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ABSTRACT

Discovering relevant input features for predicting a target variable is a key scien-
tific question. However, in many domains, such as medicine and biology, feature
selection is confounded by a scarcity of labeled samples coupled with significant
correlations among features. In this paper, we propose a novel deep learning ap-
proach to feature selection that addresses both challenges simultaneously. First,
we pre-train the network using unlabeled samples within a self-supervised learn-
ing framework by solving pretext tasks that require the network to learn informa-
tive representations from partial feature sets. Then, we fine-tune the pre-trained
network to discover relevant features using labeled samples. During both train-
ing phases, we explicitly account for the correlation structure of the input features
by generating correlated gate vectors from a multivariate Bernoulli distribution.
Experiments on multiple real-world datasets including clinical and omics demon-
strate that our model discovers relevant features that provide superior prediction
performance compared to the state-of-the-art benchmarks in practical scenarios
where there is often limited labeled data and high correlations among features.

1 INTRODUCTION

High-dimensional datasets are increasingly prevalent in a variety of fields, including critical do-
mains such as medicine and biology. Discovering features responsible for the target variable is an
essential but challenging step in the analysis of such data. For example, while next generation
sequencing can detect the expression of tens of thousands of genes per sample (e.g., RNA-seq),
many genetic disorders stem from the variation in only a few groups of related genes (Jackson et al.,
2018). Identification of such disease-related factors is crucial for the design of therapeutic treat-
ments. Furthermore, feature selection has additional benefits, including reduced experimental costs,
greater interpretability, and improved model generalization (Min et al., 2014; Ribeiro et al., 2016).

However, the high-dimensional and often noisy nature of such data prevents relevant features from
being readily discovered. Moreover, in many domains there is a scarcity of label information due to
cost, privacy reasons, or experimental study design. While deep learning approaches have resulted
in improvements in feature selection (e.g., Yamada et al. (2020); Lemhadri et al. (2021), see Related
Work), such methods typically assume access to many labeled samples. With low sample size,
feature selection methods, in particular those employing deep learning, have shown a propensity to
overfit high-dimensional data (Kuncheva et al., 2020).

This issue is further exacerbated by the inherent structure of such data. Many (high-dimensional)
datasets exhibit substantial inter-correlations or multicollinearity – i.e., there exist features that are
(highly) correlated among themselves – which impacts the performance of feature selection methods
(Chong & Jun, 2005; Katrutsa & Strijov, 2017; Belsley et al., 2005). In particular, this structure can
cause parameter estimates to be unstable (Dobson & Barnett, 2018) and, in the extreme, can prevent
variable effects from being separated, confounding the problem of feature selection (Meloun et al.,
2002). Existing deep learning-based methods for feature selection do not (explicitly) consider the
correlations between features which will often result in the selection of redundant features.
∗Equal contribution
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When labeled samples are scarce, large numbers of unlabeled samples are often available (e.g.,
Perez-Riverol et al. (2019)). However, the importance of unlabeled data has been overlooked in
feature selection despite its potential to prevent the model selection process from overfitting by
allowing informative feature representations to be learned. Therefore, the development of methods
for feature selection that can exploit both labeled and unlabeled data is of great practical importance.

Contributions. We propose a novel method for feature selection that addresses two key challenges
in real-world scenarios: limited labeled data and correlated features. We use a self-supervised ap-
proach to train an encoder using unlabeled data via two pretext tasks: feature vector reconstruction
and gate vector estimation. This pre-conditions the encoder to learn informative representations
from partial feature sets, aligning the self-supervision with the model selection process of the down-
stream feature selection task. In addition, we introduce a novel gating procedure that accounts for
the correlation structure of the input features. This ensures the pretext tasks remain challenging by
preventing the model from memorizing trivial relations between features. Moreover, unlike previous
deep learning-based feature selection methods, the correlated gate vectors encourage our method to
select the most relevant features by making multiple correlated features compete against each other.

We validate our approach through experiments on synthetic and multiple real-world datasets, in-
cluding clinical and omics, where only a small number of labeled samples are available. Our model
discovers relevant features that provide superior prediction performance compared to state-of-the-art
benchmarks, and we corroborate these features with supporting medical and scientific literature.

2 RELATED WORK

Feature Selection Methods. Feature selection is a well-studied problem, with a number of proposed
solutions including wrapper (Kohavi & John, 1997) and filter (Liu & Setiono, 1996; Kira & Rendell,
1992) methods. Recent advances in deep learning provide an elegant way of training embedded
feature selection methods by jointly learning to perform feature selection while training a prediction
network (Huang et al., 2020). These methods learn to perform the non-differentiable process of
selecting feature subsets by approximating it either with Lasso or elastic net penalization (Li et al.,
2016), using an MCMC sampling approach (Liang et al., 2018), or more recently with continuous
relaxation using independent Gaussian random variables (Yamada et al., 2020). However, supervised
feature selection methods can fail to identify relevant features when limited labeled samples are
available due to overfitting (Kuncheva et al., 2020), impacting their suitability in many real-world
scenarios. Moreover, these methods do not consider the underlying correlation structure of the input
features which can be problematic when selecting relevant features among (highly) correlated ones.

Relatively few feature selection methods use unlabeled samples. Abid et al. (2019) used auto-
encoders to identify a pre-specified number of features that are sufficient for reconstructing the data.
Lindenbaum et al. (2020) improved the well-known Laplacian score (He et al., 2005) by selecting
feature subsets that better capture the “local structure” of the data. However, both approaches are
fully unsupervised and, without the guidance of label information, can fail to identify features rel-
evant to the target outcome. While a number of semi-supervised feature selection methods have
been proposed (Sheikhpour et al., 2017), they have typically been extensions of traditional methods,
such as a Laplacian score with modified affinity scores using labels (Zhao et al., 2008) or manifold
regularization based on linear SVMs (Dai et al., 2013). To the best of our knowledge, this is the first
deep learning framework that fully utilizes both labeled and unlabeled samples for feature selection.

Self-Supervised Learning. Self-supervised learning methods create (weak) supervised signals from
unlabeled data, employing contrastive learning or pretext task(s) to provide surrogate labels. While
self-supervised learning has found success in computer vision (Chen et al., 2020) and natural lan-
guage processing (Devlin et al., 2018), the tabular domain, which is most relevant in feature se-
lection, has been largely neglected. Methods for tabular data seek to reconstruct data either based
on a corrupted sample alone (Vincent et al., 2008; Arik & Pfister, 2019; Yin et al., 2020) or with
knowledge of which entries have been corrupted (Pathak et al., 2016). Recently, Yoon et al. (2020)
jointly learn to recover the original sample and predict the mask vector used to corrupt the data.

While our pretext tasks are also reconstruction-based, we propose a novel method for generating the
gate vector used to produce the input feature vector. This is particularly important when there exists
substantial correlation between features (see Section 5). All existing methods have used indepen-
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dent, uniform sampling; however, this allows highly correlated features to be readily reconstructed
since it is likely that not all such features will be corrupted. We prevent this by incorporating the
correlation structure into the gating procedure. In this work, we employ pretext tasks that mirror
the goal of the feature selection process: the input to the encoder is a subset of the features selected
at random. Employing partial feature sets for self-supervised learning encourages the encoder to
learn better representations of these partial feature sets. This in turn benefits learning both the model
selection function and the feature selection step since they are also trained using partial features sets.

3 PROBLEM FORMULATION

Let X = (X1, · · · , Xp) ∈ X p and Y ∈ Y be random variables for the high-dimensional input
features (e.g., gene expressions) and the target outcome (e.g., disease traits) whose realizations are
denoted as x = (x1, · · · , xp) and y, respectively. Throughout the paper, we will often use lower-
case letters to denote realizations of random variables.

