Compute-Optimal Scaling for Value-Based Deep RL

Preston Fu'* Oleh Rybkin"* Zhiyuan Zhou’ Michal Nauman'-?
Pieter Abbeel' Sergey Levine! Aviral Kumar?

1UC Berkeley ~ 2University of Warsaw 3Carnegie Mellon University

Abstract

As models grow larger and training them becomes expensive, it becomes increas-
ingly important to scale training recipes not just to larger models and more data,
but to do so in a compute-optimal manner that extracts maximal performance per
unit of compute. While such scaling has been well studied for language modeling,
reinforcement learning (RL) has received less attention in this regard. In this paper,
we investigate compute scaling for online, value-based deep RL. These methods
present two primary axes for compute allocation: model capacity and the update-
to-data (UTD) ratio. Given a fixed compute budget, we ask: how should resources
be partitioned across these axes to maximize data efficiency? Our analysis reveals
a nuanced interplay between model size, batch size, and UTD. In particular, we
identify a phenomenon we call TD-overfitting: increasing the batch quickly harms
Q-function accuracy for small models, but this effect is absent in large models,
enabling effective use of large batch size at scale. We provide a mental model for
understanding this phenomenon and build guidelines for choosing batch size and
UTD to optimize compute usage. Our findings provide a grounded starting point
for compute-optimal scaling in deep RL, mirroring studies in supervised learning
but adapted to TD learning. Project page: value-scaling.github.io.

1 Introduction

Scaling compute plays a crucial role in the success of modern machine learning (ML). In natural
language and computer vision, compute scaling takes a number of different forms: model size [19],
the number of experts in a mixture-of-experts model [20], or test-time compute [46]. Since these
approaches exhibit different opportunities and tradeoffs, a natural line of study has been to identify
strategies for “compute-optimal” scaling [19], that prescribe how to allocate a given fixed amount of
compute to attain the best downstream performance.

In this paper, we are interested in understanding tradeoffs between different ways to scale compute for
value-based deep reinforcement learning (RL) methods based on temporal-difference (TD) learning
to realize a similar promise of transforming more compute to better data efficiency. Value-based
TD-learning methods typically provide two mechanisms to scale compute: first, increasing the
capacity of the network representing the Q-function, and second, increasing the number of updates
made per data point (i.e., the updates-to-data, UTD ratio) collected by acting in the environment.
Scaling along these two sources present different benefits, challenges, and desiderata [34]. Therefore,
in this paper, we ask: What is the best strategy to scale model size and UTD to translate a given
fixed compute budget into maximal performance?

Analogous to prior scaling studies in language models [19] and deep RL [39], addressing this question
requires us to understand how scaling compute in different ways affects the behavior of the underlying
TD-learning algorithm. Concretely, we will need a mental model of how scaling model size interacts
with various other hyperparameters of the TD-learning algorithm, notably the UTD ratio. Most

“Equal contribution. Corresponding authors: prestonfu@berkeley.edu, oleh.rybkin@gmail.com,
aviralku@andrew.cmu.edu. Code: github.com/prestonfu/model_scaling.

2nd Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2025).

https://value-scaling.github.io/
https://github.com/prestonfu/model_scaling/

prior work focuses on presenting a single performant set of hyperparameters, instead of providing an
analysis to help obtain such a set [23, 34]; we start with a number of controlled analysis experiments.

Our analysis reveals several insights into the distinct, and perhaps even opposing, behavior of TD-
learning when using small versus large model sizes. In contrast to supervised learning, where the
largest useful batch size primarily depends on gradient noise and is otherwise independent of model
size [30], we find that in TD-learning, smaller models perform best with small batch sizes, while
larger models benefit from larger batch sizes. At the same time, corroborating prior work [39], we
find that for any fixed model size, increasing the UTD ratio o reduces the maximally admissible batch
size. To convert these observations into actionable guidance, we develop a mechanistic understanding
of the interplay between batch size, model capacity, and UTD ratio, discussed in Section 5.

