Published at Building Trust Workshop at ICLR 2025

FINDING SPARSE AUTOENCODER REPRESENTATIONS
OF ERRORS IN COT PROMPTING

Justin Theodorus, V Swaytha, Shivani Gautam, Adam Ward, Mahir Shah, Cole Blondin, Kevin Zhu
Algoverse Al Research

ABSTRACT

Current large language models often suffer from subtle, hard-to-detect reasoning
errors in their intermediate chain-of-thought (CoT) steps. These errors include
logical inconsistencies, factual hallucinations, and arithmetic mistakes, which
compromise trust and reliability. While previous research focuses on mechanistic
interpretability for best output, understanding and categorizing internal reasoning
errors remains challenging. The complexity and non-linear nature of these CoT
sequences call for methods to uncover structured patterns hidden within them. As
an initial step, we evaluate Sparse Autoencoder (SAE) activations within neural
networks to investigate how specific neurons contribute to different types of errors.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities when generating step-
by-step reasoning or chain-of-thought (CoT) responses (Wei et al., 2022). However, these interme-
diate reasoning traces often contain subtle, hard-to-detect errors ranging from logical inconsisten-
cies to factual hallucinations, arithmetic slips, and more (Tyen et al., 2023). Such polysemantic-
ity—where a neuron activates in multiple semantically unrelated contexts—complicates attempts to
interpret or debug these models’ internal states (Haider et al., 2025).

While prior work on mechanistic interpretability has produced insights into how LLMs represent
features internally (Molnar, 2024), a structured approach to detecting and categorizing reasoning
errors remains elusive (Yeo et al., 2023). In particular, existing interpretability methods often focus
on uncovering how to improve final model output, rather than on systematically investigating errors
within CoT steps. This gap motivates us to leverage Sparse Autoencoders (SAEs), which can learn
individual “directions” or features in a model’s activation space and have demonstrated success in
reducing polysemanticity (Olsson et al., 2023).

In this paper, we present the following preliminary approach:

1. Labeling CoT Errors: Constructing a labeled dataset of 1,000 chain-of-thought (CoT)
answers from the GMS8K dataset, categorizing them into nine distinct error types.

2. SAE Activation Analysis: Extracting sparse autoencoder (SAE) activations from a 2B-
parameter model (Gemma 2B) to determine which neurons or feature directions align with
specific error patterns.

3. Correlation Exploration: Investigating correlations between sparse features and error
types, uncovering potential relationships between model activations and reasoning failures.

By identifying which sparse features co-activate with particular error categories, we aim to provide
insights into how reasoning failures manifest in activation space, contributing to more interpretable
chain-of-thought debugging.

Given the novelty of applying Sparse Autoencoders in the field of interpretability research, our
primary goal of this paper is to introduce our methodology and highlight key research directions.
Ultimately, we aim to provide a stepping stone for more interpretable chain-of-thought debugging,
helping both researchers and practitioners build more trustworthy LLMs.
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2 BACKGROUND AND RELATED WORK

2.1 SPARSE AUTOENCODERS FOR INTERPRETABILITY

Recent work demonstrated that polysemantic neurons in LLMs can be decomposed into more
monosemantic directions via sparse reconstruction. Their method shows that superposition can be
alleviated, enabling clearer interpretability of internal network states (Cunningham et al., 2023),
providing a foundation for transparent language models.

2.2 AUTOMATIC EVALUATION OF REASONING STEPS

“ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning” introduces unsupervised scores
to evaluate the correctness of rationales independently from the final answer. These unsupervised
scores aim to measure semantic consistency and factuality of reasoning steps. However, ROSCOE
primarily focuses on end-to-end correctness rather than in-depth interpretability or correlation with
internal neuron-level features (Golovneva et al., 2023).

2.3 ENHANCING SPARSE AUTOENCODERS WITH FEATURE ALIGNMENT

Recent work has explored regularization techniques such as Meaningful Feature Representation
(MFR) to improve feature learning in SAEs, making them more likely to uncover meaningful input
features (Marks et al., 2024). Their work further validates the potential of SAEs for uncovering
interpretable patterns in network activations across domains, from EEG signals to GPT-2 text mod-
els (Marks et al., 2024). This further validates the potential of SAEs for uncovering interpretable
patterns in network activations.

3 METHODOLOGY

3.1 GSMS8K DATASET AND ERROR TAXONOMY

The error taxonomy we use in our study is derived from the ROSCOE set of metrics (Golovneva
et al., 2023), which provides a structured framework for categorizing reasoning errors in chain-of-
thought (CoT) prompting (See Table 1 for definitions of error types). The ROSCOE taxonomy was
developed through an extensive analysis of reasoning failures in language models, allowing us to
systematically classify errors in CoT answers.

