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ABSTRACT

Large Language Models (LLMs), with their exceptional ability to handle a wide
range of tasks, have driven significant advancements in tackling reasoning and
planning tasks, wherein decomposing complex problems into executable workflows
is a crucial step in this process. Existing workflow evaluation frameworks either
focus solely on holistic performance or suffer from limitations such as restricted
scenario coverage, simplistic workflow structures, and lax evaluation standards. To
this end, we introduce WORFBENCH, a unified workflow generation benchmark
with multi-faceted scenarios and intricate graph workflow structures. Additionally,
we present WORFEVAL, a systemic evaluation protocol utilizing subsequence and
subgraph matching algorithms to accurately quantify the LLM agent’s workflow
generation capabilities. Through comprehensive evaluations across different types
of LLMs, we discover distinct gaps between the sequence planning capabilities
and graph planning capabilities of LLM agents, with even GPT-4 exhibiting a
gap of around 15%. We also train two open-source models and evaluate their
generalization abilities on held-out tasks. Furthermore, we observe that the gener-
ated workflows can enhance downstream tasks, enabling them to achieve superior
performance with less time during inference.

“If you can’t describe what you are doing as a process, you don’t know what you’re doing.”
— W. Edwards Deming

1 INTRODUCTION

The remarkable advances in Large Language Models (LLMs) (Dubey et al., 2024; Yang et al., 2024a;
OpenAI, 2024) are gradually recovering the considerable potential of LLM-driven agents towards
tackling complex real-world problems, such as function calls (Qin et al., 2024; Tang et al., 2023;
Qu et al., 2024; Liu et al., 2024a), embodied planning (Song et al., 2023; Zeng et al., 2024a; Xiang
et al., 2023; Song et al., 2024; Qiao et al., 2024a), code generation (Hong et al., 2024; Qian et al.,
2023; Zhang et al., 2024c), etc., wherein decomposing complex problems into executable-granularity
subtasks is a crucial capability that LLM agents must possess to achieve practically deployable.

Check if  the emails admin@site.com and manager @site.com are disposable and 
get their MX records.

Planning Steps: 
1: Check if  the email admin@site.com is disposable 
2: Check if  the email manager@site.com is disposable 
3: Get the MX records for the email admin@site.com 
4: Get the MX records for the email manager@site.com.

START END1 2 3 4 START END
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Chain-of-Thought Augmentation Structured Prior Knowledge

Sequential Execution Inefficient Parallel Execution Efficient

The Application of  Workflow

Parallel Planning Steps Shorten Planning Steps

Figure 1: Workflow and its application.

A set of subtasks with execution dependencies is
typically referred to as a workflow. Workflows can
serve as an intermediate state for solving complex
tasks, aiding agents in bridging the gap between
tasks and specific executable actions (Wang et al.,
2024b). Moreover, an explicit workflow can enhance
the agent’s debuggability and interpretability, facil-
itating human-machine interaction. Many previous
studies have examined the potential of LLMs for au-
tomatic workflow generation (Zeng et al., 2023; Ye
et al., 2023; Xue et al., 2024; Li et al., 2024d). Recent
researchers in the realm of LLM agents emphasize
workflows as a form of prior knowledge or experi-
ence, guiding agent planning to avoid the occurrence of hallucinations (Zhu et al., 2024; Xiao et al.,
2024; Wang et al., 2024b). As for benchmarks in this field, most works are confined to the end-to-end
planning ability of LLM agents (Qin et al., 2024; Patil et al., 2023; Yang et al., 2023b; Wu et al.,
2024; Liu et al., 2024c), while only a few studies attempt to evaluate the workflow generation
(problem decomposition) capability from a finer granularity perspective (Shen et al., 2023b; Chen
et al., 2024; Ye et al., 2024; Zheng et al., 2024a; Valmeekam et al., 2023). However, the current
evaluation benchmarks unavoidably suffer from the following issues: 1) Limited scope of scenarios.
They only focus on function calling or reasoning tasks. 2) Sole emphasis on linear relationships
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between subtasks (Figure 1 left). Real-world scenarios often involve more complex graph structures,
including parallelism. 3) Evaluations heavily rely on GPT-3.5/4, yet LLM themselves exhibit
hallucinations and ambiguity. These limitations make the evaluation of workflow generation lack
some systematicity. Therefore, to address the above issues, we introduce WORFBENCH, a unified
workflow generation benchmark with the following features:

• Multi-faceted scenarios. We cover four complex scenarios for LLM agents, including problem-
solving, function calling, embodied planning, and open-grounded planning. The dataset comprises
18k training samples, 2146 test samples, and 723 held-out tasks to evaluate generalization.

• Complex workflow structures. We model the workflows as Directed Acyclic Graphs based on
dependencies between subtasks, enabling a more precise representation of complicated serial or
parallel structures in the real world (Figure 1 right).

• Strict quality control and data filtering. We introduce an intermediary structure called node chain
between the original task and the workflow graph and employ the Topological Sorting algorithm
for rigorous validation of the graph structure followed by human evaluation.

• Accurate quantitative evaluation. We further propose WORFEVAL to evaluate the workflow
generation ability of LLM agents, which applies developed subsequence and subgraph matching
algorithms for accurate quantitative assessment.

We evaluate the performance of most mainstream LLMs with various model scales on WORFBENCH.
We observe that, compared to linear structures, the models’ ability to predict graph-structured
workflows falls far short of real-world requirements, with even GPT-4 (OpenAI, 2023) only achieving
a performance of 52.47%. Furthermore, we train two open-sourced models on the training set and
evaluate their generalization abilities on held-out tasks. Finally, we analyze how workflows can
enhance end-to-end model performance as CoT (Wei et al., 2022) augmentation and prior knowledge,
reducing end-to-end inference time by paralleling and shortening planning steps (Figure 1 bottom).

To sum up, we summarize our main contributions as follows:

• We propose WORFBENCH, a unified workflow generation benchmark with multi-faceted scenarios
and complex workflow structures. We conduct strict data filtering and human evaluation to ensure
the quality of WORFBENCH.

• We introduce WORFEVAL, using effective subsequence and subgraph matching algorithms to
evaluate the workflow generation ability of LLM agents from both chain and graph structures.

• We conduct comprehensive evaluation on various closed-sourced and open-sourced models with
different scales. We further exploit the generated workflows to facilitate downstream tasks and
achieve superior and efficient performance.

2 WORFBENCH

2.1 TASK FORMULATION

Given a specific task and a candidate action list, our goal is to enable the language agents to generate
a graph-structured workflow, where the nodes in the workflow satisfy the minimum executable
granularity. Our action list here can include function APIs, tools, embodied actions, or mixture of the
above to simultaneously adapt various scenarios. Formally, given the task description q, action list A
and language agentsMθ, the workflow generation can be modeled as:

G(V, E)←Mθ(q,A), (1)
where G is a Directed Acyclic Graph (DAG) with nodes V = {v1, v2, ..., v|V|} being subtasks and
edges E = {(vi, vj)}, 1 ≤ i ̸= j ≤ n representing the execution relationships between nodes
(vj must be executed after vi). Note that all nodes V need to be executed according to their
dependencies before task q is considered completed. It is evidently a bit challenging to directly
instruct the language agents to generate a graph structure. To accommodate the generation habits of
language models, we introduce the node chain C(V) before graph G(V, E):

G(V, E)← C(V)←Mθ(q,A). (2)
Here node chain C is one of the Topological Sequences of graph G, where the order of nodes in the
node chain ensures the relative order of nodes in the graph. Thus, the workflow graph generation can
be reformulated by first creating a node chain and then establishing edges for the generated nodes.

