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Abstract:

We study the choice of action space in robot manipulation learning and sim-to-
real transfer. We define metrics that assess the performance, and examine the
emerging properties in the different action spaces. We train over 250 reinforcement
learning (RL) agents in simulated reaching and pushing tasks, using 13 different
control spaces. The choice of spaces spans combinations of common action space
design characteristics. We evaluate the training performance in simulation and the
transfer to a real-world environment. We identify good and bad characteristics of
robotic action spaces and make recommendations for future designs. Our findings
have important implications for the design of RL algorithms for robot manipulation
tasks, and highlight the need for careful consideration of action spaces when
training and transferring RL agents for real-world robotics.

1 Introduction

Robot reinforcement learning (RL) provides a way to acquire manipulation skills without requiring
explicit programming of task plans or models of task objects. Such skills can be safely learned in
simulation and transferred later to the real world [1, 2]. In recent years, many approaches have been
proposed to overcome the sim-to-real gap [3, 4, 5]. Despite all efforts, the gap could not yet be fully
bridged or even understood. In recent years there has been a shift toward embedding well-established
control principles into the action space, such as proportional-derivative-controlled joint positions [6]
or impedance control in end-effector space [7]. This was in contrast to earlier interests in end-to-end
policies, which directly output the lowest level possible of control commands such as joint torques [8].
In this recent trend in robot learning, the policy outputs a higher-level control command, such as
desired joint velocities, which are then fed to a low-level hand-engineered controller that handles the
low-level control. It has been shown that the choice of action space can play an important role in
the success and performance of manipulation [7, 9], flying [10], and locomotion policies [11, 12].
For manipulation, multiple action spaces for manipulation allow the policy to control its interaction
with the environment, either by some direct means of force application [13, 14] or implicitly via
impedance control [7, 15, 16, 17]. Several methods explored the use of movement primitives in the
action space [18, 19]. Another paradigm involves parameterized skills as discrete actions [20, 21, 22].
The majority of sim-to-real works use configuration space control [23, 4, 24, 25, 26]. The reason
behind this is yet unclear. Recent approaches propose learning latent action spaces, aiming to reduce
control dimensionality to the task manifold [27, 28] or serve a different purpose such as coordinating
multi-robot tasks [29]. We design a large-scale study to quantify these different aspects. We include
13 different action spaces that we evaluate using multiple metrics. measuring success rate transfer,
the usability of resulting behaviors, and the gap introduced. This work is a compact summarized
version of a larger study that contains more setup and metric details, analysis and experiments [30].
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Table 1: Sim-to-real transfer evaluation. We evaluate the success rate (SR) in simulation and the
real-world environment, the task accuracy (ACC), the expected constraints violations (ECV), and the
offline trajectory error (OTE).

Action Reaching Pushing
space SR (sim) ↑ SR (real) ↑ ACC [cm] ↓ ECV ↓ OTE [rad] ↓ SR (sim) ↑ SR (real) ↑ ACC [cm] ↓ ECV ↓

JP 100 ± 0 6 ± 6 1.76 ± 0.14 100 ± 0 0.22 ± 0.01 87 ±12 4 ± 0 4.23 ± 0.66 100 ± 0
OI∆JP 100 ± 0 86 ± 9 1.59 ± 0.16 14 ± 1 0.45 ± 0.01 99 ± 3 48 ± 12 3.16 ± 0.46 98 ± 2
MI∆JP 100 ± 0 69 ± 2 2.14 ± 0.13 0± 0 0.03±0.00 90 ± 7 36 ± 3 3.52 ± 0.36 3± 1

JV 100 ± 0 100 ± 0 1.17±0.11 0± 0 0.03±0.00 97 ± 5 90 ± 5 2.04 ± 0.32 66 ± 9
OI∆JV 100 ± 0 97 ± 5 1.35 ± 0.13 13 ± 11 0.18 ± 0.01 99 ± 3 88 ± 13 1.56±0.13 75 ± 4
MI∆JV 100 ± 0 93 ± 9 1.98 ± 0.08 37 ± 37 0.03±0.00 100 ± 0 96 ± 4 1.66 ± 0.11 55 ± 25

