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Simplifying Cross-modal Interaction via Modality-Shared
Features for RGBT Tracking

Anonymous Authors

ABSTRACT
Thermal infrared (TIR) data exhibits higher tolerance to extreme
environments, making it a valuable complement to RGB data in
tracking tasks. RGB-T tracking aims to leverage information from
both RGB and TIR images for stable and robust tracking. However,
existing RGB-T tracking methods often face challenges due to sig-
nificant modality differences and selective emphasis on interactive
information, leading to inefficiencies in the cross-modal interaction
process. To address these issues, we propose a novel Integrating In-
teraction into Modality-shared Fearues with ViT(IIMF) framework,
which is a simplified cross-modal interaction network including
modality-shared, RGB modality-specific, and TIR modality-specific
branches. Modality-shared branch aggregates modality-shared in-
formation and implements inter-modal interaction with the Vi-
sion Transformer(ViT). Specifically, our approach first extracts
modality-shared features from RGB and TIR features using a cross-
attention mechanism. Furthermore, we design a Cross-Attention-
based Modality-shared Information Aggregation (CAMIA) module
to further aggregate modality-shared information with modality-
shared tokens. We evaluate our model on three widely-used bench-
mark datasets and extensive experiments demonstrate that our
method achieves state-of-the-art performance. All the source code
and trained models will be released.

CCS CONCEPTS
• Computing methodologies→ Tracking.

KEYWORDS
RGB-T tracking, three-branch Vision Transformer, inter-modal in-
teraction

1 INTRODUCTION
Single Object Tracking (SOT) aims to localize a target object in a
video sequence given its initial position in the first frame, which has
garnered significant attention due to its wide range of applications,
such as intelligent robotics, autonomous driving, and video surveil-
lance. Despite considerable progress in recent years, many SOT
methods [7, 42] rely on visible images and suffer from performance
degradation under challenging conditions, such as stormy weather
and low-illumination environments. To address these limitations,
RGB-T tracking has emerged as a promising solution, leveraging

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Backbone

Backbone
Concat

Backbone

Backbone

ConcatInteraction

TIR features

RGB features
TIR features

RGB features

Backbone

Backbone

Concat

RGB features

ViT

TIR features

Shared features

Aggregation

Aggregation

A

B

C

Figure 1: Comparison between current RGB-T tracking meth-
ods and our method. In part A, features of RGB and TIR im-
ages are concatenated directly. In part B, models bridge the
interaction between features and concatenate them at last. In
part C, our approach extracts modality-shared features, and
bridges the interaction of two modality information with
ViT.

the complementary information present in both visible and ther-
mal infrared (TIR) images to enhance tracking performance across
various scenarios.

The key challenge in RGB-T tracking lies in the effective inter-
action and exploitation of complementary information between
RGB and TIR modalities. Existing approaches can be broadly cate-
gorized into two groups: direct feature concatenation and feature
interaction. As illustrated in Fig 1 A, some methods [31, 32, 45]
directly concatenate features from both modalities before feeding
them into the prediction network. However, this naive concate-
nation strategy underestimates the importance of inter-modality
interaction and may inadvertently incorporate substantial back-
ground noise, compromising the effectiveness of feature fusion and
impairing tracking performance. In contrast, as shown in Fig 1 B,
other RGB-T methods [15] attempt to bridge interactions between
RGB and TIR features using various techniques, such as employing
templates as mediums to distribute information between modalities.
Nevertheless, using a fused template may lead to an overemphasis
on modality-shared features at the expense of modality-specific
information, while using separate templates for each modality may

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Overall framework of our proposed IIMF algorithm. The IIMF algorithm processes RGB and TIR images using ViT
blocks to extract features. These features are then input into the MMFE module, where both modality-shared and modality-
specific features are extracted through interactions between RGB and TIR tokens, facilitated by template tokens. Subsequently,
the CAMIA module aggregates target-relevant, modality-shared features and assigns these to modality-shared features. Finally,
all search region features are consolidated and input into the prediction head for target state prediction.

result in inefficient communication due to significant differences in
their characteristics.

To tackle these challenges, we propose a novel simplified modal-
ity fusionmethod for RBG-T tracking by Integrating Interaction into
Modality-shared Feature(IIMF) which employs modality-shared fea-
tures to collect the modality-shared information from two modal-
ities and bridges interaction between two modality information
within ViT block as shown in Fig 1 C. Unlike existing methods,
IIMF facilitates interaction between RBG and TIR modalities by
directly feeding the modality-specific and modality-shared features
into ViT block without complicated fusion methods. This architec-
ture allows each modality-specific branch to focus on extracting
and preserving valid information unique to its respective modality,
while the modality-shared branch effectively aggregates informa-
tion common from both modalities. By introducing a dedicated
modality-shared feature, IIMF ensures the effective collection and
representation of modality-shared information while preserving
valuable modality-specific details that might be overlooked in a
naive fusion scheme. This strategic separation and targeted aggre-
gation of features enhance the model’s representational capacity,
leading to improved tracking performance in challenging multi-
modal scenarios.

