
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPERIENCE-GUIDED REFLECTIVE CO-EVOLUTION
OF PROMPTS AND HEURISTICS FOR AUTOMATIC
ALGORITHM DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial optimization problems are traditionally tackled with handcrafted
heuristic algorithms, which demand extensive domain expertise and significant
implementation effort. Recent progress has highlighted the potential of automatic
heuristics design powered by large language models (LLMs), enabling the auto-
matic generation and refinement of heuristics. These approaches typically main-
tain a population of heuristics and employ LLMs as mutation operators to evolve
them across generations. While effective, such methods often risk stagnating in
local optima. To address this issue, we propose the Experience-Guided Reflective
Co-Evolution of Prompt and Heuristics (EvoPH) for automatic algorithm design,
a novel framework that integrates the island migration model with the elites se-
lection algorithm to simulate diverse heuristics populations. In EvoPH, prompts
are co-evolved with heuristic algorithms, guided by performance feedback. We
evaluate our framework on two problems, i.e., Traveling Salesman Problem and
Bin Packing Problem. Experimental results demonstrate that EvoPH achieves the
lowest relative error against optimal solutions across both datasets, advancing the
field of automatic algorithm design with LLMs.

1 INTRODUCTION

Combinatorial optimization problems (COPs) (Dantzig & Ramser, 1959) form a fundamental branch
of mathematical research. They drive progress in areas such as algorithm design and computational
complexity theory, while also providing essential methods for addressing real-world challenges in
resource allocation and decision-making. Traditionally, solving COPs relied on handcrafted heuris-
tic algorithms, which require researchers to possess substantial domain knowledge (Pillay & Qu,
2018). Moreover, practical applications often demand customized algorithms with distinct pro-
cesses and parameters, resulting in considerable human effort (Hromkovič, 2013). To alleviate these
challenges, researchers have proposed the paradigm of automatic heuristics design (AHD), with Ge-
netic Programming (GP) being one of the most representative examples (Langdon & Poli, 2013).
GP iteratively refines heuristics by applying mutation operators (Duflo et al., 2019). However, the
effectiveness of GP-based methods is fundamentally constrained by the human-defined operator set,
which not only increases implementation difficulty but also limits achievable performance.

In recent years, large language models (LLMs) have demonstrated remarkable effectiveness across
diverse domains, notably through prompt engineering that simulates mutation operations, enabling
applications in code generation, automated machine learning, scientific discovery, and algorithm
design (Zhao et al., 2023; Jiang et al., 2024; Liu et al., 2024b). Nevertheless, current practices often
rely on ineffective evolutionary algorithms or fixed prompts, which limit adaptability in complex
scenarios. As a consequence, existing approaches tend to converge prematurely to local optima,
while syntax or logic errors introduced during code execution frequently propagate across descen-
dant heuristics, leading to repeated failures and substantial computational overhead.

To address these limitations, we propose EvoPH, a novel experience-guided reflective co-Evolution
framework that can co-evolve Prompts and Heuristics for automatic algorithm design. EvoPH is
built upon an iterative cycle of heuristics generation, evaluation, experience storage, and reflection.
In each iteration, new heuristics are generated by an LLM, followed by assessing their performance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

through execution, and the outcomes are distilled into experience that informs subsequent heuris-
tic search. During heuristics evolution, the saved experience guides the LLM to evolve heuristics
through a diverse set of mutation operators. Specifically, we propose an island-based elites selection
algorithm, which can preserve diversity while enabling the exchange of high-quality elites across
populations. Here, an island refers to an independent sub-population that evolves in parallel, oc-
casionally exchanging high-quality elites with others. The core of our EvoPH framework lies in
the integration of prompt evolution, where prompts are not only adaptively rewritten but also pro-
gressively specialized based on fine-grained execution feedback. This mechanism enables dynamic
error correction and knowledge consolidation, allowing prompts to evolve into increasingly task-
specific guides that retain effective instructions while continuously steering the evolution of heuris-
tics. Furthermore, we propose an experience-driven strategy sampling that selects or combines
mutation operators and interacts with prompt evolution to ensure prompts and strategies co-adapt in
a self-correcting manner. Through this synergy, prompts function as both adaptive controllers and
knowledge carriers, aligning task descriptions with heuristics evolution.

To evaluate the performance of EvoPH, we conduct experiments on the Traveling Salesman Problem
(TSP) and the Bin Packing Problem (BPP). We used Gurobi or OR-Tools to calculate the optimal
solution and relative error to ensure the authority of the evaluation results. Our core contributions
can be summarized as follows:

• We propose EvoPH, an automatic algorithm design framework that co-evolves prompts and
heuristics. By iteratively evolving prompts based on execution feedback, leveraging stored
experience to inform mutation operator choice, and dynamically selecting evolution strategies,
EvoPH generates targeted yet diverse prompts. This synergy enables heuristic algorithms to
escape local optima during evolution while promptly correcting errors in code execution.

• We construct benchmark datasets for TSP and BPP by adapting TSPlib (Reinelt, 1991) and
BPPlib (Delorme et al., 2018), converting them into distance-matrix formats for efficient eval-
uation. We also adopt Gurobi or OR-Tools as references for optimal solutions and release all
data to facilitate future research in automatic heuristic design.

• Experimental results demonstrate that on TSP, EvoPH significantly improves performance
compared to prior frameworks. On BPP, EvoPH effectively enhances baseline heuristics,
whereas existing frameworks only yield marginal improvements.

2 RELATED WORK

Neural combinatorial optimization. Neural combinatorial optimization (NCO) has emerged as a
promising paradigm for solving combinatorial optimization problems (COPs) in an end-to-end man-
ner (Chen et al., 2023; Ma et al., 2023). As a variant of hyper-heuristics (HH), it explores heuristic
spaces through neural architectures and training algorithms (Romera-Paredes et al., 2024; Liu et al.,
2023a). Existing methods are typically grouped into learning constructive heuristics (LCH), which
incrementally build solutions (Liu et al., 2023b; Son et al., 2025); learning improvement heuristics
(LIH) (André & Kevin, 2020), which refine existing solutions through neural-guided search and hy-
brid solvers, which combine neural models with classical algorithms (Gasse et al., 2019; Luo et al.,
2023). Applications now span routing, SAT, scheduling, and other NP-hard problems (Li et al.,
2023; Sun & Yang, 2023), though challenges remain in scalability, generalization, and closing the
gap with state-of-the-art classical solvers (Selsam, 2019).