JT 100 ± 0 64 ±27 1.97 ± 0.25 22 ± 6 0.52 ± 0.03 40 ±49 - ± - - ± - 89 ± 21

CP 99 ± 2 25 ± 4 1.71 ± 0.29 26 ± 9 0.16 ± 0.01 100 ± 0 57 ± 9 2.34 ± 0.39 92 ± 3
OI∆CP 89 ± 2 44 ±17 2.02 ± 0.32 21 ± 1 0.27 ± 0.01 99 ± 3 55 ± 17 2.86 ± 0.49 35 ± 16
MI∆CP 100 ± 0 68 ± 2 1.85 ± 0.08 13 ± 4 0.28 ± 0.01 100 ± 0 73 ± 7 2.36 ± 0.14 99 ± 0

CV 100 ± 0 43 ±13 1.76 ± 0.41 12 ± 2 0.35 ± 0.02 99 ± 3 73 ± 9 2.69 ± 0.58 93 ± 10
OI∆CV 97 ± 2 24 ± 2 2.13 ± 0.13 17 ± 3 0.40 ± 0.01 99 ± 3 61 ± 19 2.67 ± 0.30 99 ± 0
MI∆CV 99 ± 2 58 ± 8 1.82 ± 0.08 4 ± 0 0.13 ± 0.01 86 ± 5 74 ± 4 2.84 ± 0.45 6 ± 2

2 Experiments

We evaluate all action spaces on two arm manipulation tasks, using the 7-degree-of-freedom Franka
Emika Panda robot. The first task is goal reaching. At the beginning of each episode, a Cartesian
goal is sampled in the workspace of the robot, and the policy needs to move the end-effector towards
that goal. The second task is object pushing. At the beginning of each episode, a goal position is
sampled in a predefined area on the table. The policy needs to push a wooden box towards that goal.
This task involves moving an external object. Unlike the reaching task, pushing requires physical
interaction with the environment. During policy training for pushing in simulation, we perform
domain randomization on the box’s friction and mass parameters. In both tasks, the observation
space of the policy consists of joint positions, joint velocities, end-effector Cartesian position, and
the goal position. Additionally, in the pushing task the policy has access to the object’s position
and orientation. We train PPO policies in a simulated environment, using NVIDIA’s Isaac-sim
simulator. After training, we evaluate the learned policies in both tasks in simulation and in the real
world. For reaching, we use a fixed grid of target goals that span the feasible workspace of the
robot. For pushing, we randomly sample goal positions and use the object position from the previous
episode as the initial one from the new run. We only manually reset the object’s position whenever it
gets outside of the predefined area it was trained to operate in or when the policy fails to push the
object away from its starting location once. In both training and evaluation, we run the simulation at
120 Hz and we use action repeat to work with the policy output at 60 Hz. Details about the studied
action spaces and the metrics we use in the study can be found in section A and section B, respectively.

What properties naturally emerge due to the choice of action space?
After training the policies in simulation we evaluate them on a real robotic setup. For the pushing
task, we were not able to obtain joint torque policies that are safe to run in the real world without
damaging the robot. We made multiple attempts to produce safely deployable joint torque policies,
for instance, by introducing different penalties or increasing the policy’s control frequency. Despite
all efforts, all joint torque policies were very jerky or aggressive when deployed on the real robot.
The main difficulty was to obtain policies that are safe to deploy in a task where the end effector
needs to remain in close proximity to a rigid surface, e.g. the table. Therefore, we exclude the joint
toque action space from our real-world pushing experiments. For all other action spaces, we look at
their sim-to-real transfer capabilities. The reaching task was less safety-critical. Hence, we managed
to evaluate torque policies on real-world reaching. In Table 1, we report the metrics introduced
in Section B to quantify the sim-to-real gap and the performance in the real world. One common
challenge when learning manipulation skills is to obtain smooth policies that do not violate the
velocity, acceleration, and jerk constraints of the robot. Based on the results in Table 1, we observe
that different action spaces yield different ECV metrics. JV and its derivatives (OI∆JV and MI∆JV)
have on average the lowest ECV score in both tasks. Nominal JP results in the highest possible ECV.
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This means that deploying this action space in the real world would always result in some form of
constraint violation. In the absence of safety mechanisms (such as rate limiters and low-pass filters)
these violations can be very harmful. If such mechanisms are implemented, this behavior would
increase the sim-to-real gap further because of how these violations trigger the safety mechanisms. In
contrast, MI∆JP, seems to have the lowest ECV, which was also evident when evaluating this action
space in the real world.

