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ABSTRACT

We propose a modified density estimation problem that is highly effective for
detecting anomalies in tabular data. Specifically, we hypothesize that the den-
sity function is more stable (with lower variance) around normal samples than
anomalies. We first corroborate this hypothesis empirically using a wide range of
real-world data. Then, we propose a variance-stabilized density estimation prob-
lem for maximizing the likelihood of the observed samples while minimizing the
variance of the density around normal samples. To obtain a reliable anomaly de-
tector, we introduce a spectral ensemble of autoregressive models for learning the
variance-stabilized distribution. Finally, we perform an extensive benchmark with
52 datasets, demonstrating that our method leads to state-of-the-art results while
alleviating the need for data-specific hyperparameter tuning.

1 INTRODUCTION

Anomaly detection (AD) is a crucial task in machine learning that involves identifying patterns
or behaviors that deviate from the norm in a given dataset. Accurate identification of anomalous
samples is essential for the success of various applications such as fraud detection (Hilal et al.,
2021), medical diagnosis (Fernando et al., 2021), manufacturing (Liu et al., 2018), and more.

An intuitive and well-studied perspective on anomaly detection is via the lens of density estima-
tion. During training, a probabilistic model learns to maximize the average log-likelihood of non-
anomalous, i.e., ”normal” samples. Anomalous samples are then equated to low likelihood points un-
der the learned density function. Examples include Histogram-based Outlier Score (HBOS) (Gold-
stein & Dengel, 2012), which uses the histogram of the features to score anomalies in the dataset.
Variational autoencoders (An & Cho, 2015) use a Gaussian prior for estimating the likelihood of the
observations. The Copula-Based Outlier Detection method (COPOD) (Li et al., 2020) models the
data using an empirical copula and identifies anomalies as ”extreme” points based on the left and
right tails of the cumulative distribution function.

While the low-likelihood assumption for modeling anomalous samples seems realistic, density-
based anomaly detection methods often underperform compared to geometric or one-class classi-
fication models (Han et al., 2022). Several authors have tried to explain this gap. One possible
explanation is the curse of dimensionality, which makes density estimation challenging in high di-
mensions (Nalisnick et al., 2019; Wang & Scott, 2019; Nachman & Shih, 2020). Another argument
is that “simple” examples may lead to a high likelihood even if not seen during training (Choi et al.,
2018; Nalisnick et al., 2019). To bridge this gap, we propose a modified density estimation problem
that significantly improves the ability to distinguish between normal and abnormal samples.

We base our work on a new assumption on the properties of the density function around normal sam-
ples. Specifically, we argue that the density function of normal samples is approximately uniform
in some compact domain. This uniformity translates to a more stable (with lower variance) density
function around inliers than outliers. We first provide empirical evidence supporting this claim (see
Figure 2). Then, we propose a variance-stabilized density estimation (VSDE) problem, realized as
a regularized maximum likelihood problem. To learn a reliable, stable density estimate, we propose
a spectral ensemble of multiple autoregressive models implemented using probabilistically normal-
ized networks (PNNs) (Li & Kluger, 2022), each trained to learn a density representation of normal
samples that is uniform in some compact domain (a schematic illustration of this procedure appears
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Figure 1: Left: The proposed framework for anomaly detection. We use several feature-permuted
versions of tabular data. Each permutation is fed into a probabilistic normalized network (PNN) de-
signed to model normal samples’ density as uniform in some compact domain. Each PNN is trained
to minimize a regularized negative log-likelihood loss (see Eq. 1). Since our PNN is implemented
using an autoregressive model, we use a spectral ensemble of the learned log-likelihood functions
as an anomaly score for unseen samples. Right: Illustration of the proposed variance-stabilized den-
sity estimation (VSDE) vs. standard (un-regularized) maximum likelihood estimation (MLE) for
one-dimensional data. During training, we learn a more ”stable” density estimate around normal
samples. Our likelihood estimate is better for distinguishing between normal and abnormal sam-
ples at test time. As indicated here in the simplified illustration and supported empirically by our
experimental results.

in Figure 1). We perform an extensive benchmark with 52 real-world datasets, demonstrating that
our approach is a new state-of-the-art anomaly detector for tabular data.

2 RELATED WORK

One popular line of solutions for AD relies on the geometric structure of the data. These include
methods such as Local Outlier Factor (LOF) (Breunig et al., 2000), which locates anomalous data
by measuring local deviations between the data point and its neighbors. Another example is using
the distance to the k nearest neighbors (k-NN) to detect anomalies. Several authors have used an
AutoEncoder (AE) for this task by modeling anomalies as harder-to-reconstruct samples (Zhou &
Paffenroth, 2017). Chen et al. (2017) have improved upon this approach by presenting an ensemble
of AE with different dropout connections.

Another well-studied paradigm for anomaly detection is one-class classification. Deep One-Class
Classification (Ruff et al., 2018) trains a deep neural network to learn a transformation that mini-
mizes the volume of a data-enclosing hypersphere centered on a pre-determined point. Anomalies
are detected based on their distance to the hypersphere’s center. Several works have used self-
supervision to improve the classifier’s power to distinguish between normal and abnormal samples.
Examples include (Qiu et al., 2021), which apply affine transformations to non-image datasets and
use the likelihood of a contrastive predictor to detect anomalies. Shenkar & Wolf (2022) presented
Internal Contrastive Learning (ICL), which relies on a special masking scheme for learning an in-
formative anomaly score.