2
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Sector 1: Benchmark Construction Sector 2: Quality Control

Sector 3: WorFEval

“How to pack a carry on bag full of fun for a long 
plane ride?”(Open-Grounded)


“Put a clean soap bar in toilet.”(Embodied)

“Who is the present food minister of the state 

where Kankumbi is located?”(Problem-Solving)

“What is the precipitation forecast for the next 7 

days in Seattle?”(Function Call)
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Sector 4: A Detailed Case in WorFBench

Task:

Check if the emails admin@site.com and manager@site.com are 
disposable and get their MX records.

The action list you can select from:

{name: check_for_disposable_emails, description: …, parameters: …}

{name: validate_email, description: …, parameters: …}

{name: get_the_mx_records, description: …, parameters: …}

{name: normalize, description: …, parameters: …}

Node:

1: Check if the email admin@site.com is disposable.

2: Check if the email manager@site.com is disposable.

3: Get the MX records for the email admin@site.com.

4: Get the MX records for the email manager@site.com.

Edge:

(START,1) (START,2) (1,3) (2,4) (3,END) (4,END)
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(numbered by index)
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Input
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Figure 2: The overview framework of our WORFBENCH. Sector 1 is the benchmark construction where
we first synthesize the node chain and then the workflow graph (§2.2). Sector 2 is our data filtering process
(§2.3). Sector 3 describes the algorithms in WORFEVAL to evaluate the predicted workflow of LLM agents
(§2.4). Sector 4 is a detailed data point of our WORFBENCH. Note that each node in this figure is uniquely
identified by its color. Numbers on the nodes represent their indexes in the gold chain. Nodes matched with gold
chain or graph are circled by in Sector 3.

2.2 BENCHMARK CONSTRUCTION

We mainly collect various tasks q and the corresponding action lists A from existing well-known
datasets. To facilitate a better understanding of the benchmark construction, we provide a detailed
exposition of each dataset utilized in our paper in Appendix A.1. To ensure the quality of the data,
we also adhere to the strategy of first constructing the node chain and then building the workflow
graph during benchmark construction. Depending on the varied ways of acquiring workflow nodes in
different scenarios, we categorize node chain C construction into the three following types:

Function Call Tasks. Our function call data is collected from ToolBench (Qin et al., 2024) and
ToolAlpaca (Tang et al., 2023), both of which involve combining different functions to accomplish
multi-step user tasks. As the two datasets only have golden function calls for each task, to make the
synthesized node chain more reasonable, following the thought-action-observation REACT (Yao
et al., 2023) format, we first utilize GPT-4 to reverse-engineer the thought based on the given function
call (action) and then execute the function call to obtain the observation. Next, we carefully design
the few-shot prompt for GPT-4 to generate the node (subtask) for each step based on its thought-
action-observation loop. By iterating through all the function call steps, we can obtain the node chain
for the specific task. In addition, we also include Seal-Tools (Wu et al., 2024) as the held-out tasks,
where the construction of the node chain follows the same process as described above.

Embodied Tasks. We collect the REACT format gold trajectories of ALFWorld (Shridhar et al.,
2021) and WebShop (Yao et al., 2022) from ETO (Song et al., 2024) and OS (Liu et al., 2024b) from
AgentInstruct (Zeng et al., 2024a). Unlike function call tasks, where each function call corresponds
to a node, embodied scenarios evolve dynamically based on the environment. It is hard to decompose
tasks into a one-node-per-action granularity solely based on the initial environment. Therefore,
we can only decompose tasks into a fixed granularity based on the task and initial environmental
information available. However, the advantage of embodied tasks is that the workflows of the same
kind of tasks are similar. So for each kind of task, we seriously analyze and manually design few-shot
examples, enabling GPT-4 to synthesize node chains directly based on the gold trajectories. Similarly,
we also include InterCodeSQL (Yang et al., 2023a) as held-out tasks for embodied scenarios.

Problem-Solving and Open-Grounded Tasks. We also introduce problem-solving tasks
like math, commonsense, and multimodal reasoning tasks from LUMOS (Yin et al., 2024), as well
as a challenging general open-grounded dataset, WikiHow (Koupaee & Wang, 2018). Since the
LUMOS-O version of LUMOS and the WikiHow have already contained gold planning chains, we
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directly process them into the unified format we require. Furthermore, since WikiHow does not
provide candidate action lists, we use the specific task as the query to retrieve the most similar actions
in the public action library as distractors and then mix the distractors with the gold actions to create
the action list. The aim of retrieving similar actions is to increase the difficulty of the task.

After obtaining the node chain C(V), we further use GPT-4 to generate edges for the node chain.
Since each node is a piece of text describing a subtask, it is formally difficult to add edges to the text
directly. Thus, we sequentially assign numbers to the nodes in the node chain and use these numbers
instead of the node text when generating edges (e.g. (i, j) instead of (vi, vj)). All the generated
edges finally form G(V, E). For ease of evaluation, we add the START and END nodes to represent
the beginning and end of a workflow. A detailed data point is illustrated in Figure 2 Sector 4. All the
detailed prompts we use during the benchmark construction process can be found in Appendix A.7.

2.3 QUALITY CONTROL

Although we use GPT-4 to synthesize workflows, rationality still cannot be guaranteed. So we conduct
restricted quality controls and data filtering for both node chain and workflow graph generation.
Quality Control for Node Chain. Due to the low variability of the node chains in embodied tasks,
our primary focus lies in filtering the node chain of function call tasks. Two critical factors are
whether the order of nodes is logical and whether each node accurately decomposes the task. The
former has been guaranteed when constructing the node chain based on the sequence of gold function
calls. For the latter, we use each synthesized node as a query to retrieve the function list. If one node
within the node chain retrieves a function that does not align with the gold, we will discard this task.
We filter out 15.36% data through the quality control for the node chain.
Quality Control for Workflow Graph. The key priority is to ensure that the order of nodes in
the workflow graph is consistent with the order of nodes in the node chain. Therefore, we perform
a Topological Sort on the graph generated by GPT-4. Since the topological sort of a graph is not
unique, to ensure uniqueness and facilitate matching with the node chain, during the topological
sorting process, when there are multiple nodes with an in-degree of 0 in the graph, we sequentially
remove them in ascending order based on their node number defined in node chain. We discard the
data points with topological sorting results not aligned with node chains. We filter out 29.77% data
through the quality control for the workflow graph.

To ensure complexity, we filter out data points with only 1 node or 1 edge. Furthermore, to maintain
data balance across different scenarios, we randomly sample datasets with excessive data volume,
subsequently dividing them into training and testing sets. Then we manually check the test set for a
fair and effective evaluation (The detailed human verification process can be found in Appendix A.2).
The final data statistics are outlined in Appendix A.3.