Embedded feature selection aims to select a subset, S ⊂ [p], of features that are relevant for pre-
dicting the target as part of the model selection process. Denote ∗ be any point not in X and define
XS = (X∪{∗})p.1 Then, given X ∈ X p, the selected subset of features can be denoted as XS ∈ XS
where xS,k = xk if k ∈ S and xk = ∗ if k /∈ S. Let f : XS → Y be a function in F that takes as
input the subset XS and outputs Y . Then, selecting relevant features can be achieved by solving the
following optimization problem:

minimize
f∈F, S⊂[p]

Ex,y∼pXY

[
`Y
(
y, f(xS)

)]
subject to |S| ≤ δ (1)

where δ constrains the number of selected features and `Y (y, y′) = −
∑C
c=1 yc log y′c for C-way

classification tasks (i.e., Y = {1, · · · , C}) and `Y (y, y′) = ‖y − y′‖22 for regression tasks (i.e.,
Y = R).2 Unfortunately, the combinatorial problem in (1) becomes intractable for high-dimensional
data as the search space increases exponentially with p. Hence, we instead focus on a relaxation by
converting the combinatorial search in (1) into a search over the space of possibly correlated binary
random variables. It is worth highlighting that unlike existing work (e.g., Yamada et al. (2020);
Yoon et al. (2019)), we do not assume independence among these random variables.

Let M = (M1, · · · ,Mp) ∈ {0, 1}p be binary random variables governed by distribution pM , whose
realization m is referred to as the gate vector, for indicating selection of the corresponding features.
Then, the selected features given gate vector m can be written as

x̃ , m� x + (1−m)� x̄ (2)

where x̄ = Ex∼pX [x] and � indicates element-wise multiplication. Here, we replace not-selected
features with their means to resolve any issue when a feature having zero value (e.g., turned-off
genes) has specific meaning. Finally, we can approximately achieve (1) by jointly learning the
model selection f and the gate vector distribution pM based on the following optimization problem:

minimize
f, pM

Ex,y∼pXY
Em∼pM

[
`Y
(
y, f(x̃)

)
+ β‖m‖0

]
(3)

where f is implemented as a neural network and β is a balancing coefficient that controls the number
of features to be selected.

Challenges. In practice (especially in the healthcare domain), there are two main challenges that
confound selecting relevant features for predicting the target: (i) inter-correlation or multicollinear-
ity, which is the existence of features that are (highly) correlated among themselves, and (ii) the
absence of sufficient labeled samples. These challenges make embedded feature selection vulner-
able to overfitting. More specifically, model selection (i.e., learning f ) and feature selection (i.e.,
learning pM ) are conducted jointly. Either one being overfit to correlated or noisy irrelevant features
will end up discovering spurious relations and poor prediction. For instance, if the network is bi-
ased toward irrelevant features, the selection probability (i.e., importance) of those features will be
increased as if those features were “discriminative” or “predictive”, and vice versa.

1To enable neural networks to be trained with varying feature subsets, we set ∗ = x̄.
2For Y = {1, · · · , C}, we will occasionally abuse notation and write yc to denote the c-th element of the

one-hot encoding of y when clear in the context.
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Figure 1: An illustration of SEFS. The selection probability in the Feature Subset Generator is
fixed and treated as a hyper-parameter during Self-Supervision Phase while it is updated during
Supervision Phase using a reparameterization trick.

4 METHOD: SELF-SUPERVISION ENHANCED FEATURE SELECTION

In this section, we describe our novel feature selection method, which we refer to as Self-supervision
Enhanced Feature Selection (SEFS). To address the challenges described above, we propose a novel
gate vector generation process modeled by a multivariate Bernoulli distribution where dependencies
among gates are transferred from the correlation structure of the input features, and a two-step
training procedure that utilizes both labeled and unlabeled samples.

Our approach is defined by the selection probability π, that governs the gate vector generation
process, and the model selection function f , that we decompose into an encoder fθ and a predictor
fφ, i.e., f = fφ ◦ fθ, as illustrated in Figure 1. To utilize both labeled and unlabeled samples, these
components are updated via a two-step training procedure:

• Self-Supervision Phase: the encoder fθ is pre-trained to learn favorable representations for fea-
ture selection using unlabeled samples via solving two pretext tasks specifically designed to take
only subsets of the features as input.

• Supervision Phase: the learned representations from the Self-Supervision Phase are adopted to
solve the objective in (3) – i.e., updating the encoder fθ, the predictor fφ, and the selection
probability π – for discovering task-relevant features using labeled samples.

4.1 MULTIVARIATE BERNOULLI GATE VECTORS USING GAUSSIAN COPULA

Instead of assuming independence in the gating mechanism (2), we model the gate vector distribu-
tion pM as a multivariate Bernoulli distribution where dependencies among the gates are determined
by the correlation structure of the input features. To this goal, we use Gaussian copula (Nelsen,
2007) to construct a valid multivariate Bernoulli distribution. The Gaussian copula is a multivariate
cumulative distribution function (CDF) of random variables (U1, · · · , Up) over the unit cube [0, 1]p

with uniform marginals, where Uk ∼ Uniform(0, 1) for k ∈ [p]. Formally, given the correlation
matrix R ∈ [−1, 1]p that captures the correlation structure of X, the Gaussian copula is defined as:

CR(U1, · · · , Up) = ΦR(Φ−1(U1), · · · ,Φ−1(Up)) (4)

where ΦR stands for the joint CDF of a multivariate Gaussian distribution with mean zero vector and
correlation matrix R, and Φ−1 is the inverse CDF of the standard univariate Gaussian distribution.

Define π = (π1, · · · , πp) ∈ [0, 1]p to be the selection probability that governs the multivariate
Bernoulli distribution used to generate the gate vector m. Then, given CR, we can generate the gate
vector from a multivariate Bernoulli distribution, which is denoted as m ∼ MultiBern(π;R),
based on the correlated random variables (U1, · · · , Up) that preserve the correlation structure of the
input features; formally, mk = 1 if Uk ≤ πk and mk = 0 if Uk > πk for k ∈ [p].

Using the correlation structure of the input features when generating the gate vector has the follow-
ing two advantages: (i) during the Self-Supervision Phase, correlated gate vectors encourage the
network not to rely on trivial signals from highly correlated features when solving the pretext tasks,
which may lead to inefficient pre-training and sub-optimal downstream performance; (ii) during
the Supervision Phase, correlated gate vectors encourage the network to select only the most rele-
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vant features by increasing the chance that correlated features are selected jointly and thus compete
against each other.

4.2 SELF-SUPERVISION PHASE

Self-supervised learning uses unlabeled samples to automatically generate a (weak) supervisory
signal by solving relevant pretext tasks in the absence of labeled data. The learned representations
can then be used to solve downstream tasks. To this goal, we begin by defining two pretext tasks
motivated by recent success in self-supervised learning for tabular data (Yoon et al., 2020). The
pretext tasks to be jointly solved are: (i) reconstructing the original input x based on a randomly
selected subset of input features x̃, and (ii) simultaneously estimating the gate vector m that defined
which features were selected and which features were not (i.e., replaced by their mean value).

To solve these pretext tasks, we formally define the encoder fθ and two auxiliary network compo-
nents hψ1 , hψ2 that are temporarily employed during the Self-Supervision Phase:

• Encoder, fθ : X p → Z , that takes as input either the selected subset of features x̃ or the original
feature vector x, and outputs latent representations z ∈ Z .

• Feature vector estimator, hψ1 : Z → X p, that takes z = fθ(x̃) as input and outputs a vector x̂
which is an estimate of the original input x.

• Gate vector estimator, hψ2
: Z → [0, 1]p, that takes z = fθ(x̃) as input and outputs a vector

m̂ which is a prediction of which features have been selected (i.e., mk = 1) and which features
have been replaced by the mean (i.e., mk = 0).

When generating the subset of features x̃, each feature is selected based on the multivariate Bernoulli
distribution with an equal probability π, i.e., πk = π for k ∈ [p], which is a hyper-parameter fixed
throughout the Self-Supervision Phase. The adoption of an equal selection probability allows us to
make no assumptions about the relative feature importance, which is not known a priori.

The purpose of the Self-Supervision Phase is to pre-train the encoder. As such, both estimators take
as input the output of the same encoder fθ, which is the only component that will be retained in the
Supervision Phase. Formally, given the latent representations z = fθ(x̃), the reconstructed input
feature and the gate vector are defined as x̂ , hψ1

◦ fθ(x̃) and m̂ , hψ2
◦ fθ(x̃), respectively. The

encoder and the two estimators are trained jointly based on the following objective function:

minimize
θ,ψ1,ψ2

Ex∼pXm∼pM

[
`X(x, x̂) + α · `M (m, m̂)

]
(5)

where α is a coefficient chosen to balance between the two pretext task losses: `X(x, x̂) = ‖x− x̂‖22
and `M (m, m̂) = −

∑p
k=1mk log m̂k + (1−mk) log(1− m̂k).

