Evaluating and Enhancing Out-of-Domain Generalization of Task-Oriented
Dialog Systems for Task Completion without Turn-level Dialog Annotations

Anonymous ACL submission

Abstract

Traditional task-oriented dialog (ToD) systems
rely heavily on labor-intensive turn-level anno-
tations, such as dialogue states and policy la-
bels, for training. This work explores whether
large language models (LLMs) can be fine-
tuned solely on natural language dialogs to
perform ToD tasks, without requiring such an-
notations. We evaluate their ability to gen-
eralize to unseen domains and compare their
performance with models trained on fully an-
notated data. Through extensive experiments
with three open-source LLMs of varying sizes
and two diverse ToD datasets, we find that
models fine-tuned without turn-level annota-
tions generate coherent and contextually ap-
propriate responses. However, their task com-
pletion performance—measured by accurate
execution of API Calls—remains suboptimal,
with the best models achieving only around
42% success in unseen domains. To improve
task completion, we propose ZeroToD, a frame-
work that incorporates a schema augmentation
mechanism to enhance API Call accuracy and
overall task completion rates, particularly in
out-of-domain settings. Through neural acti-
vation analysis, we show that augmentation
enables models to recognize semantic similari-
ties across domains in lower layers while main-
taining domain-specific distinctions in higher
layers. We also compare ZeroToD with fine-
tuning-free alternatives, such as prompting off-
the-shelf LLMs, and find that our framework
enables smaller, fine-tuned models to outper-
form large-scale proprietary LLMs in task com-
pletion. Additionally, a human study evaluating
informativeness, fluency, and task completion
confirms our empirical findings. These find-
ings suggest the feasibility of developing cost-
effective, scalable, and zero-shot generalizable
ToD systems for real-world applications.

1 Introduction

Task-oriented dialog (ToD) systems (Zhang et al.,
2020a) enable users to accomplish diverse tasks

through natural language interactions. These
systems power virtual assistants, customer ser-
vice chatbots, and various other applications such
as making reservations or scheduling appoint-
ments (Williams et al., 2016; Zhang et al., 2019b).
To be effective, ToD systems must not only en-
gage in user interactions to collect and provide
task-specific information but also interface with
external systems to accurately complete user tasks.

Traditionally, the development of ToD systems
has relied heavily on turn-level manually anno-
tated conversational data, where natural language
turns are labeled with dialog states and policy ac-
tions (Zhang et al., 2020b). However, this reliance
on turn-level annotated data limits the scalabil-
ity of ToD systems, as it prevents them from fully
leveraging the vast amounts of readily available
unannotated task-oriented conversational data. Fur-
thermore, the annotation process is labor-intensive,
expensive, and prone to inconsistencies and er-
rors (Eric et al., 2020; Zang et al., 2020; Han et al.,
2021; Budzianowski and Vulic, 2019).

Recent advancements in natural language pro-
cessing, particularly the emergence of pre-trained
large language models (LLMs) (Vaswani et al.,
2017; Devlin et al., 2019; Radford et al., 2019),
offer new opportunities to address these scalability
challenges. LLLMs have demonstrated remarkable
capabilities in diverse language tasks, from under-
standing context to generating coherent responses.
While pre-trained models (e.g., GPT-2) have been
employed to develop ToD systems (Hosseini-Asl
et al., 2020; Yang et al., 2020; Mosharrof et al.,
2023b; Budzianowski et al., 2018), their potential
to train ToD systems without turn-level annotations
remains largely unexplored, as does their ability to
generalize effectively to unseen domains.

Beyond natural language interactions — such as
requesting task-specific information or providing
updates — ToD systems must also interact with ex-
ternal systems (e.g., databases) to ensure successful

task completion. This often requires retrieving in-
formation or executing actions, such as making
a reservation via an API Call. While ToD sys-
tems described in the literature could, in theory,
be trained to make such API Calls, this capability
is rarely evaluated in practice and lacks standard-
ized metrics for proper assessment. The lack of
rigorous evaluation and appropriate metrics in this
area leaves a significant gap in understanding the
readiness of current ToD systems for real-world
deployments.

Motivated by the need to evaluate and enhance
the out-of-domain generalization of ToD systems,
this work investigates three research questions:
RQ1: Can pre-trained LLMs be adapted into effec-
tive ToD systems without turn-level annotated data
(e.g., annotated dialog states)?

RQ2: Can we improve the out-of-domain general-
ization of ToD systems for task completion?
RQ3: How does the out-of-domain generalization
of fine-tuned ToD systems compare to that of large-
scale, proprietary LLMs?

To address RQ1, we frame ToD as a multi-task
instruction fine-tuning problem, where the model
learns to generate both natural language responses
and API Calls by conditioning on the dialog history
and domain schema. To enhance task completion
performance, we introduce a schema augmenta-
tion mechanism that enriches training data with
diverse schema variations, significantly improving
robustness in unseen domains (RQ2). Finally, to
investigate RQ3, we compare fine-tuned ToD sys-
tems against fine-tuning-free approaches that rely
on large-scale, proprietary LLMs, which are often
costly and less controllable.

We conduct extensive experiments on two bench-
mark ToD datasets — SGD (Rastogi et al., 2019)
and KETOD (Chen et al., 2022) — using three
open-source models: GPT-2(Radford et al., 2019),
Llama-3.2, and FLAN-TS5 (Chung et al., 2022).
To provide a comprehensive evaluation, we intro-
duce multiple metrics to assess API Call genera-
tion, including method name accuracy, parameter
correctness, and complete API Call accuracy. For
response generation, we use BERTScore (Zhang
et al., 2019a) to better capture the semantic sim-
ilarity between system outputs and ground truth
responses. Additionally, we conduct human stud-
ies and qualitative analyses on a subset of both
datasets to complement automatic evaluations. To
provide insights into how schema augmentation
enables better out-of-domain performance, we con-

duct an analysis of neural activation patterns across
model layers. Our analysis reveals that augmented
models exhibit distinct representational patterns
across layers—with early layers capturing shared
semantic understanding across domains, while later
layers develop domain-specific specialization. This
layerwise progression from shared to specialized
representations aligns with the model’s improved
performance in out-of-domain generalization.

Our empirical results provide clear answers to
the research questions posed in this study. For
RQ1, we compare our approach against state-of-
the-art (SOTA) methods that rely on annotated data
and find that ToD systems can function effectively
without manual annotations by leveraging multi-
task instruction fine-tuning. On the complete API
accuracy metric, our best model improves by an
average of 63.52% across both datasets compared
to the strongest baseline SOTA model trained with
turn-level annotated data. For RQ2, we evaluate
the impact of schema augmentation by comparing
models trained with and without this mechanism.
Our results show that augmentation significantly
enhances out-of-domain generalization, improv-
ing complete API accuracy on unseen domains by
17.05% for FLAN-TS and 35.6% for Llama-3.2
compared to their non-augmented counterparts.

For RQ3, we compare ZeroToD against fine-
tuning-free alternatives in unseen domains and con-
firm that fine-tuning is advantageous for learning
when to make API Calls and maintaining strong
out-of-domain performance in complex, multi-turn
task completion scenarios. On complete API ac-
curacy for unseen domains, FLAN-T5 achieves
an average improvement of 43.91% over the best
SOTA approach built with the large-scale GPT-40
model. Furthermore, human study results evaluat-
ing informativeness, fluency, and task completion
closely align with automatic metrics, confirming
our empirical findings.

2 Related Work

Pipeline Approaches. ToD systems have tradition-
ally been designed as pipeline systems, where sepa-
rate components for Natural Language Understand-
ing (NLU), Dialog State Tracking (DST), Dialog
Policy, and Natural Language Generation (NLG)
are used to handle specific parts of the dialog pro-
cessing (Ren et al., 2018; Lee, 2013; Peng et al.,
2018; Le et al., 2021; Wen et al., 2015; Peng et al.,
2020; Chen et al., 2019; Budzianowski et al., 2018;
Mosharrof et al., 2023a). However, this approach

has drawbacks like error propagation, where errors
made in early stages adversely effect modules later
on in the pipeline.

End-to-End Approaches. Recent works have
shifted towards E2E learning methods, where the
ToD task is formulated as conditional generation,
where the model generates responses based on the
entire dialog history and other relevant annotations
(e.g., DST) (Hosseini-Asl et al., 2020; Lin et al.,
2021; Bang et al., 2023; Zhang et al., 2023; hyun
Ham et al., 2020; Chung et al., 2023a; Yang et al.,
2020; Sun et al., 2022a; Imrattanatrai and Fukuda,
2023; Sun et al., 2022b; Zhao et al., 2022; Peng
etal., 2021; Mosharrof et al., 2023b; Siddique et al.,
2022). A major drawback of these approaches is
the dependency on manually annotated data, thus
limiting the usage of the wealth of available data.
Additionally, most of these approaches assume that
API Call results are included in the annotated data,
thus limiting their ability to evaluate task comple-
tion.

Prompting Approaches. Another recent research
direction in ToD systems is in-context learning,
where pre-trained LLLMs are adapted to specific
domains based on contextual examples without re-
quiring fine-tuning (Labruna et al., 2023; Hudevcek
and Dusek, 2023; Dingliwal et al., 2021; Madotto
and Liu, 2020; Li et al., 2022; Madotto et al.,
2021; Chung et al., 2023b; Xu et al., 2024). Even
though these approaches show promise on generic
domains, they fail on complex domains, and have
specialized structure or requirements. Furthermore,
the evaluation of API calls in these systems lacks
standardized metrics, making it difficult to accu-
rately assess their real-world performance and reli-
ability.

3 Methodology
3.1 Problem Formulation

We formulate ToD task completion as a condi-
tional sequence generation problem, where the sys-
tem generates natural language responses or API
Calls using the dialog history and related domain
schemas. We leverage domain schema to facilitate
out-of-domain generalization in ToD systems.

We formalize the schema for a given domain
d, € D by specifying a set of user intents Z, . For
example, in the Restaurants domain, one such
intent might be ReserveRestaurant. Each intent
iq € Iy, is then associated with a set of slots S;,,.
For instance, party size and reservation time
might be slots for the ReserveRestaurant intent.