2.4 WORFEVAL

To ensure accuracy, apart from utilizing GPT-4 or simple semantic similarity matching, we quantita-
tively evaluate both the node chain and workflow graph using restrict algorithms. To compare the
differences between the predicted and gold chain/graph, a natural approach is to use sequence/graph
matching algorithms to find the maximum common subsequence/subgraph between the predicted and
gold chain/graph. A key aspect of this is to identify the correspondence between the predicted and
gold nodes. The following is a detailed introduction to this process.

Assuming the nodes and edges of the gold workflow are denoted as Vg = [vg1 , v
g
2 , ..., v

g
|Vg|] and Eg =

[eg1, e
g
2, ..., e

g
|Eg|], while the agent predicted nodes and edges are represented as Vp = [vp1 , v

p
2 , ..., v

p
|Vp|]

and Ep = [ep1, e
p
2, ..., e

p
|Ep|]. Firstly, we calculate the similarity matrix S between Vg and Vp:

Si,j =

{
σ(vgi , v

p
j ), σ(vgi , v

p
j ) ≥ β

0, σ(vgi , v
p
j ) < β

(3)

Here, 1 ≤ i ≤ |Vg|, 1 ≤ j ≤ |Vp|. σ represents the cosine similarity function and in this paper, we
encode the semantics of nodes using Sentence-BERT1 (Reimers & Gurevych, 2019). β serves as a
threshold, and we consider two nodes to be semantically matched only when their similarity is greater

1all-mpnet-base-v2: https://huggingface.co/sentence-transformers/
all-mpnet-base-v2. This model is also used as the retriever in benchmark construction process.
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than or equal to β. Therefore, S can be viewed as a bipartite graph, where one part consists of gold
nodes and the other part consists of predicted nodes. Since a predicted node may match multiple gold
nodes and a gold node may be matched by multiple predicted nodes, we utilize a max-weighted
bipartite matching algorithm (Hopcroft & Karp, 1973) to find the best matches. Ultimately, the
matched gold nodes and predicted nodes form two new node sets Vg′ ⊆ Vg and Vp′ ⊆ Vp, where
the nodes in Vp′

and the nodes in Vg′
correspond one-to-one. After obtaining the aforementioned

variables, we proceed to evaluate both the node chain and workflow graph predicted by the agent.

Node Chain. Supposing the agent’s predicted node chain is C(Vp), based on the gold workflow
graph G(Vg, Eg), we can obtain all its possible topological sequences {C(Vg)1, C(Vg)2, ..., C(Vg)n}2.
Assuming C(Vp′

) is a permutation of Vp′
such that it forms a subsequence of C(Vp), and considering

the one-to-one mapping between Vp′
and Vg′

, we can derive a sequence C(Vg′
) that aligns in order

with C(Vp′
). Next, following Chen et al. (2024), based on the indexes of Vg′

in C(Vg)i, 1 ≤ i ≤ n,
we can calculate a Longest Increasing Subsequence (LIS)3 li of C(Vg′

) for each C(Vg)i:

li = LIS
(
C(Vg′

), C(Vg)i
)

(4)

Then, l = max(|l1|, |l2|, ..., |ln|) is obtained to represent the length of the longest valid subsequence
for the agent’s predicted node chain C(Vp). Finally, the score for the node chain is denoted as:

f1chain =
2pchainrchain
pchain + rchain

, pchain =
l

|Vp|
, rchain =

l

|Vg|
, (5)

where pchain and rchain are the precision and recall of the generated node chain respectively.

Workflow Graph. Based on Vp′
, we can derive the subgraph G(Vp′

, Ep′
), where Ep′

satisfies
Ep′ ⊆ Ep and ∀(vi, vj) ∈ Ep

′
, vi, vj ∈ Vp′

. By once again leveraging the one-to-one correspondence
between Vp′

and Vg′
, we can utilize the Maximum Common Induced Subgraph (MCIS)4 matching

algorithm to find the maximum match between G(Vp′
, Ep′

) and G(Vg, Eg):

Gmcis(Vmcis, Emcis) = MCIS
(
G(Vp′

, Ep
′
),G(Vg, Eg)

)
(6)

Assuming the number of nodes in this maximum common induced subgraph is k = |Vmcis|, the score
for the agent-generated workflow graph is denoted as:

f1graph =
2pgraphrgraph
pgraph + rgraph

, pgraph =
k

|Vp|
, rgraph =

k

|Vg|
, (7)

where pgraph and rgraph are the precision and recall of the generated workflow graph respectively.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

To comprehensively evaluate the workflow generation capabilities of existing LLM agents,
we validate a total number of 18 models on the test set of WORFBENCH, including:
1) Four representative closed-sourced LMs: O1 (o1-preview) (OpenAI, 2024), GPT-4
(gpt-4-turbo-2024-04-09) (OpenAI, 2023), GPT-3.5 (gpt-3.5-turbo-0125) (OpenAI,
2022), and Claude-3.5 (claude-3.5-sonnet-1022) (Anthropic, 2024). 2) Fifteen state-of-the-
art open-sourced LMs ranging from 7B to 72B: Llama series models and their variants, Llama-
3.1-{8,70}B (Meta-Llama-3.1-{8,70}B-Instruct) (Dubey et al., 2024), Llama-2-13B
(Llama-2-13b-chat-hf) (Touvron et al., 2023), Vicuna-13B (vicuna-13b-v1.5) (Zheng
et al., 2023), and WizardLM-{13,70}B (WizardLM-13B-V1.2 and WizardLM-70B-V1.0)
(Xu et al., 2024); Qwen series models, Qwen-2-{7,72}B (Qwen2-{7,72}B-Instruct)

2When the number of nodes and edges is considerable, traversing all possible topological orders of a graph
becomes a high time complexity issue. Therefore, we limit the output to a maximum of 20 topological orders.

3https://en.wikipedia.org/wiki/Longest_increasing_subsequence
4https://en.wikipedia.org/wiki/Maximum_common_induced_subgraph
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Table 1: Main Results. We evaluate all the models with identical carefully designed instructions and two-shot
examples. We categorize the models based on whether the models are open-source and their scales. The best
results for each category are marked in bold, and the second-best results are marked with underline.

