semi-transparency. Use font size 9 for labels and adjust them horizontally by 0.002. - Use dashed grid lines with approximately 30
Reference figure:

Pearson Correlation Distribution

Pearson Correlation

-5

% S, Ry
%, %%%far ,"%S%e o i
‘% 3 e %,
Lo %
SAE Type

GT Code:

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import matplotlib.gridspec as gridspec

data = {
"TopK_65k_256": [-0.4625, -0.4049,

clean_data = {k: [x for x in v if x is not None] for k, v in data.items()}

fig.suptitle ("Comprehensive,_Analysis, of Pearson Correlation", fontsize=20, fontweight='bold’)

——— Top Plot: Raincloud Plot —---—
order = ["TopK_65k_256", "MatryoshkaTopk_65k_256", "GemmaScope_65k", "Random_init_65k_256"]
colors = ["#FFCOAO", "#BOEOBO", "#B9AOEO", "#FFE4C4"]

Jittered points
sns.stripplot (x="SAE_Type", y="Pearson_Correlation", data=df, order=order, ax=ax_main, ..

Boxplot
sns.boxplot (x="SAE _Type", y="Pearson Correlation", data=df, order=order, ax=ax_main,

ax_main.tick_params (axis=’'x’, labelsize=12, labelrotation=-20)
ax_main.tick_params (axis='y’, labelsize=12)

——— Bottom-Right Plot: Histogram for Random_init —---—
random_data = df [df ["SAE_Type"] == "Random_init_65k_256"] ["Pearson, Correlation"]

sns.despine (fig=fig)

plt.tight_layout (rect=[0, 0, 1, 0.96])
plt.show()

GT figure:

Comprehensive Analysis of Pearson Correlation

Overall Distribution (Raincloud Plot)

N é
) L]

Poarson Corelation

P
" g, . %%Y “»m.%»
Dy o

o
ez,

Distribution of GemmaScopa_B5k Distributin of Random_ini_65k_256

oonsty

o0 0z o w 2z w

04 0 0w
Pesrson Carristion Pearson Corrlaton

45

1.3 LEVEL 3

L

el 3 sample 1

Instruction: I have an Excel spreadsheet to analyze, which contains fuel types and corresponding horsepower values. Please generate a plotting code based
on the style of the grouped box plot I uploaded to display the horsepower distribution for different fuel types. Use a canvas size precisely 13 inches wide and
8 inches high, with the color scheme set to Set3. The entire chart should contain only one subplot, without complex layouts like GridSpec. The title should
be "Horsepower by Fuel Type," the X-axis label should be "Fuel Type," and the Y-axis label should be "Horsepower (hp)." Keep all text at Matplotlib’s
default font size and style; rotate the X-axis tick labels 45 degrees; finally, apply a tight layout to ensure there is no excess whitespace between elements.
Reference Figure:

Website Load Time by Device Type

7 o
] .
5
3 g
54
g
H
5
£
£ g
s
2
:
s
:
¢
.
0
.
N © &
& & &

Device Type
GT Code:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

data_x_groups = [’plug,_in_hyrbrid’, ’‘Petrol’, ’'Diesel’, ’Hybrid’, ...]
data_y_values = [963.0, 563.0, 381.0, 1160.0, ...]

df = pd.DataFrame ({
! fuel_types’: data_x_groups,
"horsepower_num’: data_y_values

b
plt.figure(figsize=(13, 8))
sns.boxenplot (data=df, x=’'fuel_types’, y='horsepower_num’, palette=’Set3’)

plt.title(’Horsepower, by, Fuel Type’)
plt.xlabel ('Fuel Type’)

plt.ylabel (' Horsepower (hp) ')
plt.xticks (rotation=45)
plt.tight_layout ()

plt.show()

GT Figure:

Horsepower by Fuel Type

2500 o

2000

1500

Horsepower (hp)

P PR & P &
Sy@ o & & @H\\@;@\v f{b‘f R @a@ b@ﬁu\?j@@ g c\(y e\&f‘ f{v \@6 S8
& $ & & & o & & CAE

Fuel Type

Level 3 sample 2

Instruction: Based on the Excel table to be analyzed, mimic the drawing style of the image I uploaded as an attachment to create a scatter plot of Emaill
length and Email2 length. The specific requirements are as follows: 1. Set the image size to 8 inches wide and 8 inches high; 2. Use cross-shaped markers
for the scatter plot, with a fixed size of 200, a marker border width of 2, and map the "coolwarm" color scheme starting from sample index 1; 3. Add a color
bar on the right side, with a gap of 0.05 between the color bar and the main plot, and set the aspect ratio to 1:30; 4. Add gray dashed arrows on the color
bar, with the arrow style as "—", line type as dashed, line width of 2, pointing from above (2.8) to below (2.8) on the color bar scale; 5. Replace the color
bar label with "Index", rotate it vertically by 90 degrees, font size 14, bold; 6. The main title of the chart is "(a) Correlation of Emaill and Email2 Lengths",

46

font size 24, bold, 20 units from the top edge, with a vertical position set to 1.05; 7. Both the horizontal axis title "Emaill Length" and the vertical axis title
"Email2 Length" should use font size 18, bold style, with a distance of 10 units from the axis labels; 8. Fix the axis range from 10 to 40, adjust the tick
label font size to 14, and do not display grid lines.

Reference Figure:

(a) Average Embeddings
of Nodes over Time

20 1

15 1

x X

2nd dimension
°
°
Time

0 -15 -10 -05 00 05 10 15 20
1st dimension

GT Code:

import numpy as np
import matplotlib.pyplot as plt

Data: lengths of Emaill and Email2
emaill_len = np.array([18, 20,
email2_len = np.array([26, 23,

Color by index
t = np.arange(l, len(emaill_len) + 1)

Plot
fig, ax = plt.subplots(figsize=(8, 8))
sc = ax.scatter(emaill_len, email2_len, c=t, cmap='coolwarm’, s=200, marker=’x’, linewidths=2)
ax.set_title(
’ (a) Correlation\nof, Emaill_and_Email2 Lengths’,
fontsize=24, fontweight=’'bold’, pad=20, y=1.05

ax.set_xlabel ('Emaill_Length’, fontsize=18, fontweight=’bold’, labelpad=10)
ax.set_ylabel ('Email2 Length’, fontsize=18, fontweight=’bold’, labelpad=10)

ax.grid(False)

plt.tight_layout ()
plt.show ()