Each slot s; € S§;, is characterized by a tuple
(name(s), is_required(s)), indicating the name of
slot (e.g., reservation date) and whether it
is mandatory to fulfill a desired intent. We de-
note the entire domain schema for domain d, as:
Fdw = (dI7 Id, {Sid ‘ id EI@}).

A dialog session 7; of up to 7' turns is de-
fined as a sequence of user and system utterances:
Ti = ((ul,rl), (ug,r2), ..., (ur, rT)), where uy
is the user utterance and r; is the system response
at turn ¢. We denote the dialog history at turn ¢ by
Hy = {(u1,m1), (u2,72), .-+, (ue—1,70-1), ut},
which encapsulates all user-system exchanges up
to and including the current user utterance uy.
Since a single dialog may reference multiple do-
mains, if 7; spans m domains, we write T; ~
{di, da, ..., dn} C D.

3.2 Schema Augmentation

Beyond the original set of domain schemas, we
create semantic variations of each domain’s intents
and slots. Specifically, for each domain d, € D,
we we define its k-th schema variant as: T’ Q=
(@ 2y, {SE | 0 € Ip}), where Iy is
the renamed set of intents, and S’fd represents the
renamed slots for each intent 7.

For example, in the Restaurants domain,
the original intent ReserveRestaurant might be
changed to ReserveTable, and the slot party
size might become number of people. To in-
tegrate these augmented schemas into the dialogs,
we systematically replace schema references in
existing dialogs with their counterparts from I' dk-
Concretely, for each dialog 7; associated with do-
main d,, we construct an augmented dialog 73’“ by
substituting all intents and slots with those from
r dk- This procedure preserves the underlying dia-
log flow but exposes ZeroToD to multiple schema
variations, ultimately improving its ability to gen-
eralize to out-of-domain task scenarios.

3.3 Multi-task Instruction Fine-tuning

A ToD system must handle diverse interactions,
including general conversation, requesting task-
specific information, providing details, and making
API Calls for task completion. Broadly, the sys-
tem generates two types of outputs: () natural lan-
guage responses, and (i) API Calls, which include
a method name, parameters, and corresponding val-
ues. We employ multi-task instruction fine-tuning
that trains the model to autonomously decide be-

tween generating an API Call or a user response,
without introducing special tokens.

Formally, an autoregressive language model
(e.g., GPT-2 (Radford et al., 2019)) generates
text by predicting the next token given the pre-
ceding context. For a given sequence of to-
kens (x1,x9,...,2¢_1), the probability distribu-
tion for the next token x; is computed as: p(x; |
z14-1;0) = fo(x1.4-1), where fp represents the
model parameterized by 6 and outputs a proba-
bility distribution over the vocabulary V. The
next token z; is then sampled from this distri-
bution. This formulation extends naturally to re-
sponse generation in ToD systems, where the sys-
tem response r; at turn ¢ is generated recursively un-
til an end-of-sequence token (<eos>) is produced:
re ~ p(ry | Hy;0), where H, denotes the dialog
history up to turn ¢.

To improve out-of-domain generalization,
ZeroToD introduces an additional conditioning
variable, the domain schema I';, for each domain
d, and an instruction prompt P. The instructions
encourage the model to comprehend schema
representations to better generalize across unseen
domains and dialog contexts. Extending the above
formulation to multi-task instruction fine-tuning for
multi-turn dialogs of length 7', where each dialog
may span multiple domains {d1, da, ...,d,} C D,
we optimize the following objective:
—> iy logp(re | P{Ty,}7y, Hy,;0). Since
LLMs operate under a finite context length, the
dialog history H; consists of only the most recent
k turns, where k < t.

3.4 Training Details

The dialog history and domain schema are passed
through a structured template to form the inputs
to the model. The template is detailed in Fig-
ure 3 in Appendix H. Training begins with 500
warm-up steps and early stopping on the evalua-
tion loss with a patience value of 3. We used the
AdamW (Loshchilov and Hutter, 2017) optimizer
with weight decay and a learning rate of 0.001.
Experiments were conducted with GPT2-Medium,
FLAN-TS Large and Llama 3.2 3B Instruct models.
GPT-2 and FLAN-T5 were fine-tuned fully, while
Llama-3.2 used Low-Rank Adaptation (LoRA) (Hu
et al., 2021) and 8-bit quantization (Jacob et al.,
2018) for memory efficiency.

Datasets SGD KETOD
Dialogs 16142 5324
Average Turns / Dialog 20.44 9.78

Unique API methods:all 46 46

Unique API methods:unseen 8 8

Unique API parameters: all 137 134

Unique API parameters: unseen 88 88

Table 1: Dataset statistics.
4 Experimental Setup

4.1 Datasets

We use two ToD datasets: Schema-Guided Dia-
log (SGD) dataset, and Knowledge-Enhanced Task-
Oriented Dialog (KETOD) dataset. Table 1 shows
detailed statistics about the datasets. These datasets
are publicly available, large, and represent a wide
range of domains that span different tasks. We have
selected these datasets as they describe the domain
using schema and have the necessary information
to simulate communication with external resources
through API Calls.

4.2 Evaluation

We evaluate the system across four domain cat-
egories: All Domains (dialogs from all domains),
Seen Domains (dialogs from training domains), Un-
seen Domains (dialogs from domains not included
in the training data), and Mixed Domains (dialogs
with both seen and unseen domains).

Response Generation. To evaluate the quality
of the response generation of models, we report
BERTScore. We used microsoft/mpnet-base as
the model type for calculating the BERTScore. We
report BLEU-4 (Papineni et al., 2002) scores along
with additional response generation subtasks—
inform and request—in Appendix E.

API Calls. The format for an API Call is:
APICall(method=method_name, parameters =
{(si,v;)I"1}). The parameters attribute is a list of
slot name and slot value pairs, where s; represents
the slot name and v; represents the value of that
slot.

We use regular expressions to extract different
parts of the API Call, and apply custom metrics to
assess different parts of an API Call.

Invoke Accuracy measures whether the system
can understand when to make an API Call. Method
Accuracy checks whether the appropriate method
name was used in the API Call. Param Name Accu-
racy assesses whether all the parameter names used
to construct the API Call are accurately. Param
Value Accuracy evaluates whether each parameter
value corresponding to a parameter name is cor-
rect. It is important to note that this metric will

Dataset Model Ar.mot Overall Response (B.ertScore-Fl) Complete API _Accuracy

ations all seen mixed unseen all seen mixed unseen

SOLOIST Yes 0.6214 0.6538 0.6265 0.6097 | 19.25 47.82 2432 07.66

InstructTODS | Yes 0.5960 0.5926 0.6014 0.5912 | 09.25 09.50 09.85 08.57

SGD SimpleTOD Yes 0.6100 0.600 0.6300 0.5800 | 20.30 44.94 25.57 09.39

Q-TOD Yes 0.2351 0.2308 0.2431 0.2287 | 21.73 44.78 27.39 10.76

ZS-ToD Yes 0.5704 0.6439 0.5648 0.5600 | 20.38 56.15 20.28 12.62

SyncTOD Yes 0.4872 0.4969 0.4888 0.4838 | 24.64 2523 29.95 19.12

GPT-2 No 0.7002 0.7291 0.7149 0.6800 | 35.53 74.77 42.87 19.24

Llama-3.2 No 0.7629 0.7850 0.7708 0.7507 | 52.84 90.19 57.44 39.84

FLAN-T5 No 0.7633 0.7792 0.7723 0.7513 | 65.87 89.88 72.99 53.16

SOLOIST Yes 0.5035 0.5201 0.4895 0.4983 | 24.12 43.79 17.29 05.98

InstructTODS | Yes 0.4826 0.4834 0.4904 0.4731 | 08.86 09.06 08.38 09.20

KETOD SimpleTOD Yes 0.5248 0.5540 0.5382 0.4735 | 36.24 61.07 31.19 08.74

Q-TOD Yes 0.6657 0.6800 0.6625 0.6513 | 19.35 31.54 15.15 08.05

ZS-ToD Yes 0.4759 0.4822 04643 0.4809 | 26.70 4329 21.75 10.34

SyncTOD Yes 0.4930 0.4956 0.4973 0.4852 | 1344 1393 15.69 09.89

GPT-2 No 0.6766 0.7001 0.6821 0.6410 | 36.75 59.56 32.62 10.80

Llama-3.2 No 0.7369 0.7624 0.7363 0.7057 | 63.32 91.61 55.08 35.17

FLAN-T5 No 0.7431 0.7665 0.7457 0.7112 | 77.26 95.97 75.58 53.79

Table 2: Performance comparison between annotation-dependent baselines and annotation-free ZeroToD models on

Overall Response and API Accuracy (RQ1).

only be considered if the corresponding parameter
name is correct. Complete API Call Accuracy met-
ric checks whether the complete API Call (i.e., all
components) was generated correctly.

4.3 Baselines

AutoTOD (Xu et al., 2024) introduced a zero shot
autonomous ToD agent, that works without manual
annotations and also has the ability to communicate
with external resources.

SyncTOD (Saley et al., 2024) proposed a ToD
model that employs small auxiliary models to pro-
vide task-specific hints and select exemplars for
in-context prompts.

InstructTODS (Chung et al., 2023b) presented a
zero-shot E2E ToD model that generates proxy
belief state that guides the model for response gen-
eration.

ZS-TOD (Mosharrof et al., 2023b) introduced a
zero-shot generalizable E2E ToD model that incor-
porates domain schema and dialog annotations to
generate dialog responses.

Q-TOD (Tian et al., 2022) introduced a query-
driven TOD system that extracts essential infor-
mation from the dialog context into a query and
uses it to retrieve relevant knowledge records for
response generation.

SimpleTOD (Chen et al., 2022) introduced a ToD
model as an end-to-end sequence generation prob-
lem that utilizes the dialog history, dialog states
and system actions to generate system responses.
SOLOIST (Peng et al., 2021) introduced an E2E
ToD system that employs a transformer-based au-
toregressive model that generates dialog responses

grounded in user goals and real-world knowledge
for task completion.