LLM for Evolutionary computation. Evolutionary computation (EC) is a population-based black-
box optimization paradigm well suited for non-convex or discrete problems without gradient infor-
mation (Eiben & Smith, 2015; Bäck et al., 1997). With the rise of LLMs, recent work explores
their integration with EC frameworks (Chauhan et al., 2025). For instance, the LMEA framework
uses natural language instructions to guide LLM-based crossover and mutation on textual solution
representations (Liu et al., 2024c), while EvoLLM leverages LLMs in a zero-shot manner to execute
full evolutionary cycles via ranking-based prompting, achieving strong results on synthetic bench-
marks (Lange et al., 2024). These approaches highlight LLMs as intelligent operators or high-level
controllers, showing potential in heuristics design, code generation, and planning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Heuristic Evolution

Migration

Island 3

feed
b

a
ck

Prompt Evolution

Island based Elites Selection

Evaluate

Generate

Analytical

report

Summarize Summarize

Algorithm

Score

Experience

LLM

Strategy

Structure modification
Sample

Strategy pool

Parameter modification

Redundancy removal

Completely rewrite

Heuristic rewrite

prompt

evolve

Island 2

Island 1

Figure 1: EvoPH comprises two interacting processes. Heuristics Evolution generates, evaluates,
and stores candidate algorithms, providing feedback for further search. Prompt Evolution adaptively
refines LLM prompts and strategy selection based on this feedback.

3 PRELIMINARIES

In this section, We start by presenting two representative NP-hard problems, the Traveling Salesman
Problem and the Bin Packing Problem, which serve as running examples throughout this work.

3.1 TRAVELING SALESMAN PROBLEM AND BIN PACKING PROBLEM

Traveling Salesman Problem. The TSP is a fundamental NP-hard problem in combinatorial op-
timization. It is defined on a fully weighted graph G = (V,E), where V = {v1, v2, ..., vn} is a
set of n vertices, and E is the set of edges containing all unordered pairs of distinct vertices, i.e.,
E = {{vi, vj} | vi, vj ∈ V, i ̸= j}. A weight function w : E → R+ assigns a non-negative cost
w(vi, vj) to each edge. The goal is to find a Hamiltonian cycle, i.e., a cycle that visits each vertex
in V exactly once, with the minimum total weight. If a tour is represented by a permutation π of the
vertex indices, the optimization objective is:

π∗ = argmin
π

(
n−1∑
i=1

w(vπi , vπi+1) + w(vπn , vπ1)

)
. (1)

Bin Packing Problem. The BPP is another classical NP-hard problem in combinatorial opti-
mization. An instance consists of a set of n items I = {i1, i2, ..., in} with associated sizes
S = {s1, s2, ..., sn}, and an infinite supply of bins, each with a fixed capacity C. The objective
is to partition the item set I into the minimum number of disjoint subsets B1, B2, ..., Bk, where
each subset corresponds to the contents of a bin, subject to the capacity constraint:

∀j ∈ 1, ..., k,
∑

im∈Bj

sm ≤ C. (2)

The optimization goal is to minimize k, the total number of bins used. In the offline setting, all items
are known in advance, while in the online setting, items arrive sequentially and must be placed before
the next item is revealed. In this work, we focus on the offline setting.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 AUTOMATIC HEURISTICS DESIGN

Automatic heuristics design aims to automatically select, refine, combine or generate high-
performance heuristics for a specific problem or class of problems. Its core objective is to explore
a vast design space of heuristics to discover algorithms that can efficiently solve complex optimiza-
tion or search problems, thereby reducing the reliance on manual design and expert knowledge.
This process can be formally defined as searching within a given heuristic space H to find an opti-
mal heuristic h∗ that maximizes the final performance evaluated by a function g(·) over a specific
set of problem instances I:

h∗ = argmax
h∈H

g(h). (3)

The heuristics space H represents the set of all candidate heuristics that can be constructed or se-
lected. This space can be discrete (e.g., fixed algorithmic components) or continuous (e.g., parame-
terized functions). Besides, the performance evaluation function g(·) quantifies the effectiveness of
a heuristic h. It is typically assessed by measuring solution quality, computational cost, or other rele-
vant metrics on a benchmark set of problem instances. These symbols provide the formal foundation
for evaluating heuristics’ quality, guiding selection and update processes in the 4.1.

4 METHOD

The EvoPH framework is a closed-loop system for the automatic design and optimization of heuris-
tic algorithms. As illustrated in Figure 1, EvoPH operates through an iterative cycle that integrates
two complementary components: heuristics evolution and prompt evolution. The heuristics evolu-
tion module employs an island-based elites selection algorithm to refine candidate heuristics, while
maintaining diversity through migration across subpopulations. The outcomes are distilled into ex-
perience, which provide structured feedback. This feedback, in turn, drives the prompt evolution
module and strategy sampling module, guiding the next generation of heuristic algorithms. To-
gether, these processes form a continuous loop of generation, evaluation and adaptation. In the
following sections, we provide a detailed discussion of each sub-process.

4.1 HEURISTICS EVOLUTION

Heuristic Algorithm Generation. In the generation phase, The LLM is used as a high-level se-
mantic mutation operator to generate new candidate algorithms. Starting from the parent algorithms
selected from the elite library, the LLM generates a new generation of algorithms under the guidance
of carefully designed prompts.

Experience Summarization. After generating candidate heuristic algorithms, EvoPH evaluates
them on the given problem instances. When execution produces valid solutions, corresponding
performance metrics are extracted; in cases of invalid outputs, systematic analysis and reporting are
conducted. Regardless of correctness, The execution results or the analytical report is distilled into
structured experiential knowledge that captures effective strategies and performance characteristics.
This accumulated experience is subsequently synthesized into reflective feedback, which in turn
guides the next iteration of heuristic search.