Compared to previous work (Yoon et al., 2020), the correlated gating procedure in the proposed
method prevents the pretext tasks from being solved by only exploiting trivial relationships among
features by increasing the probability that highly-correlated features are masked simultaneously.
Further, the pretext tasks directly mirror the Supervision Phase: in both phases, the input to the
encoder is a subset of the features x̃. This trains the encoder to produce better representations of
partial feature sets which in turn prevents the model selection process in the Supervision Phase from
overfitting to spurious, noisy features, benefiting feature selection.

4.3 SUPERVISION PHASE

During the Supervision Phase, the encoder, predictor, and the selection probability, which we refer
to as the feature selection network, are jointly updated to solve the feature selection objective (3).
The predictor is formally defined as follows:

• Predictor, fφ : Z → Y , that takes as input the latent representations of the selected subset
of features, i.e., z = fθ(x̃), and outputs predictions on the target outcome. Together with the
encoder, the model selection function is given by f = fφ ◦ fθ.

To account for the correlations between features, we generate gate vectors using a multivariate
Bernoulli distribution. This is important since the correlated gate vectors encourage the network
to select only the most relevant features by making multiple correlated features compete against
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each other. However, solving (3) directly using such gate vectors is intractable since pM (m) has no
differentiable closed-form expression. Instead, we adopt a continuous relaxation of the multivariate
Bernoulli distribution (Wang & Yin, 2020) by applying the reparameterization trick to the correlated
uniform random variables (U1, · · · , Up) that preserve the correlation structure R.

Formally, given selection probability π = (π1, · · · , πp) and the multivariate uniform random
variables (U1, · · · , Up) from Gaussian copula CR, we can generate relaxed gate vector m̃ =
(m̃1, · · · , m̃p) ∈ (0, 1)p based on the following reparameterization trick (Wang & Yin, 2020):

m̃k = σ

(
1

τ

(
log πk − log(1− πk) + logUk − log(1− Uk)

))
(6)

where σ(x) = (1 + exp(−x))−1 is the sigmoid function. Such a relaxation is parameterized by π,
a pre-specified covariance matrix R, and a temperature hyper-parameter τ ∈ (0,∞). Similar to the
Relaxed Bernoulli distribution (Maddison et al., 2017), (6) is differentiable with respect to π.

In practice, the gate vector generation process in (6) can be handled as a deterministic transformation
of samples from a standard multivariate Gaussian random variable. More specifically, we first draw
samples from the multivariate Gaussian distribution v ∼ N (0,R) by v = (v1, · · · , vp) = Lε where
ε ∼ N (0, I) and L is a lower triangular matrix with positive diagonal entries, which is derived by
the Cholesky factorization of the covariance matrix, i.e., R = LLT . Next, we generate correlated
uniform random variables uk = Φ(vk) for k ∈ [p]. Finally, we can generate a relaxed multivariate
Bernoulli variable m̃k ∈ (0, 1) by plugging in uk and πk into (6).

Under the continuous relaxation, the regularization term in (3) that induces sparsity of selected
features can be simply derived as Em∼pM ‖m‖0 =

∑p
k=1 P (Uk ≤ πk) =

∑p
k=1 πk. Overall, we

can rewrite our objective as

minimize
θ,φ,π

Ex,y∼pXY ,ε∼N (0,I)

[
`Y
(
y, fφ◦ fθ(m̃� x + (1− m̃)� x)

)
+ β

p∑
k=1

πk

]
. (7)

The model selection function f = fφ ◦ fθ and the selection probability π are updated jointly via
gradient descent. Pseudo-code of SEFS can be found in Appendix A.

5 EXPERIMENTS

In this section, we evaluate the performance of SEFS and multiple feature selection methods using
a synthetic and several real-world datasets. Further experiments together with detailed information
regarding all experiments, benchmarks, and datasets can be found in the Appendix.

Benchmarks. We compare SEFS with 7 feature selection methods including 3 conventional meth-
ods and 4 state-of-the-art methods. The conventional methods include LASSO regularized lin-
ear/logistic model (Lasso, Tibshirani (1996)), extremely randomized tree ensembles (Tree, Geurts
et al. (2006)), and Laplacian Score that preserves locality structure (L-Score, He et al. (2005)). State-
of-the-art deep learning methods include Bayesian neural networks for feature selection (BNNsel,
(Liang et al., 2018)), feature selection based on continuous relaxation (STG, Yamada et al. (2020)),
unsupervised feature selection based on gated Laplacian (DUFS, Lindenbaum et al. (2020)). We
also include an extension of STG to the semi-supervised setting by augmenting the loss with a re-
construction task that estimates the original features from the gated inputs (STG (SS)). Among the
benchmarks, three are able to use both labeled and unlabeled samples: DUFS is fully unsupervised,
while both L-Score and STG (SS) are semi-supervised approaches that explicitly use the label.

To highlight our novel two-step training process, we also include a variant of our method that is
trained without employing the Self-Supervision Phase, which is denoted as SEFS (no SS).

Performance Metrics. For the synthetic experiments, we use the true positive rate (TPR) to as-
sess whether discovered features are truly relevant compared to the ground-truth. With real-world
data, however, it is not possible to calculate the TPR since the ground truth relevance is often not
known. Hence, we instead evaluate the prediction performance of the discovered features obtained
by different feature selection methods. For classification tasks, we use the area under the receiver
operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC), and for
regression tasks, mean squared error (MSE). This is an indirect way of assessing the relevance of the
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(a) TPR vs Labeled Samples (b) TPR vs Unlabeled Samples

Figure 3: Results on the Block-Structured Noisy Two-Moons dataset.
Average TPRs with with (a) varying numbers of labeled samples given
nu=1000 and (b) varying numbers of unlabeled samples given nl=10.

Table 1: AUROC and AU-
RPC (mean ± 95%-CI)
given the learned representa-
tions for nl=20, nu=1000.

Representation AUROC

SEFS (AE) 0.85±0.03
SEFS (indep) 0.88±0.03

SEFS 0.92±0.02

Representation AUPRC

SEFS (AE) 0.81±0.04
SEFS (indep) 0.87±0.03

SEFS 0.91±0.03

discovered features on the target tasks: we first conduct feature selection based on each method and
then train a multi-layer perceptron (MLP) to perform predictions on top of the feature-selected data.
Training a separate MLP isolates the effect of having different model selections – such as linear
models for Lasso, ensemble trees for Tree, and deep neural networks for BNNsel, STG and SEFS –
and thereby provides a fair comparison of the discovered features.

Experimental Setup. For each dataset, we divide the available samples into labeled and unlabeled.
Labeled samples are randomly split into training and testing sets. Within the training set, nl labeled
samples from the training set are used to train the feature selection methods and the entire labeled
samples are used to evaluate the discovered features. As a result, while features are selected based
on limited sample sizes, a significantly larger number of labeled samples are used to validate the
discovered features. Details of the data construction process is given in Appendix C.

Implementation. Implementation details, including hyper-parameters and the construction of co-
variance matrix R, together with details for all benchmarks can be found in Appendix B.

5.1 SYNTHETIC: BLOCK-STRUCTURED NOISY TWO-MOONS DATASET

To motivate and confirm our intuition of applying self-supervision and correlated gate vectors in
feature selection, we begin by evaluating SEFS via a set of synthetic experiments that addresses two
key challenges – i.e., limited labeled data and correlated features – in real-world scenarios.

Dataset Description. We consider the well-known 2-dimensional “Two-Moons” dataset with addi-
tive noise with variance σ2 = 0.1. The outcome label (i.e., Y = {0, 1}) is generated solely based
on these 2 features (i.e., x1 and x2). We augment 8 auxiliary feature dimensions that are irrelevant
to target outcomes by sampling from the standard Normal distribution. Finally, we introduce a cor-
related block-structure by augmenting each feature with 9 highly-correlated features (correlation:
0.94) by injecting small white noise (i.e., N (0, 0.32)), yielding 100 features in total.