Density-based anomaly detection is based on the logic that anomalous events happen rarely and are
unlikely, thus considering an unlikely sample to have a low ”likelihood” and high probability density
for a normal sample. Multiple works are based on this intuition implicitly or explicitly (Liu et al.,
2020; Bishop, 1994; Hendrycks et al., 2018), even in classification (Chalapathy et al., 2018; Ruff
et al., 2018; Bergman & Hoshen, 2020; Qiu et al., 2021) or reconstruction (Chen et al., 2018; 2017)
based anomaly detection. Recently, numerous works pointed out that anomaly detection based on
simple density estimation has multiple flaws. Le Lan & Dinh (2021) claimed that methods based on
likelihood scoring are unreliable even when provided with a perfect density model of in-distribution
data. Nalisnick et al. (2019) demonstrated that the regions of high likelihood in a probability dis-
tribution may not be associated with regions of high probability, especially as the number of di-
mensions increases. Caterini & Loaiza-Ganem (2022) focuses on the impact of the entropy term in
anomaly detection and suggests looking for lower-entropy data representations before performing
likelihood-based anomaly detection.

3 METHOD

Problem Definition Given samples X = {x1, . . . , xN}, where xi ∈ RD, we model the data by
X = XN ∪XA, where XN are normal sample and XA are anomalies. Our goal is to learn a score
function S : RD → R, such that S(xn) > S(xa), for all xn ∈ XN and xa ∈ XA while training

2



Under review as a conference paper at ICLR 2024

Figure 2: Evaluation of our ”stable” density assumption. We present the mean log-likelihood vari-
ance ratio between anomalous and normal samples (see definition in the Intuition section below) for
52 publicly available tabular datasets. Values above the dashed line (greater than 1) are marked in
green. Our results indicate that in most datasets, the density is more stable (with lower variance)
around normal samples than anomalies. This corroborates our assumptions and motivates our pro-
posed modified density estimation problem for anomaly detection.

solely on x ∈ XN . In this study, we consider the modeling of S() by estimating a regularized
density of the normal samples.

Intuition One widely used assumption in the anomaly detection literature is that normal data has a
simple underlying structure. In contrast, anomalies do not follow a clear pattern since they can stem
from many unknown factors (Ahmed et al., 2016). Density-based models for anomaly detection
(Bishop, 1994), on the other hand, assume that the density of the data pX(·) is typically higher for
normal samples than anomalies, that is, pX(xn) > pX(xa) for xn ∈ XN and xa ∈ XA. In recent
years, multiple works showed the flaws of scoring a density model based solely on the likelihood
(Sec. 2). Here, we introduce a new assumption for modeling the density function of normal samples.
Specifically, our working hypothesis is that the density function around normal samples is stable
(with lower variance) compared to the density around anomalous samples. Namely, σ2

n < σ2
a, with

σ2
n = E

x∈XN

(pX(x) − µn)
2, σ2

a = E
x∈XA

(pX(x) − µa)
2, and µn, µa are the means of the density

computed over the normal and anomalous samples respectively.

To support this low variance assumption, we perform an evaluation using a diverse set of 52 publicly
available tabular anomaly detection datasets. For each dataset, we estimate the variance of the log-
likelihood of normal σ2

n and anomalous samples σ2
a. In figure 2, we visualize the log-likelihood

variance ratio between anomalous to normal samples. Each bar represents the variance ratio for a
single dataset. As indicated by this figure, in most of the datasets (46 out of 52), the variance ratio is
larger than 1, thus supporting our working hypothesis. Related empirical evidence can be seen in (Ye
et al., 2023), in which the authors demonstrate that multiple classifiers trained on normal samples
have lower variance than those trained on anomalous samples. We now exploit this assumption to
derive a modified density estimation for learning a stabilized density of normal samples.

Regularized density estimation Following recent anomaly detection works (Bergman & Hoshen,
2020; Qiu et al., 2021; Shenkar & Wolf, 2022), during training, we only assume access to normal
samples, Xtrain ⊂ XN . Therefore, by incorporating our low variance assumption, we can for-
mulate a modified density estimation problem where we impose stability of the density function.
Specifically, we minimize a regularized version of the negative log-likelihood. Denoting a density
estimator parameterized by θ as p̂θ(x), our optimization problem can be written as

min E
x∈XN

[
− log p̂θ(x) + λσ̂2

n

]
, (1)

where σ̂n is the sample variance of the estimated log-likelihood, and λ is a regularization parameter
that controls the regularization. Specifically, for λ = 0, Eq. 1 boils down to a standard maximum
likelihood problem, and using larger values of λ encourages a more stable (lower variance) density
estimate.

In recent years, many deep-learning methods have been proposed for density estimation. Here, we
chose an autoregressive model to learn p̂θ(x) due to their superior performance on density estimation
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benchmarks, though flows are a well-studied alternative (Dinh et al., 2014; 2016; Kingma et al.,
2016; Meng et al., 2022). Based on an autoregressive probabilistic model, the likelihood of a sample
x ∈ Xtrain is expressed as:

p̂θ(x) =

D∏
i=1

p̂θ(x
(i)|x(<i)) =⇒ log p̂θ(x) =

D∑
i=1

log p̂θ(x
(i)|x(<i)), (2)

where x(i) is the i-th feature of x, andD is the input dimension. To alleviate the influence of variable
order on our estimate, we present below a new type of spectral ensemble of likelihood estimates,
each based on a different permutation of features.

