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Abstract

Variational Inference (VI) with Normalizing Flows
(NFs) is an increasingly popular alternative to
MCMC methods. However, despite recent progress
on stabilizing the variance of stochastic gradient
descent during training, we observe that conver-
gence is still difficult to achieve in practice. In
particular, if the target distribution’s dimension
is high or exhibits fat tails, convergence of NFs
fail and only the much simpler Gaussian mean-
field VI converges. As a remedy, we introduce
the log soft extension (LOFT) layer, which can
effectively restrain the samples of NFs to lie in a
reasonable range. For various different target dis-
tributions with high-dimensions or fat tails, we
observe that LOFT enables successful training of
NFs that was previously not possible. Moreover,
the computational overhead of the LOFT layer is
only marginal. Therefore, we expect that LOFT
becomes a new standard tool for training deep NFs
for Bayesian inference.

1 INTRODUCTION

During the past decade, variational inference (VI) has been
gaining increased attention also in the statistics community
[Blei et al., 2017]. Thanks to its computational efficiency,
VI can provide useful approximations to high-dimensional
posterior distribution that are computationally too expensive
using MCMC methods. However, simple variational distri-
butions, like the Gaussian distribution, can lead to arbitrarily
bad approximations [Zhang et al., 2018].

As a promising method for increasing the flexibility of the
VI approximation, normalizing flows (NFs) have been pro-
posed [Papamakarios et al., 2021]. Unfortunately, for high
dimensional posterior distributions VI with NFs is known
to suffer from gradient estimates with high variance [Dhaka

et al., 2021].

Recently, two methods for stabilizing training and mitigat-
ing the high variance have been proposed: ActNorm and
path gradients. ActNorm [Kingma and Dhariwal, 2018] is
an in-between-layer normalization similar to batch normal-
ization, but with the difference that the statistics (mean and
standard deviation that are used for normalization) are es-
timated only at the beginning of the training. On the other
hand, path gradients [Roeder et al., 2017, Vaitl et al., 2022]
remove the score term from the gradient estimation of the
Kullback-Leibler (KL)-divergence, which can sometimes
lead to considerably lower variance of the gradient esti-
mates.

Unfortunately, we show here that for various different target
distributions, ActNorm and path gradients are still insuf-
ficient to stabilize the training of deep NFs. We note that
control variates, as proposed in [Ranganath et al., 2014],
could in principle also be applied to NFs. However, in prac-
tice, due to the high number of parameters of NFs, such
control variates are not computationally feasible.

As a remedy, we introduce the log soft extension (LOFT)
layer that helps to restrain samples from the normalizing
flows. We demonstrate that when using LOFT, the NFs’ sam-
ples used for gradient estimation can exhibit considerably
lower variance, which consequently ensures convergence
even for high-dimensional target distributions with fat tails.
Our experiments show that for various challenging target
distributions LOFT enables successful training of NFs that
was previously not possible.

2 LIMITATIONS OF EXISTING
METHODS FOR VARIANCE
STABILIZATION

Following the works of [Dhaka et al., 2021], we consider
here the reverse Kullback-Leibler (KL) divergence with
masked affine flows (Real NVP, [Dinh et al., 2016]), since
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other choices exhibit too much instability during training. In
detail, variational inference with the reverse KL divergence
minimizes

KL(qϑ||p∗) = Eqϑ
[

log
(qϑ(θ)

p∗(θ)

)]
, (1)

where qϑ denotes the variational approximation to the tar-
get density p∗. In Bayesian statistics, p∗(θ) corresponds to
the posterior distribution p(θ|D).1 In particular, here, we
assume that qϑ is specified by a Real NVP with a Gaussian
base distribution q0(u) and a one-to-one transformation
t(u;ϑ). For finding the optimal parameters ϑ, we use gra-
dient descent, with samples from qϑ to get an unbiased
estimate of∇ϑKL(qϑ||p∗).2 Furthermore, for reducing the
variance of the gradient estimates, we employ ActNorm
[Kingma and Dhariwal, 2018] and path gradients [Vaitl
et al., 2022].

As can be seen in the top of Figure 1, the variance of the
estimate of Equation 1 can be considerable, and, as a conse-
quence, gradient estimates become unstable. In particular,
we observe that for high-dimensional distributions, or distri-
butions with fat tails, the variance of the ELBO (evidence
lower bound) increases up to the degree that training be-
comes impossible.

3 PROPOSED METHOD

In order to soften the impact of (unusual) large samples from
qϑ, we propose the following log soft extension (LOFT)
layer:

f(θ) =


t+ log(θ − t+ 1) if θ ≥ t,
−t− log(−θ − t+ 1) if θ ≤ −t,
θ else.

= sign(θ)
(

log
(

max(|θ| − t, 0) + 1
)

+ min(|θ|, t)
)
.

The function is shown in Figure 2: within the range [−t, t]
the layer performs an identity mapping, and outside the
range, the absolute value of the function grows only loga-
rithmically. t is a fixed user-specified parameter. In partic-
ular, for Bayesian statistics, we suggest to set t as high as
necessary such that most of the mass of p(θ|D) is expected
to be covered by [−t, t]d. We suggest, to interleave the NFs
with LOFT layers, similar to the usage of ActNorm.