SOLOIST, SimpleTOD and ZS-ToD were im-
plemented using GPT-2 Medium. During inference,
we extract the system response and disregard the
additional information like dialog state and system
actions.

S Results

Table 2 presents the findings for RQ1: Can pre-
trained LLMs be adapted into effective ToD systems
without turn-level annotated data ? Turn-level an-
notations include detailed labeling of dialog states,
system actions, and responses for each conversa-
tion turn, requiring significant manual effort. In
contrast, API annotations only indicate the pres-
ence and structure of API calls in the dialog, which
are inherently available in task-oriented conversa-
tions. This distinction is crucial as ZeroToD mod-
els leverage only API annotations while avoiding
the need for extensive turn-level labeling.

Our results show that ZeroToD models, which
do not rely on turn-level annotations, outperform
models trained with annotated data in response gen-
eration. A key reason for this improvement is that
ZeroToD models focus solely on generating sys-
tem responses, whereas annotation-based models
must produce structured outputs that include dialog
state, system actions, and responses—requiring the
model to optimize for multiple complex tasks si-
multaneously. Furthermore, the substantial perfor-
mance gap between the baseline approaches built
with GPT-2 and the GPT-2 variant of ZeroToD sug-
gests that learning to generate responses directly is
a more effective approach for ToD systems.

Dataset Model Augm- Complete API .Accuracy
ented all seen mixed unseen
GPT-2 X 3553 7477 42.87 19.24
GPT-2 v 47.66 82.01 53.76 33.75
SGD Llama-3.2 X 52.84 90.19 5744 39.84
Llama-3.2 v 62.38 9431 63.99 53.68
FLAN-T5 X 65.87 89.88 72.99 53.16
FLAN-T5 v 7349 90.65 81.76 61.07
GPT-2 X 36.75 59.56 32.62 10.80
GPT-2 v 4843 7248 40.64 25.52
Llama-3.2 X 63.32 91.61 55.08 35.17
KETOD | |lima-32 | v | 7324 9748 6702 4805
FLAN-T5 X 7726 9597 75.58 53.79
FLAN-T5S v 82.66 9648 82.35 64.14

Table 3: Impact of Schema Augmentation Mechanism
on API Accuracy (RQ2).

For task completion, all models trained without
turn-level annotations consistently outperform the
annotated models. This finding highlights the suffi-
ciency of dialogue history as a standalone source
of context for completing complex tasks. Table 2
reveals more insights about the different ZeroToD
models. FLAN-TS and Llama-3.2 being the larger
models, significantly outperform the smaller GPT-2
model for task completion. However, even though
Llama-3.2 is a larger model than FLAN-TS5, it does
not have better task completion performance.

This discrepancy may stem from differences in
the training methodologies. Specifically, Llama-
3.2 was trained using 8-bit quantization and LoRA
adapters, whereas FLAN-TS underwent full fine-
tuning. The use of LoRA significantly reduces
the number of trainable parameters and the 8-bit
quantization introduces precision loss due to the
reduced bit width. These factors likely contributed
to Llama-3.2’s lower performance despite its larger
model size.

Schema Augmentation Performance. Table 3
presents the results for RQ2: Can we improve the
out-of-domain generalization of ToD systems for
task completion?. Across all the models, we can
see that the response generation performance is
similar, but there are improvements in task com-
pletion performance, specially a big increment in
the unseen domain. For seen domains, there is a
small improvement, which is expected as the aug-
mentation mainly teaches the models how to use
the schema to generalize to out-of-domain data,
however for unseen domains, this learning is very
useful and the models have shown considerable
improvements. Between Llama-3.2 and FLAN-TS5,
we can see that for seen domains Llama-3.2 has
a slightly better performance however for unseen
domains Llama-3.2 has much lower performance.
One reason for this could be the size of the two
models, Llama-3.2 being the larger model may
have a higher capacity to memorize the training

Overall API Complete
Dataset Model Invoke API
Response A A
ccuracy ccuracy
Auto-ToD 0.5471 63.15 42.20
SGD GPT-2 0.7068 91.26 33.75
Llama-3.2 0.7506 98.80 53.68
FLAN-T5 0.7196 94.42 61.07
Auto-ToD 0.5471 63.22 41.61
GPT-2 0.6372 94.48 25.52
KETOD | | 1ma-32 | 06454 | 97.70 48.05
FLAN-T5 0.7050 92.18 59.54

Table 4: Evaluation of fine-tuned approaches against
large-scale proprietary LLMs on unseen domains

(RQ3).

5 .
4 H—oi
3 ‘.

L I +

1) e ‘o

Fluency Task Completion
B GPT-2 B Llama 3.2 =3 Flan-T5

Informativeness
BN SOLOIST W AutoToD

Figure 1: Human Evaluation Study on SGD and KE-
TOD. Evaluators were asked to rate the dialog samples
between a range of 1-5 on 3 categories.

data, which could explain its stronger performance
on seen domains. However, this can also make it
more prone to over-fitting and may not generalize

well to new, unseen domains.
Neuron Activation Analysis. In ToD sys-

tems, it is common for semantically similar
concepts to appear across different domains.
To understand how augmentation enables bet-
ter out-of-domain generalization, we analyzed
the internal representations learned by FLAN-
TS5 for semantically similar slots across domains:
location (Restaurants), where_to (Hotels),
and destination (Ridesharing). While these
slots represent the same semantic concept of lo-
cation, they manifest differently depending on the
domain context. We recorded neural activations
from all decoder layers during the generation pro-
cess by implementing forward hooks at each de-
coder block, capturing hidden states corresponding
to these slot name tokens. The activations were
visualized using Kernel Density Estimation (KDE)
plots to understand the distribution patterns across
these semantically related slots. Technical details
about the hidden state capture process and method-
ology are provided in Appendix D.

To quantify the model’s ability to develop gen-
eralized representations, we employed the Bhat-
tacharyya Coefficient (BC) (Bhattacharyya, 1943),

o - 0.11 0.12 0.14

- - 0.08 0.09 0.13
~ - 0.05 0.07 0.12
m - 0.05 0.06 0.12
< - 0.09 0.08 0.13
o - 0.12 0.1 0.15
o - 0.14 0.16 0.13
~- 0.13 0.17 0.14
@ - 0.14 0.18 0.13
o - 0.15 0.18 0.14
S - 0.14 0.16 0.16

go- 0.12 0.16 0.18

IN- 0.10 0.15 0.19
m- 0.09 0.13 0.18
s - 0.10 0.11 0.17
0 - 0.09 0.10 0.18
©- 0.08 0.10 0.21
N - 0.10 0.10 0.16
@ .- 0.11 0.10 0.16
a- 0.13 0.10 0.17
Q- 0.15 0.10 0.17
- 0.16 0.10 0.17
- 0.16 0.11 0.16
- 0.15 0.11 0.16

-0.0-0.2 0.2:0.4 0.4:0.6

BC Value Range

o - 0.12 0.07 0.22
— - 0.07 0.07 0.16
~ - 0.03 0.04 0.09
m - 0.01 0.03 0.08
< - 0.02 0.03 0.08
- 0.02 0.04 0.10
© - 0.06 0.05 0.15
~ - 0.08 0.06 0.18
© - 0.11 0.08 0.20
o - 0.15 0.10 0.20

S - 0.14 0.10
§o- 0.16 0.13
T 0.13 0.13
uls 0.13 0.13
- 0.12 0.15
0 - 0.13 0.13
o 0.16 0.19
N - 0.18 0.17
@ 0.24 0.16
20 om0
g1 e on 022
R e ou 021
o 0.14 0.20
-0.0-0.2 0.2:0.4 0.4:0.6

BC Value Range

Neuron Proportion

-0.2

-0.1

0.6-0.8 0.8-1.0

0.20
0.25

Neuron Proportion

-0.2
0.21 0.13 01
0.21 0.15 '
0.20 0.16
0.20 0.18
1 1
0.6-0.8 0.8-1.0

(b) Augmented model

Figure 2: Distribution of Neuron Proportions Across Bhattacharyya Coefficient(BC) Ranges in Model Layers. The
heatmaps show the proportion of neurons (values between 0-1) exhibiting different ranges of BC values (0.0-1.0)
across all 24 layers of FLAN-TS. Higher BC values indicate more overlap in representations, while lower values
suggest more distinct patterns. The augmented model shows a clear transition from shared representations in early

layers to more specialized patterns in later layers.

which measures the overlap between probability
distributions. The BC metric ranges from O to 1,
where values closer to 0 indicate distinct patterns
and values closer to 1 suggest overlapping distri-
butions. We binned the BC values into five ranges
and visualized their distribution across all layers
using frequency distribution heatmaps.

The comparison between non-augmented
(Fig 2a) and augmented (Fig 2b) models reveals

how schema augmentation influences the model’s
internal representations. In the lower layers (0-7),
the augmented model shows higher BC values
(0.60-0.68 in layers 2-5), indicating that the
activations are forming similar distributions for
these location-related slots, suggesting the model
recognizes their shared semantic meaning despite
different domain origins.

The middle layers (8-15) of the augmented

model show decreasing BC values compared to
the non-augmented model, indicating that the dis-
tributions begin to diverge as the model develops
more domain-specific representations. Most signif-
icantly, in the higher layers (16-23), the augmented
model shows a shift towards lower BC values (0.28-
0.31 in 0.0-0.2 range), indicating it has learned to
differentiate and specialize representations based
on domain-specific context. In contrast, the non-
augmented model (Fig 2a) maintains higher BC
values throughout, suggesting less ability to dis-
tinguish between domain-specific uses of location
information.