GT Figure:

(a) Correlation
of Emaill and Email2 Lengths

40 30¢

X X 251

X %

X X X

Email2 Length
Index

10 15 20 25 30 35 40
Emaill Length

Level 3 sample 3

Instruction: I have an Excel spreadsheet to analyze, which contains two columns of data: “mental_health_history” and “depression.” I want to compare the
distribution of depression scores between groups with and without a mental health history, mimicking the style of the image I uploaded as an attachment,
and generate a box plot with a width of 10 inches and a height of 6 inches: - Use fill color "#FFA07A" for the group without a mental health history and
"#20B2AA" for the group with a mental health history. The box edges, whiskers, caps, and median line colors should be "#CC8062" and "#1A8E88"
(corresponding to the two groups). - Do not display outliers; - Plot scatter points offset by 0.2 on either side of the box, with scatter point colors matching
the corresponding box fill color. The point edge color should be white, with an edge width of 0.5, size 50, opacity 0.8, and add random jitter of +0.04

47

horizontally; - Set the overall background color to "#ESF7FD," grid line color to white, and style to solid lines; - X-axis tick labels should be "No History"
and "With History," with a font size of 14; - Y-axis should display a range from 0 to 30 with a step of 5, and tick label font size should be 14; - Y-axis title
should be "Depression Score," with a font size of 18 and bold; - Finally, call automatic layout adjustment to prevent label overlap.

Reference Figure:

Accuracy

oo Mg

Logstic Regression Random Forest svm KNN

GT Code:

import json

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors

Load data from JSON
data_json = '’
("xmeomon, mn,
R o o

data = json.loads(data_json)

Define groups and labels
groups = [0, 1]
group_labels = [’No_History’, ’'With History’]

Define colors
colors = ["#FFAQO7A", "#20B2AA"]
dark_colors = [mcolors.to_hex(np.clip(np.array(mcolors.to_rgb(c)) % 0.8, 0, 1)) for c in colors]

Set theme
sns.set_theme (

Plot

fig, ax = plt.subplots(figsize=(10, 6))
box_offset = +0.2

point_offset = -0.2

jitter = 0.04

for i, g in enumerate (groups) :
vals = df.loc[df[’mental_health_history’] == g, ’depression’].values
Boxplot
ax.boxplot (

Customize axes

ax.set_xticks (range (len(groups)))
ax.set_xticklabels (group_labels, fontsize=14)

plt.tight_layout ()
plt.show ()

GT Figure:

Depression Score

No History. With History

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

CFCPE S FPPA s GrrS s

%E{ =

r’ 24 f/ M// // o'f// s

/;

OnssetanapCA

= »:‘" A :‘ N . B = }
=T e B o 2 -
i i 1]
g -.||I|'| i [I] ‘ 2 3=

TP T

| oeoees g
J*& DETREE °|
" puauss

Figure 7: Selected charts of the Chart2Code.

49

J EVALUATION CODE

J.1 COLOR

evaluation code

class ColorEvaluator:
TYPE_WEIGHTS = {

'patch_face
line_color
’scatter_color
’scatter_palette’:
'text_color’: 1.0,
’'poly3d_palette’: 0.7,
’'patch_edge’: 0.01,
raxes_bg’: 0.01,
' figure_bg’: 0.01,
’spine’: 0.01,
‘tick_label’: 0.05,
"axis_label’: 0.05,
‘title’: 0.05,
’"legend_text’: 0.05,
’legend_bg’: 0.01,

1
1
’

}
DEFAULT_WEIGHT = 0.1

def __init__ (self) -> None:
self.metrics = ColorMetrics ()

def _ call_ (self, gen_fig: Optional[Figure], gt_fig: Optional[Figure]) -> ColorMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "can_not_find Figure "
return self.metrics

try:
generation_data = self._extract_colors_from figure_expert (gen_£fig)
gt_data = self._extract_colors_from_figure_expert (gt_fig)
self._calculate_metrics(generation_data, gt_data)

except Exception as e:
logger.error (f"color _evaluate error: {e}l", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_colors_from_figure_expert (self, figure: Figure) -> Dict[str, Dict[str, str]]:

extracted_data = defaultdict (dict)
fallback_counters = defaultdict (int)

if color := convert_color_to_hex(figure.patch.get_facecolor()): extracted_datal[’figure_bg’][
’figure’] = color

for ax in figure.axes:
if color convert_color_to_hex (ax.patch.get_facecolor()): extracted_data(’axes_bg’][f’
ax_{id(ax)}’] = color

if ax.get_legend() :
for handle, label in zip(ax.get_legend().legend_handles, ax.get_legend().get_texts()):
key = label.get_text ()
color = None

if hasattr (handle, ’get_facecolor’): color = convert_color_to_hex (handle.
get_facecolor())
elif hasattr (handle, ‘get_color’): color = convert_color_to_hex (handle.get_color())
if color:
if isinstance (handle, plt.Rectangle): extracted_data[’patch_face’] [key] = color
else: extracted_data[’line_color’] [key] = color

try:
tick_labels = [tick.get_text() for tick in ax.get_xticklabels()]
for i, patch in enumerate (ax.patches):
if color := convert_color_to_hex (patch.get_facecolor()):
key = tick_labels[i] if i < len(tick_labels) and tick_labels[i] else None
if not key: key = f"patch_{fallback_counters[’patch_face’]}"; fallback_counters[
'patch_face’] += 1

if key not in extracted_data[’patch_face’]: extracted_datal[’patch_face’] [key] =
color
if e_color := convert_color_to_hex (patch.get_edgecolor()):

key = tick_labels[i] if i < len(tick_labels) and tick_labels[i] else f"
patch_edge_{i}"
extracted_data[’patch_edge’] [key] = e_color
except Exception as e: logger.warning(f"handing Patches_error:_{e}")

try:
for line in ax.lines:
if color := convert_color_to_hex(line.get_color()):
key = line.get_label ()