Heuristics and Experience Storage. The EvoPH proposes an island-based elites selection algo-
rithm to organize and preserve heuristic algorithms together with their experience. The core idea
is to partition the global population into N relatively independent subpopulations, referred to as is-
lands. Each island independently executes a full elites selection process, maintaining its own elite
archive. While the islands evolve autonomously, they are not entirely isolated; a periodic migration
mechanism enables the exchange of elite individuals, thereby promoting global information sharing
and cooperative co-evolution. The details of the elites selection algorithm are as follows:

• Feature Space Definition. To guide elites selection, we first define a multidimensional behav-
ioral feature space for program solutions. Intuitively, this space can be viewed as a grid, where
each cell in this grid corresponds to a unique combination of behavioral features (e.g., high
development potential with low relative error). Each cell stores the best-performing solution
found for that feature combination. Formally, for a heuristic h ∈ H , we define a mapping func-
tion F : H → B that projects h into a behavioral descriptor b ∈ B. Each island i maintains

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

an elite archive Mi, in which cells are indexed by descriptors b and record the best heuristic h
currently associated with b.

• Archive Update. When a new heuristic hchild is generated, we first evaluate its performance
g(hchild) and get its descriptor bchild = F (hchild). The archive is = updated in the following way:

Mi(bchild)←−
{
hchild if Mi(bchild) = ∅ or g(hchild) ≥ g(Mi(bchild))

Mi(bchild) otherwise
(4)

where g(h) denotes the performance of heuristic h as defined in Section 3.2. This update
rule ensures that only heuristics with equal or superior performance replace the existing elite.
Through this process, each island incrementally explores its search region, while the collective
archives promote both potential and solution quality in the global search.

• Heuristic Selection for Evolution. After updating the elite archive, EvoPH selects parent
heuristics for the next generation through an experience-guided process. First, a candidate
island is chosen, within the selected island, EvoPH then adaptively balances exploration and
exploitation based on heuristics experience: in the exploration mode, a parent heuristic is ran-
domly sampled to promote behavioral diversity, whereas in the exploitation mode, heuristics
demonstrating consistently high quality across multiple descriptors are prioritized. This mecha-
nism enables EvoPH to simultaneously foster innovation and leverage proven solutions, thereby
preventing premature convergence to local optima.

• Island Migration. At predefined generational intervals, migration events occur. Selected elites
from a source island are introduced into the evolutionary cycle of a target island, where they
compete with local elites under the same archiving mechanism. These migrated solutions en-
rich the diversity of the population and strengthen cooperative co-evolution across islands.

4.2 PROMPT EVOLUTION

The key idea of prompt evolution is to elevate the evolutionary search from the program level to
the prompt level. In this meta-evolutionary framework, as heuristics undergo optimization, the in-
structional prompts guiding their mutation are co-evolved concurrently. This ensures that mutation
operations remain both targeted and potent, continuously adapting to the state of the search. Our
proposed prompt evolution consists of two primary steps:

Prompt Update. The prompt update step employs a closed-loop mechanism in which adaptation
is guided by experiential feedback from heuristics evolution. In each iteration, the performance of
generated heuristic algorithm is recorded as experience, which, together with the initial prompts, are
fed back into the LLM to guide subsequent prompt refinement. Prompts associated with effective
heuristics are reinforced, while those consistently leading to poor outcomes are refined or discarded.
Through this iterative process, the system autonomously learns and improves prompts.

Strategy Sampling. To simulate the diverse mutation patterns observed in biological evolution and
to introduce greater exploration potential into the evolutionary process, this study pre-designed a
variety of differentiated “evolution strategies”. These strategies are modularly embedded within
the prompts to guide the LLM in performing different mutation operations during the heuristics
evolution process. The selection of strategies is informed by accumulated experience, in which
the historical performance of previously generated heuristics is recorded. The experience serves
as a reference for matching problem characteristics with suitable strategies, thereby enabling the
framework to adaptively sample a strategy from the pool that is most appropriate to the current search
state rather than relying on fixed or random selection. A detailed description of these strategies in
the pool is provided in Appendix A.1.The final prompts submitted to the LLM are dynamically
combined from the iteratively updated prompts and the evolutionary strategy sampled based on
experience. The specific content of each prompt is detailed in Appendix A.3.

The prompts adaptively update based on experiential feedback, inheriting knowledge from historical
successes while avoiding repeated failures. In doing so, accumulated experience guides both the re-
finement of prompts and the sampling of evolution strategies, enabling the system to select the most
appropriate mutation pathway for the current search context. Such an experience-driven mutation
mechanism effectively aids heuristic algorithm populations in escaping local optima, significantly
improving algorithm discovery efficiency and solution quality. At the same time, it enhances the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

effectiveness of individual mutations at the micro level and provides a solid foundation for sustained
heuristics evolution at the macro level.

4.3 COMPARISON TO PREVIOUS WORK

EvoPH advances beyond prior methods in several key aspects. First, it shifts the search focus from
directly evolving heuristic algorithm to evolving LLM-generated prompts, which allows for a richer
and more flexible exploration of the heuristic space. In contrast, FunSearch (Romera-Paredes et al.,
2024) evolves only heuristic using genetic operators. Second, EvoPH maintains a diverse heuristic
population through an island-based elites selection mechanism and enhances it with an experience-
driven adaptation loop that dynamically adjusts evolution strategies, thereby ensuring both stability
and adaptability; by comparison, EoH (Liu et al., 2024a) relies on fixed prompt strategies, and
ReEvo (Ye et al., 2024) employs LLM-based reflection while maintaining a population but does
not evolve prompts. Third, while NeRM (Guo et al., 2025) jointly refines prompts and algorithms
with predictor assistance, EvoPH focuses exclusively on prompt-level evolution and leverages its
experience-driven loop for efficient, adaptive, and targeted strategies improvement. Overall, by
combining prompt-level evolution with experience-driven adaptation, EvoPH achieves broader ex-
ploration, higher efficiency, and greater robustness than existing approaches.