Specifically, we design a Modality-shared and Modality-specific
Feature Extraction (MMFE) module to extract the modality-shared
(𝑋𝑠ℎ) and modality-specific (𝑋𝑣 for RGB and 𝑋𝑖 for TIR) features.
The MMFE module employs the fused template as a query and
the RGB and TIR search regions as keys and values to aggregate
modality-shared information and obtain the multi-modal context
medium via a cross-attention operation. This medium is then used
as a key and value, with the RGB and TIR search regions as queries,
to distribute modality-shared information to both search regions
and fuse them, resulting in 𝑋𝑠ℎ with enhanced target-relevant in-
formation. Additionally, cross-attention is also applied to 𝑋𝑣 and

𝑋𝑖 , using their respective templates as mediums to collect modality-
specific target-relevant information from their corresponding search
regions. 𝑋𝑣 and 𝑋𝑖 serve as modality-specific features in the subse-
quent network.

To further aggregate modality-shared information to 𝑋𝑠ℎ , we
also design the Cross-Attention-basedModality-shared Information
Aggregation(CAMIA) module. CAMIA first obtains a multi-modal
context medium by employing the fused template of RGB and TIR
templates as a query in a cross-attention mechanismwith𝑋𝑣 and𝑋𝑖
as keys and values. Furthermore, this medium serves as a key and
value in a cross-attention mechanismwith𝑋𝑠ℎ and𝑍𝑠ℎ as the query,
enabling the distribution of modality-shared information to𝑋𝑠ℎ and
𝑍𝑠ℎ . By implementing the CAMIA module, more modality-shared
information is aggregated to 𝑋𝑠ℎ , which benefits the information
interaction between RGB and TIR search region within the ViT
block.

To evaluate the performance of our method, we conduct experi-
ments on three commonly used RGB-T benchmark datasets, includ-
ing RGBT210 [23], RGBT234 [20], and LasHeR [22]. Experimental
results show that our model achieves state-of-the-art performance,
showcasing its ability to achieve stable and robust tracking per-
formance. The main contributions of this work are summarized as
follows:

• We propose a novel and simplified RGB-T Tracking method,
enabling the implementation of inter-modal interaction in
ViT block, which replaces the complicated inter-modal in-
teraction.

• We propose a novel MMFE module to disentangle features
into modality-shared and modality-specific components, en-
abling the aggregation of modality-shared information while
preserving modality-specific details.

• Our method achieves state-of-the-art performance on sev-
eral RGB-T tracking benchmarks. We also conduct extensive
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experiments including ablation studies to demonstrate the
effectiveness of the proposed method and the effect of every
component.

2 RELATEDWORKS
2.1 Single Object Tracking
Single object tracking(SOT) works as one of the fundamental tasks
in the field of computer vision. It aims to continuously localize the
target object within the sequences and serves as the downstream
work of many other computer vision tasks. Great progress has been
made in the field of SOT for accurate and stable target object track-
ing in various scenarios. Siamese-based methods [1, 8, 18, 19, 38,
50, 51, 58] focus on computing the correlation between template
and search region to realize the tracking process. Bertinetto et al.
[1] firstly introduces the Siamese network to the field of visual
object tracking. It used AlexNet to work as the backbone of the
model and used cross-correlation operations to get the response
map. Some online methods [2, 7, 13, 16, 31] aim to enhance the
accuracy and robustness of the tracking algorithms with an on-
line updating mechanism that dynamically adjusts to the evolving
characteristics of the target. With the success of transformer in
the field of computer vision, Some works [4, 6, 17, 37, 41–43] de-
voted to introducing ViT to tracking task, which employs vision
transformer(ViT) to work as the backbone of their models and use
self-attention and cross-attention for interaction between search
region and template features which integrate the information of
search region and template for matching relationship modeling. Ye
et al. [42] integrate template and search region features and feed it
into a one-stream backbone which is ViT for jointly feature learning
and relationship modeling and their OSTracker gains great sucess.

2.2 RGB-T Tracking
General SOT methods always only focus on visible object track-
ing(VOT), so they would encounter catastrophic performance degra-
dation if the sequences are captured under extreme conditions.
Therefore, some works [11, 15, 25, 27, 39, 47, 52, 52, 53, 56] at-
tempt to jointly utilize visible and thermal infrared images for high-
performance tracking since thermal infrared data could furnish
supplementary information under some extreme conditions. Zhang
et al. [47] present a novel framework aiming at improving the
efficiency and accuracy of RGB-T tracking algorithms. They in-
troduce a cross-modality distillation framework to bridge the per-
formance gap between compact and powerful trackers. The pro-
posed Specific-Common Feature Distillation (SCFD) module trans-
forms both modality-common and modality-specific information
from a deeper two-stream network to a shallower one-stream net-
work. Zhang et al. [45] propose a novel framework to fuse RGB
and TIR features in the context of tracking and embed it into the
DiMP [3] tracker for RGB-T tracking. Hui et al. [15] integrate a
Template-Bridged Search Region Interaction(TBSI) module into ViT
backbone to exploit templates as a bridge for cross-modal inter-
action. They identify that the previous methods might introduce
redundant background noise or limit the RGB and TIR modal in-
teraction to local regions. The TBSI module allows for high perfor-
mance of search region interaction and the original templates to

be updated with enriched multi-modal contexts which further im-
prove the performance of tracking. Our method follows their idea
of employing templates to bridge the cross-modal interaction and
insert our own novel idea for better performance. Apart from the
framework research, the research of the RGB-T dataset witnesses
substantial development [14, 20, 22, 23]. Li et al. [22] propose the
LasHeR dataset which is currently the largest RGB-T Tracking
dataset.