50

if not key or key.startswith(’_"): key = f"line_{fallback_counters([’line_color
"11"; fallback_counters[’line_color’] += 1

if key not in extracted_data[’line_color’]:
color

except Exception as e: logger.warning(f"handing Lines _error: {e}")

extracted_data[’line_color’] [key] =

try:
for collection in ax.collections:
colors = collection.get_facecolors ()

if len(colors) == 0: continue
if len(set (map (tuple, colors))) == 1:
if color := convert_color_to_hex(colors[0]):

key = collection.get_label ()

if not key or key.startswith(’_’): key = f"scatter_group_{fallback_counters[’
scatter_color’]}"; fallback_counters[’scatter_color’] += 1

if key not in extracted_data[’scatter_color’]:
] [key] = color

extracted_datal[’scatter_color’

else:
for c in {convert_color_to_hex(c) for c in colors if c is not None}:
key = f"palette_color_{fallback_counters[’scatter_palette’]}";
fallback_counters[’scatter_palette’] += 1
extracted_data[’scatter_palette’] [key] = c
except Exception as e: logger.warning(f"handle Collections_error: {e}")

try:
for text in ax.texts:
if color convert_color_to_hex (text.get_color()):
key = text.get_text ()
if key: extracted_data[’text_color’][key] = color
except Exception as e: logger.warning(f"handle Texts, error: {e}")

if (color := convert_color_to_hex(ax.title.get_color())): extracted_data[’title’][’title’
] = color

if (color := convert_color_to_hex(ax.xaxis.label.get_color())): extracted_datal[’
axis_label’][’xlabel’] = color

if (color := convert_color_to_hex(ax.yaxis.label.get_color())): extracted_datal
axis_label’][’ylabel’] = color

return dict (extracted_data)

class GridEvaluator:
def _ init__ (self) -> None:
self.metrics = GridMetrics()

def _ _call__ (self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) -> GridMetrics:
if gen_fig is None or gt_fig is None:

self.metrics.status = ExecutionStatus.FAILED

self.metrics.error_message = "Could not, get _a,valid Figure object"
return self.metrics

try:
generation_grids = self._extract_grids_from_figure (gen_fig)

gt_grids = self._extract_grids_from_figure (gt_£fig)
self._calculate_metrics(generation_grids, gt_grids)

except Exception as e:
logger.error (f"Error_during_grid_evaluation:_{e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_grids_from figure(self, fig: plt.Figure) -> List[Dict]:
"""Directly, extracts _grid_information_from_a Figure object."""
grids = []
for ax in fig.axes:
x_grid_visible = any(line.get_visible() for line in ax.get_xgridlines())
y_grid_visible = any(line.get_visible() for line in ax.get_ygridlines())
if x_grid_visible or y_grid_visible:
grids.append ({
'x_grid_visible’: x_grid_visible,
'y_grid_visible’: y_grid_visible
}

return grids

def _calculate_metrics(self, generation_grids: List[Dict], gt_grids: List[Dict]) -> None:
"""Calculates_precision, recall, and Fl-score_for grid usage."""
if not generation_grids and not gt_grids:

51

self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.fl = 1.0

return

if not gt_grids or not generation_grids:
self.metrics.precision = 0.0; self.metrics.recall = 0.0; self.metrics.fl = 0.0
return

n_correct = 0

gt_grids_copy = gt_grids.copy ()
for gen_grid in generation_grids:
if gen_grid in gt_grids_copy:
n_correct += 1
gt_grids_copy.remove (gen_grid)
self.metrics.precision = n_correct / len(generation_grids) if generation_grids else 1.0
self.metrics.recall = n_correct / len(gt_grids) if gt_grids else 1.0
if self.metrics.precision + self.metrics.recall > 0:
self.metrics.fl = 2 % self.metrics.precision » self.metrics.recall / (self.metrics.
precision + self.metrics.recall)
else:
self.metrics.fl = 0.0

J.3 LAYOUT

code

class LayoutEvaluator:
def _ _init__ (self) -> None:
self.metrics = LayoutMetrics ()

def _ call_ (self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure], gen_file_path:

str, gt_file_path: str) -> LayoutMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not, get a, valid_Figure object"
return self.metrics

try:
generation_layouts = self._extract_layout_from_figure(gen_fig, gen_file_path)
gt_layouts = self._extract_layout_from_figure(gt_fig, gt_file_path)
self._calculate_metrics(generation_layouts, gt_layouts)

except Exception as e:
logger.error (f"Error_during,_layout, evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_layout_from figure(self, fig: plt.Figure, file_path: str) -> List[Dict]:
if "/graph" in file_path:
return [dict (nrows=1, ncols=1, row_start=0, row_end=0, col_start=0, col_end=0)]
layout_info = []
for ax in fig.axes:
spec = ax.get_subplotspec ()
if spec is None: continue
gs = spec.get_gridspec()
nrows, ncols = gs.get_geometry ()
row_start, row_end = spec.rowspan.start, spec.rowspan.stop - 1
col_start, col_end = spec.colspan.start, spec.colspan.stop - 1
layout_info.append (dict (
nrows=nrows, ncols=ncols,
row_start=row_start, row_end=row_end,
col_start=col_start, col_end=col_end
))

return layout_info

def _calculate_metrics(self, generation_layouts: List[Dict], gt_layouts: List[Dict]) -> None:
if not generation_layouts and not gt_layouts:
self.metrics.precision = 1.0; self.metrics.recall
return
if not gt_layouts or not generation_layouts:
self.metrics.precision = 0.0; self.metrics.recall = 0.0; self.metrics.fl = 0.0
return
n_correct = 0
gt_layouts_copy = gt_layouts.copy ()
for layout in generation_layouts:
if layout in gt_layouts_copy:
n_correct += 1
gt_layouts_copy.remove (layout)
self.metrics.precision = n_correct / len(generation_layouts) if generation_layouts else 1.0
self.metrics.recall = n_correct / len(gt_layouts) if gt_layouts else 1.0
if self.metrics.precision + self.metrics.recall > 0:
self.metrics.fl = 2 x self.metrics.precision * self.metrics.recall / (self.metrics.
precision + self.metrics.recall)