We observe that for any fixed UTD ratio, increasing batch size reduces training TD-error across all
model sizes. However, generalization, as measured by the validation TD-error on a held-out set
of transitions, is highly dependent on the model size. For small models, attempting to reduce the
training TD-error with larger batch sizes leads to worse validation TD-error — a phenomenon we
term TD-overfitting. In contrast, for large models, reducing training TD-error by increasing the batch
size up to a threshold enables a lower validation TD-error. We trace the source of TD-overfitting
to poor-quality TD-targets produced by smaller networks: updating to fit these targets can harm
generalization on unseen state-action pairs. Empirically, we find that for each model size, there exists
a maximal admissible batch size: further increasing the batch size to reduce the variance in the TD
gradient amplifies overfitting. Equipped with this finding and the observation that high UTDs reduce
the maximal admissible batch size, we prescribe a rule to identify optimal batch sizes for scaling up
RL training under large compute budgets.

We then identify the best way to allocate compute between model size and the UTD ratio, given an
upper bound on either compute or on a combination of compute and data budget. We obtain scaling
rules that extrapolate to new budgets/compute for practitioners. Our contributions are:

* We analyze the behavior of TD-learning with larger models and observe that larger models mitigate
a phenomenon we call TD-overfitting, where value generalization suffers due to poor TD-targets.

 Based on this analysis, we establish an empirical model of batch size given a UTD ratio and model
size, and observe that larger models admit larger batch sizes.

* We provide an empirical model of jointly scaling UTD ratio and model size, and the laws for the
optimal tradeoff between them.

2 Related Work

Model scaling in deep RL. While large models have been essential to many of the successes in
ML [6, 7, 48, 4, 53], typical models used for standard state-based deep RL tasks remain small, usually
limited to a few feedforward MLP layers [38, 17, 18]. This is partly because naive model size scaling
often causes divergence [2, 41, 34]. Previous works have shown that RL can be scaled to bigger
models [52, 34, 25, 41, 24, 47] by using layer normalization [34], feature normalization [23, 26], or
using classification losses [24, 8]. While these works focus on techniques that stabilize RL training,
they do not investigate the relationship between model capacity and UTD. We leverage our proposed
understanding of this relationship to achieve compute-optimal RL training. Furthermore, prior work
considered the aspect of predictability in scaling model capacity in RL, but in the context of online
policy gradients [15] or for RLHF reward model overparameterization [12]. In contrast, we study
model scaling in value-based RL where gradients come from backpropagating the TD loss.

Data and compute scaling in deep RL. A considerable amount of research in RL focused on
improving data efficiency through scaling the UTD ratio [3, 5] and find that one key challenge is
overfitting [27, 3, 33]. Previous work reported mixed results with evaluating overfitting in online
RL [22, 9], but we find validation TD-error to be predictive of TD-overfitting in our experiments, akin
to Li et al. [27]. Our TD-overfitting analysis additionally contextualizes prior work showing that large
batch sizes can degrade performance with small models [36] Prior works also considered scaling
up data in parallelized simulations or world models for on-policy RL [31, 44, 40, 11, 45]. Instead,
we focus on data-efficient off-policy learning algorithms and study resource allocation problems
pertaining to compute allocations instead.

Scaling laws in value-based RL. Most extensions of scaling laws from supervised learning focus on
language models and cross-entropy loss [19, 30, 32, 28], with few exceptions targeting downstream

metrics [10]. In contrast, off-policy RL involves distinct dynamics due to bootstrapping [9, 23, 29, 15],
making direct transfer of supervised scaling laws unreliable. Prior work shows that scaling UTD in
off-policy RL yields a peculiar law [39], but leaves model capacity unexplored. We extend this line
of work by showing that off-policy RL scales predictably with both UTD and model size and in the
process, uncover interesting insights about the interplay between batch sizes, overfitting, and UTD.

3 RL Preliminaries and Notation

In this paper, we study off-policy online RL, where the goal is to maximize an agent’s return by
training on a replay buffer and periodically collecting new data [49]. Value-based deep RL methods
train a Q-network, (Qy by minimizing the temporal difference (TD) error:

L(@) = E(s,a,s’)N'P,a’N'rr('\s’) [(7"(8, a) + 'YQ(S/? a/) - QG(Sa a))Q}) 3.1

where P is the replay buffer, () is the target Q-network, s denotes a state, and a’ is an action drawn
from a policy 7(+|s) that aims to maximize QQy(s, a). The ratio of the number of gradient steps per
unit amount of data is called the UTD ratio (i.e., the updates-to-data ratio) and we will denote it as o.