Quantitative Analysis. In Figure 3(a), we compare the average TPR with varying numbers of
labeled samples nl = {10, 20, 40, 60, 80}while fixing the number of unlabeled samples nu = 1000.
We define x1 (or x2) as correctly discovered if and only if x1 (or x2) has the first or second highest
feature importance. SEFS benefits from learning the data structure using unlabeled samples and
provides significant gain over all baselines (see Appendix D.1 for a full comparison). The majority
of benchmarks struggle to identify x1 in particular due to x2 being more discriminative than x1, and
therefore noisy features that are correlated with x2 are often selected (Table S.4). We highlight the
benefit of the correlated gating procedure by comparing SEFS (no SS) and SEFS (no SS, indep), a
variant that uses the independent Bernoulli distribution to generate gate vectors. Our novel gating
procedure significantly improves the TPR even in the fully supervised setting (Figure 3(a)).

We further investigate the utility of the Self-Supervision Phase in SEFS. To this goal, we intro-
duce two counterparts that replace our self-supervised training with (i) a conventional auto-encoder
(SEFS (AE)) and (ii) a variant of our model with an uncorrelated gating procedure using indepen-
dent Bernoulli random variables (SEFS (indep)). In all cases, we employ the same feature selection
process as SEFS to isolate the impact of self-supervision. In Figure 3(b), we evaluate these variants
in terms of the TPR with a varying number of unlabeled samples nu = 200, 500, 1000, 2000, and
4000 while fixing the number of labeled samples nl = 10. (i.e., 5 for each label). Our method sig-
nificantly outperforms the other variants, improving the TPR over SEFS (no SS) even with a relative
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small number of unlabeled samples. Moreover, we further evaluate the quality of the learned repre-
sentation by assessing the discriminative performance of the learned representations given only the
ground-truth features (i.e., setting m1 = m2 = 1 and mk = 0 for k /∈ {1, 2}). As shown in Table 1,
the proposed gating procedure in SEFS helps the encoder to learn meaningful structure and results
in the most performant representations, further validating the self-supervised training procedure.

5.2 CLINICAL: UKCF DATASET Table 2: AUROC and AUPRC (mean
± 95%-CI) for |S| = 10 discovered
features for the UKCF dataset.

Methods AUROC AUPRC

Lasso 0.767±0.054 0.409±0.083
Tree 0.807±0.036 0.463±0.069

BNNsel 0.650±0.051 0.269±0.069
STG 0.781±0.048 0.440±0.082

DUFS 0.799±0.039 0.398±0.062
L-Score 0.668±0.010 0.213±0.017

STG (SS) 0.810±0.036 0.477±0.043

SEFS (no SS) 0.785±0.044 0.412±0.083
SEFS 0.846±0.013 0.532±0.027

Dataset Description. The UK Cystic Fibrosis registry
(UKCF)3 records annual follow-ups for 6,754 adults over
the period 2008–2015. We include patients with obser-
vations in at least three consecutive years. Each patient
is associated with p=245 clinical variables (11 static and
3×78 time-varying features), including demographics, ge-
netic mutations, clinical tests, and therapeutic management.
We set respiratory failure (death or lung transplant) in the
next 5 years as the label.

Quantitative Results. In Table 2, we compare the predic-
tion performance of feature selection methods with nl = 32, nu = 4754 and |S| = 10. As expected,
SEFS benefits from learning the data structure utilizing the unlabeled samples and discovers features
that provide significantly greater discriminative performance over all other methods (Table 2). Fully
supervised feature selection methods struggle to discover relevant features with only a few labeled
samples. The benefit of self-supervision can be clearly seen by comparing SEFS with SEFS (no
SS). Our results also highlight that fully unsupervised feature selection methods (i.e., L-Score and
DUFS) struggle to discover relevant features as these methods cannot select features that effectively
distinguish the target outcomes without the guidance of label information.

Qualitative Results. Two interesting features identified by SEFS but that were not discovered by
other methods were PI Allele 1 and 2 that are related to pancreatic functions. More specifically,
pancreatic function studies have demonstrated that (types of) mutations in the CFTR gene, which
causes CF, are highly associated with dysfunction in organ systems and the pathology of CF patients
(Sosnay et al., 2013; Gibson-Corley et al., 2016). Further details of the most frequently discovered
features and supporting evidence of their clinical relevance can be found in Appendix D.2.

5.3 PROTEOMICS: CCLE DATASET
Table 3: Frequently discovered
features by SEFS for Panobinos-
tat (CCLE). Features in blue are
not chosen by SEFS (no SS).
Supporting references provided
in Appendix D.3.

Rank Proteins Ref.

1 Caveolin-1 X
2 YAP-pS127 X
3 PRAS40-pT246 X
4 VHL X
5 Src-pY416 X
6 TAZ X
7 14-3-3-β X
8 Fibronectin –
9 GSK3-pS9 X

10 MSH2 X

Dataset Description. We study the response of heterogeneous
cancer cell lines to 11 different drugs where the goal is to iden-
tify proteins associated with the cell line response based on pro-
teomic measurements from the Cancer Cell Line Encyclope-
dia (CCLE, Barretina et al. (2012)). CCLE is a small dataset
containing 899 cancer cell lines (i.e., samples) described by
p=196 protein expressions. The real-valued drug response (i.e.,
Y = R) is available for 458 samples and is missing for the
remaining 441 samples (thus unlabeled). To benefit from self-
supervised learning, we integrate the RPPA measurements on
7,329 samples from The Cancer Genome Atlas (TCGA)4, cre-
ating overall 7,770 unlabeled samples (i.e, nu = 7770). While
the two datasets are not generated from the same distribution,
we expect some benefit from learning basic correlations among
features, even if not all correlations from CCLE are preserved.

Quantitative Results. In Figure 4, we compare the ranking of SEFS and the benchmarks across 11
drugs (nl = 20, nu = 7770, |S| = 10). SEFS is the best performing method for 9 drugs and is
always in the top 3 (median rank: 1, average rank: 1.36). Despite the majority of unlabeled data
originating from a different source, SEFS outperforms SEFS (no SS) in every experiment. While

3https://www.cysticfibrosis.org.uk/
4https://www.cancer.gov/
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Figure 4: Ranking of the average prediction performance for |S| = 10 discovered features across
different drugs in the CCLE dataset. (Rank: 1 = best, 9 = worst.)

Table 4: AUROC and AURPC (mean
± 95%-CI) given |S|=20 discovered
features for the PBMC dataset.

Methods AUROC AUPRC

Lasso 0.703±0.032 0.705±0.041
Tree 0.767±0.044 0.788±0.047

BNNsel 0.676±0.035 0.686±0.035
STG 0.761±0.066 0.777±0.071

DUFS 0.734±0.029 0.742±0.034
L-Score 0.699±0.009 0.688±0.009

STG (SS) 0.794±0.065 0.814±0.069

SEFS (no SS) 0.768±0.055 0.783±0.057
SEFS 0.884±0.013 0.901±0.013

Figure 5: Comparison of discovered features using Lasso,
Tree, and SEFS for the PBMC dataset with nl=20.

we would expect further gain from more similar unlabeled data, our results highlight that there is
potential benefit even when unlabeled data is only partially related to the labeled samples.

Qualitative Results. Now we have demonstrated the superior predictive performance of the features
discovered using SEFS, we seek to validate these features in the scientific literature. Here, we
focus our analysis on panobinostat, a histone deacetylase (HDAC) inhibitor used in the treatment of
several cancers. We found strong supporting evidence for 9 of the top 10 ranked features selected by
SEFS (Table 3, see Appendix D.3 for full details). In addition, the remaining feature (fibronectin) is
strongly implicated in cancer, but we did not find literature specifically relating it to panobinostat or
HDAC-mediated pathways. We provide supporting evidence for other drugs in Appendix D.3.

5.4 TRANSCRIPTOMICS: PBMC DATASET

Dataset Description. We focus on distinguishing sub-populations of T-cells (i.e., Y = {0, 1}),
namely naive and regulatory T-cells, from purified populations of peripheral blood monocytes
(PBMCs)5 based on transcriptomic measurements (i.e., mRNA sequence). The PBMC dataset con-
sists of 20,742 samples described by p=19256 protein-coding genes. We primarily used nl = 20,
nu = 15557, with the remaining 5,165 labeled samples used to evaluate the discovered features.

Quantitative and Qualitative Results. Similarly to the performance on other datasets, SEFS sig-
nificantly outperforms all benchmarks (Table 4). Figure S.4 displays only features selected with a
frequency ≥ 0.4. It is immediately apparent that only SEFS consistently identifies the same fea-
tures, while Lasso and Tree typically select different features, demonstrating the robustness of our
approach. We provide supporting evidence for the importance of these features in Appendix D.4.