Model Function Call Problem-Solving Embodied Open-Grounded Average
f1chain f1graph f1chain f1graph f1chain f1graph f1chain f1graph f1chain f1graph

Closed-Sourced

Claude-3.5 66.44 55.06 67.28 55.50 71.74 56.71 61.33 42.88 66.70 52.53
GPT-3.5 73.36 60.32 69.86 54.50 64.57 49.17 47.67 28.10 63.86 48.02
GPT-4 74.87 62.11 67.18 55.24 70.94 56.17 56.30 36.36 67.32 52.47
O1 70.68 57.11 72.76 59.25 69.90 54.19 53.47 35.97 66.70 51.63

Open-Sourced

GLM-4-9B 59.27 36.34 58.91 40.15 53.17 36.15 44.04 22.56 53.85 33.80
Phi-3-small 57.66 40.71 55.76 39.75 54.77 37.52 44.65 22.66 53.21 35.16
Llama-3.1-8B 63.30 43.62 64.49 46.79 56.23 36.40 44.58 25.48 57.15 38.08
Mistral-7B 67.30 51.67 61.27 45.35 64.59 48.83 40.97 21.48 58.53 41.83
Qwen-2-7B 70.79 55.50 68.65 52.13 62.83 46.25 39.29 20.89 60.39 43.69
InternLM-2.5-7B 68.43 52.99 72.92 57.80 65.77 48.09 40.84 21.27 61.99 45.03
Llama-2-13B 53.32 34.33 53.74 38.69 44.27 30.55 37.17 23.14 47.12 31.68
WizardLM-13B 55.78 36.94 65.42 49.71 55.41 37.34 37.23 21.66 53.46 36.41
Vicuna-13B 53.75 37.66 64.58 50.25 57.99 42.61 38.93 23.11 53.81 38.41
Qwen-1.5-14B 65.73 46.86 58.80 43.89 60.55 44.14 41.73 21.44 56.70 39.08
Phi-3-medium 67.71 47.26 71.15 54.85 65.11 49.99 42.73 23.77 61.68 43.97
WizardLM-70B 63.47 45.46 63.92 47.93 59.15 42.87 45.27 26.89 57.95 40.79
Mixtral-8×7B 66.13 48.83 71.89 57.58 72.08 54.94 42.96 23.21 63.26 46.14
Llama-3.1-70B 64.41 52.72 70.37 57.05 69.98 55.52 53.64 33.06 64.60 49.59
Qwen-2-72B 71.67 52.31 70.63 58.13 73.24 58.49 53.43 32.89 67.24 50.46

(Yang et al., 2024a) and Qwen-1.5-14B (Qwen1.5-14B-Chat) (Bai et al., 2023); Mistral se-
ries models, Mistral-7B (Mistral-7B-Instruct-v0.2) (Jiang et al., 2023) and Mixtral-
8×7B (Mixtral-8x7B-Instruct-v0.1) (Jiang et al., 2024); Phi series models, Phi-3-
{small, medium} (Phi-3-{small,medium}-128k-instruct) (Abdin et al., 2024); other
models including GLM-4-9B (glm-4-9b-chat) (Zeng et al., 2024b) and InternLM-2.5-7B
(internlm2.5-7b-chat) (Cai et al., 2024).

We evaluate all the models using the LlamaFactory (Zheng et al., 2024b) framework with two-shot
prompting. For models above 70B parameters, we utilize vLLM (Kwon et al., 2023) to accelerate
inference. The hyperparameters used during decoding are all set to default values except for the
temperature, which is 0.5. For all the models, the semantically matching threshold β is set to 0.6.

3.2 MAIN RESULTS

Table 1 displays our detailed experimental results. With the help of this table, we aim to analyze the
following four research questions.

Q1: Which is more challenging for LLM agents, linear planning or graph planning? For
each kind of task, we show both the node chain score f1chain and workflow graph score f1graph,
representing the linear planning and graph planning abilities of LLM agents respectively. It can be
observed that the workflow graph scores of all models are significantly lower than the node chain
scores, with the largest disparity found in GLM-4-9B, reaching an average difference of 20.05%.
Even the model with the smallest difference, Llama-3.1-70B, exhibits a difference of 15.01%. We
also explore what will happen if we provide the gold node chains to the agents and task it solely
with predicting the edges of the workflow graph (in Appendix A.4 Table 5). Despite the noticeable
improvement after being provided with node chains, the model’s performance in graph planning
is still unsatisfactory, aligning with our analysis in Q4 Figure 4. So it appears that graph planning
is more challenging than linear planning, and overall, the graph planning capability of models is
positively correlated with their linear planning capability. However, there are also several exceptions
to this trend. For instance, in the reasoning tasks, Qwen-2-72B has a lower f1chain compared to
Mixtral-8×7B, but it leads in f1graph. On the other hand, in function call tasks, although Qwen-2-72B
has a more satisfying f1chain, its f1graph is lower than that of Llama-3.1-70B.
Q2: How is Scaling Law manifested in workflow generation? Model size, training data scale,
and training time are three crucial indicators of the Scaling Law (Kaplan et al., 2020). For open-source
models, we categorize them into three groups based on model size: around 7B, 13B, and 70B. By
observing the performance of models within the same series, we can discern the power of model
size for workflow generation. For instance, in the Qwen-2 series, the 72B model outperforms the
7B model by 6.77% in f1graph; in the Llama-3.1 series, the 70B model surpasses the 8B model
by 11.51%. An unconventional phenomenon is that some 7B models outperform the majority of
13B models. One reason for this is that most of the selected 7B models were released within the
past six months, and trained on a greater amount of high-quality data, which is crucial for workflow
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Figure 3: Performance Distribution of GPT-4. The
distribution of f1chain for the number of nodes and
the distribution of f1graph for the number of edges.

Table 2: Generalization Results of fine-tuned (FT)
models on held-out tasks compared to baselines.

Model
Held-in Tasks Held-out Tasks

Average Seal-Tools InterCodeSQL
fchain fgraph fchain fgraph fchain fgraph

GPT-3.5 63.86 48.02 95.91 76.63 65.30 53.07
GPT-4 67.32 52.47 96.58 80.25 66.35 54.36
Qwen-2-7B 60.39 43.69 92.68 74.75 54.20 39.72
InternLM-2.5-7B 61.99 45.03 93.07 74.43 55.06 42.20
Phi-3-medium 61.68 43.97 94.11 79.45 58.45 46.62

Llama-3.1-70B 64.60 49.59 94.40 80.11 63.49 53.66
Qwen-2-72B 67.24 50.46 94.47 78.90 63.86 52.47

Qwen-2-7B+FT 79.35 70.38 96.49 82.82 62.37 48.72
InternLM-2.5-7B+FT 78.98 69.33 95.83 83.72 63.78 50.97

generation. In contrast, the 13B models were mostly released last year, and their training data and
techniques may have become outdated. Another possible reason is our speculation that models around
13B may have reached a point where the trade-off between training costs and model effectiveness has
become challenging to navigate. This could also explain why there have been few models of this
scale released in the past six months in the open-source community.
Q3: How far are existing LLM agents from being real workflow planning experts? Even
though the node chains and workflow graphs are synthesized by GPT-4 in our benchmark, after
we remove the gold trajectories and let it generate directly, its absolute performance in f1chain and
f1graph averages only 67.32% and 52.47%, respectively. In the challenging open-grounded tasks,
the top performer, Claude-3.5, only achieves 61.33% and 42.88%, which is far from the level of a
practical and deployable workflow planner. The current most powerful reasoning model O1 (OpenAI,
2024) only performs relatively well on problem-solving (reasoning) tasks, falling short on other tasks
that require more environmental knowledge. In addition, we analyze the performance of GPT-4
across different numbers of nodes and edges in workflow, as shown in Figure 3. With the increase of
nodes and edges, both the f1chain and f1graph performance of GPT-4 tend to decline, with occasional
brief spikes likely caused by uneven sample distribution. Therefore, for complex planning tasks with
more planning steps, the performance of GPT-4 is unsatisfying no matter for linear planning or graph
planning, let alone other models. This is clearly inadequate for many complex real-world scenarios,
which is why many agent architectures are currently only at the theoretical level.