1.0; self.metrics.fl = 1.0

else:
self.metrics.fl = 0.0

52

J.4 LEGEND

class LegendEvaluator:
def __init__ (self, use_position: bool = True) -> None:
self.metrics = LegendMetrics()
self.use_position = use_position

def _ _call__ (self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) ->

LegendMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not, get_a valid Figure object"
return self.metrics

try:
gen_fig.canvas.draw()
gt_fig.canvas.draw ()
generation_legends = self._extract_legends_from_figure (gen_£fig)
gt_legends = self._extract_legends_from_figure (gt_fig)
self._calculate_metrics(generation_legends, gt_legends)

except Exception as e:
logger.error (f"Error_during,_legend evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_legends_from_figure (self, fig: plt.Figure) -> List[Dict]:
legends_info = []
renderer = fig.canvas.get_renderer (
all_legends = fig.legends([:]
for ax in fig.axes:
if ax.get_legend() :
all_legends.append(ax.get_legend())
for legend in set (all_legends) :
if not legend or not legend.get_visible():
continue
legend_bbox = legend.get_window_extent (renderer)
for text_obj in legend.get_texts():
if text_obj.get_visible() and text_obj.get_text():
legends_info.append ({
"text": text_obj.get_text (),
"bbox": (legend_bbox.x0, legend_bbox.y0, legend_bbox.xl, legend_bbox.yl)

return legends_info

def _calculate_metrics(self, generation_legends: List[Dict], gt_legends: List[Dict]) -> None:
if not generation_legends and not gt_legends:
self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.fl = 1.0
return

if not gt_legends or not generation_legends:
self.metrics.precision = 0.0; self.metrics.recall = 0.0; self.metrics.fl = 0.0
return
n_correct = 0
gt_legends_copy = gt_legends.copy ()
for gen_legend in generation_legends:
best_match = None
for gt_legend in gt_legends_copy:
if gen_legend["text"] == gt_legend["text"]:
if self.use_position:
gen_box, gt_box = gen_legend["bbox"], gt_legend["bbox"]
xA = max(gen_box[0], gt_box[0]); yA = max(gen_box[1l], gt_box[1])
XB = min(gen_box[2], gt_box[2]); yB = min(gen_box[3], gt_box[3])
interArea = max (0, xB - xA) x max(0, yB - yA)
if interArea > 0:
best_match = gt_legend
break
else:
best_match = gt_legend
break
if best_match:
n_correct += 1
gt_legends_copy.remove (best_match)
self.metrics.precision = n_correct / len(generation_legends) if generation_legends else 1.0
self.metrics.recall = n_correct / len(gt_legends) if gt_legends else 1.0
if self.metrics.precision + self.metrics.recall > 0:
self.metrics.fl = 2 % self.metrics.precision » self.metrics.recall / (self.metrics.
precision + self.metrics.recall)
else:
self.metrics.fl = 0.0

53

J.5 VISUAL

Visual evaluation code

J.6 DATA

Data evaluation code

—--- V10: Hardened Evaluator Class with Strict Logic —---
class ParameterEvaluator:

def __init__ (self)

—> None:
self.metrics = ParameterMetrics ()
self .DATA_PARAM KEYS = {’xdata’, ’'ydata’, ’'offsets’, ’'xy’, ’'verts’, ’width’, ’'height’, '
sizes’}
self.IGNORED_PARAMS = {’color’, ’'c’, ’colors’, ’'label’, ’labels’, ’edgecolor’,
def __call__ (self,

! facecolor’}
gen_fig: Optional[plt.Figure],
ParameterMetrics:

gt_fig: Optional[plt.Figure])
if gen_fig is None or gt_fig is None:

->
self.metrics.status ExecutionStatus.FAILED
self.metrics.error_message = "Could not, get_a_valid Figure_object"
return self.metrics
try:
gen_params = self._extract_params_from_figure (gen_fig)
gt_params = self._extract_params_from_figure (gt_£fig)
self._calculate_strict_metrics(gen_params, gt_params)
except Exception as e:
logger.error (f"Error _during parameter evaluation:_{e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)
return self.metrics
def _extract_params_from_figure(self, fig: plt.Figure) -> List[Dict]:
extracted_params = []
for ax in fig.axes:
for line in ax.lines:
params {
"type’: ’line’, ’xdata’: np.array(line.get_xdata()).tolist(), ’‘ydata’: np.array (
line.get_ydata()) .tolist (),
’linestyle’: line.get_linestyle(), ’linewidth’: line.get_linewidth(), ’'marker’:
line.get_marker(),
'markersize’: line.get_markersize(), ’alpha’:
}

line.get_alpha()
extracted_params.append (params)

—--— HERE IS THE FIX —-—-—

Differentiate between different types of patches
for patch in ax.patches:
params = {’alpha’: patch.get_alpha()}
If it’s a Rectangle (from bar, hist),
if isinstance (patch, Rectangle)
params.update ({
'type’ :
rxy’

get width and height

’rectangle_patch’,
np.array (patch.get_xy()) .tolist (),
'width’: patch.get_width(),

'height’: patch.get_height (),
}
extracted_params.append (params)

If it’s a Polygon (from fill,
elif isinstance (patch,

params.update ({
‘type’ :
’verts’: np.array(patch.get_xy()) .tolist (),
}

violinplot), get vertices
Polygon) :

’'polygon_patch’,

extracted_params.append (params)
Can add more patch types here (e.g.,

Circle, Ellipse) if needed
for collection in ax.collections:
params {"type’: ’"collection’, ’"alpha’: collection.get_alpha()}
if hasattr(collection, ’'get_offsets’):
params [’ offsets’]

if hasattr(collection,
params [’ sizes’]

np.array (collection.get_offsets()).tolist ()
if len(params) > 2:

'get_sizes’):

np.array (collection.get_sizes()).tolist ()

Check if any data was actually added besides type and alpha
extracted_params.append (params)
return extracted_params

def

calculate_value_similarity(self,
"

vall: Any, val2: Any) -> float:
"Strictly, compares, two, values,, handling, numerics,, strings, and_lists/arrays."""

54

if vall is None and val2 is None: return 1.0
if vall is None or val2 is None: return 0.0
try:
if isinstance(vall, str): vall = float(vall)
if isinstance(val2, str): val2 = float(val2)
except (ValueError, TypeError): pass

if isinstance(vall, (int, float, np.number)) and isinstance(val2, (int, float, np.number)):
return 1.0 if np.isclose(vall, val2) else 0.0
if isinstance(vall, (bool, str)):

return 1.0 if str(vall) == str(val2) else 0.0
if isinstance(vall, (list, np.ndarray)):
if not isinstance(val2, (list, np.ndarray)): return 0.0

if not len(vall) and not len(val2): return 1.0

if not len(vall) or not len(val2): return 0.0

try:
vl = np.asarray(vall, dtype=float).flatten()
v2 = np.asarray(val2, dtype=float).flatten()
intersection = np.intersectld(vl, v2).size
union = np.unionld(vl, v2).size
return intersection / union if union > 0 else 1.0

except (ValueError, TypeError):
setl, set2 = set(str(v) for v in vall), set(str(v) for v in val2
return len(setl.intersection(set2)) / len(setl.union(set2)) if setl.union(set2) else