3 METHOD
3.1 Overview
The overall framework of our method is illustrated in Fig 2. Specifi-
cally, to simplify the cross-modal interaction, We employ a Vision
Transformer(ViT) as backbone of our model, which also assuming
the responsibility of removing the carefully designed cross-modal
interaction modules. Following the operations of ViT, the input
RGB and TIR images are first split into patches and fed into the ViT
backbone. Afterward, our proposed Modality-shared and Modality-
specific Feature Extraction(MMFE) module is seamlessly integrated
into the ViT backbone to aggregate modality-shared target-relevant
information and bridge the interaction between the visible and
thermal infrared search regions. Furthermore, the Cross-Attention-
based Modality-shared Information Aggregation(CAMIA) module
further aggregates modality-shared information from RGB and TIR
search regions after partial feature learning into modality-shared
tokens. Finally, the search region features from modality-shared
and modality-specific branches are concatenated and fed into the
tracking head for target object state prediction, enabling robust and
accurate tracking in challenging multi-modal scenarios.

3.2 Simplified Cross-modal Interaction
Inspired by the impressive performance of Vision Transformers
(ViTs) [9] in object tracking [42], we simplify the cross-modal in-
teraction by directly integrating modality-shared and modality-
specific features into ViT without complicated modality fusion
methods. This new structure is aimed at the simultaneous extrac-
tion of features that are shared across different modalities as well as
those specific to each modality, following recent high-performance
tracking methods [15].

Let 𝐼𝑥𝑣 ∈ R𝐻𝑥×𝑊𝑥×3, 𝐼𝑥
𝑖

∈ R𝐻𝑥×𝑊𝑥×1 denote RGB and TIR
search region images, and 𝐼𝑧𝑣 ∈ R𝐻𝑧×𝑊𝑧×3, 𝐼𝑧

𝑖
∈ R𝐻𝑧×𝑊𝑧×1 denote

RGB and TIR template images respectively. Following the oper-
ation of ViT, we initially partition these images into patches of
size 𝑃 × 𝑃 . These patches are then transformed into sequences of
embedded features, hereafter referred to as 𝑡𝑜𝑘𝑒𝑛𝑠 . Specifically, for
the RGB and TIR modalities of the search region, their tokens are
denoted as 𝑋𝑣 and 𝑋𝑖 , respectively, with dimensions R𝑁𝑥×𝐶 . For
the RGB and TIR modalities of the template images, the tokens
are denoted as 𝑍𝑣 and 𝑍𝑖 , respectively, with dimensions R𝑁𝑧×𝐶 .
Here, 𝑁𝑥 = 𝐻𝑥 ×𝑊𝑥/𝑃2 and 𝑁𝑧 = 𝐻𝑧 ×𝑊𝑧/𝑃2 denote the patch
number of search region and template, and 𝐶 represents the num-
ber of channels in each token. This structured approach allows for
efficient embedded feature extraction, which can be represented as



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

TC
A

 for 
T2T

Zsh

TC
A

 for 
T2S

TC
A

 for 
S2T

K1, V1

K2, V2

Q

Q1

Tsh Xsh

C
A

C
A

Q

K,V

K,V

Xv

Xi

K, V

Q2

C
A

C
A

Zv

Zi

Q2

K, V

Q

Q

K,V

K,V

Xv

Xi

Zv

Zi
Q

                     Transfer token to next area                  Attention Matrix                

  TCA           Triple token cross-attention                 Output token

                     Add query token(s)                                                                                                                          

                     Matrix Multiplication                      

                     Concatenate and Linear layer                                                     

                     Concatenate and Softmax

K,V

K,V

C
A

C
A

Q

Q

Zv

Zi

Tsh

Q1

Mul
Add Q

Fusion
C&S

M
ul

M
ul

C
&

S

Fusion

Mul

Mul

A
dd  Q

Tsh

Xv

Fused-t

Xi

TCA for S2T

(A) (B)

F

Figure 3: Illustration of ourMMFEmodule. The network whose background is red is used formodality-shared tokens generation.
The network whose background is green is used for updating modality-specific tokens. CA for S2T, T2S, and T2T are similarly
conducted.

the following formula:

𝑋𝑣 = 𝐿(𝑃 (𝐼𝑥𝑣 )), 𝑍𝑣 = 𝐿(𝑃 (𝐼𝑧𝑣 ))
𝑋𝑖 = 𝐿(𝑃 (𝐼𝑥𝑖 )), 𝑍𝑖 = 𝐿(𝑃 (𝐼

𝑧
𝑖 ))

(1)

where 𝐿 denotes the linear layer function and 𝑃 denotes the function
of splitting and flattening. RGB and TIR search region and template
images share the same patch embedding operation.

Afterward, we concatenate search region and template tokens
as joint embedded tokens 𝐻𝑟 = [𝑍𝑟 ; 𝑋𝑟 ] ∈ R(𝑁𝑥+𝑁𝑧 )×𝐶 . These to-
kens are then processed through the ViT to learn features andmodel
relationships jointly. The operations for the Thermal Infrared (TIR)
branch are the same as the RGB branch. The two-modality network
is transformed into a three-stream network after the processing
of the Modality-shared and Modality-specific Feature Extraction
(MMFE) module. The formula is shown as follows:

𝑋𝑣, 𝑋𝑖 , 𝑋𝑠ℎ = 𝑀𝑀𝐹𝐸 ( [𝑋𝑣 ; 𝑋𝑖 ]) (2)

where𝑀𝑀𝐹𝐸 denotes the function carried out by the MMFE mod-
ule, with each branch extracting features specific to its modal-
ity—RGB, TIR, and shared modalities, respectively (details described
in Section 3.3).