Furthermore, we attempt to train the 7B models Qwen-2-7B and InternLM-2.5-7B (both models show
excellent performance in Table 1) on the training set5. We evaluate the trained models’ capabilities
on both held-in and held-out tasks. Results are presented in Table 2. While the trained models
have shown the best performance on Seal-Tools (surpassing GPT-4 by 2.5∼3.5% in f1graph), their
advantages are not as pronounced as on held-in tasks (where they surpass GPT-4 by 10%+ and
15%+ in f1chain and f1graph, respectively). Moreover, the workflows of Seal-Tools are relatively
simple (about 2∼3 nodes per task on average), with even untrained 7B models achieving around
74%. When it comes to the more complex InterCodeSQL tasks, the trained models fall slightly
behind, only outperforming models around 7B and 13B. To sum up, although the trained models have
made significant breakthroughs on the held-in tasks, their performance does not exhibit remarkable
generalization when extended to held-out tasks, especially on embodied tasks. This implies that the
structured workflow planning capability cannot be learned solely through fitting a large amount of
data. So whether through prompting or training for generalization, LLM agents still have a long
distance to reach real workflow planning experts.

granularity explicitness

graph format others

Figure 4: Error Statistics.

Q4: What shall we do to enhance the workflow generation capability
of LLM agents? First, we answer this question by analyzing samples
where GPT-4 scores less than 0.5 on f1graph. Through meticulous manual
checks and categorization, we identify four kinds of typical errors: 1)
Granularity. The decomposition of subtasks does not meet the minimum
executable granularity. 2) Explicitness. The summary of subtasks is
overly vague. 3) Graph. The subtask is correct, but the graph structure
is incorrect. 4) Format. The output does not adhere to the specified text
format. Figure 4 displays the probabilities of different types of errors.
We also show some cases of O1 in Appendix A.6. Among them, case
(a) represents the error of Graph, while case (b) represents the error
of Granularity. We summarize that most of these errors can likely be

5The detailed training setups can be found in Appendix A.5
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attributed to the agent’s lack of environmental knowledge. Granularity pertains to a deficiency in
prior knowledge of the environment. For instance, in case (b), O1 lacks the knowledge that the
fridge can be used for cooling, assuming that a cool potato can only be achieved inside a fridge
rather than somewhere else. Explicitness reflects a lack of understanding of the environmental
task, resulting in insufficiently specific subtasks. Graph issues arise from a lack of comprehension
regarding the dependencies of environmental actions, leading to errors in the relationships between
subtasks. Some prompt optimization algorithms (Yüksekgönül et al., 2024; Zhou et al., 2024) or
multi-agent architectures (Zhuge et al., 2024; Zhou et al., 2023; Hong et al., 2024) may lead to
improvements to some extent. However, to achieve a higher level of intelligence, the key may lie in
truly integrating world knowledge (Yu et al., 2024; Qiao et al., 2024a; Guetta et al., 2024) or world
model (Dawid & LeCun, 2023; Hu & Shu, 2023; Wong et al., 2023) into agents to advance their
understanding of the real world (Sumers et al., 2024; Durante et al., 2024a; Yang et al., 2024d).

4 THE ROLE OF WORKFLOW FOR AGENT PLANNING

In this section, we delve into how structured workflows can aid downstream tasks such as function
invocation or embodied planning in achieving more precise and expedited results. In this section, we
default to utilizing the trained Qwen-2-7B (mentioned in §3.2 Q3) as the workflow generator.

4.1 ENHANCE END-TO-END PERFORMANCE

Table 3: End-to-end Performance augmented by work-
flow as prior knowledge.

Model ALFWorld WebShop
seen unseen

GPT-4 27.14 28.36 55.62
GPT-4+W 40.71 ↑13.57 47.01 ↑18.65 56.49 ↑0.87

Llama-3.1-8B 1.49 5.00 51.03
Llama-3.1-8B+W 8.21 ↑6.72 12.14 ↑7.14 52.28 ↑1.25

Qwen-2-72B 53.57 56.72 58.95
Qwen-2-72B+W 56.43 ↑2.86 62.29 ↑5.57 60.55 ↑1.60

Workflow as Structured Prior Knowledge.
Given that a workflow encompasses a detailed
execution process for a task, an evident use case
is to employ it as prior knowledge to directly
guide agent planning. This is particularly ad-
vantageous in embodied scenarios where LLM
agents often lack prior knowledge of the real en-
vironment and rely on brainless trial-and-error
(Qiao et al., 2024a). Therefore, we directly in-
put the generated workflow along with the task

and design instructions for the LLM agent to plan based on the guidance of the workflow. We
choose GPT-4, Llama-3.1-8B, and Qwen-2-72B as the LLM agents and report the results in Table 3,
illustrating that models with varying capabilities can benefit when enriched with structured workflow
knowledge. For ALFWorld with greater diversity in environmental changes and more complex tasks,
workflow knowledge yields greater advantages. Furthermore, we observe that these workflows are
generated by a 7B model, providing guidance even to the significantly more powerful 72B model.
This leads us to contemplate the weak-guide-strong paradigm, wherein a small model possessing
specific environmental knowledge supervises the planning of a larger, more general model.

I3 Inst.

I2 Cat.

I2 Inst.

72.90

85.33

Qwen-2-72B Qwen-2-7B+WToolLlamaGPT-4

83.79

87.50

82.44

86.00

Figure 5: Relative Function Call Accuracy
of workflow-augmented Qwen-2-7B (Qwen-
2-7B+W) on StableToolBench (Guo et al.,
2024b) compared with various baselines.

Workflow as CoT Augmentation. Chain-of-Thought
(CoT) (Wei et al., 2022) has been widely acknowledged
for enhancing the reasoning abilities of LLMs and plays a
crucial role in OpenAI’s latest reasoning model, o1 (Ope-
nAI, 2024). However, a tricky issue lies in its long-context
nature, which may mislead LLM agents in making erro-
neous decisions, especially when there are multiple plan-
ning steps involved. Based on our workflow construction
process where each node corresponds to a function call,
we can leverage this characteristic to induce agents to en-
gage in more focused planning. Specifically, we prompt
Qwen-2-7B to generate a CoT at each step based on the
corresponding node and then use the node as a query to
retrieve the most similar API from the API list as the func-
tion for that step. Ultimately, we allow the model to decide how to invoke the function based on
the CoT and the selected function. In this process, the workflow plays a role similar to augmenting
CoT, assisting the agent in thinking at each step, serving as the query for retrieval to provide the
agent with more relevant APIs, thereby alleviating the agent’s burden and enabling it to focus more
on how to invoke tools effectively. By comparing the accuracy of function calls with ToolLlama
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(Qin et al., 2024) and two one-shot baselines (Qwen-2-72B and GPT-4) on StableToolBench 6 , we
find that the above procedure is effective (shown in Figure 5). Unlike a kind of external knowledge
for reference, the workflow here actively participates in the planning process, leading to improved
accuracy in function invocation.