To estimate our stabilized density, we harness a recently proposed probabilistic normalized network
(PNN) (Li & Kluger, 2022). Assuming the density of any feature x(i) is compactly supported on
[A,B] ∈ R, we can define the cumulative distribution function (CDF) of an arbitrary density as

P̂ (X(i) ≤ x(i)) =
Fθ(x

(i))− Fθ(A)

Fθ(B)− Fθ(A)
, (3)

where Fθ is an arbitrary neural network function with strictly positive weights θ, and is thus mono-
tonic. Since each strictly monotonic CDF is uniquely mapped to a corresponding density, we now
have unfettered access to the class of all densities on [A,B] ∈ R, up to the expressiveness of Fθ via
the relation

p̂θ(x
(i)) = ∇(i)

x P̂ (X ≤ x(i)). (4)

By conditioning each Fθ(x
(i)) on x(<i), we obtain in their product an autoregressive density on

x. This formulation enjoys much greater flexibility than other density estimation models in the
literature, such as flow-based models (Dinh et al., 2014; 2016; Ho et al., 2019; Durkan et al., 2019)
or even other autoregressive models (Uria et al., 2013; Salimans et al., 2017) that model x(i) using
simple distributions (e.g., mixtures of Gaussian, Logistic). Our p̂θ represented by Fθ is provably a
universal approximator for arbitrary compact densities on RD (Li & Kluger, 2022), and therefore
more expressive while still being end-to-end differentiable. The model Fθ is composed of n layers
defined recursively by the relation

al = ψ(hA(Al)
Tal−1 + hb(bl, Al)) (5)

where l layer index of the PNN, a0 := x, ψ is the sigmoid activation, and Al, bl are the weights and
biases of the lth layer. The final layer is defined as Fθ(x) = softmax(AT

nan−1).

Feature permutation ensemble Since our density estimator is autoregressive (Eq. 2), different
input feature permutations may lead to different density estimates. While this seems like a limitation,
we leverage this property to robustify our estimate and propose an ensemble-based approach for
density estimation based on randomized permutations of the features. Specifically, we denote by
PD the set of permutation matrices of size D.

We learn an ensemble of regularized estimators, each minimizing objective Eq. 1 under a different
random realization of feature permutation Πℓ ∈ PD. We denote by S(x) = log p̂θ(x) as the
estimated log-likelihood of x. Next, we compute the score for each permutation, namely Sℓ(x) is
the score computed based on the permutation matrix Πℓ, ℓ = 1, ..., Nperm. Finally, inspired by
the supervised ensemble proposed in (Jaffe et al., 2015), we present a spectral ensemble approach
proposed for aggregating multiple density estimation functions.

The idea is to compute the Nperm × Nperm sample covariance matrix of multiple log-likelihood
estimates

Σ = E[(Si(x)− µi)(Sj(x)− µj)],

with µi = E(Si(x)). Then, utilizing the leading eigenvector of Σ, denoted as v to define the weights
of the ensemble. The log-likelihood predictions from each model are multiplied by the elements of
v. Specifically, the spectral ensemble is defined as

S̄(x) =

Nperm∑
ℓ=1

Sl(x)v[ℓ]. (6)
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Figure 3: Synthetic example demonstrating the effect of density stabilization. White dots represent
normal samples xn ∈ XN , while yellow represents anomalies xa ∈ XA. Left: scaled unregularized
log-likelihood estimation. Right: the proposed scaled regularized log-likelihood estimate. Using the
proposed stabilized density estimate (right) improved the AUC of anomaly detection from 79.8 to
98.3 in this example.

The intuition is that if we assume the estimation errors of different estimators are independent, then
the off-diagonal elements of Σ should be approximately rank-one (Jaffe et al., 2015). Section 4.4
demonstrates that the spectral ensemble works relatively well even for small values of Nperm. To
the best of our knowledge, this is the first extension of the spectral ensemble (Jaffe et al., 2015) to
anomaly detection.

4 EXPERIMENTS

All experiments were conducted using 3 different seeds. Each seed has 3 ensemble models with
different random feature permutations. We used a learning rate of 1e-4 and a dropout of 0.1 for all
datasets. Batch size is relative to the dataset size N/10 and has minimum and maximum values of
16 and 8096, respectively. Experiments were run on an NVIDIA A100 GPU with 80GB of memory.

4.1 SYNTHETIC EVALUATION

First, we use synthetic data to demonstrate the advantage of our variance regularization for anomaly
detection. We generate simple two-dimensional data following (Buitinck et al., 2013). The normal
data is generated by drawing 300 samples from three Gaussians with a standard deviation of 1
and means on (0, 0), (−5,−5), and (5, 5). We then generate anomalies by drawing 40 samples
from two skewed Gaussians centered at (−5, 5) and (5,−5). We train our proposed autoregressive
density estimator based on 150 randomly selected normal samples with and without the proposed
variance regularizer (see Eq. 1). In Figure 3, we present the scaled log-likelihood obtained by both
models. As indicated by this figure, without regularization, the log-likelihood estimate tends to attain
high values in a small vicinity surrounding normal points observed during training. In contrast, the
regularized model learns a distribution with lower variance and more uniform distribution around
normal points. In this example, the average AUC over 5 runs of the regularized model is 98.3, while
for the unregularized model, it is 79.8. This example sheds some light on the potential benefit of
our regularization for anomaly detection. The following section provides more empirical real-world
evidence supporting this claim.