Note that LOFT is a one-to-one function and

f−1(z) = sign(z)
(

exp
(

max(|z| − t, 0)
)
− 1

+ min(|z|, t)
)
,

log
( ∂
∂θ
f(θ)

)
= − log

(
max(|θ| − t, 0) + 1

)
.

1θ are the parameters of the Bayesian model and D is the data.
2With the help of the reparameterization trick, details see e.g.

[Papamakarios et al., 2021].
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Figure 1: Shows the maximum value (red), 99% (yellow)
and 75% (blue) quantiles of the negative ELBO (256 sam-
ples) at each training iteration. Here, target distribution p∗
is the Multivariate T-Distribution with d = 10 as described
in Section 4.1.

Therefore, all necessary calculations can be expressed us-
ing only computationally efficient elementary operations
(without if-clauses).

4 EXPERIMENTS

For all experiments, we use Adam [Kingma and Ba, 2015]
with a learning rate of 10−5 to optimize the ELBO. We
run training for 3 · 104 iterations, where for the initial 104

iterations we use annealing with a linearly increasing tem-
perature. In order to decrease the variance of the ELBO-
estimate, we use path gradients as described in Roeder et al.
[2017], Vaitl et al. [2022]. In preliminary experiments, we
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Figure 2: LOFT function. Note that for a vector θ the LOFT
function is applied element-wise.
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confirmed that (except in the initial phase) this helps to
reduce the variance of the gradient estimates.

For the normalizing flows, we use 64 masked affine flows
(Real NVP, [Dinh et al., 2016]), where after each flow we
additionally add an ActNorm layer [Kingma and Dhariwal,
2018]. Again, we confirmed in preliminary experiments that
the ActNorm layer helped to reduce variance. The proposed
method uses an additional LOFT layer after each ActNorm
layer. For all experiments, we set t := 100. For the imple-
mentation, we build upon the Python package Normflows
[Stimper et al., 2023]. All experiments were conducted on
an Nvidia DGX2 with double precision.

4.1 TARGET DISTRIBUTIONS

For evaluation, we use four different target distribution, for
which the log normalization constant is known.

Funnel Distribution The funnel distribution, as intro-
duced in [Neal, 2003], is given by

p∗(θ1) = N(0, 9), ∀j ∈ 2, . . . , d : p(θj |θ1) = N(0, eθ1) .

The target distribution is p∗(θ) with θ := (θ1, θ2, . . . , θd) ∈
Rd.

Multivariate T-Distribution The multivariate student-t
distribution with mean 0, degrees of freedom ν, and scale
matrix Σ is given by

p∗(θ) =
Γ((ν + d)/2)

Γ(ν/2)(νπ)d/2|Σ|1/2
(

1+
1

ν
θTΣ−1θ

)−(ν+d)/2

,

where we set the scale matrix to Σi,j = 0.8, for i 6= j, and
Σi,i = 1.0.

Multivariate Gaussian Mixture

p∗(θ) =

k∑
j=1

1

k
N(θ|µj , Id) ,

where Id denotes the identity matrix in Rd×d. Here, we set
k = 3, and µ1 = 4, µ2 = −4, and µ3 = 0 (i.e. in all
dimensions constant value 4, -4, and 0, respectively).

Bayesian Linear Regression We consider the following
Bayesian linear regression model

σ2 ∼ Inv-Gamma(0.5, 0.5)

β ∼ N(0, σ2Id−1)

yi
i.i.d∼ N(xTi β, σ

2) for i ∈ {1, . . . n} .

The parameters are θ := (β, σ2), and the target distribution
is the posterior p(θ|y, X). Note that, different from before,
θ ∈ Rd−1 ⊗ R+. In order to ensure the positiveness for

σ2, we use the softplus-transformation (as suggested, for
example, in Kucukelbir et al. [2017]).

Due to the conjugacy of the priors, the marginal likelihood
has a closed form given by Chipman et al. [2001]:

log p(y|X) =
Γ((1 + n)/2)

Γ(1/2)(νπ)n/2|Σ|1/2
(

1 + yTΣ−1y
)−(1+n)/2

,

where Σ := (In−X(XTX+Id)
−1XT )−1, andX ∈ Rn×d

contains all explanatory variables.

4.2 EVALUATION AND RESULTS

As can be seen in Figure 1 (bottom), with the help of the
LOFT layer, the variance of the samples are greatly re-
duced. Indeed training of the normalizing flows with LOFT
(NF+LOFT) always converged. However, without the LOFT
layer, training was often numerically too unstable, i.e. did
not converge due to the high variance of the gradients. As
an ad-hoc remedy, we therefore also trained the normalizing
flows with weight decay (penalty was set to 1.0) and gradi-
ent clipping (l2-norm set to 10.0) which we name NF+RC.
We also compared to a mean field Gaussian approximation
(Gaussian-MF).