Does the action space affect the sim-to-real gap?
First, we look at the offline trajectory error in the reaching task, which gives us a proxy measure
of the sim-to-real gap. We observe that the OTE varies tremendously from one action space to
another, despite the fact that the data used to compute this measure are based on the same starting
and goal positions in all action spaces. This confirms that the choice of action space does indeed
contribute to the sim-to-real gap. Looking closer at the results, we observe that JT exhibits the
highest OTE. This is due to the behavior of this action space being dictated solely by the dynamics of
the robot, which is different in simulation and in the real world. Unlike all the other action spaces, JT
does not include any feedback loops outside of the policy. Based on this result, one would expect
that more feedback loops should help reduce the sim-to-real gap. However, the opposite can be
seen in the data. For instance, Cartesian action spaces have on average one additional feedback
loop compared to the joint action spaces. Their OTE is, however, higher on average. This is due
to the fact that feedback loops have different effects in simulation than in the real world. In turn,
this means that a good, highly-reactive feedback loop is beneficial to overcome the dynamics
gap, but adding more could potentially contribute further to the sim-to-real gap. Comparing OI∆
and MI∆ action spaces we notice that the latter consistently have a smaller OTE. Their OTE
is even smaller than the corresponding base action spaces. This effect is potentially due to the
integral term embedded in these action spaces. Executing the same actions results in the same
final goal given to the lower-level feedback loops, which is unique compared to all other action spaces.

Which action space characteristics are good for sim-to-real transfer?
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Figure 1: (Top) Robustness of delta
action spaces to the velocity limit in
the real-world pushing task. We com-
pare one-step and multi-step integration.
(Bottom) Influence of joint position-
based action spaces in the pushing task
on the normalized tracking error and suc-
cess rate in the real robot setup.

We compare the success rates in simulation and the real
world. We observe that the success rate in simulation
is not directly reflected in the real world. This is clear
when comparing the ordering of success rates in both
domains. Furthermore, we notice that certain action space
characteristics are clearly advantageous for sim-to-real
transfer. For instance, velocity-based action spaces tend to
keep a high success rate when transferred to the real world.
In contrast, position-based action spaces do not typically
transfer well. This is especially the case for JP, which loses
almost all of its performance when transferred. These
results are consistent across both tasks. Velocity-based
action spaces are on average more accurate in fulfilling
the task as can be seen when comparing the ACC score
in Table 1. Additionally, we can see that delta action
spaces transfer better than their corresponding base spaces.
The difference between OI and MI delta action spaces
depends on the task and the variants of the action space.
However, OI∆ action spaces required less tuning than
MI∆ spaces and have shown to be more robust to the
choice of hyperparameters. This can be seen in the top
plot in Figure 1. When varying the velocity limits for ∆JV
action spaces, OI∆JV showed to be less sensitive to the
chosen value. We attribute this to the lower tracking error
of this action space as shown in the middle plot in Figure 1.

3



OI∆ action spaces naturally lead to a lower tracking error since they integrate the policy actions
into control targets based on the current feedback of the system. In contrast, MI∆ action spaces
integrate the policy actions into control targets based on the previous control target. This in turn leads
to a bigger gap between the control target and the state of the system, and hence a larger tracking
error. While a lower NTE helps make JV action spaces more robust to hyperparameters, it has an
even larger effect on the best possible transfer performance in JP action spaces, as shown in Figure 1
(bottom). This tendency is also evident when comparing the base spaces (Figure 2). Finally, joint
velocity show better transfer than Cartesian velocity action spaces, while the opposite is true for
position-based action spaces.

In summary, our data shows that two characteristics mostly influence the transfer capabil-
ity of an action space. The first one is the order of the derivative of the control vari-
ables. An action space that controls a higher order derivative transfers better. A clear ex-
ception to this finding is the torque action space, which suffers from the highest sim-to-real
gap (as shown by the OTE in Table 1) due to its direct reliance on the mismatched environ-
ment dynamics and lack of external feedback loops in comparison to the other action spaces.
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Figure 2: We show the influence of the
normalized tracking error on sim-to-real
transfer in terms of success rate for non-
delta action spaces in the reaching task.