In our study, we select 1,000 CoT answers from the GSMS8K dataset, generated by the Gemma-2b
language model. Each answer is manually annotated into one or more of the error categories defined
in ROSCOE.

Table 1: Error Type Definitions, (Golovneva et al., 2023)

Error Type Definition

Grammar Use of incorrect, unconventional, or controversial grammatical structures.

Factuality Details about objects are inconsistent with the provided context.

Hallucination | Information that is not present in the input and is either incorrect or irrelevant.

ing the question.

Redundancy Includes redundant details that, while factually accurate, do not contribute to answer-

Repetition Restating previously mentioned content in different wording within the reasoning
steps.

Missing Step The reasoning omits a crucial intermediate step needed to arrive at the correct conclu-
sion.

Coherency The logical flow is disrupted due to contradictions or a lack of narrative consistency.

Commonsense | Lacks real-world knowledge known to the world.

Arithmetic Mistakes in performing numerical operations.
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3.2 SAE SETUP

We use a pre-trained Sparse Autoencoder (SAE) along with SAELens—an interpretability tool de-
signed for analyzing feature directions learned by the SAE. In previous work, SAEs have been shown
to reduce superposition by mapping internal activations to more interpretable dimensions. Here, we
take the hidden activations from Gemma-2b’s CoT generation process (just before the final output
layer) as the input to the SAE.

1. Activation Collection
(a) For each of the 1,000 CoT samples, we capture hidden activations at a specific layer
(e.g., near the output layer).
(b) We normalize or batch-process these activations as needed for the SAE.

2. Sparse Autoencoder

(a) The SAE is pre-trained on a broader set of LLM activations.

(b) We do not fine-tune the SAE on our 1,000-sample set; instead, we use it to generate a
sparse feature representation for each CoT sample’s activation vector.

3. Feature Extraction with SAELens

(a) SAELens outputs a sparse vector per sample, indicating the magnitude of each sparse
feature direction.

(b) These vectors represent an interpretable decomposition of Gemma-2b’s internal rea-
soning activations.

3.3 CORRELATION ANALYSIS

After extracting the SAE feature vectors, we perform the following steps:

1. Label each sample with the error categories from error taxonomy.

2. Apply correlation measures between error labels and the presence (or magnitude) of each
sparse feature direction.

3. Investigate whether certain feature directions consistently co-activate with specific error
types. For example, a particular feature direction may align with arithmetic mistakes, indi-
cating a structured relationship between the learned representations and error types.

4. Perform cluster analysis on latent representations using unsupervised learning techniques
such as k-means, assessing whether different reasoning failures naturally separate within
the sparse encoding space.

5. Conduct an attribution analysis using feature importance techniques to identify which
sparse dimensions are the strongest predictors for each error type. This helps determine
whether certain feature directions generalize across multiple instances of errors.

6. Train classifiers on the SAE feature vectors to predict the presence of specific error cat-
egories, comparing classification performance against raw embeddings to assess whether
sparsification enhances interpretability.

4 EXPERIMENTATION AND PRELIMINARY WORK

Since our study is in its early stages, we focus on data preparation and feature extraction to establish
a foundation for further analysis.

4.1 MODEL CONFIGURATION

We use Gemma 2B, a Large Language Model (LLM) with 2 billion parameters, to generate step-
by-step answers for each of the 1,000 GMS8K questions.
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4.2 IMPLEMENTATION DETAILS

1. Manually classify errors with a small team of trained annotators.

2. Capture activations at a consistent layer across the 1,000 CoT responses.
3. Feed these activations into our pre-trained SAE/SAELens.

4. Collect sparse feature representations for each sample.

This preliminary setup enables an initial exploration of the relationship between sparse feature di-
rections and reasoning errors.

5 CONCLUSION

In this paper, we propose a preliminary approach for analyzing reasoning errors in chain-of-thought
(CoT) prompting using Sparse Autoencoders (SAEs). Our initial analysis suggests that SAEs could
help identify structured patterns in reasoning errors by learning sparse representations of intermedi-
ate activations. By advancing these methods, we aim to contribute to a deeper understanding of CoT
errors and enhance the interpretability of large language models, fostering greater transparency and
trust in their reasoning processes.

6 ADDRESSING REVIEWERS COMMENTS

Our key contribution lies in bridging sparse autoencoders (SAEs) and error analysis—a direction
underexplored in mechanistic interpretability. While prior work focuses on evaluating the correct-
ness of reasoning steps, our approach targets the internal activation patterns underlying these errors.
We intend to introduce a novel methodology to establish feasibility, demonstrating how SAEs can
uncover structured relationships between sparse feature directions and reasoning failures. Though
empirical validation remains future work, our framework provides a critical foundation for inter-
pretable debugging of chain-of-thought errors.
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