4 A Formal Definition of Compute-Optimal Scaling

Our goal in this paper is to develop a prescription for allocating a fixed compute budget or a fixed
compute and data budget, between scaling the model size and the update-to-data (UTD) ratio for a
value-based RL algorithm. As mentioned earlier, scaling model size and increasing the UTD ratio
involve different trade-offs in terms of computational cost and practical feasibility. For example,
scaling the UTD ratio results in more “sequential” computation for training the value function, which
in turn implies a higher wall-clock time but does not substantially increase GPU memory needed.
On the other hand, increasing model size largely results in more parallel computation (unless the
model architecture itself requires sequential computation, a case that we do not study in this work).
Answering how to best partition compute between the UTD ratio and model size enables us to also
build an understanding of sequential vs parallel compute for training value functions. In this section,
we formalize this resource allocation problem, building upon the framework of Rybkin et al. [39].

To introduce this resource allocation problem, we need a relationship between the compute C; and
the total data D ; needed to attain a given target return value J, the model size IV, and the UTD ratio
o. Formally, we can represent the total compute in FLOPs as follows [39]:

Cj(oc,N)xo-N-Dy(o,N), 4.1

where D (o, N) denotes the total amount of samples needed to attain performance J, and C (o, N)
denotes the corresponding compute. Since batch size is typically parallelizable, does not significantly
affect wall-clock time, and is typically much smaller than the replay buffer, we drop the dependency
of compute on the batch size and aim to optimize compute per unit datapoint. Finally, we denote the
performance of a value-based RL algorithm Alg as J(ma1g). With these definitions, we formalize:

Problem 4.1 (Compute allocation problem). Find the best configuration for the UTD ratio o and
the model size N, such that algorithm Alg attains:

1. Maximal compute efficiency in attaining performance Jo given data budget Dy:
(c*,N*) := arg (m}\l]l) C s.t. J(mag(o,N)) > Jo, D <Dy

2. Maximal performance given budget Fy and coefficient § for trading off compute/data:
(6%, N*) := arg (m?vx) J (maig(o, N)) st. C+0D < Fo.

The first part of Problem 4.1 seeks to allocate a compute budget Cy between /N and ¢ to minimize
compute required to reach return Jy. From a practitioner’s perspective, the solution to this part should
prescribe how to attain a target level of performance as efficiently as possible given a certain amount
of GPU resources available for training. The second part aims to construct a law that extrapolates to
higher compute budgets and higher return. Instead of extrapolating as a function of return, which can
be arbitrary and not predictable, we follow Rybkin et al. [39] and extrapolate as a function of a budget
F =C + ¢ - D. This allows the practitioners to achieve optimal return given the budget of resources
available, where 0 denotes the cost of data relative to compute, expressed e.g. in wall-clock time.

Experimental setup. We use BRO [34] and SimbaV2 [26], approaches based on SAC [13] that
use a regularized residual network to represent the Q-values and have been shown to scale well to
high capacities. These prior works showed that scaling width gives better performance that scaling
depth in TD-learning. Thus, to study the impact of model size, we vary only the network width in
{256, 512, 1024, 2048, 4096}. We consider batch sizes from 4 to 4096 (varied in powers of 2 and
UTD ratios of 1, 2, 4, 8. We keep other hyperparameters fixed across all tasks at values suggested
by Nauman et al. [34]. For our initial study, we leverage the results from [34] on Deepmind Control
suite [50]. Following prior work [14, 34], we separate these into 7 medium difficulty tasks (referred
to as DMC-medium) and 6 hard difficulty tasks (DMC-hard). For these tasks, we fit averages of the
tasks for the two suites respectively, building upon the protocol prescribed in Rybkin et al. [39], to
show generalization of our fits across tasks. We evaluate scaling on 4 more difficult tasks from DMC
and HumanoidBench [42], where we make fits for each task individually to show applicability to
single tasks. Further details are in Section B.