1.0
return 0.0

def _calculate_strict_metrics(self, gen_elements: List[Dict], gt_elements: List[Dict]):
if not gen_elements and not gt_elements:

self.metrics.data_metrics = self.metrics.visual_metrics = ScoreBlock (1.0, 1.0, 1.0)
return
total_data_score, total_visual_score = 0.0, 0.0
gt_data_count, gt_visual_count = 0, 0
gen_data_count, gen_visual_count = 0, 0
unmatched_gen_elements = gen_elements|[:]
for gt_elem in gt_elements:
best_score, best_match_index = -1.0, -1
for i, gen_elem in enumerate (unmatched_gen_elements) :
if gt_elem.get ('type’) == gen_elem.get ('type’):
current_score = sum(self._calculate_value_similarity(gt_elem.get (k), gen_elem.get (k
)) for k in gt_elem if k != ’type’)

if current_score > best_score:
best_score, best_match_index = current_score, i

if best_match_index != -1:

matched_gen_elem = unmatched_gen_elements.pop (best_match_index)

all_keys = set (gt_elem.keys()) | set(matched_gen_elem.keys ()

for key in all_keys:
if key in self.IGNORED_PARAMS or key == ’type’: continue
category = ’data’ if key in self.DATA_PARAM KEYS else ’'visual’
gt_val, gen_val = gt_elem.get (key), matched_gen_elem.get (key)
score = self._calculate_value_similarity(gt_val, gen_val)
if category 'data’: total_data_score += score
else: total_visual_score += score

for key in gt_elem:
if key in self.IGNORED_PARAMS or key == ’type’: continue
if key in self.DATA_PARAM KEYS: gt_data_count += 1
else: gt_visual_count += 1

for gen_elem in gen_elements:
for key in gen_elem:
if key in self.IGNORED_PARAMS or key == ’type’: continue
if key in self.DATA_PARAM_KEYS: gen_data_count += 1
else: gen_visual_count += 1

data_p = total_data_score / gen_data_count if gen_data_count > 0 else 1.0 if not
gt_data_count else 0.0

data_r = total_data_score / gt_data_count if gt_data_count > 0 else 1.0 if not
gen_data_count else 0.0

data_fl = 2 » (data_p * data_r) / (data_p + data_r) if (data_p + data_r) > 0 else 0.0

self.metrics.data_metrics = ScoreBlock(data_p, data_r, data_f1)

visual_p = total_visual_score / gen_visual_count if gen_visual_count > 0 else 1.0 if not
gt_visual_count else 0.0

visual_r = total_visual_score / gt_visual_count if gt_visual_count > 0 else 1.0 if not
gen_visual_count else 0.0

visual_fl = 2 % (visual_p % visual_r) / (visual_p + visual_r) if (visual_p + visual_r) > 0
else 0.0

self.metrics.visual_metrics = ScoreBlock(visual_p, visual_r, visual_f£f1)

55

J.7 TEXT

Text evalual code

class TextEvaluator:
def _ _init__ (self) -> None:
self.metrics = TextMetrics()

def _ _call__ (self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) -> TextMetrics:
if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED

self.metrics.error_message = "Could not, get_a_valid Figure object"
return self.metrics

try:
generation_texts = self._extract_texts_from_ figure (gen_fig)

gt_texts = self._extract_texts_from_figure(gt_£fig)
self._calculate_metrics(generation_texts, gt_texts

except Exception as e:
logger.error (f"Error _during text evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_texts_from figure(self, fig: plt.Figure) -> Dict[str, List([str]]:
"""Extracts,_and _categorizes _all text elements_from_a Figure object."""

texts = {
"title": [], "xlabel": [], "ylabel": [], "tick_label": [],
"suptitle": [], "legend_text": [], "annotation": []

}
if fig._suptitle and fig._suptitle.get_text():
texts["suptitle"].append(fig._suptitle.get_text ())

for ax in fig.axes:
if ax.title.get_text():
texts["title"].append(ax.title.get_text())
if ax.xaxis.label.get_text():
texts["xlabel"] .append(ax.xaxis.label.get_text ())
if ax.yaxis.label.get_text():
texts["ylabel"] .append(ax.yaxis.label.get_text ())

for label in ax.get_xticklabels() + ax.get_yticklabels():
if label.get_text():
texts["tick_label"].append(label.get_text ())

if legend := ax.get_legend() :
for text in legend.get_texts():
if text.get_text():
texts["legend_text"].append (text.get_text ())

for text in ax.texts: # Annotations and ax.text ()
if text.get_text():
texts["annotation"].append (text.get_text ())

Filter out empty lists
return {k: v for k, v in texts.items() if v}

def _calculate_metrics(self, generation_texts: Dict[str, List[str]], gt_texts: Dict[str, List[
str]]) -> None:
"""Calculates strict, metrics _based_on categorized text similarity."""
if not generation_texts and not gt_texts:

self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.fl = 1.0
return
total_similarity_score = 0.0
total_gt_text_count = sum(len(texts) for texts in gt_texts.values())
total_gen_text_count = sum(len(texts) for texts in generation_texts.values())
all_categories = set (gt_texts.keys()) | set(generation_texts.keys ()

for category in all_categories:
gt_list = gt_texts.get (category, [])
gen_list = generation_texts.get (category, [])

if not gt_list or not gen_list:
continue

Find best match for each generated text using Levenshtein ratio
unmatched_gt = gt_list[:]
for gen_text in gen_list:

if not unmatched_gt: break

best_score = -1
best_match_index = -1
for i, gt_text in enumerate (unmatched_gt) :
score = levenshtein_ratio(gen_text, gt_text)
if score > best_score:
best_score = score

best_match_index = i

56

if best_match_index != -1:
total_similarity_score += best_score
unmatched_gt .pop (best_match_index)

self.metrics.precision = total_similarity_score / total_gen_text_count if
total_gen_text_count > 0 else 1.0 if not gt_texts else 0.0

self.metrics.recall = total_similarity_score / total_gt_text_count if total_gt_text_count >
0 else 1.0 if not generation_texts else 0.0

if self.metrics.precision + self.metrics.recall > 0:
self.metrics.fl = 2 % self.metrics.precision » self.metrics.recall / (self.metrics.
precision + self.metrics.recall)
else:
self.metrics.fl = 0.0