6 CONCLUSION

In this paper, we proposed SEFS, a self-supervised feature selection framework that is able to lever-
age the abundant quantities of unlabeled data that are often available, achieving state-of-the-art
performance when limited labeled data is available. Using synthetic data, we motivate and confirm
our intuition as to why self-supervision and our novel gating procedure can benefit feature selec-
tion methods. Through experiments on multiple real-world datasets, we validate that our model
discovers features that provide superior prediction performance and corroborate the vast majority of
the discovered features with supporting medical and scientific literature. As with all feature selec-
tion methods, the discovered features based on SEFS should be further experimentally verified or
evaluated by a domain expert prior to deployment in practice.

5https://support.10xgenomics.com/single-cell-gene-expression/datasets
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A PSEUDO-CODE OF SEFS

SEFS is trained via a two-step training procedure. We provide pseudo-codes for the Self-Supervision
Phase in Algorithm 1 and for the Supervision Phase in Algorithm 2.

The source code for SEFS is available in https://github.com/chl8856/SEFS.

Algorithm 1 Pseudo-code for the Self-Supervision Phase of SEFS

Input: Dataset Du = {xi}nu
i=1, coefficient α, selection probability π,

mini-batch size nmb, learning rate η
Output: SEFS parameter θ

Initialize parameters (θ, ψ1, ψ2)
Compute the mean value: x̄ = 1

nu

∑nu

i=1 x
i

Compute the correlation matrix: R where Rkj =
|Ckj |√
Ckk·Cjj

and Ckj =
∑nu

i=1(xi
k−x̄

i
k)(xi

j−x̄
i
j)

nu−1

repeat
Sample a mini-batch of nmb unlabeled data samples: {xi}nmb

i=1 ∼ Du
for i = 1, · · · , nmb do

Sample gate vector: mi ∼ MultiBern(π;R)
Generate feature subset: x̃i ←m� xi + (1−m)� x̄
Estimate feature vector: x̂i ← hψ1

◦ fθ(x̃i)
Estimate gate vector: m̂i ← hψ2 ◦ fθ(x̃i)

end for
Update the encoder parameter θ:

θ ← θ − η∇θ

(
1

nmb

nmb∑
i=1

`X(xi, x̂i) + α · `M (mi, m̂i)

)

Update the feature vector estimator parameter ψ1:

ψ1 ← ψ1 − η∇ψ1

(
1

nmb

nmb∑
i=1

`X(xi, x̂i)

)

Update the gate vector estimator parameter ψ2:

ψ2 ← ψ2 − η∇ψ2

(
1

nmb

nmb∑
i=1

α · `M (mi, m̂i)

)
until convergence

B IMPLEMENTATION DETAILS

The hyper-parameters of SEFS and those of the benchmarks are chosen via a grid search. For all
methods, we use 20% of the overall training set as the validation set, which will then be unseen for
training feature selection methods with chosen hyper-parameters.

Once feature selection methods are trained utilizing a small subset of the overall training set as
illustrated in Figure S.1, we train MLPs (with 3 layers and 100 nodes) with feature-selected data.
As described in Section 5, training a separate MLP isolates the effect of having different model
selections and thereby provides a fair comparison among the discovered features.

It is worth highlighting that generating correlated gate vectors can be computationally burdensome
for high-dimensional data due to the matrix multiplication in Algorithm 3 and 4. To avoid such an
issue, we first apply thresholding (e.g., 0.7 for the PBMC dataset) to the correlation matrix R, group
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Algorithm 2 Pseudo-code for the Supervision Phase of SEFS

Input: Dataset Dl = {xi, yi}nl
i=1, pre-trained encoder θ, coefficient β,

mini-batch size nmb, learning rate η
Output: SEFS parameters (θ, φ,π)

Initialize parameters (φ,π)
Compute the mean value: x̄ = 1

nu

∑nu

i=1 x
i

Compute the correlation matrix: R where Rkj =
|Ckj |√
Ckk·Cjj

and Ckj =
∑nu

i=1(xi
k−x̄

i
k)(xi

j−x̄
i
j)

nu−1

repeat
Sample a mini-batch of nmb labeled data samples: {xi, yi}nmb

i=1 ∼ Dl
for i = 1, · · · , nmb do

Sample gate vector: m̃i ∼ Relaxed-MultiBern(π;R)
Generate feature subset: x̃i ← m̃� xi + (1− m̃)� x̄
Predict outcome given the feature subset: ŷi ← fφ ◦ fθ(x̃i)

end for
Fine-tune the encoder parameter θ:

θ ← θ − η∇θ

(
1

nmb

nmb∑
i=1

`Y (yi, ŷi)

)

Update the predictor parameter φ:

φ← φ− η∇φ

(
1

nmb

nmb∑
i=1

`Y (yi, ŷi)

)

Update the selection probability parameter π:

π ← π − η∇π

(
1

nmb

nmb∑
i=1

`Y (yi, ŷi) + β

p∑
k=1

πk

)
until convergence

Algorithm 3 Pseudo-code for MultiBern(π;R)

Input: selection probability π, correlation matrix R
Output: correlated gate vector m
Draw a standard normal sample: ε ∼ N (0, I)
Compute L = Cholesky-Decomposition(R)
Generate a multivariate Gaussian vector v = Lε
for k = 1, · · · , p do

Apply element-wise Gaussian CDF: uk = Φ(vk)
Generate correlated gate: mk = 1(uk ≤ πk)

end for

features based on the agglomerative clustering6 using the correlation matrix as the similarity mea-
sure, and then conduct block-wise matrix multiplication. Overall, the generated gates for features
within the same group will maintain the correlation structure. This significantly reduces the compu-
tational complexity in Algorithm 3 and 4 as it scales quadratically with respect to the largest block
size (i.e., the number of features grouped in the largest block). Thus, if the largest block size remains
the same, the complexity of generating the correlated gate vectors will only increase linearly with
the feature dimension (since the number of blocks would increase linearly).

6Implemented using Python package scikit-learn
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Algorithm 4 Pseudo-code for Relaxed-MultiBern(π;R) (Wang & Yin, 2020)

Input: selection probability π, correlation matrix R, temperature τ
Output: correlated gate vector m̃
Draw a standard normal sample: ε ∼ N (0, I)
Compute L = Cholesky-Decomposition(R)
Generate a multivariate Gaussian vector v = Lε
for k = 1, · · · , p do

Apply element-wise Gaussian CDF: uk = Φ(vk)
Apply reparameterization trick (Maddison et al., 2017):

m̃k = σ

(
1

τ

(
log πk − log(1− πk) + log uk − log(1− uk)

))
where σ(x) = 1

1+exp(−x) .
end for

Throughout the experiments, training SEFS takes approximately 30 minutes to 1 hour for each phase
(similar to that of STG) on a single GPU machine7.

B.1 SEFS

The overall training process of SEFS consists of 4 different network components that are imple-
mented as neural networks: (i) encoder fθ, (ii) predictor fφ, (iii), feature vector estimator hφ1 , and
(iv) gate vector estimator hφ2 . We use a fully-connected network as the baseline architecture for all
the network components.

For the Semi-Supervision Phase, coefficients (α, π) and the hyper-parameters – including the num-
ber of hidden units, the number of nodes, and the number of layers – of the encoder, the feature
vector estimator, and the gate vector estimator are chosen utilizing a grid search. We choose hyper-
parameter values that achieve the lowest validation loss.

For the Supervision Phase, coefficient β and the hyper-parameters – including the number of nodes
and the number of layers – of the predictor are chosen utilizing a grid search (note that the hyper-
parameters of the encoder is fixed after the Semi-Supervision Phase). We choose hyper-parameter
values that achieve the best validation performance by using the outputs of the predictor (i.e., ŷ =
fφ ◦ fθ(x)).

The permitted values of coefficients (α, β, π) and the hyper-parameters are listed in Table S.1.