The second characteristic is the emerging tracking
error of the action space’s control variable(s). Our data
strongly indicates that an action space which yields or
naturally limits the tracking error transfers better. This
last property can be enforced by the action space design,
for instance, by reducing the magnitude of jumps of the
corresponding control targets. The latter can be controlled
by the scaling of the actions in delta action space, or
by increasing the stiffness if the task allows. For action
spaces that do not naturally allow for controlling this
property, one could attempt to enforce a smaller NTE by
means of rewards/penalties on the actions’ magnitude and
smoothness. However, based on our experience, the tuning
process for the resulting additional hyperparameters (of
such reward terms) can be very difficult.

Is there a consistently best-performing action space?
We notice that joint velocity action spaces seem to have the best performance in sim-to-real transfer.
These action spaces have on average the lowest OTE, ACC and ECV and transfer the best to the
real world. They also required the least tuning to work, making them the most suited action spaces
for manipulation learning (among the studied options). This result is consistent with our previous
findings concerning favorable characteristics, i.e. JV-based action space benefits from a higher-quality
feedback loop due to their configuration-space control, and can more easily generate high forces for
interaction than position-based action space due to controlling a higher-order derivative.

3 Conclusion

We studied the role of the action space in learning robotic arm manipulation skills. We designed a
study that includes 13 action spaces that we used for training RL policies in simulation. We observe
that different action spaces lead to different emergent properties such as the safety of their transfer and
their rate of constraints violations. However, we notice that the success rate of policies in simulation
does not dictate their performance in the real world. Our study further shows that the characteristics
that mostly affect the sim-to-real transfer are the order of derivative and the emerging tracking error
of the action space. Joint velocity-based action spaces show very favorable properties, and overall
the best transfer performance. Our results show that the choice of action space plays a central role
in learning manipulation policies and the transfer of such policies to the real world. To validate
the extent of our findings and recommendations to different tasks, observation spaces, robots, and
hardware setups, more studies of this sort are required in the future.
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A Action Spaces

For arm manipulation, one of the most native RL action spaces is one that expects joint torque (JT)
commands. This corresponds to τ = a, where τ is the vector of joint torques. Such an action space
gives the policy full control over the robot. When given the right observations, such a policy can
internally learn to control the motion and forces exerted by the robot. This action space was popular
in early works using deep RL [8, 31]. However, learning a policy with this action space can be
very complicated since the policy would need to either understand or implicitly handle both the
kinematics and dynamics of the robot to fulfill the task. This is due to the fact that the reward is
typically expressed using task space properties.

Alternatively, a low-level controller fas : A 7−→ T can be integrated in the action space to convert
higher-level policy actions into the space of joint torques T of the robot. This concept is illustrated in
Figure ??.

Configuration action spaces consist of all action spaces that expect a configuration-space action
from the policy. At the center of all these action spaces is the same controller, namely a joint
impedance controller (JIC) [32]. JIC regulates the behavior of a robot manipulator’s joints and allows
specifying desired stiffness, damping, and inertia characteristics for each joint. This allows the robot
to be compliant with its environment. The JIC control law is the following:

τ = fJIC(a) (1)
= K(qd − q) +D(q̇d − q̇), (2)

where τ denotes the commanded joint torque, qd and q̇d denote the desired joint positions and
velocities respectively, and q and q̇ denote the actual joint positions and velocities of the robot given
as feedback. K and D are the stiffness and damping matrices. Note that we omit the gravity vector
from our controller equations for clarity. In practice, we use isotropic gains, i.e., these matrices are
diagonal. Given this control law, we can define two different base configuration action spaces:

• Joint Velocities (JV): sets fJV ← fJIC, and q̇d = s(a) and qd is computed as a first-order
integration of q̇d;

• Joint Position (JP): sets fJP ← fJIC, and qd = s(a) and q̇d is computed as a first-order differenti-
ation of qd.

s(a) is a function that scales the action vector to the limits of the corresponding output vector.