J.8 TYPE

pe evaluation code

class ChartTypeEvaluator:
def __init__ (self) -> None:
self.metrics = ChartTypeMetrics ()

def _ _call__ (self, gen_fig: Optional[plt.Figure], gt_fig: Optional[plt.Figure]) ->

ChartTypeMetrics:

if gen_fig is None or gt_fig is None:
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = "Could not, get_a_valid Figure object"
return self.metrics

try:
generation_chart_types = self._extract_chart_types_from figure (gen_fig)
gt_chart_types = self._extract_chart_types_from figure (gt_£fig)
self._calculate_metrics(generation_chart_types, gt_chart_types)

except Exception as e:
logger.error (f"Error_during chart _type evaluation: {e}", exc_info=True)
self.metrics.status = ExecutionStatus.FAILED
self.metrics.error_message = str(e)

return self.metrics

def _extract_chart_types_from_figure(self, fig: plt.Figure) -> Dict[str, int]:
wan
(V11l_-_Strict _Version) Identifies_chart_types by inspecting the specific

classes _of _artists_present_in_a_Figure object.

won

types = set ()
for ax in fig.axes:
Check for specific artist types to identify plot types
if any(isinstance (artist, Line2D) for artist in ax.lines):
types.add(’line’)
if any (isinstance (artist, Rectangle) for artist in ax.patches):
types.add(’bar_or_hist’)
if any(isinstance(artist, Wedge) for artist in ax.patches):
types.add(’'pie’)
if any(isinstance(artist, PathCollection) for artist in ax.collections):
types.add(’scatter’)
if any(isinstance(artist, PolyCollection) for artist in ax.collections):
types.add(’ fill_or_stack’) # e.g., fill_between, stackplot, violinplot
if any(isinstance(artist, QuadMesh) for artist in ax.collections):
types.add ('’ heatmap_or_grid’) # e.g., pcolormesh, hist2d
if any(isinstance(artist, plt.matplotlib.image.AxesImage) for artist in ax.images):
types.add(’ image’)

Convert set to the Counter-like dictionary format for consistency
return {chart_type: 1 for chart_type in types}

def _calculate_metrics(self, generation_chart_types: Dict[str, int], gt_chart_types: Dict[str,
int]) -> None:
"""Calculates, strict _metrics_based on_the sets _of detected chart _types."""
if not generation_chart_types and not gt_chart_types:
self.metrics.precision = 1.0; self.metrics.recall = 1.0; self.metrics.fl = 1.0
return

gen_types_set = set (generation_chart_types.keys())
gt_types_set = set (gt_chart_types.keys())

True Positives: Types present in both ground truth and generation
n_correct = len(gen_types_set.intersection(gt_types_set))

Total number of types detected in the generated plot
total_generated = len(gen_types_set)

Total number of types that should have been in the plot
total_gt = len(gt_types_set)

57

self.metrics.precision = n_correct / total_generated if total_generated > 0 else 1.0 if not
gt_types_set else 0.0

self.metrics.recall = n_correct / total_gt if total gt > 0 else 1.0 if not gen_types_set
else 0.0

if self.metrics.precision + self.metrics.recall > 0:
self.metrics.fl = 2 x self.metrics.precision * self.metrics.recall / (self.metrics.
precision + self.metrics.recall)
else:
self.metrics.fl = 0.0

K PROMPT

K.1 GENERATION PROMPT

DM_prompt

"""You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, and others.I have a
plot generated by Python code, but I don’t have the
corresponding code that generated this plot. Your task
is to generate the Python code that can perfectly
reproduce the picture based on the image I provide.

Here are the requirements for the task:

1. xxData Extractionxx: Extract the actual data from the
provided image. Based on the visual features of the
plot, you must infer the data and recreate the plot.

2. xxRecreate the Imagex#*: Generate the Matplotlib code
that reproduces the image exactly as it appears,
including all elements such as:

- Plot type (scatter, line, bar, etc.)

- Axis labels and titles

- Colors, markers, line styles, and other wvisual styles

- Any legends, annotations, or gridlines present in the
image

3. xxSelf-contained Codex**: The Python code should be
complete, executable, and self-contained. It should
not require any external data files or variables not
already present in the code.

Your objective is to extract the any necessary details
from the image and generate a Python script that
accurately reproduces the plot.

Now, please generate the Python code to reproduce the
picture below.
The output format must be strictly as follows:

‘Y 'python
Your Python code here to reproduce the image.

AR R}

nmmnn

58

CRD_template

You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, and others. Your
task is to generate Python code that can perfectly
reproduce a plot based on a reference image, a natural

language instruction, and the corresponding data.

Here are the requirements for the task:

1. xxUse Provided Dataxx: You must use the data provided
below in the generated code. Do not infer data from
the image.

2. xxFollow Instructions#*x*: Adhere to the specific
plotting instructions provided.

3. xxMatch Reference Image Stylexx*: Use the reference
image to understand the required visual style (colors,

markers, line styles, labels, titles, legends, etc.)
and replicate it as closely as possible.

4. xxSelf-contained Codexx: The Python code should be
complete, executable, and self-contained. It should
not require any external data files. All data must be
included within the script.

xInstruction: x=
{instruction_text}

**xData: x*
{data_text}

Now, based on the instruction, the data, and the
reference image below, please generate the Python code.
The output format must be strictly as follows:

nman

CFD_prompt

You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, and others.

Your task is to generate Python code that reproduces a
plot. You will be given specific instructions, a data
source image, and a style reference image.

Here are the general requirements:

1. xxData Extractionxx: Extract the necessary data from
the ’data source image’.

2. xxStyle Replicationx+*: Replicate the visual style (
colors, markers, layout, etc.) from the ’style
reference image’.

3. xxFollow Instructions=**: Adhere to the specific
instructions provided for the task.

59

4. xxSelf-contained Codexx: The Python code must be
complete, executable, and self-contained, without
needing external data files.

«**Specific Task Instructions:*x*
{task_instructions}

Now, using the data from the data source image and
applying the style from the reference image according
to the instructions, please generate the Python code.

The output format must be strictly as follows:

‘Y 'python

Your Python code here to reproduce the image.

AR WA

mnomn

level2_prompt

"""You are an expert Python developer specializing in
data visualization with libraries like Matplotlib. I
have an image of a plot and a set of instructions to
modify it. Your task is to generate the Python code
that would produce the xmodifiedx plot.