For evaluation (after training), we use 20000 samples, and
repeat each evaluation 20 times to estimate the Monte Carlo
error [Koehler et al., 2009]. In Table 1, we show the ELBO
of all methods for all target distributions. Furthermore, after
training of each variational approximation q, we use q as
proposal distribution for importance sampling to estimate
the marginal likelihood (i.e. the normalization constant Z of
the target distribution p∗). Table 2 shows the mean absolute
error | logZ − log Z̃|, where Z and Z̃ denote the true and
approximated marginal likelihood, respectively.

We note that the computational overhead of LOFT is
marginal: training time with the LOFT layer increased
only between around 10% (for d = 1000) and 30% (for
d ≤ 100).

5 CONCLUSIONS

For various different target distributions with high-
dimensions or fat tails, we observe that LOFT enables suc-
cessful training of deep NFs that was previously not possible.
Notably, even ad hoc measures like weight decay and gra-
dient clipping either did not prevent unstable gradients or
led to convergence towards an inferior solution. Moreover,
since the computational overhead of the LOFT layer is only
marginal, we expect that LOFT becomes a new standard
tool for training deep NFs for Bayesian inference.
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Table 1: Evaluation of all methods in terms of ELBO (standard deviation in brackets) for d ∈ {10, 100, 1000}. "NA" means
that a method did not converge.

Funnel

d Gaussian-MF NF NF+RC NF+LOFT

10 -22607.68945 (112.80378) -0.004 (0.00065) -0.37008 (0.0079) -0.004 (0.00065)
100 -311913.65625 (1204.79443) -0.01529 (0.00132) -0.82154 (0.00606) -0.01852 (0.00141)
1000 -3022390.0 (11822.16797) -0.07086 (0.00247) NA -0.07201 (0.00334)

Multivariate Student-t

10 -17.72555 (0.01859) NA -0.92091 (0.00434) -0.44335 (0.02281)
100 -153.34932 (0.03154) NA NA -1.29345 (0.00552)
1000 -1450.84351 (0.16274) NA NA -432.67764 (0.29864)

Multivariate Gaussian Mixture

10 -113.17033 (0.11369) -1.09873 (0.0001) NA -1.09861 (1e-05)
100 -1583.33484 (0.45218) -1.09984 (0.0003) -1.09896 (0.00018) -1.09865 (0.00013)
1000 -15113.09961 (1.10571) NA NA -1.11051 (0.00075)

Bayesian Linear Regression (n = 2000)

10 -163874.53125 (334.17224) -5074.49707 (0.00124) -5074.78613 (0.00808) -5074.49707 (0.00124)
100 -343551.25 (247.65498) NA NA -5353.60693 (0.00169)
1000 -442254432.0 (2311782.25) NA NA -95220.10156 (66.93725)

Bayesian Linear Regression (n = 20)

10 -1442.38586 (2.90839) -55.48552 (0.00031) -55.92112 (0.00485) -55.48539 (0.00038)
100 -2801.54956 (2.9594) NA NA -66.51662 (0.00561)
1000 -4344290.0 (23051.80469) NA NA -80.42844 (0.0326)

Table 2: Evaluation of all methods in terms of | logZ − log Z̃| (i.e. difference of true and estimated normalizing constant),
when using importance sampling. "NA" means that a method did not converge.

Funnel

d Gaussian-MF NF NF+RC NF+LOFT

10 2378.45654 (233.43074) 0.00063 (0.00058) 0.05873 (0.0413) 0.00063 (0.00058)
100 35628.20312 (2457.3728) 0.00108 (0.00077) 0.34005 (0.06012) 0.00131 (0.00095)
1000 352202.96875 (25639.97656) 0.00384 (0.00326) NA 0.00641 (0.01088)

Multivariate Student-t

10 11.95926 (1.37316) NA 0.45397 (0.30841) 0.14678 (0.11084)
100 127.72206 (4.10065) NA 15.66333 (1.57771) 0.92498 (0.02456)
1000 1366.32544 (6.39189) NA 178.99582 (7.55553) 159.49564 (17.38598)

Multivariate Gaussian Mixture

10 62.47577 (2.58455) 1.09863 (0.00011) NA 1.09862 (1e-05)
100 1365.84741 (12.62567) 1.0986 (0.00034) 1.09862 (0.00017) 1.09859 (9e-05)
1000 14414.19824 (37.7167) NA 119743.08594 (16996.94141) 1.09838 (0.00094)

Bayesian Linear Regression (n = 2000)

10 65232.39453 (3233.09131) 0.00056 (0.00035) 0.00627 (0.00478) 0.00056 (0.00035)
100 251705.39062 (3288.46167) NA NA 0.00129 (0.00078)
1000 32286436.0 (4261146.0) NA NA 49792.94141 (1364.07861)

Bayesian Linear Regression (n = 20)

10 567.07452 (31.58895) 0.00023 (0.00017) 0.06655 (0.09409) 0.00025 (0.00018)
100 1704.42737 (49.23442) NA 111.10826 (6.41515) 0.01291 (0.01942)
1000 301136.15625 (42675.53516) NA NA 0.83201 (0.43196)
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