5 EXPERIMENT

For TSP and BPP, we initialize our population using a series of classic heuristic algorithms. The
specific details of each algorithm can be found in Appendix A.2. In the following sections, we
provide a detailed description of the dataset composition, experimental settings, and the specific
experimental components of our study.

5.1 DATASET CONSTRUCTION

Existing automatic heuristics design methods often rely on randomly generated, fixed-size examples
for performance evaluation (Ye et al., 2024). While these methods provide a set of examples, they
are insufficient to capture the diversity of structural features. Moreover, such approaches fail to ac-
count for the complexity of real-world problems, which may lead to the framework learning overfit
heuristic algorithms that are only applicable to a specific, idealized dataset. To address these limita-
tions and provide a more systematic and robust evaluation of algorithm performance, we constructed
two new benchmark datasets: TSP-Gurobi-Bench (TGB) and BPP-Ortools-Bench (BOB).

TSP-Gurobi-Bench. The TGB is derived from the classic TSPLIB database (Reinelt, 1991). We
first converted the city clusters, represented by coordinates, into distance matrices. Specifically, we
constructed a complete graph of cities, where each city is connected to every other city. Then we
use the Gurobi solver (Gurobi Optimization, LLC, 2022) to compute the optimal solution for each
instance. To ensure feasibility and efficiency, we excluded instances that the Gurobi could not solve
within a 600-second time limit, resulting in a dataset containing 58 instances with optimal solutions.

BPP-Ortools-Bench. For the BOB, we used randomly generated instances from BPPlib (Corvello
et al., 2010) as the data source and employed Google OR-Tools (Google, 2024) as the solver to
compute the corresponding optimal solutions for each bin packing problem. After considering both
problem size and computational time, we selected 92 instances to form the final BOB dataset.

Evaluation metrics. To ensure objective and standardized performance comparisons across all
algorithms, we use the relative error as the primary quantitative evaluation metric. The lower the
relative error, the better the performance. The relative error is defined as follows:

Relative Error =
Asol −Osol

Osol
× 100% (5)

where Osol represents the optimal solution from Gurobi or OR-Tools, and Asol represents the solution
obtained by the heuristic algorithm.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The experiment result of different methods on TGB and BOB datasets. “BASE” represents
the relative error of the initialized heuristic algorithm. The smaller the relative error, the better the
algorithm. Bold fonts denote the best performance.

Dataset Heuristics BASE Funsearch EoH mEoH Reevo EvoPH

TGB

Christofides 20.64% 19.71% 9.64% 16.90% 20.60% 5.17%
2-opt 6.62% 6.62% 7.00% 6.67% 6.58% 4.20%

nearest-insertion 19.54% 19.54% 8.78% 11.60% 19.50% 4.41%
farthest-insertion 8.20% 7.20% 8.00% 8.00% 8.20% 4.05%
nearest-neighbor 24.67% 16.50% 7.80% 24.67% 24.67% 4.41%
random-insertion 9.43% 8.11% 9.11% 8.90% 9.34% 4.41%

BOB

first-fit 4.90% 4.90% 4.90% 4.90% 4.90% 0.43%
best-fit 28.13% 25.49% 17.20% 23.45% 26.77% 1.65%
next-fit 5.61% 5.61% 5.61% 5.61% 5.61% 1.59%

worst-fit 14.66% 7.66% 4.90% 14.66% 14.66% 1.65%

5.2 EXPERIMENT SETUP

Baseline. We rigorously evaluate the proposed EvoPH framework in the TGB and BOB . The com-
parison group includes Funsearch (Romera-Paredes et al., 2024), EoH (Liu et al., 2024a), mEoH
(Yao et al., 2025) and Reevo (Ye et al., 2024). By contrasting the performance of our framework
with these methods, we aim to objectively assess its superiority and effectiveness in solving COPs.

Implementation details. The Gemini-2.5-pro model is used as the heuristics generation and op-
timization model, with its inference temperature set to 0.8 and top-p set to 0.95 to ensure both
diversity and logical consistency in the generated content. The remaining key hyper-parameters for
the evolutionary process are as follows: the maximum number of iterations is set to 20. To promote
global search and maintain population diversity, the entire population is divided into 5 independent
islands for collaborative evolution. In each evolutionary generation, the newly generated candidate
programs are evaluated through a standardized evaluation process, with each execution time strictly
limited to a 600-second threshold.

5.3 EXPERIMENT RESULT

5.3.1 MAIN RESULT

TSP Results. As shown in Table 1, the EvoPH framework achieves substantial performance
improvements on the TGB dataset across all six initialization heuristics. For instance, for
the Christofides and nearest-insertion heuristics, EvoPH consistently outperforms competing ap-
proaches, lowering errors from 20.64% and 19.54% to 5.17% and 4.41%, respectively. Even in
cases where baselines are already strong, such as 2-opt, EvoPH achieves further gains, reducing
the error from 6.62% to 4.20%. These results not only highlight EvoPH’s robustness in handling
both strong and weak initial heuristics but also demonstrate its excellent generalization ability across
diverse algorithmic starting points.

BPP Results. As shown in Table 1, EvoPH achieves remarkable improvements on the BOB dataset
across all initialization heuristics. For example, for the next-fit and worst-fit heuristics, which stag-
nate at 5.61% and 14.66% in the baselines, EvoPH lowers the errors to 1.59% and 1.65%, respec-
tively. Most notably, EvoPH achieves a dramatic reduction for the best-fit heuristic, from 28.13% to
1.65%, whereas competing approaches such as Funsearch, EoH, and Reevo fail to deliver compara-
ble improvements. These results highlight EvoPH’s strong cross-domain adaptability.

5.3.2 ABLATION RESULTS

To investigate the individual contributions of each core component within our proposed framework,
we conduct a series of detailed ablation experiments on the TGB dataset, comparing the outcomes
with those obtained from the complete framework. We design the following three ablation variants:
(1) w/o Strategy Sampling: This variant removes the strategy sampling component from the frame-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

work; (2) w/o Prompt Evolution: This variant replaces the dynamic prompt evolution module with a
fixed prompt strategy; (3)w/o Island-Based Elites Selection: This variant removes the island model
and the elites selection algorithm from the framework.