Here are the requirements:

1. »xUnderstand the Base Imagexx: Analyze the provided
image to understand the original plot’s data and
structure.

2. xxApply Edits+**: Carefully read the instructions
provided below and apply them to the base plot.

3. *xGenerate Modified Codexx: Generate a single, self-
contained, and executable Python script that produces
the final, edited visualization. The code should not
require any external data files.

**Editing Instructions:xx*

{instructions}

Your objective is to generate a Python script that
accurately reproduces the plot xafterx applying the
given instructions. The output format must be strictly

a Python code block.
*Y'python
Your Python code here to generate the MODIFIED image.

AR WA

wnw

60

level3_prompt

"""You are a Python developer proficient in data
visualization, with expertise in using libraries such
as Matplotlib, NetworkX, Seaborn, pandas, and others.

Your task is to generate Python code that creates a plot
based on the provided data and instructions. You will
be given specific instructions, data in text format (
extracted from an Excel file), and a style reference
image.

Here are the general requirements:

1. xxUse Provided Dataxx: The data you need to plot is
provided below in CSV format. Each sheet from the
original Excel file is clearly marked. You should use
libraries like pandas and i0.StringIO to parse this

CSV data.
2. xxStyle Replicationx*: Replicate the visual style (
colors, markers, layout, fonts, etc.) from the ’style

reference image’.

3. xxFollow Instructionsx**: Adhere to the specific
instructions provided for the task.

4. xxSelf-contained Codexx: The Python code must be
complete, executable, and self-contained. The data
should be defined directly within the code (e.g., in a

pandas DataFrame loaded from a string), without
needing to read any external files.

+**3pecific Task Instructions:*x
{task_instructions}

*xData from Excel File (in CSV format) :x=
{excel_data_string}

Now, using the data provided above and applying the style
from the reference image according to the
instructions, please generate the Python code.
The output format must be strictly as follows:

‘Y 'Ypython
Your Python code here to reproduce the image.

ANAURY

nnn

K.2 LLM-SCORE PROMPT

System Prompt

You are an exceptionally strict and meticulous image
analyst. Your task is to evaluate the visual
similarity of two chart images. You must be extremely
critical. Any deviation, no matter how small, must be
penalized heavily. A perfect score is reserved only

61

for images that are visually indistinguishable to the
human eye. Your analysis must be based solely on the
visual information in the images provided.

Compare the ’'Ground Truth Image’ and the ’'Generated Image
. Based ONLY on their wvisual information, evaluate
their similarity.

**Evaluation Rules:*x

1. xxStrictness is Key:xx Start with a perfect score of
100 and deduct points for EVERY visual difference,
including but not limited to: chart type, data points,

colors, line styles, markers, labels (content, font,
and position), titles, legends, axes (limits, ticks,
scaling), layout, aspect ratio, and any other visual
element.

2. **xIdentical Means Identical:xx A score of 100 is ONLY
for images that are pixel-perfect or visually
indistinguishable. Even a tiny difference in line
thickness or a single different pixel color must
result in a lower score.

3. xxHeavy Penalties:xx Apply significant penalties for
noticeable differences. For example, a different color

map or a missing legend should lead to a large
deduction.

Return ONLY a single JSON object with two keys: "score" (
an integer from 0 to 100) and "reason" (a concise,
expert analysis in English, detailing every detected
difference that justifies the score deduction). Do not

include any other text, markdown, or explanations
outside the JSON object.

LMM-Score Prompt

You are a meticulous and strict expert Python data
visualization analyst. Your task is to compare two
Python plotting scripts and evaluate the visual
similarity of their final outputs based on a SINGLE,
specific dimension.

Your analysis must be based xxsolely on the provided code
*%. Do not execute it. Your evaluation must be
critical and detail-oriented.

**3coring Philosophy:xx Assume a perfect score of 100,
then xxdeduct points for every deviationxx you find,
no matter how minor. A score of 100 is reserved ONLY
for scripts that produce visually indistinguishable
plots.

You must return ONLY a single JSON object with two keys:
"score" (an integer from 0 to 100) and "reason" (a
concise, expert analysis in English). Do not include
any other text in your response.

nmnmon

62

nmmn

"data_handling_and_transformation’: ({

’ prompt’ .omun

Critically evaluate the DATA SOURCE and its
TRANSFORMATION.

- Focus on: How the numerical data passed to
the plotting function is generated.

- Check: Hardcoded lists/arrays, ‘pandas‘ or °
numpy ' array creation (e.g., ‘np.linspace
‘), data filtering (‘dfl[...1%),
mathematical operations (‘np.sin(x)* ‘df

4

["a’] = 100'), and data aggregation.

*xScoring Rubric (Start at 100, deduct points
)t xx

— xx—0 points:xx Data generation and
transformations are functionally identical
(e.g., ‘[1, 2, 31" vs ‘np.array([l, 2,
31 Y.

— %x=5 points:xx Trivial differences in
floating-point precision that are visually
unnoticeable (e.g., ‘np.pi' vs '3.14159%').

— xx=25 points:xx Different data filtering or
selection that results in a subset or
different ordering of the same underlying
data.
- *x%x=50 points:*xx A different mathematical
transformation is applied to the same base
data (e.g., '‘np.sin(x) ‘' vs ‘np.cos(x)‘).
- x%x=75 points:*x* The fundamental data
sources are different (e.g., plotting ‘df
["col_A"]" vs ‘df[’col_B’']%Y).
x*%=100 points:xx Data is completely
unrelated in source, shape, and scale.

nmon

"weight’: 0.20

by
"chart_type_and _mapping’: {

’ prompt r.omnn

Critically evaluate the CORE CHART TYPE and
DATA-TO-VISUALS MAPPING.

— Focus on: The primary plotting function
call (e.g., ‘plt.plot}', ‘ax.bar‘', ‘sns.
heatmap®') .

— Check: Which variables are mapped to which
axes (e.g., '‘x=df[’time’], ‘y=df[’value
1Y) and other visual properties (‘size=?',

‘hue=") .

**3coring Rubric (Start at 100, deduct points
) k%

- xx—0 points:x* The exact same plotting
function is used with the same data-to-
axis mappings.

63

— xx=15 points:xx A visually similar plot
type is used (e.g., ‘plt.plot()' vs ‘plt.
scatter () ‘).