S Analyzing the Interplay Between Model Size and Batch Size

Rybkin et al. [39] argues that the best batch size decreases as a power law with respect to the UTD
ratio 0. However, this prior analysis holds model size N constant and does not consider its influence
on batch size. We extend prior analysis [39] by considering how model size modulates the effective

batch size under fixed UTD ratio, revealing a distinct form of overfitting unique to TD-learning.
hl-crawl-v0, UTD=1

5.1 Measuring Overfitting in TD-Learning

Train, Critic Width = 512 Val, Critic Width = 512
Following Rybkin et al. [39], which identifies
overfitting as a key factor in selecting effective 1ot =
batch sizes for a fixed model size, we begin g
our analysis by understanding how overfitting = Batch 256
depends on model size. Unlike supervised learn- 10° Batch 512
ing, where the target is fixed, TD-learning in- Batch 1024
volves fitting to targets that eyolve over time 00 05 10 00 05 10
and depend on the network being trained. This Steps 1e6 Steps le6
makes overfitting in TD-learning fundamentally Train, Critic Width = 2048 Val, Critic Width = 2048
different. As a measure of generalization, we
measure the TD-error on both the training data §
. .. 10
(i.e., transitions sampled from the replay buffer) o D
and a held-out validation set of transitions drawn =
i.i.d. from the same distribution. Further details 10°
are provided in Section B.
. 7 mni 0.0 0.5 1.0 0.0 0.5 1.0
Observations on model size. We report training s L aons -

and validation TD-errors on hl-crawl at the
end of training in Figure 2(a) (see Section D.5 Figure 1: Measuring train and validation TD-errors
for complete loss curves). As model size in- for different batch sizes on h1-crawl. While the train-
creases, the final training TD-error decreases, ing and validation TD-errors reduce as model size in-
consistent with increased model capacity. Inter- creases, for smaller models a larger batch size results in
estingly, we find that increasing model capacity a‘hig.her final TD-error. Th.is illu.strates the rqle of batch
consistently leads to a lower validation TD-error. $ize in modulating overfitting with TD-learning.
Moreover, there is no clear sign of classical over-

fitting (i.e., low training error but high validation error), perhaps because TD-learning rarely “fully”
fits target values regardless of model size.

Observations on batch size. We next study the role of batch size in Figure 1 (when varying batch
sizes for a fixed model size) and Figure 2(b, c). Perhaps as expected, larger batch sizes generally
reduce training TD-error, likely because they provide a better low-variance estimate of the gradient.
However, their impact on validation TD-error is more nuanced and depends on the model size N.
For smaller networks (widths {256, 512}), increasing the batch size often plateaus or increases the
validation TD-error. This corroborates prior work [39], which identified larger batch sizes as a source
of overfitting when operating at networks with width 512. However, larger models allow us to use
larger batch sizes without overfitting (Figure 2(d)). Why does this occur?

5.2 A Mental Model for TD-Overfitting

In supervised learning, overfitting occurs when reducing training loss further would primarily fit
to noise or spurious correlations on the training dataset, in a way that results in a higher loss on a

N

30 Validation Loss Model Width: 256 Model Width: 256 § hl-crawl-v0
25 Training Loss 60 Model Width: 512 60 Model Width: 512 2 h1-pole-v0
v Model Width: 1024 4 Model Width: 1024 }_,(; 0 h1l-stand-vO
20 S Model Width: 2048 3 Model Width: 2048 & 2 humanoid-sgand
2 40 S 40 2
915 £ = 2
s = © a
© =3 o
10 & 3 £ 2°
20 >20 2
5 x
]
=
0 0 28
600K 2M M 34M 64 128 256 512 1024 2048 64 128 256 512 1024 2048 180K 620K 2M 9M 34M
Model Size Batch Size Batch Size Model Size

Figure 2: Effect of batch size on TD-error for hl-crawl with o = 1. Left to right: (a) increasing model
size consistently lowers the best achieved validation TD-error for a fixed batch size; (b) Larger batch sizes
reduce training TD-error. (¢) However, beyond a certain threshold, larger batch sizes lead to increased validation
TD-error, particularly for smaller models, indicating TD-overfitting. (d) This overfitting threshold increases with
model size: larger models can enable higher batch sizes, suggesting increased robustness to overfitting.
validation dataset distributed identically as the training data. Even though smaller networks overfit
(Figure 2(c)), our experiments are not in this regime since larger networks are able to attain both
lower training TD-error and lower validation error (Figures 2(b, ¢)).