Table 2: Performance comparison of the EvoPH framework and its different ablation versions on
various heuristic algorithms. Here, SS denotes Strategy Sampling, PE denotes Prompt Evolution,
and IES denotes Island-based Elites Selection.

nearest-insertion 2-opt Christofides farthest-insertion nearest-neighbor random-insertion

EvoPH 4.41% 4.20% 5.17% 4.05% 4.41% 4.41%

w/o SS 5.17% 4.38% 5.17% 5.17% 5.17% 4.41%

w/o PE 5.17% 5.17% 9.24% 5.50% 5.17% 5.17%

w/o IES 9.70% 5.17% 7.03% 5.99% 6.48% 6.90%

Results. As shown in Table 2, the ablation results clearly demonstrate the necessity and effec-
tiveness of each component within our framework, highlighting the significant synergy between
modules. Specifically, without Strategy Sampling, performance drops across all tasks, showing that
maintaining policy diversity is essential to ensure broader exploration. Without Prompt Evolution,
the performance drops noticeably (e.g., Christofides from 5.17% to 9.24%), indicating that adaptive
prompt updates are crucial for guiding effective mutations. Without Island-based Elites Selection,
performance deteriorates significantly (e.g., nearest-insertion from 4.41% to 9.70%), confirming
that the island model based elites selection act as the foundational mechanism for sustaining both
robustness and high-quality solutions.

nearest-
insertion

2-Opt Christofides Farest
Insertion

nearest-
neighbor

random-
insertion

Heuristic Algorithm

0

10

20

30

40

50

60

70

80

Pr
op

ro
tio

n
of

 C
or

re
ct

 S
ol

ut
io

n
(%

) 75

40
45

70

45 45

25
20

40

30
25 25

Method
EvoPH
w/o Prompt Evolution

Figure 2: Proportion of generating executable
code over 20 iterations of the EvoPH with and
without the prompt evolution module.

5 10 15 20 25 30
Iteration

0.05

0.10

0.15

R
el

at
iv

e
Er

ro
r (

%
) Algorithm

Christofides
2-Opt
Nearest-Insertion
Farthest-Insertion
Nearest-Neighbor
Random-Insertion

Figure 3: Variation in the lowest relative error
of different initial algorithms with evolution it-
erations.

5.4 ROBUSTNESS AND EFFECTIVE OF EVOPH

We conducted further experiments to assess the robustness of EvoPH in terms of both heuristics
executability and convergence behavior. Under the same experimental setting, we first examined
the proportion of generating executable heuristics over 20 iterations, comparing EvoPH with and
without the prompt evolution module. As shown in Figure 2, incorporating prompt evolution consis-
tently leads to higher success rates across different heuristics, substantially improving the likelihood
of producing reliable code within a limited number of iterations.

In addition, we investigated the convergence behavior of multiple heuristic algorithms initialized
with different algorithms. As illustrated in Figure 3, despite initial performance gaps, all algorithms
follow a similar convergence trajectory: rapid quality improvements in early iterations, slower gains
thereafter and eventual stabilization. This consistent trend highlights the general effectiveness of
EvoPH across diverse initialization strategies.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(Before Evolve) Evolutionary Goal and Evolutionary Directives

Your primary objective is to enhance the provided function in each evolutionary step, pushing it towards the optimal balance of solution

quality and speed. Assume you are receiving a function that already exists and needs improvement.

In each round, you must analyze the function provided to you and then rewrite it to be better.

(After Evolve) Evolutionary Goal and Evolutionary Directives

Your primary objective is to enhance the provided function in each evolutionary step, pushing it towards the optimal balance of solution

quality

The returned code must be valid Python code that executes without errors. Prioritize generating correct and functional code above all

else. If a change results in worse performance, revert to the previous version and explore alternative strategies. Critically analyze the

traceback and error messages to understand the failure's context within the code.

When the code is not valid, focus exclusively on fixing the errors. Do not attempt optimizations until the code is error-free. Carefully

examine the provided `error_reason` and traceback information to pinpoint the root cause. Use print statements or a debugger to understand

the program's state at the point of failure. Consider edge cases and boundary conditions, especially when array slicing or manipulating indices.

Test your fix thoroughly with small example inputs before submitting.

When the code is valid concentrate on improving performance, Experiment with different neighborhood search strategies, candidate lists,

and data structures tailored to these algorithms. Consider the trade-offs between exploration and exploitation.

Figure 4: Comparison of prompts before and after evolution.

Before Evolution

def solve_tsp_approximate(dist_matrixnp.ndarray):

···

improved=True

while improved:

improved=False

for I in range(n-1):

for j in range(i+2,n):

a,b,c,d=tour[i-1],tour[i],tour[j-1],tour[j]

delta=dist_matrix[a,c]+dist_matrix[b,d]

-dist_matrix[a,b]-dist_matrix[c,d]

if delta<0:

tour[i:j]=tour[i:j][::1],

improved=True,

break

if improved:

break

···

After Evolution

def solve_tsp_approximate(dist_matrix: np.ndarray):

…

improved = True

while improved:

improved = False,best_change = 0,best_swap = None

for i in range(n - 1):

for j in range(i + 2, n):

a, b = tour[i], tour[(i + 1) % n]

c, d = tour[j], tour[(j + 1) % n]

change=dist_matrix[a, b]+dist_matrix[c,d]-(dist_matrix[a,c] + dist_matrix[b,d])

if change > best_change:

best_change = change

best_swap = (i, j)

if best_swap:

i, j = best_swap

tour[i+1:j+1] = reversed(tour[i+1:j+1])

improved = True

…

Figure 5: Comparison of heuristic algorithm before and after evolution.

5.5 CASE STUDY

Case of prompt evolution. As shown in Figure 4, the evolved prompts demonstrate clearer struc-
ture and stronger task orientation than their pre-evolution counterparts. They adopt a hierarchical
instruction framework that prioritizes code correctness and functionality. When the code is invalid,
the prompts restrict the task to error repair, specifying detailed steps such as analyzing error mes-
sages, applying debugging tools, and verifying fixes. Once validity is ensured, the focus shifts to
performance optimization with explicit strategies. This evolution enables the prompts to reliably
guide the model from securing functional correctness to pursuing performance improvements.