Task action spaces are defined using variables that are in the task/Cartesian space of the robot. In the
absence of accurate system identification, we can use the following Cartesian impedance controller
as described in [33]:

τ = J(q)T
(
K(xd − x) +D(ẋd − ẋ)

)
, (3)
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where J(q) is the Jacobian matrix for the current robot configuration q, relating joint velocities to
Cartesian velocities, xd and ẋd are the desired Cartesian poses and velocities, x and ẋ are the current
Cartesian poses and velocities respectively. However, this formulation can be tricky to use when
the xd and ẋd are generated by an RL policy. This is due to the non-smooth nature of RL action
trajectories. Of course, this problem can be handled by introducing interpolators or cubic spline
fitting [7, 34]. But such solutions involve multiple design choices and hyperparameters, meaning that
an ideal solution is task-specific. Instead, we transform the Cartesian actions into joint velocities,
and then use a joint impedance controller. We found this approach to be very good at handling the
non-smooth policy actions, without introducing any additional sim-to-real gap. We have two base
task action spaces:

• Cartesian Velocities (CV): sets ẋd ← s(a), transforms ẋd into q̇d using inverse kinematics (IK),
and then uses fJIC in the same fashion as in the JV action space;

• Cartesian Position (CP): sets xd ← s(a), and then uses a proportional control to obtain ẋd from
xd. This step naturally results in smooth ẋd. Given ẋd, this action space proceeds as in the CV
action space.

We use the pseudoinverse IK method with a null-space controller that pushes the joints toward their
default positions. We represent the orientation actions differently for these two spaces. In CP, we use
the 6D representation presented in [35]. In CV, we use the Euler representation.

Delta action spaces are based on the base action spaces defined previously. In contrast to the base
action spaces, delta action spaces set the control targets vd relative to the current system feedback or
to the control targets of the previous policy step. This distinction creates two classes of delta action
spaces:

• One-step Integrator (OI∆): uses the robot feedback v to set vd ← v + c · a · dt;
• Multi-step Integrator (MI∆): recurrently sets vd ← vd + c · a · dt,

where OI∆ is quite common [36, 37] and an action space similar to MI∆ was proposed in [26].
Depending on the choice of base action space, vd is a control target vector, and can correspond to
qd, q̇d, xd, or ẋd. Similarly, v is a control feedback vector, and can correspond to q, q̇, x, or ẋ. dt
is the step duration and c is a positive constant hyperparameter. Instead of the scaling performed in
non-delta base action spaces, we clip the target vd to the limits of the corresponding output space
after updating it. This means that each base (configuration or task) action space has two additional
variants, resulting in 12 action spaces, not including the joint torques action space. Despite relying on
the base action spaces, the delta variants have their unique properties. For instance, due to the relative
changes in the control targets, the magnitude of the target change in one step is bound by c · dt given
that a ∈ [−1, 1]. This property can be helpful in imposing smoothness constraints on control target
trajectories, even if policy output is unconstrained. If we set c to be the positive bound of the derivative
of the corresponding control feedback variable v, each delta action space would approximately be
equivalent to an action space of a higher-order derivative than its base action space. For instance, a
delta joint velocity action space would be approximately similar to a joint acceleration action space.
However, when sampling actions a from a uniform distribution, the resulting distribution of control
targets can differ between a delta action space and the base action space it approximates (e.g. ∆JP
and JV). The clipping can also lead to more probability mass on the borders of the vd space.

B Metrics

For each action space, we aim to assess its training performance, resulting sample efficiency, emerging
properties such as the usability in the real-world environment, and the sim-to-real gap it creates.
Therefore, we propose multiple metrics to quantify these different aspects. For assessing training
performance, we look at the episodic rewards (ER) in simulation. This metric can also show us the
sample efficiency of the different action spaces.
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To assess the emerging properties of each policy, we look at the number of times it violates robot
constraints, such as the joint acceleration and jerk constraints. This is especially important since
simulated environments rarely have any mechanisms for enforcing these constraints. In contrast,
real-world robot control implementations can include rate limiters, which ensure that the control
targets would not result in violations of these constraints. A policy trained in simulation without
such mechanisms could learn to violate them for the sake of exploration. Implementing these mecha-
nisms in simulation, on the other hand, can also hinder the policy training since these mechanisms
typically break the Markov assumption. To quantify this property, we use the expected constraints
violations (ECV) defined as