B.2 BENCHMARKS

Throughout the experiments, we compared SEFS with feature selection methods ranging from con-
ventional approaches – such as Lasso (Tibshirani, 1996) and Tree (Geurts et al., 2006) – to the
state-of-the-art approaches – such as STG (Yamada et al., 2020) and DUFS (Lindenbaum et al.,
2020). Further descriptions of the benchmarks and implementation details are as follows:

• Lasso8: Lasso is a well-known embedded method whose objective is to minimize the prediction
loss (i.e., cross-entropy loss for classification tasks and mean squared error for regression tasks)
while enforcing the l1-penalty to achieve sparsity among input features (Tibshirani, 1996). We
implement Lasso regression for regression tasks and Logistic regression with l1-penalty for clas-
sification tasks. The hyper-parameter to control the input sparsity is chosen from {0.001, 0.01,
0.1, 1, 10, 100}.

• Tree9: ExtraTree (Geurts et al., 2006) is an ensemble of decision trees that has become a popular
choice for classification and regression tasks for tabular data. We use the feature importance

7The specification of the machine is: CPU – Intel Core i7-8700K, GPU – NVIDIA GeForce GTX 1080Ti,
and RAM – 64GB DDR4

8Implemented using Python package scikit-learn
9Implemented using Python package scikit-learn
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Table S.1: Hyper-parameters of SEFS.

Block Set of Hyper-Parameters

Initialization Xavier (Glorot & Bengio, 2010)
Optimization Adam (Kingma & Ba, 2015)
Mini-batch size∗ 32
Non-linearity ReLu

Semi-Supervision Phase
Learning rate (η) {0.0001, 0.001, 0.01}
No. of hidden units {10, 30, 50, 100}
No. of layers {1, 2, 3}
No. of nodes {10, 30, 50, 100, 300, 500}
Coeff. α {0.01, 0.1, 1.0, 10, 100}
Coeff. π {0.2, 0.4, 0.6, 0.8}
Supervision Phase
Temperature τ 1.0
Dropout 0.3
Learning rate (η1, η2) {0.0001, 0.001, 0.01}
No. of layers {1, 2, 3}
No. of nodes {10, 30, 50, 100, 300, 500}
Coeff. β {0.01, 0.1, 1.0, 10, 100}
∗We used nl as the mini-batch size for the cases with
the number of labeled samples smaller than 32, i.e., min(nl, 32).

obtained by ExtraTree to conduct feature selection. The number of trees and the maximum
depth are chosen from {10, 50, 100, 300, 500} and {1, 2, 3, 4}, respectively.

• L-Score10: The Laplacian Score (L-Score) (He et al., 2005) is an unsupervised (filter) feature
selection method that quantifies the importance of input features by the ability to preserve local
structure of the data, which is captured by the Laplacian matrix. We further modify the affinity
score between a pair of labeled samples following the description in Sheikhpour et al. (2017),
i.e., the affinity score becomes 1 if the two samples have the same label and 0 otherwise. We
construct the Laplacian matrix based on the Gaussian kernel using both labeled and unlabeled
samples with 10-nearest neighbors and setting the kernel bandwidth as the median Euclidean
distance.

• BNNsel11: BNNsel is an embedded feature selection method based on Bayesian neural networks
that overcomes the non-differentiability in the selection process by utilizing MCMC sampling
(Liang et al., 2018). The number of hidden units is chosen among {3 (default value), 5, 10, 30,
50} with a fixed prior probability 0.025 (default value).

• STG12: STG is an embedded feature selection method using deep neural networks that over-
comes the non-differentiable process of selecting feature subsets via continuous relaxation using
Gaussian random variables (Yamada et al., 2020). We use a fully-connected network as the base-
line architecture where the number of nodes and the number of layers are chosen among {10, 30,
50, 100, 300, 500} and {1,2,3,4,5}, respectively. The hyper-parameter to control the sparsity of
input features is chosen among {0.001, 0.01, 0.1, 1, 10, 100}.

• STG (SS): We propose an extension of STG to the semi-supervised setting. To this goal, we
introduce a reconstruction task in addition to the prediction task of the original STG. More
specifically, we utilize an auxiliary network, i.e., decoder, which reconstructs the original input
features given the gated features by minimizing the reconstruction loss. The overall network is
trained based on the combination of the prediction loss and the reconstruction loss. (Here, we
adopt a hyper-parameter α ∈ {1., 0.1, 0.01, 0.001} to balance the two losses). We use a fully-
connected network as the baseline architecture where the number of nodes and the number of
layers are chosen among {10, 30, 50, 100, 300, 500} and {1,2,3,4,5}, respectively. The hyper-

10We explicitly implement L-Score for semi-supervised setting based on the description in Sheikhpour et al.
(2017)

11https://rdrr.io/cran/BNN/man/BNNsel.html
12https://github.com/runopti/stg
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Table S.2: Summary statistics of the dataset.

Data Source UKCF PBMC CCLE

Irino L PLX Pano
AZD6244
Erlo
Pacli

Lapa
PD
PF
Topo

Data Type clinical transcriptomics proteomics
Target Outcome resp. failure cell-type class drug response
Feature Dimension 285 19256 196
No. Labeled Samples (FS–Train) 32 20 15 23 25 27 29 29
No. Labeled Samples (Eval.–Train) 1000 1296 146 223 225 227 229 229
No. Labeled Samples (Eval.–Test) 1000 3889 146 223 225 227 228 229
No. Unlabeled Samples 4754 15557 7770 7770 7770 7770 7770 7770
Irino: Irinotecan, PLX: PLX4720, L: L-685458, Pano: Panobinostat, AZD: AZD6244, Erlo: Erlotinib, Pacli: Paclitaxel
Lapa: Lapatinib, PD: PD-0325901, PF: PF2341066, Topo :Topotecan

Figure S.1: Illustration of dataset splits for (a) UKCF, (b) PBMC, and (c) CCLE – Lapatinib datasets.

(a) UKCF dataset (b) PBMC dataset (c) CCLE dataset

Figure S.2: The correlation structure of (a) UKCF, (b) PBMC, and (c) CCLE datasets. For the
PBMC dataset, the number of features are reduced after thresholding.

parameter to control the sparsity of input features is chosen among {0.001, 0.01, 0.1, 1, 10,
100}.

• DUFS13: DUFS is an unsupervised feature selection method that improves the Laplacian score
(He et al., 2005) by replacing it with a gated variant computed on a subset of features (Linden-
baum et al., 2020). We use the parameter-free version of DUFS which construct the Laplacian
matrix with 2-nearest neighbors and setting the kernel bandwidth as the median Euclidean dis-
tance. Both labeled and unlabeled samples are used for training.

C DETAILED DATA DESCRIPTIONS

In Section 5 of the manuscript, we evaluate SEFS and the benchmarks with multiple healthcare
datasets from three different sources, i.e., UKCF (clinical), CCLE (proteomics), and PBMC (tran-
scriptomics). The summary statistics of these datasets are provided in Table S.2.

13https://github.com/Ofirlin/DUFS
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Throughout the experiments on the real-world healthcare and omics datasets, we consider a practical
scenario for feature selection under low labeled data regime where only a small number of labeled
samples are available while having a sufficient amount of unlabeled sample. To this goal, we con-
struct datasets based on the following steps: First, we obtain enough unlabeled samples by utilizing
samples without labels that are readily present in the original data (e.g., UKCF dataset has censored
patients and CCLE dataset has samples without drug response), treating a portion of labeled samples
as unlabeled (e.g., UKCF and PBMC datasets), and by integrating samples from different sources
(e.g., CCLE dataset). Second, we randomly split the labeled samples into training and testing sets.
Here, both the training and the testing sets are used for evaluating discovered features from differ-
ent feature selection methods. This assures that the discovered features generalize well to unseen
samples. Third, we randomly select a small subset of training samples for training different feature
selection methods. The overall data construction steps are illustrated in Figure S.1.

Correlation Structure. The correlation structure of the datasets are illustrated in Figure S.2. We
construct the correlation matrix R as defined in Algorithm 1 and 2: formally, each element of R

is given as Rkj =
|Ckj |√
Ckk·Cjj

where Ckj =
∑nu

i=1(xi
k−x̄

i
k)(xi

j−x̄
i
j)

nu−1 . It is worth highlighting that

the PBMC dataset contains many features that have low correlation with other features; thus, after
thresholding at 0.7, only 426 features with high correlation remain.