4.2 REDUCE END-TO-END INFERENCE-TIME

Parallel Planning Steps. In a graph-structured workflow, nodes without dependencies can be
executed in parallel. This can significantly reduce the time required to complete tasks compared to

I2 Inst.                I3 InstI2 Cat.
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Figure 6: Average Task Execution Time
of linear ToolLlama and parallel ToolLlama.

linear step-by-step execution. Continuing our analysis on
StableToolbench, for a specific task, we calculate the time
taken by ToolLlama to complete each node when execut-
ing step by step (including generating thought, generating
function calls, executing functions, and returning results).
We then mark the nodes in the workflow graph based on
their completion times. So our objective can be transferred
to identify the longest path between the START and END
nodes, also known as the Critical Path of the graph. Fi-
nally, we compare the average time taken to complete all
tasks with the linear ToolLlama, as shown in Figure 6. It
can be observed that with graph-structured parallelization,
there is a significant reduction in the average time to com-
plete tasks, with reductions ranging from approximately
one-fifth to one-third across different test sets. The parallelization feature of graph structures allows
for substantial savings in inference time in real-world applications. Moreover, the execution of a
node does not necessarily depend on all previous nodes, which to some extent alleviates the issue of
long contexts in multi-step complex tasks, thereby enhancing the quality of task completion.

Table 4: Average Planning Steps.

Model ALFWorld WebShop
seen unseen

GPT-4 17.19 17.43 5.80
GPT-4+W 15.64 ↓1.55 15.85 ↓1.58 5.72 ↓0.08

Llama-3.1-8B 19.81 19.43 7.08
Llama-3.1-8B+W 19.09 ↓0.72 18.38 ↓1.05 6.77 ↓0.31

Qwen-2-72B 14.39 14.67 3.88
Qwen-2-72B+W 14.05 ↓0.34 13.94 ↓0.73 3.73 ↓0.15

Shorten Planning Steps. In addition to the hori-
zontal reduction of inference time brought by parallel
subtask execution, we also observe that workflows
can vertically decrease the planning steps of the LLM
agent. This finding emerges during our experiments
on workflow as structured knowledge. When the
LLM agent lacks prior knowledge of the environment,
it often accumulates knowledge through random trial-
and-error in the environment, which may introduce

irrelevant noise and lead to a drop in long-text disaster. Introducing knowledge makes the agent’s
actions more purposeful, reducing the steps of blind trial-and-error. In Table 4, we quantitatively
analyze the average planning steps required for the model to complete tasks with or without workflow
knowledge, which corroborates our discoveries.

5 RELATED WORK

5.1 LARGE LANGUAGE AGENTS

The rise of Large Language Models (LLMs) has established them at the forefront of the quest for
Artificial General Intelligence (AGI), offering substantial support for the advancement of LLM-
centered AI agents (Wang et al., 2023; Xi et al., 2023; Guo et al., 2024a; Yang et al., 2024b; Durante
et al., 2024b; Li et al., 2024b; Zhang et al., 2024a; Yang et al., 2024c). Numerous efforts have
been dedicated to employing language agents for tool utilization (Qin et al., 2024; Tang et al., 2023;
Yuan et al., 2024; Ye et al., 2024; Qiao et al., 2024b; Qu et al., 2024), embodied planning (Huang
et al., 2022; Yao et al., 2023; Song et al., 2023; Xiang et al., 2023; Palo et al., 2023), software

6As defined in ToolBench (Qin et al., 2024), I2 and I3 stand for intra-category and intra-collection multi-tool
instructions, respectively, based on the tools belonging to the same RapidAPI (https://rapidapi.com/
hub) category or collection. Inst. represents unseen instructions for the same set of tools in the training data.
Cat. denotes unseen tools that belong to an unseen category of tools in the training data.

9

https://rapidapi.com/hub
https://rapidapi.com/hub


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

engineering (Hong et al., 2024; Qian et al., 2023; 2024), etc. Many LLM-driven agent systems have
been developed for applications in web interfaces (Nakano et al., 2021; Deng et al., 2023; Gur et al.,
2024), medical (Li et al., 2024a), coding (Sun et al., 2024; Li et al., 2023; Shen et al., 2023a), or
general-purpose (Wu et al., 2023; Zhou et al., 2024; Wang et al., 2024a) tasks. However, these agent
methods or frameworks tend to concentrate primarily on the end-to-end performance of the task at
hand, overlooking the assessment of the inherent reasoning and planning capabilities that are actually
the bases for achieving stable and reliable agent performance.

5.2 WORKFLOW AND LANGUAGE AGENT PLANNING

Outside the context of LLMs, there has been much previous literature focusing on the workflow
patterns modeling and mining in the realm of business process management (Commoner et al., 1971;
van der Aalst et al., 2003a; van der Aalst, 1997; Dijkman et al., 2008) and process mining (van der
Aalst et al., 2003b; van der Aalst, 2016). Recently, more focus has been placed on integrating
workflows with LLM agents to automate the generation of workflows or to enhance the capabilities
of LLMs in handling complex problems (Wang et al., 2024b; Zhang et al., 2024b; Li et al., 2024d;
Xiao et al., 2024; Zeng et al., 2023). On the one hand, workflows can serve as an intermediate state
for solving complex tasks, aiding agents in bridging the gap between tasks and specific executable
actions (Li et al., 2024d; Zhang et al., 2024b). Explicit workflows can enhance the interpretability
of the LLM agent, facilitating human involvement in debugging and ensuring the agent’s security
(human-machine interaction). On the other hand, workflows can serve as structured prior knowledge,
assisting agents in handling knowledge-intensive tasks to avoid planning hallucinations (Zeng et al.,
2023; Ye et al., 2023; Zhu et al., 2024; Qiao et al., 2024a; Xiao et al., 2024; Wang et al., 2024b).

5.3 AGENTIC WORKFLOW GENERATION AND EVALUATION

The most straightforward approach is human-designed workflows that constrain the planning process
of language agents in the form of natural language prompts or state machines to prevent hallucinations
(Hong et al., 2024; Li et al., 2024c; Guan et al., 2024; Zhu et al., 2024; Wang et al., 2024b). However,
manual design is time-consuming and lacks flexibility. As a result, some studies (Zhou et al., 2023;
Ye et al., 2023; Zeng et al., 2023; Li et al., 2024d; Xue et al., 2024; Zhang et al., 2024b) try to
enable language agents to automatically generate workflows. So it is crucial to effectively evaluate
the quality of workflows generated by language agents. Previous studies have explored automating
workflow generation evaluation in tool learning or reasoning scenarios (Chen et al., 2024; Ye et al.,
2024; Shen et al., 2023b; Valmeekam et al., 2023), using fine-grained metrics to assess each stage of
tool utilization. In particular, problem decomposition ability is evaluated through semantic similarity
matching or GPT-4 scoring. However, these works suffer from the following limitations: firstly,
most of them focus only on function-calling or reasoning scenarios, neglecting embodied interactive
scenarios with the real environment; secondly, their workflows are all single linear structures, making
it difficult to represent more complex tasks; lastly, they mostly rely on GPT-4 or human evaluation.
Moreover, Xiao et al. (2024) also explore workflow-guided planning, but it is noticed that they mainly
examine the workflow compliance capability of language agents. Lal et al. (2024) examine the
understanding of node dependencies in workflows by LLM in a question-answering format. The
above two can be seen as the downstream procedures of our work. To the best of our knowledge,
we are the first benchmark to evaluate language agents’ ability to generate complex graph-structured
natural language workflows, encompassing multi-faceted scenarios.