This transition from shared representations in
early layers to specialized processing in later lay-
ers suggests that augmentation helps the model
develop a more robust understanding of semanti-
cally similar concepts while maintaining the flex-
ibility to adapt to domain-specific requirements.
Fine-tuning Performance. Table 4 presents the re-
sults on unseen domains for ZeroToD models, and
Auto-ToD, which was built using GPT-40. Using
the results in Table 4, we can answer RQ3: How
does the out-of-domain generalization of fine-tuned
ToD systems compare to that of large-scale, propri-
etary LLMs? For the Complete API Accuracy met-
ric, except for the GPT-2 model, all other ZeroToD
models outperform Auto-ToD. For all the other
metrics, Auto-ToD has much lower scores than the
ZeroToD models. A key metric to note here is the
API Invoke Accuracy, which measures whether a
model is making an API call on the right turn, and
Auto-ToD has a very low score on this metric when
compared to ZeroToD models.

Due to this issue, Auto-ToD also has a much
lower score for the Overall Response metric, as it
makes API Calls on turns where a general inter-
action is expected. Specifically, ZeroToD models
show substantial improvements over Auto-ToD:
on SGD, Llama-3.2 achieves a 37.2% relative im-
provement in Overall Response (0.7506 vs 0.5471)
and a 56.4% improvement in API Invoke Accuracy
(98.80 vs 63.15). Based on these results, we can
state that fine-tuning is an important step to identify
the timing of making an API Call in ToD systems.

Further analysis in Appendix F reveals another
interesting pattern: while Auto-ToD performs well
on simple domains like Alarm and Movies, it strug-
gles with complex domains such as Restaurants
and Buses. In contrast, ZeroToD models main-
tain consistent performance across both simple and
complex domains, demonstrating the robustness

achieved through fine-tuning.
Human Evaluation. To supplement the automatic

metrics and get a qualitative analysis, we conducted
a human evaluation using Amazon Mechanical
Turk to assess the performance of various models.
Two baseline models (SOLOIST and Auto-ToD)
and three ZeroToD models (GPT-2, Llama-3.2, and
FLAN-TS5) were taken into account. We sampled
100 dialogs from each dataset, with 50 coming
from single-domain tasks and the remaining 50
from multi-domain tasks, all from the test dataset.
Human evaluators were asked to rate the models
on a scale from 1 to 5 on three questions: the ac-
curacy of information presented in the responses
(Informativeness), how fluent and natural the con-
versation is (Fluency), and whether the models can
make accurate API Call (Task Completion).

The results, shown in Figure 1, align with the
automatic metrics, where ZeroToD models outper-
form the existing SOTA approaches. This demon-
strates a strong alignment between quantitative and
qualitative assessments. Notably, for task comple-
tion and fluency, Llama-3.2 and FLAN-T5 demon-
strate superior performance compared to all other
models, which is consistent with our previous find-
ings. Another important observation is that Llama-
3.2 and FLAN-T5 have less variance in perfor-
mance across all tasks when compared to all other
models, which further solidifies the robustness of
our approach.

6 Conclusion

This work demonstrates that LLMs fine-tuned
solely on natural language dialogs can effectively
generalize to unseen domains by framing ToD as
a multi-task instruction fine-tuning problem. To
further enhance their out-of-domain task comple-
tion performance, we introduce schema augmenta-
tion, which improves model adaptability to unseen
domains and strengthens task completion perfor-
mance. To ensure robust evaluation of task comple-
tion, we explicitly incorporate API Calls as a core
task and assess performance using both automatic
metrics and human evaluations. Furthermore, we
show that fine-tuned ToD systems generalize better
to unseen domains than fine-tuning-free approaches
that rely on large-scale proprietary LLMs. These
results highlight the feasibility of developing cost-
effective, scalable, and zero-shot generalizable ToD
systems that achieve strong out-of-domain gener-
alization without requiring turn-level annotations,
paving the way for their practical adoption in real-
world applications.

7 Limitations

ZeroToD has been developed by fine-tuning LLMs
such as GPT-2, Llama-3.2, and FLAN-TS5. These
LLMs require significant computational resource
requirements to train, particularly Llama-3.2.
Training and inference with these models can be ex-
pensive, limiting their practicality for deployment
in resource-constrained environments.

The LLMs used in the system function as black
boxes, making it challenging to interpret the rea-
soning behind their responses. This lack of trans-
parency hinders the ability to diagnose and cor-
rect erroneous outputs, which is crucial in ToD
systems where accuracy is critical. Furthermore,
the models may inherit biases present in the train-
ing data, leading to biased or unfair responses in
certain scenarios. Although efforts were made to
mitigate this issue by fine-tuning using the dialog
datasets, completely eliminating biases remains a
challenging task. The reliance on pre-trained mod-
els introduces limitations related to the coverage of
the pre-training data. If the pre-training data lacks
specific domain knowledge, the ToD system may
under perform in those domains.

The deployment of LLMs in ToD systems raises
ethical and privacy concerns, particularly regarding
the handling of sensitive user data. Ensuring that
the system complies with privacy regulations and
ethical standards is an ongoing challenge that re-
quires continuous monitoring and updates. Similar
to other Al technologies, there is a scope for poten-
tial misuse of our system. If ZeroToD is used with
malicious intent or the model is fed inappropriate
data, there is a risk of abuse. We would strongly ad-
vise to take necessary precautions and appropriate
usage policies.

Addressing the limitations outlined above is cru-
cial for advancing the effectiveness and reliability
of ToD systems. While the usage of pre-trained
LLMs offers significant advantages, these models
are not without their challenges. Increasing model
interpretability, mitigating biases, and addressing
ethical and societal concerns are essential steps
toward creating more robust and responsible ToD
systems.

References

Namo Bang, Jeehyun Lee, and Myoung-Wan Koo. 2023.
Task-optimized adapters for an end-to-end task-
oriented dialogue system. ArXiv, abs/2305.02468.

Anil Bhattacharyya. 1943. On a measure of divergence
between two statistical populations defined by their
probability distribution. Bulletin of the Calcutta
Mathematical Society, 35:99-110.

Pawel Budzianowski, Ifligo Casanueva, Bo-Hsiang
Tseng, and Milica Gasic. 2018. Towards end-to-end
multi-domain dialogue modelling.

Pawel Budzianowski and Ivan Vulic. 2019. Challenges
in building intelligent open-domain dialog systems.
In Proceedings of the 2019 International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6429-6433. IEEE.

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng
Yan, and William Yang Wang. 2019. Semantically
conditioned dialog response generation via hierar-

chical disentangled self-attention. arXiv preprint
arXiv:1905.12866.

Zhiyu Chen, Bing Liu, Seungwhan Moon, Chinnadhu-
rai Sankar, Paul A. Crook, and William Yang Wang.
2022. Ketod: Knowledge-enriched task-oriented dia-
logue. ArXiv, abs/2205.05589.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Wei
Yu, Vincent Zhao, Yanping Huang, Andrew M.
Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi,
Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. 2022. Scal-
ing instruction-finetuned language models. ArXiv,
abs/2210.11416.

Willy Chung, Samuel Cahyawijaya, Bryan Wilie, Holy
Lovenia, and Pascale Fung. 2023a. Instructtods:
Large language models for end-to-end task-oriented
dialogue systems. ArXiv, abs/2310.08885.

Willy Chung, Samuel Cahyawijaya, Bryan Wilie, Holy
Lovenia, and Pascale Fung. 2023b. Instructtods:
Large language models for end-to-end task-oriented
dialogue systems. arXiv preprint arXiv:2310.08885.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Saket Dingliwal, Bill Gao, Sanchit Agarwal, Chien-Wei
Lin, Tagyoung Chung, and Dilek Z. Hakkani-Tiir.
2021. Few shot dialogue state tracking using meta-
learning. In Conference of the European Chapter of
the Association for Computational Linguistics.

https://api.semanticscholar.org/CorpusID:258480018
https://api.semanticscholar.org/CorpusID:258480018
https://api.semanticscholar.org/CorpusID:258480018
https://api.semanticscholar.org/CorpusID:248693217
https://api.semanticscholar.org/CorpusID:248693217
https://api.semanticscholar.org/CorpusID:248693217
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:264128313
https://api.semanticscholar.org/CorpusID:264128313
https://api.semanticscholar.org/CorpusID:264128313
https://api.semanticscholar.org/CorpusID:264128313
https://api.semanticscholar.org/CorpusID:264128313
https://api.semanticscholar.org/CorpusID:231632841
https://api.semanticscholar.org/CorpusID:231632841
https://api.semanticscholar.org/CorpusID:231632841

Mihail Eric, Rahul Goel, Shachi H Paul, Abhinav Sethi,
Sanchit Agarwal, Shuyang Gao, and Dilek Hakkani-
Tiir. 2020. Multiwoz 2.1: A consolidated multi-
domain dialogue dataset with state corrections and
state tracking baselines. In Proceedings of the 12th
Language Resources and Evaluation Conference,
pages 422-428.

Ting Han, Chia-Chun Wang, Guan-Lin Chao, Zihan
Liu, Ryuichi Takanobu, Hua Xu, and Minlie Huang.
2021. Multiwoz 2.3: A multi-domain task-oriented
dialogue dataset enhanced with annotation correc-
tions and co-reference annotation. arXiv preprint
arXiv:2010.05594.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. Simpletod:
A simple language model for task-oriented dialogue.
In Advances in Neural Information Processing Sys-
tems (NeurIPS).

. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. ArXiv, abs/2106.09685.

Vojtvech Hudevcek and Ondrej Dusek. 2023. Are large
language models all you need for task-oriented dia-
logue? In SIGDIAL Conferences.

Dong hyun Ham, Jeong-Gwan Lee, Youngsoo Jang, and
Kyungmin Kim. 2020. End-to-end neural pipeline
for goal-oriented dialogue systems using gpt-2. In
Annual Meeting of the Association for Computational
Linguistics.

Wiradee Imrattanatrai and Ken Fukuda. 2023. End-to-
end task-oriented dialogue systems based on schema.
In Annual Meeting of the Association for Computa-
tional Linguistics.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2704-2713.

Tiziano Labruna, Sofia Brenna, Andrea Zaninello, and
Bernardo Magnini. 2023. Unraveling chatgpt: A crit-
ical analysis of ai-generated goal-oriented dialogues
and annotations. In International Conference of the
Italian Association for Artificial Intelligence.