Additionally, the modality-shared branch plays a crucial role
in enabling cross-modal information interaction. To clarify the
operation within the ViT blocks, we describe it using the following
formula:

𝑂 = 𝐿𝑁 (𝜎 (𝑄𝐾𝑇 )𝑉 )

= 𝐿𝑁 (𝜎 ( [𝑄𝑧 ; 𝑄𝑥 ] [𝐾𝑧 ; 𝐾𝑥 ]𝑇 )𝑉 )

= 𝐿𝑁 (𝜎 ( [𝑄𝑧𝐾
𝑇
𝑧 , 𝑄𝑧𝐾

𝑇
𝑥 ; 𝑄𝑥𝐾

𝑇
𝑧 , 𝑄𝑥𝐾

𝑇
𝑥 ]) [𝑉𝑧 ;𝑉𝑥 ])

= 𝐿𝑁 (𝜎 ( [𝑄𝑧𝐾
𝑇
𝑧 𝑉𝑧 +𝑄𝑧𝐾

𝑇
𝑥 𝑉𝑥 ; 𝑄𝑥𝐾

𝑇
𝑧 𝑉𝑧 +𝑄𝑥𝐾

𝑇
𝑥 𝑉𝑥 ]))

(3)

where 𝐿𝑁 denotes the layer normalization function,𝜎 is the softmax
function, and 𝑂 is the output.

Further, the cross-attention mechanism is generalized by con-
structing adaptive weighted summation operations on 𝑋𝑣 and 𝑋𝑖 ,

allowing us to express the modality-shared tokens 𝑋𝑠ℎ and 𝑍𝑠ℎ as:

𝑋𝑠ℎ =𝑊 𝑥
𝑣 𝑋𝑣 +𝑊 𝑥

𝑖 𝑋𝑖

𝑍𝑠ℎ =𝑊 𝑧
𝑣 𝑍𝑣 +𝑊 𝑧

𝑖 𝑍𝑖
(4)

where𝑊 denotes the weight matrix, the superscripts 𝑥 and 𝑧 de-
note search region and template respectively, and the subscripts 𝑣
and 𝑖 denote visible and infrared modality respectively. Taking the
component 𝑄𝑧𝐾

𝑇
𝑥 𝑉𝑥 from Formula 3, we can get the formulas as

follows by incorporating Formula 4.

𝑄𝑧𝐾
𝑇
𝑥 𝑉𝑥 =(𝑊𝑍𝑣 +𝑊𝑍𝑖 ) (𝑊𝑋𝑣 +𝑊𝑋𝑖 )𝑇 (𝑊𝑋𝑣 +𝑊𝑋𝑖 )

=𝑊𝑍𝑣 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑣 +𝑊𝑍𝑖 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑖+

𝑊𝑍𝑖 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑣 +𝑊𝑍𝑣 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑖+

𝑊𝑍𝑣 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑖 +𝑊𝑍𝑖 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑣+

𝑊𝑍𝑖 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑖 +𝑊𝑍𝑣 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑣

(5)

and another component 𝑄𝑥𝐾
𝑇
𝑥 𝑉𝑥 is shown as follows:

𝑄𝑥𝐾
𝑇
𝑥 𝑉𝑥 =(𝑊𝑋𝑣 +𝑊𝑋𝑖 ) (𝑊𝑋𝑣 +𝑊𝑋𝑖 )𝑇 (𝑊𝑋𝑣 +𝑊𝑋𝑖 )

=𝑊𝑋𝑣 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑣 +𝑊𝑋𝑖 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑖+

𝑊𝑋𝑣 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑖 +𝑊𝑋𝑖 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑣+

𝑊𝑋𝑣 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑣 +𝑊𝑋𝑖 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑖+

𝑊𝑋𝑖 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑣 +𝑊𝑋𝑣 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑖

(6)

where subscripts and superscripts of𝑊 are omitted for brevity. The
Formula 5 and 6 aim to extract the inter- and cross-modal features
of the search regions, where𝑊𝑋𝑣 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑣 +𝑊𝑋𝑖 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑖
is the self-attention operation for RGB and TIR search regions,
and the component𝑊𝑋𝑣 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑖 +𝑊𝑋𝑖 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑣 serves
as the cross-attention between RGB and TIR search regions. Obvi-
ously, the component𝑊𝑍𝑣 (𝑊𝑋𝑣)𝑇𝑊𝑋𝑣 +𝑊𝑍𝑖 (𝑊𝑋𝑖 )𝑇𝑊𝑋𝑖 is an
enhancement for target-relevant information. The weight matrix
𝑊 could also serve as the projection layers of the self-attention and
cross-attention mechanism. Therefore, it indicates that aggregating
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the information of both RGB and TIR information into modality-
shared tokens and feeding them into ViT blocks implements not
only intra-modal attention for 𝑋𝑣 and 𝑋𝑖 but also cross-modal at-
tention between 𝑋𝑣 and 𝑋𝑖 . Considering that the cross-attention
mechanism is widely used for inter-modal interaction, our opera-
tion of feeding modality-shared tokens into ViT has the ability of
inter-modal information interaction. Consequently, it is validated
that substituting the direct inter-modal interaction between RGB
and TIR modalities with aggregating information into modality-
shared tokens and feeding them into the ViT block is significant.