We argue that this apparent deviation from

K X 3 R Small model, small batch Small model, large batch
classical overfitting is explained by the use g
of target networks. Regardless of whether v . by
a given network has sufficient capacity to o oot S \ .
reduce TD error on the current batch, TD \1.) . \. \
methods would subsequently update the \ et _," N0 ™~ R
target network. This can lead to an increase oy . e
in TD-error on validation data at the next : ' TR
step, That is, TD-error may nof reduce: (i) e | s
on validation state-action pairs or (ii) with Large model, smallbatch i Large model, large batch
respect to updated target values. v target v Parget
For conceptual understanding: low- 3 4 Ve °'.‘ R v o
capacity Q-networks entangle features used \ - SR /‘. : \. e, oot s®
to predict Q-values across state-action ¢ ~ L N, > 7
pairs [23, 21]. Target network updates in- f— :

evitably change target values on unseen

transitions, potentially increasing the val- Figure 3: A conceptual view of TD-overfitting. Small mod-
idation TD-error, as we observe empiri- els cannot cope with large batch sizes due to more directed
cally in Figure 2(b, ¢) (full curves in Fig- gradient updates onto low-quality TD-targets, and might di-
ure 13). Larger batch sizes produce lower- Verge from the target opt.imal value function. v InsFead, they
variance gradients that exacerbate this prob- mlghF perform better with smaller batch sizes, which result
lem, as fitting the targets on some transi- in noisy l}pdates. Large models progluce TD targets that are
tions comes at the expense of others with high-quality and benefit from regressing to these targets better

.. . . via larger batch sizes.
limited representational capacity.

In contrast, larger-capacity models can more effectively decouple predictions across transitions,
mitigating this issue and leading to improved generalization even at high batch sizes. This suggests a
key observation: avoiding overfitting in TD-learning requires either smaller batch sizes or higher
model capacity. We present this insight as an illustration in Figure 3. We note that high capacity model
generally leads to lower training and validation TD-errors (Figure 2(b, ¢)). We term this phenomenon
TD-overfitting, to emphasize that it is driven not by memorization of values on the training set but by
the interplay between limited capacity and non-stationary targets, that exist uniquely in TD-learning.

Takeaway 1: Smaller models cannot utilize large batch sizes

The training TD-error decreases with higher batch size. With low model capacity, increasing
batch size results in a higher validation TD-error, i.e. the maximum admissible batch size is
small. Larger models enable the use of a larger admissible batch size. This can be attributed
to poor generalization of the TD-targets from smaller models.

5.3 The Role of Dynamic Programming in TD-Overfitting

We now conduct experiments to verify that indeed TD-targets are the root cause of the TD-
overfitting phenomenon discussed above. To this end, we conduct a diagnostic experiment inspired

by the setup in Ostrovski et al. 3x10! Average Slope: -0.55 3x10! Average Slope: -0.33
[37]. We train a passive critic
alongside the main Q-network.
This passive critic is not in-
volved in TD updates but is

2x10% 2x10%

Validation Loss
Validation Loss

X Passive: 512 Main: 512
trained solely to fit the TD- 101 Passive: 1024 101 Main: 1024
targets generated by the main Passive: 2048 Main: 2048
Q-network (experimental de- 512 1024 2048 512 1024 2048
tails in Section B). By ablat- Main Critic Width Passive Critic Width

ing the network width used

to parameterize the passive Figure 4: Validation TD-error w/ the passive critic. Increasing the
critic, we can decouple the con- model size? for bqth the maip anq 'pas.sivc? critic can reduce the validat@on
tributions of (i) the main Q- TD-error, increasing the main critic size is much more effective, showing

network’s capacity and (ii) the that target quality is crucial for effective learning.

quality of TD-targets, which we hypothesize drives TD-overfitting.

In Figure 4, we observe that when the TD-targets are generated by a low-capacity Q-network, the
passive critic — regardless of its own capacity — exhibits higher validation TD-error. This supports
the main insight from our mental model: the TD overfitting phenomenon is driven primarily by the
poor generalization of TD-targets produced by low-capacity networks. While increasing the passive
critic’s width improves its ability to fit lower quality targets (e.g., a width = 2048 passive critic fits
width = 512 targets slightly better than a smaller passive critic), the validation TD-error can increase
or slowly decrease over the course of training (see hl1-crawl in Figure 14). Conversely, when the
main Q-network generating the targets is larger (e.g., width = 2048), even smaller passive critics
(e.g., width = 512 or 1024) can match resulting TD-targets quite well, and validation error decreases
over the course of training (see hl-crawl in Figure 14). This indicates that a large portion of the
overfitting dynamics of TD-learning is governed by the target values, and how they evolve during
training, irrespective of the main critic (though the targets themselves depend on the main critic).