Nhat Le, AB Siddique, Fuad Jamour, Samet Oymak,
and Vagelis Hristidis. 2021. Predictable and adaptive
goal-oriented dialog policy generation. In 2021 IEEE
15th International Conference on Semantic Comput-
ing (ICSC), pages 40-47. IEEE.

Sungjin Lee. 2013. Structured discriminative model for
dialog state tracking. In Proceedings of the SIGDIAL
2013 Conference, pages 442—-451.

10

Zekun Li, Wenhu Chen, SHIYANG LI, Hong Wang,
Jingu Qian, and Xi Yan. 2022. Controllable dia-
logue simulation with in-context learning. ArXiv,
abs/2210.04185.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A.
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou
Yu, Andrea Madotto, Eunjoon Cho, and Rajen
Subba. 2021. Leveraging slot descriptions for zero-
shot cross-domain dialogue statetracking. ArXiv,
abs/2105.04222.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrea Madotto, Zhaojiang Lin, Genta Indra Winata,
and Pascale Fung. 2021. Few-shot bot: Prompt-
based learning for dialogue systems. ArXiv,
abs/2110.08118.

Andrea Madotto and Zihan Liu. 2020. Language mod-
els as few-shot learner for task-oriented dialogue sys-
tems. ArXiv, abs/2008.06239.

Adib Mosharrof, Moghis Fereidouni, and A.B. Siddique.
2023a. Toward open-domain slot filling via self-
supervised co-training. Proceedings of the ACM Web
Conference 2023.

Adib Mosharrof, Muhammad Hasan Magbool, and A.B.
Siddique. 2023b. Zero-shot generalizable end-to-end
task-oriented dialog system using context summariza-
tion and domain schema. ArXiv, abs/2303.16252.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Annual Meeting of
the Association for Computational Linguistics.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Lidén, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching. Transactions of the Association
Jfor Computational Linguistics, 9:807-824.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu,
Kam-Fai Wong, and Shang-Yu Su. 2018. Deep dyna-
q: Integrating planning for task-completion dialogue
policy learning. arXiv preprint arXiv:1801.06176.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for task-
oriented dialog. arXiv preprint arXiv:2002.12328.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In AAAI Confer-
ence on Artificial Intelligence.

https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:258108409
https://api.semanticscholar.org/CorpusID:258108409
https://api.semanticscholar.org/CorpusID:258108409
https://api.semanticscholar.org/CorpusID:258108409
https://api.semanticscholar.org/CorpusID:258108409
https://api.semanticscholar.org/CorpusID:219719687
https://api.semanticscholar.org/CorpusID:219719687
https://api.semanticscholar.org/CorpusID:219719687
https://api.semanticscholar.org/CorpusID:259858870
https://api.semanticscholar.org/CorpusID:259858870
https://api.semanticscholar.org/CorpusID:259858870
https://api.semanticscholar.org/CorpusID:258866115
https://api.semanticscholar.org/CorpusID:258866115
https://api.semanticscholar.org/CorpusID:258866115
https://api.semanticscholar.org/CorpusID:258866115
https://api.semanticscholar.org/CorpusID:258866115
https://api.semanticscholar.org/CorpusID:252780701
https://api.semanticscholar.org/CorpusID:252780701
https://api.semanticscholar.org/CorpusID:252780701
https://api.semanticscholar.org/CorpusID:234334712
https://api.semanticscholar.org/CorpusID:234334712
https://api.semanticscholar.org/CorpusID:234334712
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:239009514
https://api.semanticscholar.org/CorpusID:239009514
https://api.semanticscholar.org/CorpusID:239009514
https://api.semanticscholar.org/CorpusID:221135886
https://api.semanticscholar.org/CorpusID:221135886
https://api.semanticscholar.org/CorpusID:221135886
https://api.semanticscholar.org/CorpusID:221135886
https://api.semanticscholar.org/CorpusID:221135886
https://api.semanticscholar.org/CorpusID:257757097
https://api.semanticscholar.org/CorpusID:257757097
https://api.semanticscholar.org/CorpusID:257757097
https://api.semanticscholar.org/CorpusID:257804968
https://api.semanticscholar.org/CorpusID:257804968
https://api.semanticscholar.org/CorpusID:257804968
https://api.semanticscholar.org/CorpusID:257804968
https://api.semanticscholar.org/CorpusID:257804968
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:236937204
https://api.semanticscholar.org/CorpusID:236937204
https://api.semanticscholar.org/CorpusID:236937204
https://api.semanticscholar.org/CorpusID:236937204
https://api.semanticscholar.org/CorpusID:236937204
https://api.semanticscholar.org/CorpusID:202565722
https://api.semanticscholar.org/CorpusID:202565722
https://api.semanticscholar.org/CorpusID:202565722
https://api.semanticscholar.org/CorpusID:202565722
https://api.semanticscholar.org/CorpusID:202565722

Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018.
Towards universal dialogue state tracking. arXiv
preprint arXiv:1810.09587.

Vishal Vivek Saley, Rocktim Jyoti Das, Dinesh Raghu,
et al. 2024. Synergizing in-context learning with
hints for end-to-end task-oriented dialog systems.
arXiv preprint arXiv:2405.15585.

A.B. Siddique, Muhammad Hasan Magbool, Kshitija
Taywade, and Hassan Foroosh. 2022. Personalizing
task-oriented dialog systems via zero-shot generaliz-
able reward function. Proceedings of the 31st ACM
International Conference on Information & Knowl-
edge Management.

Haipeng Sun, Junwei Bao, Youzheng Wu, and Xiaodong
He. 2022a. Bort: Back and denoising reconstruction
for end-to-end task-oriented dialog. In NAACL-HLT.

Haipeng Sun, Junwei Bao, Youzheng Wu, and Xi-
aodong He. 2022b. Mars: Semantic-aware con-
trastive learning for end-to-end task-oriented dialog.
ArXiv, abs/2210.08917.

Xin Tian, Yingzhan Lin, Mengfei Song, Siqi Bao, Fan
Wang, Huang He, Shuqi Sun, and Hua Wu. 2022.
Q-tod: A query-driven task-oriented dialogue system.
arXiv preprint arXiv:2210.07564.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned Istm-based natural lan-
guage generation for spoken dialogue systems. arXiv
preprint arXiv:1508.01745.

. Williams, Antoine Raux, and Matthew Henderson.
2016. The dialog state tracking challenge series: A
review. Dialogue Discourse, 7:4-33.

Heng-Da Xu, Xian-Ling Mao, Puhai Yang, Fanshu Sun,
and Heyan Huang. 2024. Rethinking task-oriented
dialogue systems: From complex modularity to zero-
shot autonomous agent. In Annual Meeting of the
Association for Computational Linguistics.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2020. Ubar:
Towards fully end-to-end task-oriented dialog sys-
tems with gpt-2. ArXiv, abs/2012.03539.

Xiaoxue Zang, Qi Zhu, Jiachen Zhang, Zheng-Yu Li,
Baolin Peng, Xiujun Li, Liangjun Zhou, Jinchao Li,
Jianfeng Gao, and Yun-Nung Chen. 2020. Multiwoz
2.2: A dialogue dataset with additional annotation
corrections and state tracking baselines. In Proceed-
ings of the 2nd Workshop on Natural Language Pro-
cessing for Conversational Al, pages 109—-117.

11

Jianguo Zhang, Stephen Roller, Kun Qian, Zhiwei Liu,
Rui Meng, Shelby Heinecke, Haiquan Wang, Sil-
vio Savarese, and Caiming Xiong. 2023. Enhancing
performance on seen and unseen dialogue scenarios
using retrieval-augmented end-to-end task-oriented
system. In SIGDIAL Conferences.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019a. Bertscore:
Evaluating text generation with bert. ArXiv,
abs/1904.09675.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2019b. Task-
oriented dialog systems that consider multiple appro-
priate responses under the same context. In AAAI
Conference on Artificial Intelligence.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020a. Task-
oriented dialog systems that consider multiple appro-
priate responses under the same context. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 9604-9611.

Zheng Zhang, Ryuichi Takanobu, Minlie Huang, and Xi-
aoyan Zhu. 2020b. Recent advances and challenges
in task-oriented dialog systems. Science China Tech-
nological Sciences, 63:2011 — 2027.

Jeffrey Zhao, Yuan Cao, Raghav Gupta, Harrison Lee,
Abhinav Rastogi, Mingqiu Wang, Hagen Soltau,
Izhak Shafran, and Yonghui Wu. 2022. Anytod: A
programmable task-oriented dialog system. In Con-
ference on Empirical Methods in Natural Language
Processing.

https://api.semanticscholar.org/CorpusID:252904791
https://api.semanticscholar.org/CorpusID:252904791
https://api.semanticscholar.org/CorpusID:252904791
https://api.semanticscholar.org/CorpusID:252904791
https://api.semanticscholar.org/CorpusID:252904791
https://api.semanticscholar.org/CorpusID:248525176
https://api.semanticscholar.org/CorpusID:248525176
https://api.semanticscholar.org/CorpusID:248525176
https://api.semanticscholar.org/CorpusID:252918359
https://api.semanticscholar.org/CorpusID:252918359
https://api.semanticscholar.org/CorpusID:252918359
https://api.semanticscholar.org/CorpusID:14569897
https://api.semanticscholar.org/CorpusID:14569897
https://api.semanticscholar.org/CorpusID:14569897
https://api.semanticscholar.org/CorpusID:271915490
https://api.semanticscholar.org/CorpusID:271915490
https://api.semanticscholar.org/CorpusID:271915490
https://api.semanticscholar.org/CorpusID:271915490
https://api.semanticscholar.org/CorpusID:271915490
https://api.semanticscholar.org/CorpusID:227334663
https://api.semanticscholar.org/CorpusID:227334663
https://api.semanticscholar.org/CorpusID:227334663
https://api.semanticscholar.org/CorpusID:227334663
https://api.semanticscholar.org/CorpusID:227334663
https://api.semanticscholar.org/CorpusID:260926661
https://api.semanticscholar.org/CorpusID:260926661
https://api.semanticscholar.org/CorpusID:260926661
https://api.semanticscholar.org/CorpusID:260926661
https://api.semanticscholar.org/CorpusID:260926661
https://api.semanticscholar.org/CorpusID:260926661
https://api.semanticscholar.org/CorpusID:260926661
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:208267760
https://api.semanticscholar.org/CorpusID:208267760
https://api.semanticscholar.org/CorpusID:208267760
https://api.semanticscholar.org/CorpusID:208267760
https://api.semanticscholar.org/CorpusID:208267760
https://api.semanticscholar.org/CorpusID:212736893
https://api.semanticscholar.org/CorpusID:212736893
https://api.semanticscholar.org/CorpusID:212736893
https://api.semanticscholar.org/CorpusID:254877048
https://api.semanticscholar.org/CorpusID:254877048
https://api.semanticscholar.org/CorpusID:254877048