By employing this simple cross-modal interaction architecture,
our model adaptively extracts both modality-specific and modality-
shared features, enhancing the overall capacity for inter-modal
interaction and retaining more target-relevant information across
different sensing modalities.

3.3 Modality-shared and Modality-specific
Feature Extraction

To better extractmodality-shared features, we propose ourModality-
shared and Modality-specific Feature Extraction(MMFE) module
incorporating a cross-attention mechanism to enhance feature ex-
traction for robust tracking. As illustrated in Fig 3, the MMFE
module first employs a fused template as the medium to aggre-
gate modality-shared information, denoted as𝑇𝑠ℎ .𝑇𝑠ℎ contains rich
target-relevant information which is subsequently distributed to
both the visible (RGB) and thermal infrared (TIR) search region
tokens, 𝑋𝑣 and 𝑋𝑖 , respectively. Afterward, we extract the fused
features between 𝑋𝑣 and 𝑋𝑖 . At last, we generate modality-shared
template token 𝑍𝑠ℎ and update the template 𝑍𝑣 and 𝑍𝑖 by fusing
the features among 𝑍𝑣 , 𝑍𝑖 , and 𝑇𝑠ℎ .

Specifically, MMEF initially extracts the fused template features,
denoted as 𝑋𝑠ℎ , among 𝑋𝑣 and 𝑋𝑖 to aggregate modality-shared
information. We adjust the cross-attention module to enable si-
multaneous processing of three tokens, which is named TCA in
Fig 3. We first introduce TCA for S2T to aggregate modality-shared
target-relevant information onto the fused template. Since 𝑋𝑣 and
𝑋𝑖 both serve as key and value in cross attention with a fused tem-
plate as query, the attention matrices computed by 𝑓 𝑢𝑠𝑒𝑑𝑡 ×𝑋𝑇

𝑣 and
𝑓 𝑢𝑠𝑒𝑑𝑡 ×𝑋𝑇

𝑖
are both used to measure the similarity with the same

query token, where 𝑓 𝑢𝑠𝑒𝑑𝑡 denotes the fused template features.
Therefore, we concatenate the two attention matrices and perform
the function of softmax on them together as shown in Fig 3 (B).
The formula is shown as follows:

𝐴𝑣 = 𝑓 𝑢𝑠𝑒𝑑𝑡 × 𝑋𝑇
𝑣

𝐴𝑖 = 𝑓 𝑢𝑠𝑒𝑑𝑡 × 𝑋𝑇
𝑖

[𝐴𝑣 ;𝐴𝑖 ] = 𝜎 ( [𝐴𝑣 ;𝐴𝑖 ])

(7)

where 𝐴𝑣 , 𝐴𝑖 denote the attention matrix of 𝑋𝑣 and 𝑓 𝑢𝑠𝑒𝑑𝑡 , 𝑋𝑖 and
𝑓 𝑢𝑠𝑒𝑑𝑡 respectively, × denotes matrix multiplication, 𝐴 denotes
the attention matrix after softmax. The joint softmax operation
facilitates the capacity of the model to obtain a richer context since
it takes information both from RGB and TIR search regions into a
comprehensive account. Afterward, 𝑋𝑣 and 𝑋𝑖 multiply their own
attention matrix separately and we fuse the results to get the output
token. Drawing from the concept of residual learning, we ultimately
add the query token to the output token and get 𝑇𝑠ℎ which is rich
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Figure 4: Illustration of CAMIA module. We omit the detail
of cross-attention operation since it is a widely-used mecha-
nism. TCA for T2T is similar to TCA for S2T in the MMFE
module.

in modality-shared information of both RGB and TIR modalities.
The formula is shown as follows:

𝑇𝑠ℎ = 𝑄𝑢𝑒𝑟𝑦 + 𝐿(𝐶𝑜𝑛𝑐 ( [𝑇𝑣 ;𝑇𝑖 ]))
= 𝑄𝑢𝑒𝑟𝑦 + 𝐿(𝐶𝑜𝑛𝑐 ( [𝐴𝑣 ×𝑉𝑎𝑙𝑢𝑒𝑣 ;𝐴𝑖 ×𝑉𝑎𝑙𝑢𝑒𝑖 ]))

(8)

where 𝑄𝑢𝑒𝑟𝑦, 𝑉𝑎𝑙𝑢𝑒𝑣, 𝑉𝑎𝑙𝑢𝑒𝑖 denote 𝑓 𝑢𝑠𝑒𝑑𝑡 which serves as
query, visible search region token which serves as value, thermal
infrared search region token which serves as value, 𝐿, 𝐶𝑜𝑛𝑐 denote
the function of linear layer and concatenating respectively. We then
construct TCA on 𝑇𝑠ℎ , 𝑋𝑣 and 𝑋𝑖 to generate 𝑋𝑠ℎ . The operation
of TCA for T2S, as is shown in Fig 3 (A), is similar to TCA for S2T,
and further elaboration is omitted for brevity. Compared to the ap-
proach of performing cross-attention separately before fusion, our
method embeds the fusion process into a cross-attention process,
which integrates the information of the search region tokens from
both modalities, resulting in a more refined fusion scheme when
combining RGB and TIR search region tokens.