Case of heuristics evolution. According to Figure 5, compared with the pre-evolutionary algorithm
that adopts the first-improvement strategy, the key advantage of the evolved algorithm lies in its ex-
haustive evaluation of all possible exchanges, where instead of stopping at the first improving move,
the algorithm scans through every candidate swap and identifies the globally optimal modification.
By applying this best-improvement mechanism in each iteration, the evolved algorithm achieves a
more consistent and thorough enhancement of solution quality.

6 CONCLUSION

This paper proposes a structured co-evolutionary framework, EvoPH, designed to efficiently solve
combinatorial optimization problems through the iterative evolution of prompts and heuristic al-
gorithms. The synergy between macro-level population management and micro-level co-evolution
facilitates nested optimization, effectively avoiding local optima and enhancing the performance
of algorithm design. Extensive experimental results on the TGB and BOB demonstrate that EvoPH
outperforms existing evolutionary computation methods in terms of solution quality. Future research
will focus on expanding this framework to a broader range of combinatorial optimization problems,
with an emphasis on its application in practical algorithm design tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work studies automatic heuristic design for TSP and BPP using publicly available data from
TSPLIB and BPPLIB. These data contain no human subjects, personal data, or sensitive information;
hence, concerns regarding privacy, safety, or legal compliance do not apply. The study does not pose
risks of discrimination or bias, and all experiments follow community standards of reproducibility,
fairness, and research integrity. As no human or animal subjects are involved, IRB approval is not
required, and no conflicts of interest or external sponsorship exist.

8 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility of our work. The main text describes the
EvoPH framework, its key components (heuristics evolution and prompt evolution), and the exper-
imental setup in detail (Sections 4–5). Benchmark datasets TGB and BOB are constructed from
TSPLIB and BPPLIB, with the exact preprocessing procedures explained in Section 5.1. Complete
algorithmic details, including initial heuristics, evolution strategies, and prompt templates, are pro-
vided in Appendix A. Hyperparameters, model settings and runtime configurations are specified
in Section 5.2. Additionally, all datasets and code will be released anonymously as supplemen-
tary material to enable independent verification of results. Together, these resources ensure that the
experiments and findings reported in this paper can be reliably reproduced and extended.

REFERENCES

Hottung André and Tierney Kevin. Neural Large Neighborhood Search for the Capacitated Vehicle
Routing Problem. IOS Press, 2020. doi: 10.3233/faia200124. URL http://dx.doi.org/
10.3233/FAIA200124.

Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evolutionary computation.
Release, 97(1):B1, 1997.

Dikshit Chauhan, Bapi Dutta, Indu Bala, Niki van Stein, Thomas Bäck, and Anupam Yadav. Evo-
lutionary computation and large language models: A survey of methods, synergies, and applica-
tions. arXiv preprint arXiv:2505.15741, 2025.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta
neural heuristic for multi-objective combinatorial optimization. Advances in Neural Information
Processing Systems, 36:56825–56837, 2023.

V. Corvello, J. V. de Carvalho, J. P. de Sousa, C. Oliveira, M. Carravilla, P. S. Martins, and J. F.
Oliveira. BPPLIB: a bin packing problem library. In Proceedings of the 3rd International Sym-
posium on Engineering, MONACO’10, Monaco, 2010.

George B Dantzig and John H Ramser. The truck dispatching problem. Management science, 6(1):
80–91, 1959.

Maxence Delorme, Manuel Iori, and Silvano Martello. Bpplib: a library for bin packing and cutting
stock problems. Optimization Letters, 12(2):235–250, 2018.

Gabriel Duflo, Emmanuel Kieffer, Matthias R Brust, Grégoire Danoy, and Pascal Bouvry. A gp
hyper-heuristic approach for generating tsp heuristics. In 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 521–529. IEEE, 2019.

Agoston E Eiben and James E Smith. Introduction to evolutionary computing. Springer, 2015.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Google. OR-Tools, 2024. URL https://github.com/google/or-tools.

10

http://dx.doi.org/10.3233/FAIA200124
http://dx.doi.org/10.3233/FAIA200124
https://github.com/google/or-tools

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shuhan Guo, Nan Yin, James Kwok, and Quanming Yao. Nested-refinement metamorphosis: Re-
flective evolution for efficient optimization of networking problems. In Findings of the Associa-
tion for Computational Linguistics: ACL 2025, pp. 17398–17429, 2025.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.
gurobi.com. Version 9.5.2.

Juraj Hromkovič. Algorithmics for hard problems: introduction to combinatorial optimization,
randomization, approximation, and heuristics. Springer Science & Business Media, 2013.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

William B Langdon and Riccardo Poli. Foundations of genetic programming. Springer Science &
Business Media, 2013.

Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 579–582,
2024.

Zhaoyu Li, Jinpei Guo, and Xujie Si. G4satbench: Benchmarking and advancing sat solving with
graph neural networks. arXiv preprint arXiv:2309.16941, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large lan-
guage model. arXiv preprint arXiv:2311.15249, 2023a.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. arXiv preprint arXiv:2401.02051, 2024a.

Fei Liu, Yiming Yao, Ping Guo, Zhiyuan Yang, Zhe Zhao, Xi Lin, Xialiang Tong, Mingxuan Yuan,
Zhichao Lu, Zhenkun Wang, et al. A systematic survey on large language models for algorithm
design. arXiv preprint arXiv:2410.14716, 2024b.

Shengcai Liu, Yu Zhang, Ke Tang, and Xin Yao. How good is neural combinatorial optimization?
a systematic evaluation on the traveling salesman problem. IEEE Computational Intelligence
Magazine, 18(3):14–28, 2023b.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024c.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining Ma,
and Zhiguang Cao. Metabox: A benchmark platform for meta-black-box optimization with re-
inforcement learning. Advances in Neural Information Processing Systems, 36:10775–10795,
2023.