To quantify the amount of collinearity, we calculated the variance inflation factor (VIF), which is
an index that measures how much the variance (the square of the estimate’s standard deviation) of
an estimated regression coefficient is increased because of collinearity. While there is not a strict
cut-off indicating collinearity, a general rule of thumb is that VIFs exceeding 10 are signs of serious
multicollinearity (Menard, 2001; Vittinghoff et al., 2011; James et al., 2013). We note this is a
conservative cut-off, with guidelines suggesting that VIFs greater than 5 (Menard, 2001; Vittinghoff
et al., 2011) indicate considerable collinearity. In Table S.3, we provide the VIFs of features in each
dataset; here the VIFs for the PBMC dataset are not available due to the computational complexity.
As seen in the table, there are strong signs of multicollinearity in both datasets with the VIFs for
23.5% of the features in the UKCF dataset and all the features in the CCLE dataset exceeding 10.

Table S.3: VIFs for the tested real-world datasets.

Datasets Mean Min Max VIF > 10

UKCF 11.33 1.04 391.84 23.50%
CCLE 80.81 15.00 462.97 100%

D ADDITIONAL EXPERIMENTS

D.1 SYNTHETIC: BLOCK-STRUCTURED NOISY TWO-MOONS DATASET

Quantitative Results. Table S.4 shows the average TPRs for all benchmarks. As can be seen in the
table, SEFS outperforms all benchmarks, with the majority of methods struggling to identify Feature
1 in particular. This is due to Feature 2 being more discriminative than Feature 1 and therefore the
noisy features that are correlated with Feature 2 are often selected. It is worth highlighting that
L-Score, DUFS, and STG (SS) fail to discover discriminative features in almost all cases due to the
correlation structure of the data that cannot be addressed by the similarity metrics or reconstruction
employed by these methods.

D.2 CLINICAL: UKCF DATASET

Quantitative Results. Figure S.3 displays features discovered with a frequency ≥ 0.4, where we
consider a feature is discovered (for all three feature selection methods) if that feature is within the
top 20 highest feature importance. It is immediately apparent that SEFS consistently identifies the
same features, while Lasso and Tree typically select different features, demonstrating the robustness
of our approach.
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Table S.4: The average TPRs on the Two-Moons dataset.

Methods (n`=20, nu=1000) (n`=80, nu=1000)

Feature 1 Feature 2 Average Feature 1 Feature 2 Average

Lasso 0.45 0.98 0.72 0.77 1.00 0.89
Tree 0.02 0.46 0.24 0.05 0.88 0.47
STG 0.14 0.96 0.55 0.21 1.00 0.61

DUFS 0.02 0.03 0.03 0.01 0.02 0.02
L-Score 0.00 0.00 0.00 0.00 0.00 0.00

STG (SS) 0.09 1.00 0.55 0.09 0.94 0.52

SEFS (no SS) 0.68 0.99 0.84 0.98 1.00 0.99
SEFS 0.92 1.00 0.96 1.00 1.00 1.00

Figure S.3: Comparison of discovered features based on Lasso, Tree, and SEFS for the UKCF
dataset with nl = 32.

Qualitative Results. Other than PI Allele 1 and 2 that are related to pancreatic functions as de-
scribed in Section 5.2, SEFS consistently discovered features related to the lung function scores
(i.e., FEV1% pred and FEV1). It is worth highlighting that, features related to the lung function
scores are frequently selected despite their relatively high correlation. We conjecture that the tra-
jectory of the lung functions scores measured at different times (with the highest frequency of the
latest measurement) plays an important role for predicting the respiratory failure as supported in
Taylor-Robinson et al. (2012); Adler & Liou (2016).

D.3 PROTEOMICS: CCLE DATASET

Quantitative Results. In Table S.5, we compare the prediction performance of 5 and 10 discov-
ered features (i.e., |S| = 5 and 10) for the 11 drugs – AZD6244, Erlotinib, Irinotecan, L-685458,
Lapatinib, PD-0325901, PF2341066, PLX4720, Paclitaxel, Panobinostat, and Topotecan – reported
in the manuscript. Despite the majority of unlabeled data originating from a different source, our
method benefits from learning the underlying data structure from unlabeled samples. SEFS consis-
tently displays improvements (except for Erlotinib with |S| = 5 and 10, L-685458 with |S| = 5,
and PF2341066 with |S| = 5 and 10) in performance for different drugs and varying numbers of
discovered features, outperforming SEFS (no SS) in every experiment. While we would expect fur-
ther gain from more similar unlabeled data, our results highlight the effectiveness of self-supervision
even when the unlabeled data is only partially related to the labeled samples.

Qualitative Results. In the main manuscript, we validated the features identified by SEFS for
panobinostat in the scientific literature. In Table S.6, we provide details of the references for panobi-
nostat and also provide supporting evidence for the selected features for lapatinib and irinotecan.

Lapatinib is a drug used primarily to treat breast cancer, as well as other solid tumours. It is a dual
tyrosine kinase inhibitor which inhibits the epidermal growth factor receptor (EGFR) and human
epidermal growth factor receptor 2 (HER2) receptors. In total, we found supporting literature for 8
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Table S.5: Comparison of the MSE (mean ± 95%-CI) given discovered features for the CCLE
dataset. (Lower the better.)

Methods AZD6244 Erlotinib Irinotecan L-685458

|S| = 5 |S| = 10 |S| = 5 |S| = 10 |S| = 5 |S| = 10 |S| = 5 |S| = 10

Lasso 1.444±0.03 1.494±0.03 0.426±0.02 0.426±0.02 1.432±0.03 1.416±0.03 0.305±0.01 0.315±0.01
Tree 1.389±0.04 1.426±0.04 0.407±0.02 0.434±0.02 1.385±0.03 1.340±0.03 0.293±0.01 0.309±0.01

BNNsel 1.394±0.04 1.412±0.04 0.400±0.01 0.413±0.01 1.364±0.03 1.354±0.03 0.288±0.01 0.305±0.01
STG 1.385±0.04 1.415±0.04 0.419±0.01 0.446±0.02 1.399±0.03 1.347±0.03 0.295±0.01 0.316±0.01

DUFS 1.427±0.04 1.443±0.04 0.420±0.01 0.442±0.01 1.373±0.03 1.323±0.03 0.311±0.01 0.343±0.01
L-Score 1.396±0.03 1.480±0.04 0.433±0.02 0.447±0.01 1.439±0.04 1.384±0.04 0.298±0.01 0.309±0.01

STG (SS) 1.393±0.04 1.416±0.04 0.411±0.01 0.444±0.01 1.409±0.04 1.327±0.04 0.281±0.01 0.295±0.01

SEFS (no SS) 1.376±0.04 1.409±0.04 0.408±0.01 0.440±0.01 1.414±0.03 1.335±0.04 0.284±0.01 0.312±0.01
SEFS 1.363±0.03 1.403±0.03 0.404±0.02 0.428±0.02 1.358±0.04 1.291±0.04 0.282±0.01 0.307±0.01

Methods Lapatinib PD-0325901 PF2341066 PLX4720

|S| = 5 |S| = 10 |S| = 5 |S| = 10 |S| = 5 |S| = 10 |S| = 5 |S| = 10

Lasso 0.450±0.01 0.459±0.02 2.216±0.05 2.210±0.05 0.365±0.01 0.365±0.01 0.407±0.02 0.420±0.02
Tree 0.412±0.02 0.440±0.02 2.196±0.04 2.178±0.05 0.345±0.01 0.370±0.01 0.397±0.02 0.416±0.02

BNNsel 0.457±0.02 0.474±0.02 2.176±0.05 2.178±0.05 0.347±0.01 0.363±0.01 0.397±0.02 0.414±0.02
STG 0.438±0.02 0.464±0.02 2.210±0.06 2.179±0.06 0.350±0.01 0.369±0.01 0.403±0.01 0.412±0.02

DUFS 0.436±0.01 0.460±0.01 2.186±0.05 2.233±0.04 0.359±0.01 0.376±0.01 0.414±0.01 0.423±0.01
L-Score 0.439±0.01 0.451±0.01 2.435±0.04 2.269±0.05 0.349±0.01 0.384±0.01 0.422±0.01 0.429±0.01

STG (SS) 0.435±0.01 0.456±0.01 2.184±0.05 2.183±0.05 0.344±0.01 0.373±0.01 0.409±0.02 0.410±0.02

SEFS (no SS) 0.394±0.02 0.424±0.02 2.171±0.06 2.194±0.06 0.345±0.01 0.371±0.01 0.396±0.01 0.400±0.02
SEFS 0.392±0.02 0.405±0.02 2.168±0.05 2.163±0.06 0.344±0.01 0.360±0.01 0.396±0.01 0.396±0.02