We also observe that if the passive critic is smaller than the target-network, it may underfit in its
ability to fit the TD-targets on the training data, leading to elevated training and validation TD-errors.
However, this underfitting effect is much less severe than the overfitting observed when the TD-targets
themselves are poor due to the limited capacity of the Q-network, as seen from the slope in Figure 4.

Takeaway 2: Overfitting in TD-learning is governed by TD-targets

Overfitting in TD-learning is less about fitting the TD-targets on limited data, but more about
the quality of the TD-targets themselves — a direct consequence of model capacity and the
fundamental nature of dynamic programming with deep neural networks.

6 Prescribing Batch Sizes Using Model Size and the UTD ratio

Using the insights developed above, we now construct a prescriptive rule to select effective batch
sizes, which in turn allows us to estimate the tradeoffs between UTD ratio and compute in the next
section for addressing Problem 4.1. Specifically, we aim to identify the largest batch size, denoted B,
that can be used before the onset of TD overfitting, i.e., before validation TD-error begins to increase
for a given model size. From our insights in the previous section, we see that the largest such value of
B increases as model size N increases. We also note in Figure 5, that B decreases with increasing
UTD ratio o, aligned with the findings of Rybkin et al. [39]: for a fixed model size, larger o values
lead to TD-overfitting when batch size increases. Motivated by these empirical findings, we propose
a rule that models B asymmetrically between model size N, and UTD ratio o as follows:

~ ap
B(o,N)~ — e N (6.1)

where ap,bp, ap, S > 0 take on values listed in Section D.1.

Scaling Observation 1: Batch size selection

For best performance, batch size should increase with model size and decrease with the UTD
ratio. This dependency can be modeled by a predictable function in Eq. (6.1).

hl-crawl-v0, o=1 hl-crawl-v0, 0=2 hl-crawl-v0, 0=4 hl-crawl-v0, 0=8

Y2048 2048 2048 2048
@
§ s12 512 512 512
3
B 128 128 128 128
@
*c-n- 32 32 32 32
619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34M
N: model size N: model size N: model size N: model size
9 2048 hl-crawl-v0, N=619K 2048 hl-crawl-v0, N=2M 2048 hl-crawl-v0, N=9M 2048 hl-crawl-v0, N=34M
@
§ s12 512 512 512
3
% 128 128 128 128
g Empirical value
P 32 32 32 S
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
o: UTD o: UTD o: UTD o: UTD

Figure 5: A two-dimensional batch size fit B(o, N). Slices of the fit are shown at particular values of o and
N. In line with our analysis of TD-overfitting, we observe that larger models allow larger batch sizes. We build
a fit that captures the intuition, but this effect does not continue indefinitely but instead asymptotes. We further
extend prior work that observed that batch size needs to be decreased with UTD [39] and incorporate that in our
2-dimensional fit. Leveraging batch sizes from this fit allows us to better answer compute allocation questions.

Implications. As o increases, the 0“2 term in the denominator dominates, yielding the approxima-
tion B(o, N) &~ ap /o5, consistent with a power law relation from prior work [39]. Conversely,
as 0 — 0T, i.e., when targets are nearly static, B — oo since updates are infrequent and TD-
overfitting does not occur. Finally, our functional form increases with N, with an upward asymptote
at B* — ap/o®2 when N — oo. This reflects the intuition that low-capacity networks require
smaller batch sizes to avoid TD-overfitting, whereas for sufficiently large models, the maximum
admissable batch size is primarily constrained by the UTD ratio o.

Crucially note that our proposed functional form factorizes into a function of ¢ and a function of N,
ap 1
o0B 14+bg-N-Ps’
To evaluate the feasibility of such a relationship in our analysis, we had to run a 3-dimensional grid
search B x N x 0. However, the fact that this fit is effective subsequently allows practitioners to

instead run two 2-dimensional grid searches on B x ¢ and B x N, significantly reducing the amount
of compute needed to estimate this fit.

6.2)

Evaluation. In order to evaluate this fit, we compare to a simple log-linear fit log B ~
(1,log o,log N'), which would increase indefinitely in o and N. Averaged over 4 tasks, our rule
achieves a relative error of 48.9% compared to the log-linear fit’s 55.1% (see also Section D). One
might wonder if a relative error of 48.9% is actually large for a batch size fit. We empirically observe
that the error is large because, in many cases, there is a wide range of batch sizes that all attain good
performance (see Section D.2).