ECV(π) = Es,a∼π

[
1

(∑
c∈C

c(s, a) > 0

)]
, (4)

where 1 is an indicator function, C is the set of all constraints, and each constraint function c(s, a)
returns 1 for violated constrained and 0 otherwise. Furthermore, we report the normalized tracking
error (NTE) as a measure of the feasibility of the policy’s actions in the environment,

NTE(π) = Es,a∼π
|vd,t − vt+1|
vmax − vmin

, (5)

where vmin and vmax are respectively the lower and upper bounds of the control variable v. NTE is
useful for analysing why certain action spaces result in better transfer. A high value means that the
policy outputs actions that are hard to achieve in one control step. This could create an additional
sim-to-real gap since control targets that are not fulfilled in one step can be tracked differently in
simulated and real environments due to the gap in dynamics. We also report the task accuracy (ACC)
measured by the Euclidean distance to the goal. This metric gives a more detailed view of the
performance of a policy than just the success rate.

To assess the sim-to-real gap of each action space we report the offline trajectory error (OTE) in
configuration and task spaces. This metric measures the joint trajectory error when replaying, in
simulation, the actions produced by the policy when queried in the real world,

OTE(π) = Ea,qreal∼Dreal
|qsim − qreal|, (6)

where a and qreal are actions and joint configurations that are sampled from the dataset Dreal. The
latter is collected by playing a policy π in the real-world, and qsim is the joint configuration obtained
when executing a in simulation in an open-loop fashion, i.e. without a policy.

C Further Experiments:

Does the choice of action space affect the exploration behavior during training in simulation?
We first examine the training performance in simulation. The results can be seen in the Figure 3. The
episodic rewards are not directly representative of the success rate of the policies. This can be seen
when comparing the rewards from Figure 3 to the success rates shown in Table 1. Therefore, we
mostly focus on sample efficiency in the current analysis. Since different action spaces have different
characteristics, we aim to understand the global effect of these characteristics on the sample efficiency
during training. First, we compare Cartesian and joint action spaces. In the reaching task, both action
space groups behave almost identically. However, in the pushing task, Cartesian action spaces seem
to have an advantage in terms of sample efficiency and maximum reached reward, as can be seen in
the top right plot in Figure 3. This result is most likely due to the spatial nature of the pushing task,
which gives Cartesian action spaces a natural advantage in exploration.

We next compare the order of derivative of the action space, i.e. positions vs. velocities vs. torques.
Among joint action spaces, joint velocity and its derivatives have the overall best performance in both
tasks. These action spaces show better sample efficiency and converge to higher reward regions than
their counterparts in the joint action space group as can be seen in the bottom right plot in Figure 3.
JP reaches the highest reward in reaching but struggles massively in pushing. The same tendency
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Figure 3: We show the episodic reward (ER) obtained during training in simulation. The first
four columns show the learning curves grouped by action spaces, whereas the last column shows
aggregated results comparing joint (J) and Cartesian (C) action spaces as well as position based (P)
and velocity based (V) action spaces for the pushing task. Delta (∆) action spaces are labeled as
either one-step (OI) or multi-step (MI) target integration.

can be observed for Cartesian action spaces, i.e. velocity action spaces perform better in terms of
sample efficiency and final rewards. The joint torque action space is the fastest one to converge in
the reaching task, however, it fails to solve the pushing task reliably within the same data budget.
Training pushing policies in this action space for a longer time does converge, but is very expensive.

We also compare base action spaces with the two different kinds of delta action spaces. We observe
that multi-step integration delta action spaces consistently perform the worst, while one-step methods
seem to have a slight advantage. This tendency is less pronounced in the velocity action spaces, with
MI∆JV being consistently one of the best-performing joint action spaces in both tasks in simulation.
Hence, the current simulation data does not conclusively favor any of these characteristics (non-delta,
OI and MI). Overall, we note that Cartesian velocity (CV) is the best-performing action space in
simulation. The worst one is multi-step-integration joint position action space.
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