Dataset Model Augm- Overall Response (B.ertScore-Fl)
ented all seen mixed unseen
GPT-2 X 0.7002 0.7291 0.7149 0.6800
GPT-2 v 0.7266 0.7431 0.7437 0.7068
SGD Llama-3.2 X 0.7629 0.7850 0.7708 0.7357
Llama-3.2 v 0.7623 0.7852 0.7693 0.7506
FLAN-T5 X 0.7633 0.7792 0.7723 0.7513
FLAN-T5 v 0.7320 0.7494 0.7411 0.7396
GPT-2 X 0.6766 0.7001 0.6821 0.6410
GPT-2 v 0.6677 0.6867 0.6738 0.6372
KETOD Llama-3.2 X 0.7369 0.7624 0.7363 0.7057
Llama-3.2 v 0.7405 0.7679 0.7389 0.7082
FLAN-T5 X 0.7431 0.7665 0.7457 0.7112
FLAN-T5 v 0.7549 0.7786 0.7541 0.7261

Table 5: Impact of Schema Augmentation Mechanism on Response Generation (RQ2).

A Template for multi-task instruction fine-tuning

Figure 3 shows the template used to process the inputs for ZeroToD. The template first informs about
the domains involved in the dialog. Next, it provides task-specific instructions and provides the domain
schemas. The dialog history is provided and the model is instructed to generate a system response based
on the dialog history, search results, and the task instructions.

You are an expert chat assistant for the domains: [domains].

Instructions: As an expert, you must generate the most appropriate response for the chat assistant.
The response can be an api call or a response to the user.

Based on the Last User Utterance, you must find the relevant Intent from the Schema and your
request should use the required slots and optional slots from that Intent.

You will be provided with the Schema for domains: [domains]

[schemas]

You will be provided an incomplete dialog between a user and a chat assistant, and an optional
search results.

Dialog History: [dialog history]

Using the Dialog History, Search Results, and by following the Instructions please generate the
response for the chat assistant.

Figure 3: Multi-task instruction finetuning template. Items in blue are dynamic elements and those in purple are
important aspects of the prompt.

B Impact of Schema Augmentation on Response Generation (RQ2).

Table 5 showcases the effect of schema augmentation on response generation performance for ZeroToD
models across the SGD and KETOD dataset. With augmentation, models are exposed to different schemas
and thus encounter a more diverse set of data. This exposure is primarily intended to improve Task
Completion and API Call Accuracy, rather than directly enhancing response quality. Therefore, we expect
the response generation performance to remain largely unchanged or to show only modest improvements.
This pattern is indeed reflected Table 5. Across both datasets, the differences in response generation scores
between the augmented and non-augmented models are generally small.

C Detailed Task Completion Performance.

To complete a task, a model has to make a correct API Call. An API Call has many aspects in it, and we
present detailed results in Table 6. We can see that ZeroToD models considerably outperform baseline

12

Augm- API Invoke Accuracy API Method Accuracy Param Names Accuracy Param Values Accuracy
Dataset Model

ented all seen mixed unseen all seen mixed unseen all seen mixed unseen all seen mixed unseen

SOLOIST X 79.92 8037 8029 79.44 | 6451 72.82 6638 60.74 | 47.06 72.05 52.84 3554 |45.16 7130 51.18 33.13
SimpleTOD X 69.17 60.51 7155 6859 |56.89 5350 59.54 5488 | 41.11 51.62 4538 3433 | 39.53 51.06 4370 32.64

Q-TOD X 49.08 51.71 50.78 46.73 | 4233 50.86 4451 38.18 | 3445 4940 3744 28.04 |33.83 49.14 3691 2725

Z5-ToD X 84.98 90.11 84.09 8478 | 63.57 7998 62.17 6143 | 4444 73.15 4150 40.17 | 4274 7222 40.04 38.13

SGD GPT-2 X 86.67 93.15 8872 83.10 | 7598 91.12 79.19 69.30 | 59.80 86.96 6320 5027 |57.53 8589 61.34 4731
GPT-2 v 93.89 96.81 9579 91.26 |83.07 89.17 86.72 7792 | 7694 91.71 7841 7215 | 74.18 90.86 76.02 68.59

Llama-3.2 X 98.08 99.69 9828 97.52 | 92.18 99.69 91.73 91.00 | 84.53 98.36 8554 80.44 | 81.55 97.92 8290 76.55
Llama-3.2 v 98.78 99.38 98.62 98.80 | 9526 99.38 9488 9497 |89.23 99.10 8822 88.11 | 86.25 98.73 8577 84.02
FLAN-TS X 9793 99.77 9853 9690 | 97.61 99.77 9853 96.90 | 88.64 9749 90.82 84.42 | 86.24 97.20 89.01 80.95
FLAN-TS v 96.28 99.53 9736 9442 | 9597 99.53 97.20 93.89 | 9437 97.23 95.87 92.17 | 92.08 96.99 9412 88.86
SOLOIST X 51.57 5336 48.13 5356 |45.16 51.51 4135 4138 | 36.69 49.87 29.86 2744 | 3547 4934 2834 25.64
SimpleTOD X 7381 7450 7897 6621 | 65.14 7198 69.34 5034 | 51.83 6859 5127 2957 | 5040 67.88 4932 2782

Q-TOD X 3241 3456 3244 2943 | 2952 3406 29.23 23.68 | 2659 3439 2335 20.08 |26.14 3429 2259 1954

ZS-ToD X 7242 7047 7201 7563 | 5697 61.24 5241 57.01 |4458 5651 3874 3578 |43.30 5584 3745 33.65

KETOD GPT-2 X 78.83 80.87 80.75 7356 | 71.48 7836 71.12 6253 | 57.02 7298 5357 39.60 | 5546 71.83 5183 3773
GPT-2 v 9296 91.78 93.05 9448 | 86.62 88.09 86.10 8529 | 75.66 84.53 70.67 69.97 | 72.85 83.55 67.55 65.02

Llama-3.2 X 96.55 97.48 96.61 9517 | 9290 9698 91.62 8897 | 86.04 97.13 81.70 7643 | 8426 96.65 79.54 73.37
Llama-3.2 v 98.49 99.16 98.40 97.70 | 96.80 99.16 9575 9494 | 91.86 98.67 89.12 86.05 | 90.10 98.62 86.69 82.83

FLAN-T5 X 98.62 99.33 9875 9747 |98.49 9933 9875 97.01 |9289 98.67 92.08 86.02 |91.39 9838 90.18 83.40

FLAN-T5 v 97.80 9899 97.86 96.09 | 97.61 9899 97.68 95.63 | 9591 98.44 9558 92.88 | 94.35 9824 93.65 89.92

Table 6: Additional API Metrics for baseline approaches and ZeroToD models (RQ1, RQ2).

approaches across all metrics. Upon inspecting the API Call Invoke Accuracy, we see that baseline
approaches have much lower scores, indicating that they struggle in identifying when to make API Calls.
The API Call Method Accuracy evaluates whether a model generates the correct method name in the
API Call. A common pattern that we see across all models is that there is a drop in parameter names
accuracy when compared to the previous metrics. Generating the correct list of parameters for the API
Call is inherently a harder problem than deciding when to make an API Call and what method to use, so
the performance degradation is understandable.

A key observation from Table 6 is the significant impact of the schema augmentation on the API Call
parameter names metric. Our results indicate that schema augmentation yields the largest improvement for
this metric. API Call parameters are directly derived from the schema, and schema augmentation enables
the models to better recognize and utilize these patterns, thus improving the model’s ability to generate
the correct list of parameters, leading to a notable increase in parameter names accuracy. Furthermore,
the API Call parameter values accuracy also improved as a result, since a model is only rewarded for
generating the correct value if it is assigned to the appropriate parameter name.

For instance, consider the task of finding a bus using the FindBus method. We compare two schema
variations, Buses_1 and Buses_11, which define different slot names for the same concepts. In Buses_1,
the slot names are from_station and to_station, and for Buses_11, the slot names are origin and
destination.

A model trained without schema augmentation tends to overfit to specific slot names seen during
training. If the model was trained on Buses_1, it might always generate from_station and to_station,
even when interacting with Buses_11, leading to incorrect API Calls. For example, given the user
utterance: “I want to find a bus from LA to SFO”, the model without augmentation might generate:

API Call(method=FindBus, parameters={from_station=LA, to_station=SFO }).

In the Buses_11 schema, the slot names from_station and to_station do not exist, thus making the
API Call invalid.

On the other hand, a model trained with schema augmentation learns to generalize across schema
variations by recognizing slot name patterns from multiple schemas, and might generate:

API Call(method=FindBus, parameters={origin=LA, destination=SFO0}).

The model can dynamically align its output with the schema it is conditioned on. By learning to use the
slot names from the provided schema rather than relying on the memorized slot names, a model trained
with schema augmentation demonstrates improved robustness and generalization.