7 Partitioning Compute Optimally Between Model Size and UTD

Equipped with the relationship between batch size, model size, the UTD ratio from Eq. (6.1), and the
definition of compute in Eq. (4.1), we now answer the questions from Problem 4.1

7.1 Solving Problem 4.1, Part 1: Maximal Data Efficiency under Compute C,

To solve this problem, we note that to maximize the data-efficiency we should operate in a regime
where the total compute, C := k-0 - N -D;(o, N) < Cy, where Cy and k are constants not dependent
on ¢ and N. We then require a functional form for D ;. We observe that extending the relationship
from Rybkin et al. [39], which modeled data efficiency as an inverse power law of the UTD ratio
for a fixed, given model size, can also work well in our scenario when the model size is variable.
Inspired by prior work on language models [19, 43], we augment the fit from Rybkin et al. [39]
with an additive power law term dependent on model size. Intuitively, this is sensible since the total
amount of data needed to attain a given performance should depend inversely on the model size since

'We also attempted to build a fit for learning rate in our experiments, but found learning rate to generally not
be as critical as the batch size for compute-optimal scaling. Please see Section D.3 for more details.

DMC-medium, BRO DMC-hard, BRO hl-crawl-v0, BRO hl-crawl-v0, SimbaV2

x

15 Ol Qo¥ O 15 0\\0 % 0] 8 o100 O 8 Ol|lo |0 s (@]

10 (@] Oi? o 10 1) oﬁo 1) x1le5
e 5 o\ %o o 4 e||lo | O {(O 4 (el Ne}l 7@ (€] 15
> WX 5 8\ %o S}

S 2 @110 \0 o 2 Q|| #¥0 O
2 0.0 o § VA \
1 o900 (@) 2 0% \0-0 O 1 oo\ o o 1 O\\\q O (€] N
% \ 5
1M 3M5M 26M 1M 3M5M 26M .6M 2M 9M 34M .6M 2M 9M 36M E
humanoid-stand, BRO hl-pole-v0, BRO hl-stand-v0, BRO h1l-stand-v0, SimbaV2 6 g
% a
8 Ql10,\0 O © 8 o9 © (¢] 8 Q|10 © o 8 olllo)l ex o &
e 4 o] Oiﬁr © 00 4 @\ o |0 (@] 4 Q|l|l0]| © i\30 4 olle \et o
=)
B2 o 3} © 00 2 o\ \ O 78 ﬁﬁ}ﬁﬁ’ 2 ollle W& o 2 o \0 % (@] 3
AR X 4
e I
1 Q| @\ 0 0 ©° 1 O\ O\ N\ O O. 1 Q o (®] 1 @] Oﬁ Q (©)
.2M.6M 2M 9M 34M .6M 2M 9M 34M .6M 2M 9M 34M .6M 2M 9M 36M
N: model size N: model size N: model size N: model size

Figure 6: Data efficiency fit D;(c, N) on all domains, shown as iso-data contours. Each contour denotes
the curve which attains the same data efficiency to attain a given target performance J, with data efficiency
denoted by color. The form of the fit allows a closed-form solution for optimal configurations, and we show
these as stars. These points lie on a power law. This law enables us to scale compute while allocating it to UTD
or model size as we will discuss in subsequent results in this paper.

bigger models attain better sample-efficiency in TD-learning [34, 25]. Moreover, model size and
the UTD ratio present two avenues for improving data efficiency, hence the additive nature of the
proposed relationship. We find that the relationship can be captured as:

B
. ag\ ey b
Dy(o, N) ~ Din 4 (7‘]) + (z\}I> 7 (7.1)

where DT“‘ is a constant not dependent on o and IV, and aj, oy, by, 5 are constants that depend
on the return target J. With this relationship in place, we are now able to answer Part 1:

i} g Qo . bN BN
0" (Do) = Dy — Do , N*(Do) = Dy — Dwin ; (7.2)

where the coefficients can be computed from a j, vy, by, By (see details in Section A).

Scaling Observation 2: Partitioning compute optimally between model size and UTD

Optimal UTD and model size is a predictable function of data budget D (alternatively,
compute budget C), as a power law in Eq. (7.2).