6 CONCLUSION

In this work, we introduce WORFBENCH, a unified agentic workflow generation benchmark with
miscellaneous scenarios and intricate graph-structured workflows. To precisely assess the workflow
generation capability of LLM agents, we further present WORFEVAL, which utilizes quantitative
algorithms to evaluate both the linear and graph workflows. Through comprehensive experiments
across various kinds of LLMs, we investigate large performance gaps between the traditional linear-
structured and complex graph-structured workflow generation. We also train open-sourced models
and evaluate their generalization abilities on held-out tasks. Finally, we explore the role of workflows
for downstream planning tasks from model performance and inference time efficiency.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We have submitted all the test datasets (comprising both held-in and held-out tasks) of our benchmark,
along with the test code, to the supplementary materials. The detailed benchmark construction and
quality control processes can be found in Section 2.2 and 2.3. Additional data source information,
human verification processes, and benchmark statistics are provided in Appendix A.1, A.2 and A.3.
Specific test configurations: the code framework used, the model versions used, and the inference
hyperparameters are mentioned in Section 3.1. All the training settings involved in our paper are
detailed in Appendix A.5.
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A APPENDIX

A.1 SOURCE DATA INFORMATION

In order to facilitate a better understanding of our paper, here we provide a detailed exposition of the
dataset utilized in our paper.

Held-in Tasks

• ToolBench (Qin et al., 2024). Toolbench is a function call dataset generated by selecting several
APIs from an API library and synthesizing instructions using GPT-3.5. Due to the potentially
disparate nature of the extracted APIs, many instructions within Toolbench may pose challenges in
logical comprehension. To address this issue, we manually establish templates and filter them based
on the complexity of function invocations. Additionally, there is another version of ToolBench
called StableToolBench (Guo et al., 2024b) that utilizes GPT-4 and caching mechanisms to achieve
stable API calls, which we use for end-to-end task evaluation.

• ToolAlpaca (Tang et al., 2023). The construction method of ToolAlpaca is akin to that of ToolBench.
The quality of its instructions is relatively higher, yet most instructions can be executed within 1-3
function calls. We filter out instructions with only a single function call.

• ALFWorld (Shridhar et al., 2021). ALFWorld is a household dataset requiring the agent to navigate
through the room and manipulate objects. It includes human-annotated gold trajectories, which we
directly utilize to construct node chains and workflow graphs.

• WebShop (Yao et al., 2022). WebShop is an online shopping dataset in a website environment. We
use the gold trajectories collected through GPT-4 in Song et al. (2024) to construct our benchmark.

• OS (Liu et al., 2024b). OS is an interaction dataset based on operating systems, where agents
are required to complete operations through shell commands. We gather gold trajectories from
AgentInstruct (Zeng et al., 2024a) to aid in the construction of our benchmark.

• LUMOS (Yin et al., 2024). LUMOS is a dataset that models agent planning-related datasets using
a unified format. Within LUMOS, the OnePass planning data (LUMOS-O) aligns well with our
workflow construction. We select the math, commonsense, and multimodal reasoning components
as the foundation for building our reasoning tasks’ workflow.

• WikiHow (Koupaee & Wang, 2018). WikiHow contains open-world planning tasks and complex
linear process data. We collect and filter data based on task topics and directly construct graph
workflows based on the process data.

Held-out Tasks

• Seal-Tools (Wu et al., 2024). Seal-Tools is a function call dataset obtained entirely through
self-instruction using ChatGPT.

• InterCodeSQL (Yang et al., 2023a). InterCodeSQL is an embodied dataset that generates SQL
instructions based on user intent and interacts with a graph database.

A.2 HUMAN VERIFICATION

We divide the test data into five parts and invite five NLP volunteers to evaluate the quality of the
node chains and workflow graphs based on the following principles:

1. Granularity. The decomposition of the node chain should meet the smallest executable granularity
that can be derived from the task description and action list. This means that nodes should not
combine subtasks (indicating granularity is too large) or introduce information that cannot be
obtained from existing information (model self-association, indicating granularity is too small).

2. Logic. The workflow graph should follow logical sequencing that satisfies the execution relation-
ships between nodes.

3. Task Quality. The tasks themselves should not exhibit any obvious quality issues.

We discard data that does not adhere to the above criteria and obtain the final test set.
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Figure 7: Statistics of Our Benchmark. We also
include held-out tasks in the test set.
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Figure 8: Workflow Steps Distribution on the
whole benchmark.

Table 5: Ablation Study. We select some representative models to examine what will happen if we provide the
gold node chains to the agents and task it solely with predicting the edges of the workflow graph. w/o represents
traditional f1graph without gold node chains and w/ stands for generating edges with the aid of gold node chains.

Model Function Call Problem-Solving Embodied Open-Grounded Average
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

Claude-3.5 55.06 72.75 55.50 89.27 56.71 78.80 42.88 62.06 52.53 75.72
GPT-4 62.11 76.97 55.24 84.19 56.17 77.91 36.36 59.44 52.47 74.63

Qwen-2-7B 55.50 79.71 52.13 74.81 46.25 50.54 20.89 42.93 43.69 62.00
InternLM-2.5-7B 52.99 67.63 57.80 81.04 48.09 59.87 21.27 40.28 45.03 62.20

Qwen-1.5-14B 46.86 65.51 43.89 77.29 44.14 57.68 21.44 39.10 39.08 59.89
Phi-3-medium 47.26 65.80 54.85 80.98 49.99 52.21 23.77 33.33 43.97 58.08

Llama-3.1-70B 52.72 69.62 57.05 86.91 55.52 72.70 33.06 42.70 49.59 67.98
Qwen-2-72B 52.31 70.81 58.13 79.99 58.49 72.46 32.89 53.59 50.46 69.21

A.3 BENCHMARK STATISTICS

Figure 7 illustrates the statistics of our benchmark. Our training set comprises 18,679 instances,
with data evenly distributed across four types: function call, problem-solving, embodied, and open-
grounded. The test set consists of 2,146 instances, with 33.69% dedicated to held-out tasks to evaluate
the generalization capability of the trained model. Figure 8 is the distribution of our benchmark based
on the number of nodes in the workflow. The majority of the data is in the range of 2 to 10 steps,
with a smaller portion falling within the 10 to 20 steps range. The average number of nodes across all
data points is 4.17.

A.4 ABLATION STUDY

Here we investigate what changes in the performance of the agents would occur if we provide the
gold node chains to the agents and task it solely with predicting the dependencies between nodes (i.e.,
the edges of the workflow graph). The evaluation is still in a two-shot manner. The experimental
results are shown in Table 5. We can observe a clear improvement in performance after providing
the gold node chain. Giving the gold node chain can alleviate issues related to granularity and
explicitness (as defined in Figure 4). However, predicting the graph relationships between nodes
remains a challenging task, which contributes to an overall performance that is still subpar.