4.2 REAL DATA

Experiments were conducted on various tabular datasets widely used for anomaly detection. These
include 47 datasets from the recently proposed Anomaly Detection Benchmark (Han et al., 2022)
and five datasets from (Rayana, 2016; Pang et al., 2019). The datasets exhibit variability in sample
size (80-619,326 samples), the number of features (3-1,555), and the portion of anomalies (from
0.03% to 39.91%). We evaluate all models using the well-known area under the curve (AUC) of
the Receiver Operating Characteristics curve. We follow the same data splitting scheme as in ICL
(Bergman & Hoshen, 2020; Shenkar & Wolf, 2022; Qiu et al., 2021), where the anomalous data is
not seen during training. The normal samples are split 50/50 between training and testing sets.
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(a) (b)

Figure 4: (a) A Dolan-More performance profile (Dolan & Moré, 2002) comparing AUC scores of 8
algorithms applied to 52 tabular datasets. For each method and each value of θ (x-axis), we calculate
the ratio of datasets on which the method performs better or equal to θ multiplied by the best AUC
for the corresponding dataset. Specifically, for a specific method we calculate 1

Ndata

∑
j AUCj ≥

θ · AUCbest
j , where AUCbest

j is the best AUC for dataset j and Ndata is the number of datasets. The
ideal algorithm would achieve the best score on all datasets and thus reach the left top corner of
the plot for θ = 1. Our algorithm yields better results than all baselines, surpassing ICL on values
between θ = 0.95 and θ = 0.82. Furthermore, our method covers all datasets (ratio equals 1) for
θ = 0.82 and outperforms the second best, ICL (Shenkar & Wolf, 2022), which achieves the same
at θ = 0.69. This suggests that using our method on all datasets will never be worse than the leading
method by more than 18%. (b) Box plots comparing the results of all methods on the 52 evaluated
datasets. Each box presents the mean (red) and median (black) as well as other statistics (Q1, Q3,
etc.).

Baseline methods We compare our method to density based methods like HBOS (Goldstein &
Dengel, 2012), and COPOD (Li et al., 2020), geometric methods such as k-NN (Angiulli & Pizzuti,
2002), and IForest (Liu et al., 2008), and recent neural network based methods like ICL (Shenkar &
Wolf, 2022), NTL (Qiu et al., 2021), and GOAD (Bergman & Hoshen, 2020). Following (Shenkar
& Wolf, 2022), we evaluate k-NN (Angiulli & Pizzuti, 2002) method with k = 5. For GOAD
(Bergman & Hoshen, 2020), we use the KDD configuration, which specifies all of the hyperparam-
eters, since it was found to be the best configuration in previous work (Shenkar & Wolf, 2022).
While many other methods are specifically designed for image data, to the best of our knowledge,
this collection of baselines covers the most up-to-date methods for anomaly detection with tabular
data.

Results In Table 1 we present the AUC of our method and all baselines evaluated on 52 different
tabular anomaly detection datasets. Our method outperforms previous state-of-the-art schemes by
a large margin (both on average and median AUCs). Specifically, we obtained 86.0 and 92.4 mean
and median AUC, better than the second-best method (ICL) by 1.2 and 2.2 AUC points, respectively.
We also achieved an average rank of 2.73 over all datasets, which surpasses the second and third-
best 3.08 and 3.97 by ICL and k-NN, respectively. Furthermor, our method was never ranked last
on any of the evaluated datasets. These results indicate that our method is stable compared to the
other methods tested. We perform another performance analysis using Dolan-More performance
profiles (Dolan & Moré, 2002) on AUC scores. Based on the curve presented in Figure 4, our
method performs best on a larger portion of datasets for any θ. With θ ∈ [0, 1] being a scalar factor
multiplying AUC obtained by the best method. For example, on all datasets, our method is never
worse than 0.82 times the highest AUC obtained by any scheme (as indicated by the intersection of
our curve with the line y = 1). The Dolan-More curve is further explained in the caption of this
figure.

4.3 ABLATION STUDY

We conduct an ablation study to evaluate all components of the proposed scheme.

Variance stabilization In the first ablation, we evaluate the properties of the proposed variance
stabilization loss (see Eq. 1). We conduct an ablation with 25 datasets and compare the AUC of our
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Table 1: AUC results on 52 datasets from widely used anomaly detection benchmarks for tabular
data (Han et al., 2022) and (Rayana, 2016; Pang et al., 2019).

Method k-NN GOAD(KDD) HBOS IForest COPOD ICL NTL Ours
2002 2020 2012 2008 2020 2022 2022