D Technical details of Model Activation Analysis

Technical Details of Neural Activation Capture. We implemented forward hooks at each decoder
block to capture neural activations during the generation process. The activation capture was performed

13

using PyTorch’s register_forward_hook functionality:

def __init__(self, model, tokenizer):
super().__init__(model, tokenizer)
n_layers = len(self.model.decoder.block)
self.layer_names = [f for i in range(n_layers)]

Register hooks for each layer
for layer_idx, layer in enumerate(self.model.decoder.block):
layer.register_forward_hook (self._capture_activations(layer_idx))

For each layer in the TS5 decoder (24 layers total), we recorded hidden states with dimension size 1024.
The activation capture function was implemented as:

def _capture_activations(self, layer_idx):
def hook(module, input, output):
if isinstance(output, tuple):
hidden_states = output[0]
else:
hidden_states = output

if layer_idx not in self.activations:
self.activations[layer_idx] = []
self.activations[layer_idx].append(hidden_states)
return output
return hook

The captured activations were stored in a tensor of shape (batch_size, sequence_length, n_layers,
hidden_dim), where batch_size represents the number of examples, sequence_length is the length of the
generated sequence, n_layers is the number of decoder layers (24), and hidden_dim is the model’s hidden
dimension (1024). These recorded activations were then used to compute the Bhattacharyya Coefficient
(BC) values across different layers to analyze the model’s internal representations of semantically similar
slots across domains.

E BLEU Scores for Response Generation

Table 7 presents BLEU-4 scores for response generation and its subtasks inform and request. We have
used augmented ZeroToD models.

The Overall Response metric is computed for all turns in which the system is expected to generate a
response, providing a broad indicator of the model’s fluency and relevance. For our analysis, we break
down response generation into two distinct subtasks: inform and request, which help us better evaluate
different aspects of the system’s response capabilities.

The Inform subtask focuses on dialogue turns where the system must provide specific information
requested by the user. For example, when the user asks for the address of a restaurant, the system must
accurately generate that address in its response. This subtask is typically easier because the data is already
available to the system; the main challenge lies in integrating the correct information into a well-formed
and contextually appropriate response.

In contrast, the Request subtask involves dialogue turns where the system must ask the user for
additional information to complete the task. For instance, in the restaurant booking scenario, if the user
does not specify the reservation time, the system must generate a clarifying question such as, “What time
would you like to make the reservation?” This subtask is more challenging than Inform because there
can be multiple reasonable ways to formulate a request in a given context, yet we compare the generated
request against the specific ground truth in the dataset.

We see a similar trend here as well, with ZeroToD models outperforming baseline approaches. Overall,
our BLEU results highlight that the Request subtask tends to be more difficult than Inform, as reflected

14

Overall Response (BLEU-4) Inform (BLEU-4) Request (BLEU-4)
All Seen Mixed Unseen All Seen Mixed Unseen All Seen Mixed Unseen
SimpleTOD | 0.1696 0.1834 0.1877 0.1494 | 0.1685 0.1790 0.1896 0.1438 | 0.0228 0.0195 0.0216 0.0243
SOLOIST 0.1902 0.2798 0.1990 0.1655 | 0.1813 0.2226 0.1945 0.1568 | 0.0281 0.0339 0.0265 0.0284
InstructTODS | 0.0727 0.0729 0.0767 0.0690 | 0.1460 0.1380 0.1506 0.1432 | 0.0074 0.0051 0.0071 0.0080
SGD SyncTOD 0.0563 0.0645 0.0584 0.0528 | 0.1047 0.1072 0.1090 0.0997 | 0.0111 0.0131 0.0106 0.0111
Q-TOD 0.0393 0.0369 0.0430 0.0364 | 0.0946 0.0919 0.1030 0.0858 | 0.0061 0.0065 0.0059 0.0061
ZS-ToD 0.0590 0.1413 0.0568 0.0512 | 0.0255 0.0402 0.0228 0.0246 | 0.0231 0.0367 0.0221 0.0215
Auto-ToD 0.0487 0.0523 0.0501 0.0466 | 0.0854 0.0743 0.0884 0.0851 | 0.0173 0.0111 0.0159 0.0195
GPT-2 0.2015 0.2109 0.2229 0.1802 | 0.2181 0.2421 0.2368 0.1923 | 0.0400 0.0275 0.0423 0.0403
Llama-3.2 0.2445 0.2905 0.2568 0.2242 | 0.2888 0.3180 0.3043 0.2650 | 0.0641 0.0803 0.0614 0.0634
FLAN-T5 0.2110 0.2332 0.2226 0.1961 | 0.2811 0.3098 0.2911 0.2631 | 0.0569 0.0625 0.0541 0.0582
SimpleTOD | 0.0821 0.1015 0.0910 0.0538 | 0.1147 0.1362 0.1268 0.0726 | 0.0178 0.0266 0.0149 0.0106
SOLOIST 0.0970 0.1018 0.0945 0.0848 | 0.0957 0.1185 0.0933 0.0675 | 0.0167 0.0145 0.0174 0.0185
InstructTODS | 0.0671 0.0825 0.0640 0.0593 | 0.0934 0.1102 0.0897 0.0783 | 0.0105 0.0140 0.0100 0.0075
KETOD SyncTOD 0.0488 0.0495 0.0510 0.0456 | 0.1005 0.0896 0.1185 0.0959 | 0.0068 0.0052 0.0086 0.0068
Q-TOD 0.0159 0.0186 0.0151 0.0134 | 0.0917 0.1053 0.0968 0.0681 | 0.0073 0.0026 0.0101 0.0098
ZS-ToD 0.0394 0.0439 0.0254 0.0385 | 0.0183 0.0231 0.0059 0.0250 | 0.0260 0.0328 0.0198 0.0243
Auto-ToD 0.0480 0.0528 0.0492 0.0415 | 0.0797 0.0678 0.0932 0.0812 | 0.0134 0.0157 0.0151 0.0092
GPT-2 0.1890 0.2106 0.1961 0.1524 | 0.2105 0.2437 0.2078 0.1687 | 0.0346 0.0500 0.0252 0.0263
Llama-3.2 0.2398 0.2864 0.2354 0.1862 | 0.2701 0.3165 0.2579 0.2208 | 0.0581 0.0723 0.0508 0.0490

FLAN-T5 0.2082 0.2351 0.2048 0.1792 | 0.2727 0.3025 0.2811 0.2234 | 0.0526 0.0750 0.0454 0.0339

Dataset Model

Table 7: BLEU Scores for Overall Response Generation, Inform and Request.

by generally lower scores. Despite this, analyzing performance across these subtasks provides valuable
insights into the system’s capabilities, particularly in adapting to different dialogue roles and handling
both information retrieval and user engagement.

We can see that ZeroToD models perform considerably better than baseline approaches across all tasks.
Among the ZeroToD models, we can see that BLEU-4 scores are better for Llama-3.2 than FLAN-TS5,
particularly for the seen domains. Since the BLEU-4 metric is calculated by n-gram matches, Llama-3.2
having better supervised performance tends to generate responses closer to the ground truth, thus yielding
higher BLEU-4 scores. Looking at the results, Llama-3.2 consistently outperforms other models across all
response generation tasks, with this pattern being more pronounced in seen domains compared to unseen
ones. This suggests that the model’s larger capacity allows it to better learn and reproduce the linguistic
patterns present in the training data.

The performance gap is most evident in the Inform subtask, where Llama-3.2 demonstrates superior
ability to incorporate specific information into responses while maintaining natural language flow. This
advantage likely stems from its enhanced ability to understand and integrate contextual information from
the dialog history. For the Request subtask, which requires models to formulate appropriate questions,
Llama-3.2 maintains its lead but with smaller margins, indicating that question formulation remains
challenging even for larger models.

These patterns suggest that Llama-3.2’s enhanced supervised learning capabilities particularly benefit
tasks requiring precise information integration, while more complex dialogue behaviors like question
formulation remain challenging across model sizes.

F Domain Specific Results

To get a deeper understanding of the performance of Auto-ToD and ZeroToD models on unseen domains,
we present domain specific results for the API Invoke Accuracy and Complete API Accuracy metrics in
Table 8. For the API Invoke Accuracy, we observe the same pattern as before, with Auto-ToD having
much lower scores than ZeroToD models across unseen domains.

From these results, we can make another interesting observation: Auto-ToD has higher Complete API
Accuracy for simple unseen domains like Alarm and Movies, however it shows poor performance for
complex unseen domains like Restaurants, Buses, and Music.

The fine-tuned ZeroToD models demonstrate better understanding of complex domain structures in
unseen scenarios. The models maintain consistent performance across unseen domains, indicating the
effectiveness of fine-tuning in achieving robust out-of-domain generalization. The larger models, FLAN-
T5 and Llama-3.2, exhibit more stable performance across unseen domains compared to the smaller

15

Dataset | Domains Complete API Accuracy
Auto-ToD GPT-2 Llama-3.2 FLAN-T5

Alarm_1 76.67 15.56 78.89 61.11

Buses_3 37.16 29.05 46.62 57.43

Events_3 27.78 55.56 50.79 60.32

Homes_2 39.58 69.44 76.39 74.31

SGD Hotels_4 40.29 49.64 100.00 77.70
Movies_3 47.46 23.73 77.97 67.80

Music_3 30.19 58.49 73.58 84.91
RentalCars_3 41.59 35.40 54.87 63.72
Restaurants_2 28.68 84.56 77.94 85.29

Alarm_1 66.67 00.00 100.00 66.67

Buses_3 09.09 18.18 45.45 36.36

Events_3 45.45 72.73 72.73 54.55

Homes_2 70.59 41.18 64.71 70.59

KETOD | Hotels_4 37.50 37.50 81.25 100.00
Movies_3 57.14 28.57 57.14 57.14

Music_3 22.22 44.44 88.89 66.67
RentalCars_3 56.25 31.25 50.00 50.00
Restaurants_2 25.00 00.00 87.50 62.50

Table 8: Domain-wise evaluation of Complete API on unseen domains for Auto-ToD and ZeroToD models (RQ3).
GPT-2 model.

G Dialog Examples

Table 9 shows an example dialog in the Restaurant domain. The table contains the turn id, user utterance,
gold response, SOLOIST, Auto-ToD, GPT-2, Llama-3.2, and FLAN-TS5 response. Text highlighted in
red outlines the portions where the system response by a model is incorrect and green highlights the
correct parts. Texts highlighted in orange indicate that the model is partially correct and is missing some
information.