In addition to the extraction of modality-shared features, we
also enhance the target-relevant information for modality-specific
tokens. Although RGB and TIR modality-specific branches are em-
ployed to preserve modality-specific information, we also perform
inter-modal interaction on them to reduce inter-modal differences.
As is shown in Fig 3 (A), To update 𝑋𝑖 , we employ 𝑍𝑣 to aggregate
modality-specific information of 𝑋𝑣 and distribute it to 𝑋𝑖 with
cross attention mechanism. The operation for updating 𝑋𝑣 is the
same.

At last, we generate 𝑍𝑠ℎ by performing TCA for T2T on 𝑓 𝑢𝑠𝑒𝑑𝑡 ,
𝑍𝑣 and 𝑍𝑖 , where 𝑍𝑠ℎ denotes modality-shared template token
which is used for joint feature extraction for modality-shared search
region token. And we update 𝑍𝑣 by conducting cross attention on
𝑇𝑠ℎ and 𝑍𝑣 , which is similar to 𝑍𝑖 .
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3.4 Cross-Attention-based Modality-shared
Information Aggregation

For further modality-shared information aggregation, we propose
our Cross-Attention-based Modality-shared Information Aggrega-
tion(CAMIA) module. The architecture of our CAMIA is shown in
Fig 4. We integrate our CAMIA module into our ViT backbone after
the 4th block.

Firstly, to aggregate modality-shared information, we fuse 𝑍𝑣
and 𝑍𝑖 as a medium to collect information from both 𝑋𝑣 and 𝑋𝑖
with TCA for S2T. Then, we perform cross attention between the
intermediate template, rich in search region modality-shared infor-
mation, and 𝑋𝑠ℎ to distribute the modality-shared information to
𝑋𝑠ℎ . We also update the modality-shared template token with the
intermediate template by performing cross-attention.

To preserve the modality-specific information, inter-modal in-
teractions are not implemented in the subsequent stages of our net-
work. Although direct interactions are not adopted, the information
of RGB and TIR search regions is aggregated into modality-shared
search region token 𝑋𝑠ℎ . The interaction between RGB and TIR
information is performed by conducting self-attention on 𝑋𝑠ℎ . The
overall operation of the CAMIA module can be represented by the
formula shown as follows:

𝑇𝑓 𝑢𝑠𝑒𝑑 = 𝐿( [𝑍𝑖 ; 𝑍𝑖 ])
𝑇𝑖𝑛𝑡𝑒 = 𝑇𝐶𝐴( [𝑇𝑓 𝑢𝑠𝑒𝑑 ; 𝑋𝑣 ; 𝑋𝑖 ])

𝑋𝑠ℎ = 𝐶𝐴( [𝑇𝑖𝑛𝑡𝑒 ; 𝑋𝑠ℎ])

𝑍𝑠ℎ = 𝐶𝐴( [𝑇𝑖𝑛𝑡𝑒 ; 𝑍𝑠ℎ])

(9)

where 𝑇𝑓 𝑢𝑠𝑒𝑑 denotes the fused template, 𝑇𝑖𝑛𝑡𝑒 denotes the inter-
mediate template, 𝐿, 𝑇𝐶𝐴 and 𝐶𝐴 denote the function of linear
layer, triple token cross attention and cross attention, 𝑋𝑠ℎ and 𝑍𝑠ℎ
denote updated 𝑋𝑠ℎ and 𝑍𝑠ℎ . At last, we realize the aggregation of
modality-shared information. The interaction between RGB and
TIR modality-specific branches is implemented by aggregating in-
formation into the modality-shared token and feeding it into ViT.
The modality-specific information is well preserved since no direct
interaction is performed.

3.5 State Estimation and Training Objective
State Estimation. To predict the current state of the target object
in the search regions, we adopt the common practice of tracking
head possessing classification, bounding box center, and bounding
box size prediction branches. The three branches share the same
architecture comprising 4 Conv-BN-ReLU layers. Each patch consti-
tutes an anchor since we partition the images into patches for ViT.
The classification branch outputs classification score maps Cls for
selecting anchor, and the bounding box center and size prediction
branches output offset maps O for compensating the reduction in
resolution and size maps S for measuring the size of the bounding
box. The computation of the state is as shown in the following
formula:

[𝑥, 𝑦, 𝑤, ℎ] = [𝑥𝑐𝑙𝑠 +𝑂𝑥 , 𝑦𝑐𝑙𝑠 +𝑂𝑦, 𝑆𝑤 , 𝑆ℎ] (10)

where [𝑥, 𝑦, 𝑤, ℎ] denotes the bounding box format of our
model, (𝑥𝑐𝑙𝑠 , 𝑦𝑐𝑙𝑠 ) denotes the center coordinates of the anchor,

(𝑂𝑥 , 𝑂𝑦) denotes the offset from anchor center to bounding box
center, (𝑆𝑤 , 𝑆ℎ) denotes the bounding box size.
Training Objective. Following the training objective of TBSI [15],
our loss is computed by focal loss [24] for classification, 𝐿1 loss [12]
for offset, and GIoU loss [34] for bounding box size. The overall
loss function is shown as follows:

𝐿𝑜𝑠𝑠 = 𝐿𝑓 𝑜𝑐𝑎𝑙 + 𝜆𝐺𝐼𝑜𝑈 𝐿𝐺𝐼𝑜𝑈 + 𝜆𝐿1𝐿𝐿1 (11)

where 𝜆𝐺𝐼𝑜𝑈 equals 2.0 and 𝜆𝐿1 equals 5.0 in our training process.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
We conduct experiments on three prevailing RGB-T tracking bench-
marks, including RGBT210 [23], RGBT234 [20], and LasHeR [22].
The RGBT210 dataset, first introduced in [23], comprises 210 video
pairs, totaling approximately 210,000 frames, with the longest video
encompassing about 8,000 frames, making it suitable for long-term
tracking studies. The RGBT234 dataset, an extension of RGBT210,
contains 234 video pairs with around 234,000 frames and is de-
tailed in [20]. Meanwhile, the LasHeR dataset, described in [22],
includes 1,224 annotated video sequences, 245 of which are desig-
nated for testing. To assess our model comprehensively, we utilize
three widely recognized metrics: Success Rate (SR), Precision Rate
(PR), and Normalized Precision Rate (NPR). PR is defined as the
percentage of frames where the predicted bounding box is within a
specified threshold from the ground truth. NPR normalizes the pre-
cision rate on the size of the ground truth bounding box to reduce
sensitivity to the size of the target object. SR denotes the percentage
of the frames whose overlap ratio between the bounding box of
output and ground truth is larger than a threshold.

4.2 Implementation Details
Our model is implemented utilizing PyTorch and trained on 4
NVIDIA V100 GPUs. Search region images are reshaped to 256×256
and template images are reshaped to 128 × 128. The patch size of
images is 16 × 16. We train our model on the LasHeR training
dataset and test on the LasHeR testing dataset, RGBT210 dataset,
and RGBT234 dataset without further fine-tuning. The ViT back-
bone is pre-trained on the SOT dataset. The learning rate is set to
1 × 𝑒−4 and decayed to 10% after 10 epochs. The training epoch is
set to 25. Our MMFE module is inserted into ViT after the 2nd ViT
block and the CAMIA module is inserted after the 4th ViT block.
The threshold for metrics is set to 20 pixels as a common practice.

4.3 Comparison with State-of-the-art Methods
We compare our method with previous state-of-the-art methods
on the LasHeR, RGBT210, and RGBT234 datasets. As shown in
Table 1, which presents the result of our method testing on the
LasHeR dataset, our method outperforms previous methods on all
metrics, demonstrating the effectiveness of our method. Compared
with the TBSI method, which also employs the ViT-base as the
backbone and integrates their module into ViT, our method gains
3.2%/2.7%/2.5% improvement in PR/NPR/SR respectively. For a fair
comparison, we also adopt SOT pretraining which is the same as
the TBSI method. Furthermore, our IIMF-MMFE method, which
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Table 1: The comparison between our method and previous state-of-the-art methods on the LasHeR dataset. The best and the
second results are colored red and blue respectively.

Method Pretraining Framework LasHeR
Precision Norm Precision Success

FANet [54] ImageNet CNN 44.1 38.4 30.9
CAT [21] ImageNet CNN 45.0 39.5 31.4

MaCNet [44] - CNN 48.2 42.0 35.0
DMCNet [30] ImageNet CNN 49.0 43.1 35.5
APFNet [40] ImageNet CNN 50.0 43.9 36.2
FTNet [5] - CNN 52.6 - 38.1

mfDiMP [45] SOT CNN 59.9 - 46.7
QAT [26] - CNN 64.2 59.6 50.1
STMT [35] - ViT 67.4 63.4 53.7
TBSI [15] SOT ViT 69.2 65.7 55.6

IIMF-MMFE SOT ViT 71.3 67.6 57.3
IIMF SOT ViT 72.4 68.4 58.1

Table 2: The comparison between out method and previous
state-of-the-art methods on RGBT234 dataset. The best re-
sults are indicated in bold.

Method RGBT234
Precision Success

MDNet+RGBT [31] 72.2 49.5
SiamCDA [48] 76.0 56.9
MaCNet [44] 76.4 53.2
MANet [28] 77.7 53.9
FANet [55] 78.7 55.3

MANet++ [29] 79.5 55.9
CAT [21] 80.4 56.1

ADRNet [46] 80.7 57.0
SiamIVFN [33] 81.1 63.2
CMPP [36] 82.3 57.5
APFNet [40] 82.7 57.9
DMCNet [30] 83.9 59.3
mfDiMP [45] 84.2 59.1
SiamIVFN [33] 81.1 63.2

TBSI [15] 87.1 63.7
SiamAfb [10] 89.0 60.2

IIMF 86.8 64.4

integrates only MMFE modules into three-branch ViT, also ex-
hibits superior performance, gaining 2.1%/1.9%/1.7% improvement
in PR/NPR/SR respectively compared to TBSI, which demonstrates
that integrating modality-shared information into modality-shared
token and implementing inter-modal interaction with the token
fed into ViT can replace the direct inter-modal interaction between
both modality features. Compared to the CNN-based methods, our
method gains a great improvement in all metrics, which demon-
strates that the feature learning and relationship modeling capabil-
ities of ViT make sense in the field of SOT. The comparison with
the previous state-of-the-art methods demonstrates that our model
achieves valuable and indispensable improvement in both tracking

Table 3: The comparison between other methods and previ-
ous methods on the RGBT210 dataset. The best results are
indicated in bold.