ALOI 51.5±0.2 50.2±0.2 52.3±0.0 50.8±0.4 49.5±0.0 54.2±0.8 52.0±0.0 60.5±0.3
Annthyroid 71.5±0.7 93.2±0.9 69.1±0.0 91.7±0.2 76.8±0.1 80.5 ±1.3 85.2±0.0 94.3±0.5
Backdoor 94.6±0.4 89.3±0.5 72.6±0.2 74.8±2.9 79.5±0.3 92.2±0.1 93.5±0.1 98.8±0.2
Breastw 99.6±2.1 97.7±0.8 99.6±0.6 99.8±1.2 99.8±0.3 99.1 ±0.3 96.3±0.3 99.3±0.1
Campaign 74.1±0.5 49.0±1.9 80.3±0.1 72.9±0.1 78.2±0.2 74.7 ±0.8 76.0±0.0 81.3±0.7
Cardio 90.5±5.2 84.6±3.0 81.2±1.2 94.2±1.0 93.0±0.4 92.7 ± 0.8 83.2±0.1 93.7±0.3
Cardio. 71.8±2.5 49.1±1.0 46.8±0.1 73.8±0.2 66.3±0.1 78.0 ±3.2 76.3±0.0 75.0±0.6
Celeba 63.1±2.9 28.4±0.8 76.8±1.5 70.5±0.7 75.1±0.9 80.3 ±1.5 68.8±0.2 71.7±5.7
Census 67.5±0.6 71.6±1.0 65.8±2.5 62.9±0.1 67.5±1.9 60.3 ±0.8 53.5±1.6 66.4±1.1
Cover 88.0±5.3 76.0±5.3 60.6±0.2 71.3±2.3 86.2±0.1 96.2 ±0.6 98.6±0.3 99.0±0.2
Donors 100.0±9.8 99.5±0.1 78.7±0.2 91.3±0.2 81.5±0.5 99.2 ± 0.8 85.0±0.4 95.8±2.8
Fault 58.8±0.9 65.4±1.6 53.0±0.1 57.6±0.4 49.1±0.1 78.7 ±0.7 58.0±0.2 78.1±0.2
Fraud 93.1±6.4 86.6±0.1 94.5±1.0 93.6±0.3 94.0±0.0 95.2 ±0.4 87.5±0.3 95.3±0.0
Glass 82.3±2.2 82.1±6.3 80.3±0.5 74.9±1.3 72.5±0.4 88.1 ± 5.0 72.5±0.2 88.4±1.2
Hepatitis 48.3±6.4 32.4±6.1 78.0±5.0 75.6±2.7 74.9±0.3 73.0 ±5.1 54.0±0.7 74.2±1.6
Http 99.8±0.0 50.4±0.1 99.7±1.0 99.0±0.1 98.8±0.7 99.5 ±0.0 100.0±0.5 99.9±0.0
InternetAds 73.7±0.9 66.4±3.0 53.1±3.9 45.6±14.4 65.9±5.5 84.1±1.4 76.0±2.7 86.0±0.1
Ionosphere 91.7±3.0 96.5±1.1 62.4±0.6 84.6±1.3 77.2±0.3 98.1±0.4 97.9±0.6 96.4±0.2
Landsat 68.4±0.8 58.6±1.6 73.2±6.3 60.1±0.1 49.3±0.9 74.9±0.4 66.5±2.1 70.7±0.4
Letter 36.6±2.9 87.6±0.9 35.2±1.1 33.0±4.1 40.9±0.2 92.8 ± 0.9 84.8±0.3 95.2±0.3
Lympho 99.5±20.5 59.9±14.2 97.9±3.7 99.8±1.0 99.3±3.0 99.5 ± 0.3 97.1±2.1 99.7±0.1
Magic.gamma 84.3±0.9 77.3±0.2 74.3±0.6 76.8±4.0 68±0.3 80.9±0.1 82.0±0.7 85.9±0.1
Mammo. 87.2±2.4 54.5±2.3 85.6±0.3 88.4±0.9 90.5±0.1 81.1±2.0 82.5±0.2 87.9±0.4
Mnist 93.4±0.1 87.7±1.0 74.5±0.1 87.2±1.3 77.7±0.1 98.2±0.0 98.0±0.0 92.9±0.0
Musk 99.7±2.9 100.0±0.0 96.4±0.0 90.5±0.9 99.7±0.0 100.0±0.0 100.0±0.1 100.0±0.0
Optdigits 99.5±7.9 93.1±1.9 89.2±3.6 81.5±1.0 69.3±3.2 97.5±1.5 84.7±0.1 87.0±0.3
PageBlocks 58.1±1.2 90.4±0.4 87.5±0.5 82.1±0.1 80.7±0.1 98.4 ±0.2 93.3±0.1 94.9±0.2
Pendigits 99.9±4.3 85.1±3.4 93.8±0.0 96.7±0.0 90.7±0.0 99.5±0.1 97.1±0.0 99.7±0.0
Pima 68.1±2.7 63.2±2.3 70.2±0.2 72.9±0.2 65.6±0.3 59.4±0.1 61.7±0.3 68.2±0.4
Satellite 82.2±1.1 78.2±0.9 84.5±1.0 77.4±0.6 68.3±0.3 80.6±1.7 82.4±0.4 83.3±0.2
Satimage-2 99.7±0.1 93.2±1.7 96.9±0.9 99.4±0.7 97.9±0.0 99.8±0.1 99.8±0.2 99.5±0.1
Shuttle 99.8±0.1 99.9±0.0 98.2±0.2 99.7±0.9 99.5±0.2 100.0 ±0.0 99.6±0.2 99.5±0.2
Skin 91.5±0.7 54.1±1.6 75.0±0.9 88.4±1.3 53.3±0.3 92.9±5.9 90.6±0.5 99.8±0.0
Smtp 92.8±2.3 72.2±7.7 84.7±0.2 90.5±1.5 92.0±0.1 83.5±2.4 86.7±0.1 81.2±4.9
SpamBase 77.0±4.3 79.4±0.8 82.2±0.1 85.6±1.2 72.1±0.1 74.3±0.5 44.1±0.0 86.1±0.2
Speech 36.9±1.8 54.1±4.4 37.0±1.2 40.1±0.7 37.4±0.8 58.9 ±2.7 62.5±0.2 52.9±0.1
Stamps 91.4±1.7 72.9±4.4 90.9±0.2 91.1±0.3 91.1±0.0 95.0 ±0.9 90.9±0.0 92.9±0.3
Thyroid 95.4±13.6 89.2±3.0 98.2±0.5 97.9±0.4 92.8±1.1 98.5 ±0.1 98.2±0.6 95.4±0.1
Vertebral 12.5±21.5 49.4±4.2 12.8±0.6 16.8±1.0 27.4±2.5 51.1±3.2 59.8±5.1 58.8±2.1
Vowels 82.6±7.2 97.6±0.5 53.4±0.1 62.2±1.6 52.8±0.0 99.7±0.1 98.0±0.0 99.0±0.1
Waveform 78.4±0.7 64.5±1.6 68.7±1.4 71.4±0.3 72.3±1.4 82.1 ±0.9 79.4±2.8 67.6±0.3
WBC 93.3±5.7 86.6±2.9 95.5±0.5 93.9±2.2 95.6±0.3 95.4±1.1 92.8±0.3 96.3±0.1
WDBC 98.9±0.0 94.8±0.5 94.4±7.0 99.2±1.3 98.6±0.5 99.1 ±0.0 99.8±6.2 99.7±0.1
Wilt 75.5±2.4 78.4±3.4 34.4±0.5 49.6±1.5 32.1±0.5 62.2±3.1 79.3±0.0 90.2±0.7
Wine 97.5±2.6 86.3±9.5 29.6±0.1 49.9±0.2 87.8±0.0 99.5±0.6 99.7±0.0 93.3±0.5
WPBC 50.3±3.7 51.7±0.6 49.2±0.0 49.6±1.0 49.2±0.0 52.3±3.4 42.3±0.0 52.8±0.2
Yeast 44.5±2.5 53.7±0.8 43.0±5.9 41.6±0.7 38.9±0.5 53.0 ±0.4 53.4±0.8 48.8±0.2
Abalone 98.9±3.2 54.3±7.8 85.4±1.2 89.8±1.2 92.4±0.9 94.3 ±0.6 85.1±1.0 93.7±0.7
Arrhythmia 81.8±1.9 64.3±8.8 78.5±0.8 80.8±0.9 77.4±1.4 81.7 ±0.6 76.5±0.9 78.6±0.2
Ecoli 98.0±8.5 84.7±6.8 42.9±1.6 42.0±4.2 90.7±1.5 86.5±1.2 73.1±2.3 91.9±1.5
Mulcross 100.0±3.6 51.3±15.8 98.4±0.6 98.4±0.4 73.5±0.0 100.0±0.0 90.5±0.0 99.9±0.0
Seismic 82.7±18.3 67.9±1.2 64.8±0.5 59.9±0.6 73.8±0.9 62.9±1.0 43.9±0.1 73.6±0.5