Nelishia Pillay and Rong Qu. Hyper-heuristics: theory and applications. Springer, 2018.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA Journal on computing, 3(4):
376–384, 1991.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Daniel Selsam. Neural Networks and the Satisfiability Problem. Stanford University, 2019.

Jiwoo Son, Zhikai Zhao, Federico Berto, Chuanbo Hua, Changhyun Kwon, and Jinkyoo Park. Neu-
ral combinatorial optimization for real-world routing. arXiv preprint arXiv:2503.16159, 2025.

11

https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in neural information processing systems, 36:3706–3731, 2023.

Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
evolution of heuristic using large language model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 27144–27152, 2025.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EVOLUTION STRATEGY

In this section, we introduce the evolutionary strategies that guide mutation within EvoPH, ranging
from parameter modification to completely rewrite. These strategies, embedded in the prompt de-
sign, balance stability with exploration, ensuring effective heuristics evolution. The complete set
and their respective roles are summarized below:

• Parameter modification. The most conservative strategy instructs LLM to focus on iden-
tifying and fine-tuning hard-coded constants, thresholds, or hyper-parameters in the algo-
rithm to explore the potential of existing algorithms without changing the core logic.

• Redundancy Removal. Focuses on algorithm optimization and efficiency, requiring LLM
to analyze and remove unnecessary calculations, repeated logical judgments, or simplified
code snippets to improve algorithm execution efficiency.

• Structural modification. A moderately exploratory strategy that guides LLM to adjust the
existing code structure, such as changing the nesting of loops, replacing data structures, or
adjusting the order of function calls.

• Heuristic rewrite. A more radical strategy requires LLM to identify a core heuristic rule
or submodule in the algorithm and try to rewrite it with a completely new, functionally
equivalent or better logic, aiming to achieve innovation in key steps.

• Completely rewrite. The most exploratory strategy, instructing LLM to completely aban-
don the existing implementation and write a completely new version from scratch while
retaining the original algorithm intent (solving a specific problem). This strategy is used to
make a disruptive attempt when the evolution has reached a serious stagnation.

A.2 INITIAL HEURISTICS FOR EVOLUTION

A.2.1 HEURISTIC ALGORITHM FOR TSP

This subsection introduces several representative heuristic algorithms for the TSP, ranging from
simple greedy methods to more sophisticated approaches with theoretical guarantees.

• Nearest Neighbor. The Nearest Neighbor algorithm is a simple greedy heuristic that con-
structs a tour by starting at an arbitrary city and repeatedly traveling to the closest unvisited
city. This process continues until every city has been visited, at which point the tour is
completed by returning to the starting city.

• Nearest Insertion. The Nearest Insertion algorithm builds a tour incrementally by starting
with a small sub-tour of two cities and progressively adding more. In each step, it identifies
the unvisited city that is closest to any city already on the sub-tour and then inserts it into
the position along the tour’s edge that causes the smallest increase in total length. This
process is repeated until all cities have been incorporated into the tour.

• Farthest Insertion. The Farthest Insertion algorithm also builds a tour incrementally but
uses an opposite selection criterion from Nearest Insertion. It starts with a small sub-tour
and, at each step, selects the unvisited city that is the farthest from any city currently in the
sub-tour. It then inserts this selected city into the edge of the sub-tour that results in the
least additional travel distance.

• Random Insertion. The Random Insertion algorithm constructs a tour by starting with a
small initial sub-tour and then inserting the remaining cities one by one in a completely
random order. For each randomly selected city, the algorithm evaluates all possible inser-
tion points along the edges of the current sub-tour and places the city in the position that
minimizes the increase in the tour’s total length.

• 2-Opt. The 2-Opt algorithm is an improvement heuristic designed to refine an existing tour
by systematically eliminating edge crossings. It works by iteratively selecting two non-
adjacent edges in the tour and checking if swapping their endpoints to reconnect the path
in a different order would shorten the total distance. If a beneficial swap is found, the tour

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

is updated, and the process is repeated until no more length-reducing swaps are possible,
resulting in a locally optimal solution.

• Christofides Algorithm. The Christofides algorithm is an advanced heuristic that provides
a theoretical performance guarantee, ensuring the resulting tour is no more than 1.5 times
the length of the optimal solution. It operates by first creating a Minimum Spanning Tree
(MST) of all cities, then identifying all vertices with an odd degree and finding a minimum-
weight perfect matching for them. By combining the MST and the matching, it forms an
Eulerian circuit, which is then converted into a valid TSP tour by taking shortcuts to avoid
revisiting cities.

A.2.2 HEURISTIC ALGORITHM FOR BPP

This subsection presents several classical heuristic algorithms for the BPP, highlighting their strate-
gies for item placement and trade-offs between efficiency and packing quality.

• First Fit. The First Fit algorithm is an intuitive online algorithm. It processes each item
sequentially and places it in the first bin with enough free space. If no bins are found that
can hold the item, the algorithm moves to a new, empty bin and places the item there.

• Best Fit. The Best Fit algorithm aims to use space most efficiently. For each item, it
searches for the box that can accommodate it and has the least amount of remaining space,
also known as the “most compact” box. If all existing boxes cannot accommodate it, it will
open a new box. This strategy attempts to avoid leaving large, unusable fragmented spaces
in the box, but because it needs to check all boxes, it is slightly slower than the first fit
algorithm.

• Next Fit. The Next Fit algorithm is the simplest and fastest heuristic, but it’s generally the
least efficient. It maintains a single, “current” active chest and attempts to place the next
item into it. If it fits, it does so. If not, the algorithm simply “closes” the current chest (no
longer considering it) and opens a new one for the item.