— *x%x=50 points:*xx A different plot type is
used, but it’s still plausible for the
data (e.g., ‘plt.bar()‘' vs ‘plt.plot ()’
for time series). The core data variables
on the axes are the same.

— xx—75 points:*x*x Key data mappings are
swapped or incorrect (e.g., x and y axes
are flipped; ‘x='sales’, y='time’ ' vs ‘x=’
time’, y='sales’ ‘).

- xx=100 points:xx A fundamentally different
and inappropriate chart type is used (e.g
., ‘plt.pie() " vs ‘sns.lineplot () ‘).

mmn
14

"weight’: 0.25

b
"visual_aesthetics’: {

Ipromptl g mmn

Critically evaluate the VISUAL AESTHETICS
like colors, markers, and line styles.

— Focus on: Explicitly set styling arguments.

— Check: ‘color‘', ‘linestyle' (or ‘lst'),
linewidth' (or ‘lw‘), ‘marker‘', ‘'
markersize', ‘alpha‘, ‘cmap‘' (for heatmaps
/scatter), ‘palette (for seaborn).

**%Scoring Rubric (Start at 100, deduct points
)t xx

- xx—0 points:xx All explicit style arguments

are identical.

- xx—10 points:**x A minor style attribute is
different (e.g., ‘linewidth=1.5' vs '
linewidth=2.0', or ‘marker=’0o’"‘' vs ‘marker
="' %’ \) .

— x%=30 points:xx The primary color is
different (e.g., ‘color='blue’‘ vs ‘color
='green’ ‘). Or, one uses a default color
while the other specifies one.

- *x%x=50 points:xx Multiple style attributes
are different (e.g., color and linestyle).

— x%x—75 points:*x* The overall aesthetic is
completely different (e.g., a solid blue
line vs a transparent, dashed red line
with markers).

""",

"weight’: 0.20

bo
"labels_titles_and_legend’: {

’prompt’ .o omnn

Critically evaluate all TEXTUAL ELEMENTS:
labels, titles, and legends.

— Focus on: The content and presence of all
text.

— Check: ‘ax.set_title() ', ‘ax.set_xlabel() ',

‘ax.set_ylabel() ', ‘fig.suptitle() ‘', and

64

the ‘label' argument in plotting calls
used by ‘ax.legend() ‘.

**3coring Rubric (Start at 100, deduct points
) Tk

— %x—0 points:xx All text elements are
present and have identical content.

- *x%x=5 points:** Minor, non-substantive
differences exist (e.g., "Sales Data" vs "
Sales data", or a minor typo).

- *x%x—20 points:xx A text element is present
in both, but the content is substantively
different (e.g., "Sales in 2023" vs "
Profit in 2024").

— xx—40 points:*x*x A key text element is
missing in one script (e.g., one has a
title, the other does not).

- xx—60 points:*x Multiple key text elements
are missing or incorrect.

- xx—100 points:xx No text elements are
present in one or both scripts.

nmon
14

"weight’: 0.15

bo
"figure_layout_and_axes’ : {

Ipromptl g nman

Critically evaluate the FIGURE LAYOUT and
AXES configuration.

— Focus on: The overall canvas, subplot
structure, and axis properties.

— Check: ‘plt.figure(figsize=...)"', ‘plt.
subplots () ', axis limits (‘ax.set_xlim?,
ax.set_ylim'), axis scales (‘ax.set_xscale
‘), and axis direction (‘ax.invert_yaxis/()

\).

\

**3coring Rubric (Start at 100, deduct points
) Tk

- xx—0 points:xx Figure size, subplot
structure, limits, and scales are all
identical.

- xx=10 points:** Figure size is different,
but the aspect ratio is similar.

— xx—25 points:xx Axis limits are different,
but the data range shown is largely the

same.
— *x%x=50 points:*xx Axis scales are different (
e.g., ‘linear' vs ‘log'). This is a major

visual change.

— x%x—75 points:*x* The subplot structure is
different (e.g., ‘subplots(l, 2)' vs '
subplots (2, 1)1%Y).

- xx—100 points:xx Completely different
layouts (e.g., single plot vs. a complex
grid of subplots).

nmn
14

"weight’: 0.15

65

b
"auxiliary_elements_and_ticks’: {

4 prompt/ . nuan

Critically evaluate AUXILIARY elements, grid,

spines, and ticks.

— Focus on: Non-data visual elements that
provide context or structure.

— Check: ‘ax.grid()‘, ‘ax.axhline()‘, ‘ax.
axvspan() ', ‘ax.spines[...]" ‘ax.
tick_params () ', and explicit tick setting
(‘ax.set_xticks?').

**3coring Rubric (Start at 100, deduct points
) Tk

— x%x—0 points:**x All auxiliary elements and
tick configurations are identical.

— xx—15 points:xx An element is present in
both but with different styling (e.g., a
solid grid vs a dashed grid). Or, tick
label formatting differs.

- *x%x=30 points:*x* An important element is
present in one but missing in the other (e.
g., one script calls ‘ax.grid(True) ' and
the other does not).

- *x%x=50 points:** A major contextual element
is missing (e.g., a crucial ‘ax.axhline(y
=0, ...)" that indicates a baseline). Or,
spines are hidden in one but not the other.

— x%x—75 points:xx Major differences in tick
locations (e.g., ‘xticks' are explicitly
set to different values).

nmnw
4

"weight’: 0.05

66

	Introduction
	Related Work
	Chart2Code: From Visual Charts to Code
	Task Definition of Chart2Code
	Data Curation and Annotation
	Data curation
	Data filtering
	Data Annotation

	Data Statistics and Analysis
	Evaluation

	Experiments
	Experiments Setup
	Main Experimental Results
	Level-wise Comparison of Models
	Analysis

	Discussion.

	Conclusion and Limitations
	LLM Usage Statement
	User-Centric Case Studies
	Data Curation
	Chart Image Data
	raw data filtering

	More Analysis
	Metric Details
	Overall
	Base Evaluation
	Color Score
	grid Score
	Layout score
	Legend score
	data parameter score
	visual parameter score
	type score
	text score

	LLM-Evaluation
	LMM-Evaluation

	Run configurations
	Open-Source Model Components
	Model License
	Model Source
	level 1
	level 2
	level 3

	Evaluation Code
	color
	Grid
	Layout
	Legend
	Visual
	Data
	Text
	Type

	Prompt
	generation Prompt
	LLM-Score Prompt