Mean 80.3 73.2 72.7 75.6 74.7 84.8 80.6 86.0
Median 85.8 76.7 77.4 79.1 77.0 90.2 84.8 92.4

model to a version that does not include the new regularization. As indicated by Table 2, there is a
significant performance drop once the regularizer is removed; specifically, the average AUC drops
by more than 10 points.

Ensemble of feature permutation We conduct an additional experiment with the same 25
datasets to evaluate the importance of our permutation-based spectral ensemble. We compare the
proposed approach to a variant that relies on a simple mean ensemble, and to a variant that relies on
a spectral ensemble with no feature permutation. The results presented in Table 2 demonstrate that
the feature permutations and spectral ensemble help learn a reliable density estimate for anomaly
detection.

4.4 STABILITY ANALYSIS

Here, we evaluate the stability of our approach to different values of λ, different numbers of feature
permutations Nperm, and for contamination in the training data.
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Figure 5: Stability analysis for the regularization parameter λ balancing between the likelihood and
the variance loss. λ = 0 indicates that no variance loss is applied. The numbers present the ratio
between the AUC and the AUC obtained without regularization (λ = 0). This heatmap indicates the
advantage of the proposed regularization for anomaly detection. Furthermore, observe the stability
of the AUC for different values of λ.

Regularization parameter To demonstrate that our method is relatively stable to choice of λ. We
apply our framework to multiple datasets, with values of λ in the range of [0, 10]. As indicated
by the heatmap presented in Figure 5, adding the regularization helps improve the AUC in most
datasets. Moreover, our performance is relatively stable in the range [1, 10]; we use λ = 3.33 in our
experiments which worked well across many datasets.

Feature permutation To evaluate the influence of the number of feature permutations on the
performance of our spectral ensemble, we run our model on several datasets with values ofNperm =
{1, 2, 3, 4, 5}. In Figure 6, we present the AUC of our ensemble for Nperm > 1 relative to the
performance of a single model, with no ensemble (Nperm = 1). This heatmap indicates that our
ensemble improves performance, and Nperm = 3 is sufficient to obtain a robust spectral ensemble.
Therefore, we use Nperm = 3 across our experimental evaluation. Furthermore, for the spectral
ensemble, we use the absolute value of v, to remove arbitrary signs from this eigenvector (Eq. 6).