In the example dialog, we can see that the responses of Auto-ToD is longer and more descriptive,
whereas ZeroToD models produce succinct responses, similar to the gold standards. This observation
indicates that ZeroToD was able to pick up the text generation style of the gold standard, which is an
important aspect for ToD systems.

The baseline SOLOIST fails to generate a valid response on a few turns. This stems from the complex
structure of the output, which consists of dialog states, actions and system response. The output structure
has a certain format and different parts are identified with special tokens. On many occasions, the model
does not produce the correct tokens, thus leading to invalid generations.

On turns where the user asks about multiple information, the GPT-2 and SOLOIST model struggles to
respond to all the user requests. However, all the other models do not have this problem. This could be
attributed to the fact that GPT-2 models are the smallest model when compared to all the other models.

Llama-3.2 and FLAN-T5 generates responses that are very similar to the gold standard. These models
are able to pickup the generation style and can respond to multiple requests of the user. In the example
dialog, the user provided information about the restaurant name, time and date on turn 1, but then changed
the restaurant name on turn 2. Llama-3.2 and FLAN-T5 models were able to identify what changed and
moved forward with the API Call by using all the correct information. However, Auto-ToD was not
able to keep track of all the changes and made an incorrect API Call. SOLOIST was able to make a
partially correct API Call since it was not able to generalize to the number_of_seats slots. It used the
party_size slot that it had seen during training.

This dialog example showed some of the drawbacks of baseline approaches and some example cases of
where they struggle. For ZeroToD models, the limitations of GPT-2 was evident, as it was not able to
process multiple requests of the user. However, Llama-3.2 and FLAN-TS had performance similar to the
gold standard across multiple turns, which falls in line to our automatic metrics and human evaluation.

16

Table 9: Dialog Example—SGD dataset. Dialog id 1_00001

Model Response—SGD dataset. Dialog id 1_00001

Turn 1

User Can you book a table for me at the Ancient Szechuan for the 11th of this month at
11:30 am?

Gold In which city are you trying to book the table?

SOLOIST Please confirm the following details: Booking a table for 2 at Ancient Szechuan in
San Francisco on March 11th at 11:30 am.

Auto-ToD Could you please provide the city where the restaurant ‘Ancient Szechuan” is located
and the number of seats you would like to reserve?

GPT-2 Sure, I have a table for 2 at Ancient Szechuan in San Francisco at 11:30 am today.

Llama-3.2 What is the location of the restaurant?

FLAN-T5S Where should I look for the restaurant?

Turn 2

User Can you book a table at the Butterfly restaurant in San Francisco?

Gold Please confirm that you need a table for 2 at the Butterfly Restaurant in San Francisco
at 11:30 am on March 11th.

SOLOIST Can you please confirm that you want to book a table for 2 at the Butterfly restaurant
in San Francisco at 11:30 am on March 11th?

Auto-ToD

GPT-2 Can you please confirm that you want to book a table for 2 people at the Butterfly
restaurant in San Francisco at 11:30 am on March 11th?

Llama-3.2 Can you confirm the following details: You want to book a table at the butterfly Hotel
in San Francisco at 11:30 am. You want 2 seats. You want to book the table on March
11th.

FLAN-T5S You wish to book a table for 2 at the Butterfly Restaurant in San Francisco for March
11th at 11:30 am. Is this correct?

Turn 3

Gold ApiCall(method=‘ReserveRestaurant’, parameters= ‘date’: ‘2019-03-11", ‘location’:
‘San Francisco’, ‘number_of_seats’: ‘2’°,‘restaurant_name’: ‘Butterfly Restaurant’,
‘time’: ‘11:30”)

SOLOIST ApiCall(method="ReserveRestaurant’, parameters="‘city’: ’San Francisco’, ‘date’:
2019-03-11°, 1 “2°,‘restaurant_name’: ‘The Butterfly Restaurant’, ‘time’:
‘11:30")

Auto-ToD ApiCall(method=‘FindRestaurants’ ,parameters="‘category’: ‘Butterfly’, ‘location’:
‘San Francisco’)

GPT-2 ApiCall(method=‘ReserveRestaurant’, parameters=‘date’: ‘2019-03-11", ‘location’:
‘San Francisco’, ‘number_of_seats’: ‘2’,‘restaurant_name’: ‘The Butterfly Restaurant’,
‘time’: ‘11:30”)

Llama-3.2 ApiCall(method=‘ReserveRestaurant’, parameters=‘date’: ‘2019-03-11", ‘location’:
‘San Francisco’, ‘number_of_seats’: ‘2’°,‘restaurant_name’: ‘Butterfly Restaurant’,
time’: ‘11:30%)

FLAN-T5S ApiCall(method=‘ReserveRestaurant’, parameters= ‘date’: ‘2019-03-11", ‘location’:
‘San Francisco’, ‘restaurant_name’: ‘Butterfly Restaurant’, ‘number_of_seats’: ‘2’,
‘time’: ‘11:30”)

Continued

on next

page...

17

Dataset Response—SGD dataset. Dialog id 1_00001

Turn 4

User That’s perfect. What cuisine do they offer?

Gold Your table has been booked successfully and they serve Asian cuisine.

SOLOIST

Auto-ToD It looks like the reservation at the Butterfly Restaurant in San Francisco has been

successfully made for March 11th at 11:30 am for 2 people. The restaurant offers
Asian cuisine. If you need any more assistance or have any other questions, feel free
to ask. Have a great day! Goodbye!

GPT-2

Llama-3.2 Your reservation has been successful. They offer Asian cuisine.

FLAN-T5S Your reservation has been made. They serve Asian food.

Turn 5

User Can you get me the user rating of the restaurant? Is it expensive?

Gold Their prices are moderate and they have a user rating of 4.0.

SOLOIST X (Failed to generate a valid response)

Auto-ToD The Butterfly Restaurant in San Francisco has a user rating of 4.00. The price range is
moderate, so it’s not considered expensive. If you have any more questions or need
further assistance, feel free to ask!

GPT-2

Llama-3.2 The restaurant has a 4.0 rating and is considered moderate in price.

FLAN-T5S They have a moderate price range and a 4.0 rating.

Turn 6

User Thanks a bunch!

Gold Is there anything else I can do for you?

SOLOIST X (Failed to generate a valid response)

Auto-ToD You’re welcome! If you need any more assistance, feel free to ask. Have a great day!
Goodbye!

GPT-2 Is there anything else I can help you with?

Llama-3.2 Do you need anything else?
FLAN-T5S Do you need help with anything else?

Turn 7

User No. Thank you. That’s all I need.

Gold Have a great day!

SOLOIST Have a great time at the restaurant!

Auto-ToD You’re welcome! If you need any more assistance in the future, feel free to reach out.
Have a great day! Goodbye!

GPT-2 Have a good one!

Llama-3.2 Have a great day.
FLAN-T5S Have a nice day.

H User Study Instructions
Disclaimers of any risks to participants or annotators

There are no significant risks associated with participating in this study. However, annotators may experi-
ence mild fatigue or cognitive strain due to prolonged reading and evaluation of multiple conversations. If
you feel discomfort or fatigue, please take breaks as needed.

Instructions for Human Study Participants

Your task is to evaluate model-generated responses in multi-turn, task-oriented conversations based on the
following criteria:

18

1. Fluency
2. Informativeness
3. Task Completion

Task Overview

* You will be presented with multiple conversations, where a user interacts with a model to complete a
task (e.g., booking a flight).

* Your job is to rate each model response independently using a 1-5 scale based on the provided
criteria.

e This study is blind — you will not know which model produced which response.
How to Rate Responses
You will assign a score for each response based on the following:

1. Fluency

Measures whether the response is grammatically correct, well-structured, and natural to read.
* 1 = Unnatural, grammatically incorrect, or hard to read.
* 5 = Perfectly fluent, natural, and error-free.
Example (Good Fluency)

User: I need to book a flight to New York next Monday.
Model: Sure! What time would you like to depart?

Example (Poor Fluency)

User: I need to book a flight to New York next Monday.
Model: Sure! You next Monday flight want time what?

2. Informativeness

Measures whether the response provides useful and relevant information to advance the task.
* 1 = Vague, incorrect, or unhelpful.
¢ 5 = Precise, relevant, and useful.
Example (Good Informativeness)

User: Can you recommend a vegetarian restaurant nearby?
Model: Yes! Green Leaf Café is a highly rated vegetarian restaurant.

Example (Low Informativeness)

User: Can you recommend a vegetarian restaurant nearby?
Model: There are many restaurants in your area.

19

3. Task Completion

Measures whether the response successfully progresses or completes the task in the conversation.
* 1 = Fails to address the request.
* 5 = Fully completes the task.
Example (Good Task Completion)

User: I'd like to book a table for two at an Italian restaurant at 7 PM today.
Model: I found a reservation at Bella Italia for 7 PM. Would you like me to reserve it for 2
people at 7 PM today?

Example (Failed Task Completion)

User: I'd like to book a table for two at an Italian restaurant at 7 PM.
Model: There are Italian restaurants in your area.

Additional Guidelines
* Be objective — rate based on quality, not personal preference.
* If a response is unclear or ambiguous, leave a comment.
* Do not try to guess which model produced the response.
Study Duration & Submission
* The study will take approximately 10 minutes to complete.

* Once you have evaluated all responses, submit your ratings.

Thank you for your time and valuable feedback!

20

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Schema Augmentation
	Multi-task Instruction Fine-tuning
	Training Details

	Experimental Setup
	Datasets
	Evaluation
	Baselines

	Results
	Conclusion
	Limitations
	Template for multi-task instruction fine-tuning
	Impact of Schema Augmentation on Response Generation (RQ2).
	Detailed Task Completion Performance.
	Technical details of Model Activation Analysis
	BLEU Scores for Response Generation
	Domain Specific Results
	Dialog Examples
	User Study Instructions