• Worst Fit. The Worst Fit algorithm is the inverse of the best-fit strategy. For each item, it
searches for the bin with the largest remaining space that can accommodate it. The goal is
to preserve a large, contiguous area to accommodate potentially large items in the future.
However, this strategy often performs poorly in practice because it tends to prematurely
occupy multiple bins, resulting in inefficient overall packing.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 PROMPT USED IN EVOLUTION

In this section, we present the initialization and evolution prompts that guide the EvoPH framework.
Specifically, the initialization prompts for the TSP and the BPP define the evolutionary objectives,
optimization metrics, and implementation directives for the respective tasks. In addition, a meta-
level prompt is introduced to refine existing prompts based on execution feedback and performance
indicators. These prompts, which serve as the foundation for both algorithmic evolution and reflec-
tive prompt refinement, are illustrated in Figure 6.

You are a top expert in combinatorial optimization and algorithms. Your task is to **iteratively evolve and refine** an existing Python function,

`solve_tsp_approximate(dist_matrix)`, to solve the Traveling Salesperson Problem (TSP).

Evolutionary Goal

Your primary objective is to enhance the provided function in each evolutionary step, pushing it towards the optimal balance of solution quality and

speed. Assume you are receiving a function that already exists and needs improvement.

Key Optimization Metrics

Your success is measured on a trade-off between two competing goals:

1. **Minimize Relative Error (Solution Quality)**: The solution's path length must be as close to the known optimum as possible. This is the top

priority.

2. **Minimize Execution Time (Computational Efficiency)**: The function must execute extremely quickly within the evaluator's strict time limit. A

faster solution is often better than a marginally more accurate but slower one.

Your Evolutionary Directives

In each round, you must analyze the function provided to you and then rewrite it to be better. Follow this process:

1. **Analyze**: Quickly understand the current function's strategy. What heuristic is it using? What are its potential weaknesses (e.g., slow loops, a

simple heuristic that gets stuck)?

2. **Strategize**: Decide on the best evolutionary step.

* Is the current algorithm good but implemented inefficiently? **Refine it** by optimizing loops or using better data structures.

* Is the algorithm too basic? **Replace it** with a more powerful one from the toolbox.

* Does the function already have a strong local search? **Enhance it** .

* Can two ideas be combined? **Hybridize** different techniques for a better result.

3. **Implement**: Rewrite the function with your proposed improvements, ensuring it remains robust and efficient.

Performance & Implementation Tips

* **NumPy is Your Friend**: Always favor `NumPy` for vectorized and matrix operations to maximize speed.

* **Smart Search**: For local search, a "first improvement" strategy (find one good swap and restart the search) is often faster than "best

improvement" (testing all possible swaps).

* **Time-Awareness**: The best algorithms are useless if they time out. The function must return a solution within the time limit.

* **Complete provision**:Provide complete and executable code, The input parsing of the main function and data needs to be completely consistent

with the source code.

(a) Prompt template for iteratively evolving heuristics on the TSP.
You are a world-class authority on combinatorial optimization and high-performance computing. Your mission is to **iteratively transform and

perfect** an existing Python function to solve the Bin Packing Problem (BPP). The function you evolve must strictly adhere to the signature:

`solve(capacity, items)`

Evolutionary Goal

Your primary directive is to continuously enhance the provided function, treating each version as a candidate in an evolutionary process. The ultimate

aim is to produce a solution that achieves the lowest possible number of bins for any given problem instance. You are improving upon existing work, not

starting from scratch.

Key Optimization Metrics

Your performance is judged on this critical, prioritized metrics:

Minimize Relative Error (The Primary Objective): The absolute priority is to minimize the number of bins used. The closer this number is to the

theoretical optimum, the higher the quality of the solution.

Your Evolutionary Directives

In each evolutionary cycle, dissect the current function and rebuild it to be superior. Adhere to this methodology:

1. **Analyze**: Evaluate the incumbent function's methodology. Is it a simple, non-sorted greedy algorithm? Does it handle large items effectively?

Identify its primary limitation.

2. **Strategize**: Formulate a clear plan for the next evolutionary leap, considering a hierarchy of improvements like adding sorting (FFD/BFD),

introducing advanced heuristics (RFF, Grouping), or adding post-hoc optimization.

3. **Implement**: Rewrite the `solve` function to incorporate your new strategy.

Performance & Implementation Tips for BPP

* **Adhere to the Capacity Constraint**: This is the fundamental rule of BPP. The sum of item sizes in any bin must **never** exceed `capacity`. Every

item provided must be packed.

* **Core BPP Concepts**: Leverage the "offline" advantage by pre-sorting items. Aim to build upon "Decreasing" heuristics like FFD and BFD as a

baseline.

(b) Prompt template for iteratively evolving heuristics on the BPP.
You are an expert in optimizing prompt words. Please analyze the following information and generate a better system prompt:

Original prompt words:

{original_prompt}

Parent program metrics:

{json.dumps(parent_metrics, indent=2)}

Child program indicators:

{json.dumps(child_metrics, indent=2)}

Complete dialogue history:

{json.dumps(history_entry, indent=2)}

###Requirement:

1. If the subroutine performs worse, point out the defect of the original prompt word

2. Generate an improved system prompt (output directly without explanation)

3. Keep prompt words concise and effective, focus on code evolution tasks

4. The format of the generated prompt should be as similar as possible to the initial prompt

5. If the code execution is effective, generate prompt words to prompt improvement. If the code execution fails (i.e. returns a large negative value),

generate prompt words to prompt correction of errors in the code

6. Generate system prompt words that are more detailed than the initial system prompt words as much as possible, with more information that can be

included in the prompt words

7. Keep the role description section(first part) unchanged

(c) Meta-prompt designed to refine and improve existing prompts based on execu-
tion feedback and performance metrics.

Figure 6: Initialization and evolution prompts used in EvoPH

15

	Introduction
	Related work
	Preliminaries
	Traveling Salesman Problem and Bin Packing Problem
	Automatic Heuristics Design

	Method
	Heuristics Evolution
	Prompt Evolution
	Comparison to Previous Work

	Experiment
	Dataset Construction
	Experiment setup
	Experiment Result
	Main Result
	Ablation Results

	Robustness and Effective of EvoPH
	Case Study

	Conclusion
	Ethics statement
	Reproducibility Statement
	Appendix
	Evolution strategy
	Initial heuristics for evolution
	Heuristic algorithm for TSP
	Heuristic algorithm for BPP

	Prompt used in evolution