Methods Paclitaxel Panobinostat Topotecan

|S| = 5 |S| = 10 |S| = 5 |S| = 10 |S| = 5 |S| = 10

Lasso 1.689±0.03 1.689±0.03 0.651±0.01 0.631±0.02 1.533±0.02 1.530±0.02
Tree 1.633±0.03 1.626±0.03 0.547±0.02 0.531±0.02 1.441±0.04 1.431±0.03

BNNsel 1.636±0.03 1.629±0.03 0.574±0.02 0.552±0.02 1.436±0.03 1.415±0.03
STG 1.654±0.03 1.650±0.04 0.573±0.02 0.539±0.01 1.433±0.03 1.425±0.03

DUFS 1.667±0.04 1.625±0.04 0.607±0.02 0.575±0.02 1.443±0.03 1.439±0.03
L-Score 1.675±0.03 1.639±0.03 0.624±0.01 0.554±0.01 1.501±0.02 1.491±0.02

STG (SS) 1.618±0.03 1.622±0.03 0.541±0.02 0.522±0.02 1.408±0.03 1.393±0.03

SEFS (no SS) 1.614±0.04 1.604±0.03 0.522±0.02 0.506±0.01 1.416±0.03 1.407±0.03
SEFS 1.605±0.04 1.587±0.04 0.512±0.02 0.496±0.01 1.405±0.03 1.389±0.03

of the top 10 ranked features selected by SEFS (Table S.6b), with five such features not proposed
by SEFS (no SS). The other two features selected by SEFS are both established cancer biomarkers
with evidence of their importance in breast cancer, but we did not find literature specifically relating
them to Lapatinib.

Irinotecan is a chemotherapy agent used primarily to treat colon cancer in addition to small cell lung
cancer. All of the top 10 features identified by SEFS had supporting scientific literature for their
impact on the mechanism and effectiveness of irintecan or colon cancer (Table S.6c), of which six
were not proposed by SEFS (no SS).

D.4 TRANSCRIPTOMICS: PBMC DATASET

Qualitative Results. In Figure S.4, we compare the frequency of the discovered features based on
SEFS with that of the discovered features based on Lasso and Tree. The figure displays only the
features that were selected with a frequency equal to or greater than 0.4 by one of the methods. It
is worth highlighting that SEFS (no SS) does not discover any feature with frequency equal to or
greater than 0.4, which shows the importance of the Self-Supervision Phase. The lack of consistency
of discovering features suggests that Lasso and Tree could be overfit to spurious relations in different
splits of the data. Only 2 features are discovered at least 40% of the time by either Lasso or Tree
(one feature each), compared to 9 for SEFS.

SEFS almost always discovers S100A4 and IL32 as relevant features. Both of these genes have
been shown to be only expressed, or preferentially expressed, in certain types of T-cells – S100A4:
Weatherly et al. (2015) and IL32: Goda et al. (2006) – which strongly validates the selection of
these features. These features are also the most frequent features discovered by Tree, but with
much lower frequency, while Lasso does not discover either feature, despite their high relevance.
Similarly, while DUSP1 (also known as MKP-1) is selected by Lasso, Tree, and SEFS, only our
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Table S.6: Frequently discovered proteins (features) by SEFS for the CCLE dataset. Features in blue
were not proposed by SEFS (no SS).

(a) Panobinostat

Rank Proteins Ref.

1 Caveolin-1 (Deb et al., 2016)
2 YAP-pS127 (Heinemann et al., 2015)
3 PRAS40-pT246 (Gallagher et al., 2018)
4 VHL (Kalac et al., 2011)
5 Src-pY416 (Kostyniuk et al., 2002)
6 TAZ (Lee et al., 2017)
7 14-3-3-β (Wang et al., 2000)
8 Fibronectin –
9 GSK3-pS9 (Rahmani et al., 2014)

10 MSH2 (Li et al., 2020)

(b) Lapatinib

Rank Proteins Ref.

1 Caveolin-1 (Qian et al., 2019)
2 HER2-pY1248 (Medina & Goodin, 2008)
5 VHL –
6 mTOR (Gayle et al., 2012)
7 53BP1 (Li et al., 2012)
8 N-Ras (Galiè, 2019)
9 14-3-3 β –
8 Claudin-7 (Constantinou et al., 2018)
9 Rab25 (Cheng et al., 2013)

10 GSK3 pS9 (Duda et al., 2020)

(c) Irinotecan

Rank Proteins Ref.

1 Lck (Harashima et al., 2001)
2 Stathmin (Peng et al., 2010)
3 β-Catenin (Saifo et al., 2010)
4 Bcl-2 (Gupta et al., 2007)
5 Src pY416 (Petitprez & Larsen, 2013)
6 Smad4 (Wong et al., 2020)
7 YAP pS127 (Noguchi et al., 2018)
8 Bcl-xL (Lee et al., 2019)
9 PI3K-p85 (Koizumi et al., 2005)

10 E-Cadherin (Bendardaf et al., 2019)

method discovers this feature in the majority of the experiments, despite its importance for T-cell
activation and function (Zhang et al., 2009).

In addition, we also find evidence of the importance of JUN (Riera-Sans & Behrens, 2007),
SH3BGRL3 (Deng et al., 2006), CCR7 (Schneider et al., 2007), and ribosomal genes RPS13, RPL21,
and RPS3A (Procaccini et al., 2016).

Figure S.4: Comparison of discovered features using Lasso, Tree, and SEFS for the PBMC dataset
with nl=20 (i.e., 10 labeled samples for each label).

D.5 CORRELATED VS INDEPENDENT GATE VECTOR GENERATION IN FEATURE SELECTION

In this subsection, we investigate how the correlated gate vectors using a multivariate Bernoulli dis-
tribution in SEFS improves the feature selection process over independently generated gate vectors.
To this goal, in Figure S.5, we provide trajectories of selection probabilities for the ground-truth fea-
ture x2 and its block-correlated noisy features with respect to the number of training iterations. Note
that the results are generated only utilizing the Supervision Phase. As claimed in the manuscript,
the correlated gate vectors encourage the network to select only the most relevant feature by making
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(a) Correlated gate vectors (b) Independent gate vectors

Figure S.5: The trajectory of πk’s with respect to the number of iterations for the ground-truth
relevant feature x2 (in the blue line) and its block-correlated noisy features (in other colors) using (a)
correlated gate vectors using a multivariate Bernoulli distribution and (b) independent gate vectors
using a independent Bernoulli distribution.

(a) β vs true positive rate (b) β vs No. of Discovered Features

Figure S.6: Comparison of (a) the TPR performance and (b) the number of discovered features with
πk > 0.5, with respect to different values of β, respectively.

multiple correlated features compete against each other. This is highlighted in Figure S.5. However,
when independent gate vectors are used, it is less likely to make correlated features to compete each
other and increase the selection probabilities of the correlated noisy features because these features
are still informative about the target compared to the augmented features – i.e., (x3, · · · , x10) – and
their block-correlated features that are purely noisy.

D.6 SENSITIVITY ANALYSIS ON COEFFICIENT β

In this subsection, we provide sensitivity analysis using the Block-Structured Noisy Two-Moons
dataset to see the effect of coefficient β that controls the sparsity of the selected features. Figure S.6
shows (a) the true discovery rate as defined in Section 5.1 – where we define x1 (or x2) as correctly
discovered if and only if x1 (or x2) has the first or the second highest feature importance – and (b)
the number of features discovered whose selection probability is higher than 0.5 (i.e., πk > 0.5).
Here, multiple instances of SEFSwith different β’s are trained utilizing nl = 20 labeled samples
(i.e., 10 labeled samples for each label) and pre-trained with nu = 1000. The results are averaged
over 100 iterations as described in Section 5.1 of the manuscript.

Figure S.6(a) shows that SEFS trained with setting β = 5, 10 provides the highest TPR. However, as
can be seen in Figure S.6(b), setting the coefficient too small (here, β ≤ 1) will end up discovering
too many irrelevant features as if they were relevant – i.e., having many features whose selection
probability is above a certain level – and will mislead the discovery of relevant features. Contrarily,
setting the coefficient too high (here, β = 10) can restrict the selection process and may fail to
identify relevant features.
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