Contaminated training data In the following experiment, we evaluate the stability of our model
to contamination in the training data. Namely, we introduce anomalous samples to the training data
and evaluate their influence on our model. In Table 3 we present the AUC of our model for several
datasets with different levels of training set contamination. We focus on datasets with relatively
many anomalies. As indicated by these results, the performance of our model is relatively stable to
anomalies in the training set.

Figure 6: Stability analysis of the number of permutations. Nperm = 1 indicates that no permu-
tations are applied, while Nperm = 5 is the result of a spectral ensemble of 5 permutations. The
numbers present the ratio between the AUC of a single model and the ensemble of Nperm permuted
estimators.

5 CONCLUSION

We revisit the problem of density-based anomaly detection in tabular data. Our key observation is
that the density function is more stable (with lower variance) around normal samples than anomalies.
We empirically corroborate our stability assumption using 52 publicly available datasets. Then,
we formulate a modified density estimation problem that balances maximizing the likelihood and
minimizing the density variance. To find a robust solution, we introduce a new spectral ensemble
of probabilistic normalized networks, each computed based on a different feature permutation. We
perform an extensive benchmark demonstrating that our method pushes the performance boundary

8
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Table 2: Ablation study. We evaluate the removal of several components of our model. Namely,
λ = 0 indicates the removal of the stability-inducing regularizer (Eq. 1), Πℓ = I corresponds to no
feature permutation, and mean ensemble replaces the proposed spectral ensemble by a simple mean
of the different density estimators.

Variant λ = 0 Πℓ = I Mean ensemble Ours

Abalone 95.6 (+1.9) 85.7 (-8.0) 90.6 (-3.1) 93.7 ±0.7
Annthyroid 88.2 (-6.1) 87.1 (-7.1) 92.0 (-2.3) 94.3 ±0.5
Arrhythmia 77.3 (-1.3) 78.6 78.2 (-0.4) 78.6 ±0.2
Breastw 94.1 (-5.2) 99.2 (-0.1) 98.5 (-0.8) 99.3 ±0.1
Cardio 59.6 (-34.1) 92.0 (-1.7) 92.1 (-1.6) 93.7 ±0.3
Ecoli 89.0 (-2.9) 87.0 (-4.9) 90.4 (-1.5) 91.9 ±1.5
Cover 58.9 (-39.1) 98.8 (-0.2) 97.6 (-1.4) 99.0±0.2
Glass 77.0 (-11.4) 89.0 (+0.6) 87.9 (-0.5) 88.4 ±1.2
Ionosphere 96.2 (-0.2) 96.4 96.0 (-0.4) 96.4 ±0.2
Letter 71.4 (-23.8) 94.2 (-1.0) 93.6 (-1.6) 95.2 ±0.3
Lympho 99.8 (+0.1) 99.9 (+0.2) 99.2 (-0.5) 99.7 ±0.1
Mammo. 87.0 (-0.9) 88.0 (+0.1) 86.5 (-1.4) 87.9 ±0.4
Musk 99.7 (-0.3) 100.0 100.0 100.0 ±0.0
Optdigits 66.3 (-20.7) 88.4 (+1.4) 85.5 (-1.5) 87.0 ±0.3
Pendigits 69.2 (-30.7) 99.7 99.4 (-0.3) 99.7 ±0.0
Pima 70.5 (+2.3) 64.8 (-3.4) 65.9 (-2.3) 68.2 ±0.4
Satellite 68.1 (-15.2) 84.3 (+1.0) 82.9 (-0.4) 83.3 ±0.2
Satimage-2 73.3 (-26.2) 99.0 (-0.5) 99.3 (-0.2) 99.5 ±0.1
Shuttle 99.6 (+0.1) 99.0 (-0.5) 99.5 99.5 ±0.2
Thyroid 97.4 (+2.0) 94.5 (-0.9) 93.0 (-2.4) 95.4 ±0.1
Vertebral 52.8 (-6.0) 52.9 (-5.9) 56.4 (-2.4) 58.8 ±2.1
Vowels 72.1 (-26.9) 97.8 (-1.2) 98.1 (-0.9) 99.0 ±0.1
Wbc 76.7 (-19.6) 95.8 (-0.5) 94.6 (-1.7) 96.3 ±0.1
Wine 93.2 (-0.1) 94.1 (+0.8) 90.6 (-2.7) 93.3 ±0.5

Mean 79.4 (-10.6) 88.7 (-0.3) 88.8 (-0.2) 90.0

Table 3: AUC results for various amounts of anomalies in the training data using different AD
datasets. As evident from these results, our method is relatively stable to contamination in the
training set.

Anomaly Percent 1% 3% 5% 0%

Breastw 98.4 (-0.5) 98.7 (-0.2) 98.7 (-0.2) 98.9 ±0.1
Cardio 95.1 (+0.9) 94.3 (+0.1) 94.6 (+0.4) 94.2 ±0.7
Pima 67.7 (-0.4) 67.2 (-0.9) 67.6 (-0.5) 68.1 ±0.8
Ionosphere 95.9 (-0.1) 94.8 (-1.2) 94.1 (-1.9) 96.0±0.1
Vertebral 55.1 (+2.8) 53.2 (+0.9) 55.5 (+3.2) 52.3 ±0.8

of anomaly detection with tabular data. We then conduct an ablation study to validate the importance
of each component of our method. Finally, we present a stability analysis demonstrating that our
model is relatively stable to different parameter choices and contamination in the training data.