Method RGBT234
Precision Success

DSiamMFT [49] 64.2 62.5
TFNet [57] 77.7 52.9
CAT [21] 79.2 53.3

DMCNet [30] 79.7 55.5
mfDiMP [45] 84.9 59.3
TBSI [15] 85.3 62.5
IIMF 85.6 62.4

performance and efficiency. Table 2 and Table 3 present the testing
results on RGBT210 and RGBT234 respectively, illustrating that our
model maintains good performance on small datasets.

4.4 Ablation Studies
To validate the effectiveness of our modules, we conduct ablation
studies on the LasHeR dataset with SOT pertaining. The results are
shown in Table 4.

Baseline method employs the ViT as the backbone and extends
it to a three-branch network. The three branches share architec-
ture and weights, utilized separately for the modality-shared, RGB
modality-specific, and TIR modality-specific features. The modality-
shared feature is generalized by concatenating RGB and TIR fea-
tures. No interaction among the three branches is implemented.
The output features of the three branches are concatenated and fed
into the tracking head. By comparing the performance of previous
state-of-the-art methods and the Three-branch Baseline, we can
conclude that aggregating the information of RGB and TIR search
regions into modality-shared tokens benefits feature learning. The
improvement can serve as empirical evidence supporting the as-
sertion that the information of RGB and TIR could well interact by
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Figure 5: Qualitative comparison between our tracker and other RGB-T trackers on the LasHeR dataset.

Table 4: The ablation studies on the components of our pro-
posed IIMF model. The best results are indicated in bold.

Method PR NPR SR

IIMF-Baseline 70.1 66.3 56.2
IIMF-MMFE 71.3 67.6 57.3
IIMF-Full 72.4 68.4 58.1

feeding the modality-shared tokens into the ViT backbone as we
state in Section 3.2.

IIMF-MMFE denotes the model only integrating the MMFE
module into the three-branch baseline. The MMFE module is in-
serted after the second ViT Block to extract modality-shared tokens
and modality-specific tokens. The backbone before MMFE is a two-
branch network while the backbone after MMFE is transformed into
a three-branch network. As shown in Table 4, IIMF-MMFE gains
1.2%/1.3%/1.1% improvement in PR/NPR/SR, demonstrating that
modality-shared and modality-specific features are well extracted.
The modality-shared information is aggregated and the interaction
between the information of the two modalities is implemented by
feeding the modality-shared token into the ViT backbone. At the
same time, more modality-specific information is preserved.

IIMF-Full denotes the model integrating the MMFE and CAMIA
modules into the three-branch baseline. The MMFE module is in-
serted after the second ViT block to extract modality-shared tokens
and modality-specific tokens, and the CAMIA module is inserted
after the 4th ViT block to further aggregate modality-shared infor-
mation to modality-shared tokens. IIMF-Full gains 1.1%/0.8%/0.8%
improvement in PR/NPR/SR compared to IIMF-MMFE, demonstrat-
ing that our CAMIA module can further aggregate modality-shared
information, which becomes manifest after partial feature learning.

4.5 Analysis and Visualization
To demonstrate the effectiveness of our method, we conduct visual-
ization work.

Qualitative Comparison.As shown in Fig 5, we conduct a qual-
itative comparison between our IIMF tracker and 8 other trackers
on some challenging scenarios, including fast movement, complex

background, low illumination, high illumination, e.g. from LasHeR
dataset. For example, the target bike going into the dark in the
(c) sequence experiences intense changes in illumination, while
our tricker still localizes the target bike since we can leverage the
information of RGB and TIR images. The data from TIR modality is
a valuable complementary to RGB data under extreme illumination
and these results indicate that our method exhibits outstanding
performance in the realm of cross-modal data interaction. Further-
more, in the (a) sequence, the target person is often occluded by
others, while our tracker localizes the target successfully, which
demonstrates that our tracker enjoys a strong distinction ability.
This demonstrates that our approach does not introduce excessive
background noise and avoids template contamination. In the (d)
sequence, where there exist multiple interfering factors including
complex illumination, occlusion, variation in target size, and com-
plex background, our IIMF model achieves continuous tracking
of the target. This demonstrates that our model enjoys a high tol-
erance to various extreme conditions. These results indicates our
proposed IIMF tracker enjoys high performance in various chal-
lenging scenarios, which makes our tracker a robust and accurate
one.

5 CONCLUSION
In this paper, we introduced a novel RGBT tracking framework that
enhances interactive information handling and minimizes informa-
tion loss by leveraging a cross-attention mechanism to aggregate
modality-shared information and modality-specific information
for joint learning and interaction. Utilizing the capabilities of Vi-
sion Transformers (ViT), our approach simplifies the complexity
of cross-modal interactions by embedding rich contextual infor-
mation directly into ViT, avoiding the need for intricate fusion
techniques between RGB and TIR modalities. Additionally, we pro-
pose the MMFE and CAMIA modules, which may inadvertently
introduce redundant data and background noise, potentially com-
promising tracking performance. Future work will focus on refining
our information aggregation processes to enhance the efficiency
and effectiveness of our tracking framework.
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