A.5 TRAINING SETUPS

We also apply the LlamaFactory (Zheng et al., 2024b) framework to train the models. We fine-tune
Qwen-2-7B and InternLM-2.5-7B with full parameters using DeepSpeed (Rasley et al., 2020). We
include a two-shot prompt in the input to enhance the model’s generalization during both training
and testing. Both models utilize identical hyperparameters. The detailed hyperparameter settings are
outlined in Table 6. All the experiments are conducted on 3 NVIDIA 80GB A100 GPUs.
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Table 6: Detailed training hyperparameters used in our paper.

Name Value

cutoff len 4,096
epochs 3

batch size 12
batch size per device 2

gradient accumulation steps 2
learning rate 1e-5

lr scheduler type cosine
warmup ratio 0.1

bf16 true

A.6 CASE STUDY OF O1

Below are two cases we test on OpenAI’s current most powerful reasoning model, O1 (OpenAI,
2024). In the first case, O1 successfully identifies various subtasks but makes an error in predicting
the dependency between node 1 and node 2/3 when generating the graph, failing to recognize their
parallel relationship. In the second case, based on environmental priors, the agent needs to first
locate the potato and then cool it using the fridge. Due to lacking this specific knowledge, O1
assumes the potato is already inside the fridge, thus missing the subtask of finding the potato. These
observations confirm what has been mentioned in Valmeekam et al. (2024) that Large Reasoning
Models (LRM) still can’t plan. We analyze that the complexity of planning lies in the interaction with
the environment, which requires a substantial amount of environmental commonsense knowledge.
Tasks like math reasoning or code generation only involve step-by-step deduction from the problem to
the solution. Therefore, to enhance the planning ability of LLM agents, integrating world knowledge
(Yu et al., 2024; Qiao et al., 2024a; Guetta et al., 2024) or world models (Dawid & LeCun, 2023; Hu
& Shu, 2023; Wong et al., 2023) into the agent system remains crucial. This is also why a correct
workflow can serve as prior knowledge to enhance agent planning.

Case Study of O1 (a)

Task: Please analyze the access_logs.txt file using the machine learning algorithm to detect
any potential malicious activity. Afterwards, retrieve the network policy for the library
with ID ‘wscDOqa63Giq’ regarding internet access. Finally, get the digital PR metrics for
the ‘Beauty Revolution’ campaign that took place from ‘2022-01-01’ to ‘2022-12-31’ on
platforms such as Twitter, Facebook, and Instagram.
The tool list you can select from: [tool_list]

Gold Nodes and Edges
Node:
1: Analyze access_logs.txt for potential malicious activity using machine learning.
2: Retrieve network policy for library ‘wscDOqa63Giq’ regarding internet access.
3: Get digital PR metrics for ‘Beauty Revolution’ campaign from ‘2022-01-01’ to ‘2022-12-
31’ on Twitter, Facebook, and Instagram.
Edge:
(START, 1) (START, 2) (START, 3) (1, END) (2, END) (3, END)

Predicted Nodes and Edges
Node:
a. Analyze the access_logs.txt file for potential malicious activity using a machine learning
algorithm.
b. Retrieve the network policy for the library with ID ‘wscDOqa63Giq’ regarding internet
access.
c. Get the digital PR metrics for the ‘Beauty Revolution’ campaign from ‘2022-01-01’ to
‘2022-12-31’ on Twitter, Facebook, and Instagram.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Edge:
(START, 1) (1, 2) (1, 3) (2, END) (3, END)

Case Study of O1 (b)

Task: You are in the middle of a room. Looking quickly around you, you see a cabinet 20, a
cabinet 19, a cabinet 18, a cabinet 17, a cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13,
a cabinet 12, a cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a
cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 2,
a countertop 1, a diningtable 2, a diningtable 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3,
a drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner
4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1. Your task is to: put a
cool potato in garbagecan.
The action list you can select from:
1. go to recep
2. task obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
9. cool obj with recep
where obj and recep correspond to objects and receptacles.

Gold Nodes and Edges
Node:
1: go to where the potato is located
2: take potato from where it is located
3: go to fridge
4: cool potato with fridge
5: go to garbagecan
6: put potato in/on garbagecan.
Edge:
(START, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, END)

Predicted Nodes and Edges
Node:
Go to fridge 1
Take cool potato from fridge 1
Go to garbagecan 1
Put potato in garbagecan 1
Edge:
(START, 1) (1, 2) (2, 3) (3, 4) (4, END)

A.7 PROMPT FOR BENCHMARK CONSTRUCTION

Prompt for Node Chain Generation

Function Call Tasks
Here is a multi-hop query and a segment of its solution trajectory in conversation format.
Please summarize the content of the last step based on the "Action" results, and generate
a node task. Node tasks should focus on the API related to the current action, and there
should be no duplication between node tasks, make sure the task is clear, concise accurate,
and specific.
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Please note that the trace may contain some API call errors. Please ignore the errors and focus
on the last Thought and Action step. Node task focuses more on planning rather than the
specific API call or the results after execution so that specific API names should not appear.
Here are two examples for you:
Examples
Now it’s your turn.
Query: Query
Trajectory: Trajectory Segment

Embodied Tasks
I will provide you with an analysis of a successful trajectory of a task that interacts with the
environment. Please identify the key factors that contribute to success. Based on this analysis,
you need to generate workflow to help increase the success rate of future endeavors. The
available actions are : Action List
Your output should be a sequence of subtasks that you would take to complete the task and in
the format of: Workflow: A -> B -> C
Here are two examples for you:
Examples
Now it’s your turn.
Query: Query
Trajectory: Trajectory

Prompt for Workflow Graph Construction

You are a planner who is good at task planning. Next, I will give you a task and some node
of the subtasks. Some subtasks may not be dependent on each other, while others may have
dependencies. Please convert these nodes of subtasks into a topology diagram based on the
task relevance in the workflow. The Graph should start with the START node, and end with
the END node.
Here are two examples for you:
Examples
Now it’s your turn.
Task: Task
Nodes: Subtask Nodes

A.8 LIMITATIONS

This paper still has certain limitations that must be acknowledged: a) While we have enforced strict
quality control on the node chain and workflow graph, it is inevitable that some queries themselves
may have quality issues. The synthesis of complex queries remains an unresolved issue, which we
leave for future work. b) All our data is collected from existing general domain datasets, inevitably
missing scenarios that are not covered. For example, some tasks require heterogeneous actions (e.g.
needing both function calls and embodied actions) to be completed. c) In addition to natural language,
workflows can also be represented in code form (e.g. PDDL) (Zeng et al., 2023; Li et al., 2024d;
Zuo et al., 2024), which we plan to incorporate in the future. d) Our workflow currently follows a
one-pass generation paradigm. In the future, we plan to introduce an iterative paradigm where the
workflow can be iteratively generated and evolve based on environmental feedback. e) Workflows in
this paper assume that all nodes need to be traversed to complete the whole task. We do not cover
some scenarios where choices, loops, or more complex structures (van der Aalst et al., 2003a) are in
the graph.
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