6 LIMITATIONS

Our work focuses on tabular datasets and does not explore other potential domains like image data or
temporal signals; extending our models to these is compelling and can be performed by introducing
convolution or recurrent blocks into our PNN. Our spectral ensemble adapts the supervised ensemble
Jaffe et al. (2015) via an aggregation of density functions. While the ensemble demonstrated robust
empirical results, it still lacks theoretical guarantees; we believe that studying its properties is an
exciting question for future work. Finally, there are several challenging datasets on which our model
is still far from obtaining state-of-the-art AUC values; understanding how to bridge this gap is an
open question. In Appendix B, we highlight some of these examples and analyze the relationship
between the AUC of our model and the different properties of the data.
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APPENDIX

A DATA PROPERTIES

All datasets used in our paper were collected from widely used benchmarks for anomaly detection
with tabular data. Most of the datasets were collected by Han et al. (2022) and appear in ADBench:
Anomaly Detection Benchmark. This benchmark includes a collection of datasets previously used
by many authors for evaluating anomaly detection methods, including . We focus on the 47 clas-
sic tabular datasets from (Han et al., 2022) and do not include their newly added vision and NLP
datasets. The datasets that can be downloaded from 1 and were collected from diverse domains,
including audio and language processing (e.g., speech recognition), biomedicine (e.g., disease di-
agnosis), image processing (e.g., object identification), finance (e.g., financial fraud detection), and
more. We added five classic tabular datasets used in several recent studies, including (Rayana, 2016;
Pang et al., 2019; Shenkar & Wolf, 2022). The properties of the datasets are diverse, with sample
size in the range 80-619,326, the number of features varies between 3-1,555, and the portion of
anomalies from 0.03% to 39.91%. The complete list of datasets with properties appears in Table A.
Datasets from ALOI to Yeast are from (Han et al., 2022), and datasets from Abalone to Seismic are
from (Rayana, 2016).

B PERFORMANCE ANALYSIS

In this section, we evaluate the relationship between different data properties and the performance
of our model. First, we present scatter plots of the AUC of our model vs. the portion of outliers,
number of features, and number of samples in each data. All these scatter plots are presented in Fig.
7. We further present the rank of our method as the color of each marker (dataset) in the scatter
plot. To analyze these results, we computed correlation values of -0.27, -0.12, 0.18, indicating the
relation between the AUC and the portion of outliers, the number of features, and the number of
samples, respectively. Since these are considered weak correlations, it is hard to deduce from these
values what regime is best or worst for our algorithm.

Datasets on which the proposed approach was ranked 7th (one before last) include Shuttle, Wave-
form, and Smtp. On Shuttle, we obtain an AUC of 99.5; therefore, we do not consider this as a
performance gap. On Waveform and Smtp, our algorithm was surpassed by 10-20 %. Since these
datasets have a large variance ratio σ2

a/σ
2
n > 1, we suspect a stronger regularization could improve

performance. This is also evident in these datasets’ performance variability demonstrated in Fig. 5
when varying λ.

1https://github.com/Minqi824/ADBench/tree/main/adbench/datasets/Classical
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Table 4: List of all datasets used in our evaluation.
Dataset # of samples (N) # of feature (D) % of anomalies
ALOI 49534 27 3.04
Annthyroid 7200 6 7.42
Backdoor 95328 193 2.3
Breast 682 9 34.99
Campaign 41188 62 11.3
Cardio 1830 21 9.6
Cardiotocography 2114 21 9.61
Celeba 202598 39 2.2
Census 299284 500 6.2
Cover 286048 10 0.96
Donors 619326 10 1.1
Fault 1940 27 34.67
Fraud 284806 29 0.2
Glass 214 7 4.21
Hepatitis 80 19 16.2
Http 567498 3 0.39
InternetAds 1966 1555 18.72
Ionosphere 350 32 35.9
Landsat 6435 36 20.71
Letter 1600 32 6.25
Lympho 148 18 4.1
Magic.gamma 19020 10 35.16
Mammography 11182 6 2.3
Mnist 7602 100 9.21
Musk 3062 166 3.1
Optdigits 5216 64 2.81
PageBlocks 5392 10 9.46
Pendigits 6870 16 2.2
Pima 768 8 34.9
Satellite 6434 36 31.64
Satimage-2 5802 36 1.22
Shuttle 49096 9 7.1
Skin 245056 3 20.75
Smtp 95156 3 0.03
SpamBase 4207 57 39.91
Speech 3686 400 1.65
Stamps 340 9 9.1
Thyroid 3772 6 2.1
Vertebral 240 6 12.5
Vowels 1456 12 3.43
Waveform 3442 21 2.9
WBC 222 9 4.5
WDBC 366 30 2.72
Wilt 4819 5 5.33
Wine 128 13 7.7
WPBC 198 33 23.74
Yeast 1364 8 34.16
Abalone 4177 8 6
Arrhythmia 452 274 15
Ecoli 1831 21 2.7
Mulcross 262144 4 10
Seismic 2584 11 6.5
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Figure 7: Scatter plots comparing the AUC of our model and different properties of the datasets,
including % of outliers, # of features, and # of samples. Each dot represents a dataset, the y-axis
represents the AUC, and the color indicates the rank of our method for the specific dataset.

15


	Introduction
	Related work
	Method
	Experiments
	Synthetic Evaluation
	Real Data
	Ablation Study
	Stability Analysis

	Conclusion
	Limitations
	Data Properties
	Performance analysis