We visualize this solution in Figure 6. We plot iso-D contours, i.e. curves in (o, N) space that attain
identical data efficiency, and find that these curves move diagonally to the top-right for smaller D
values, in a way where both increasing the model size and the UTD ratio improves data efficiency.
These contours are curved such that there is a single point on each frontier that attains optimal
compute efficiency C. We plot these points, which follow the solution in Eq. (7.2). This allows us to
predict data efficiency for novel combinations of UTD and model size, which is crucial.

Evaluation. Our data efficiency coefficients are fitted against a grid of UTD ratios and model sizes.
We evaluate our proposed data efficiency fits on a grid of interpolated and extrapolated UTD ratios
and model sizes using the fitted batch size. Averaged over 4 tasks, our fit achieves a relative error
of 10.0% against the ground truth data efficiency on fitted UTD ratios and model sizes, 14.9% on
interpolation, and 18.0% on extrapolation. Experimental details are described in Section B.1.

We also compare our estimated UTD ratios and model size with other approaches for allocating unseen
compute budgets in Table 1. We compare to the following alternate approaches: (i) UTD-only scaling
at compute budget C for a given model size, (ii) model-only scaling at compute budget C for a given
UTD, and (iii) our proposed compute-optimal UTD and model size, run with a constant, fixed batch
size not specifically designed for our compute budget C. This constant fixed batch size corresponds to

the batch size prescribed by our fit for the first compute budget B(0* (Ciin), N*(Cimin)))- In Table 1,
we observe that our compute-optimal scaling achieves the target performance using the least amount
of data, whereas both g-only scaling and NV -only scaling require substantially more data, as evaluated
using the ratio of the total amount of data needed for the approaches and the total amount of data
needed for our compute-optimal approach. The strategy of using a constant batch size performs only
marginally worse than our approach. However, as this comparison still relies on our proposed UTD
ratio and model-size prescriptions, it primarily shows that these prescriptions are relatively robust to
variations in batch size.

Implications. Our results S_hOVY that appropriate Table 1: Data efficiency ratios of various ap-
choices of UTD and model size improve both data proaches to allocate compute to our approach of

efficiency and compute utilization. At the same compute-optimal (o, N) scaling. All perform subpar
time, we find broad regions of near-equivalent per- to our compute-optimal UTD, model size prescrip-
formance: multiple (UTD, model-size) settings tions in terms of data efficiency.

perform similarly well, so fully optimizing these
hyperparameters is often unnecessary to capture Approach Mean Median
most of the gains (Figure 20 and Figure 21). Sim- Compute-optimal (ours) 1.00 1.00
ilarly, while the best configuration is environment- Compute-optimal (ours)

dependent, with some tasks benefiting from larger + fixed batch size 1.03 1.05
models to begin learning and others from a higher -

UTD, scaling the model size paired with a mild o-only scaling 1.26 1.18
increase in UTD is often a good starting point. N-only scaling 1.11 L.11

Our framework makes these trade-offs explicit and
provides a principled approach to selecting good values for these hyperparameters.

7.2 Solving Problem 4.1, Part 2: Resource Partitioning for Different Returns .J

For the solution to the problem to be practical, we need to prescribe a solution that works for all
values of J. However, J can be arbitrary and not smooth, which makes designing a general law
impossible. Instead, we follow Rybkin et al. [39] and use the notion of a total budget F = C + 6 - D
as a substitute for .J. Similarly to J, the budget F increases as the complexity of policy learning
increases.

That is, for a well-behaved TD-learning algorithm with the “optimal” hyperparameters, J will be
some unknown monotonic function of /. Using this intuition, we will now demonstrate a solution
to compute allocation that optimizes J, therefore also optimizing .J. Similarly, we will be able to
extrapolate our solution to higher 7, and thus higher .J.

We produce a solution to Problem 4.1, part 2, by observing that C and D evolve predictably as a
function of F, in line with previous work [39]:

C*(Fo) = (ac)ac, D*(Fo) = (bc)ﬁc. (1.3)

Fo Fo

h1l-crawl-vO h1l-pole-vO hl-stand-vO humanoid-stand
oxled ; x1le4 xle4 N x1e4 » SOOE
© « 80 4 28 #7 1-600 % - o
© 32 & Lo Ve & 48 & P
©
£ 24 > 64 y -500 4 ’ &
g # 600 & 20, g 400 4 6002
o 16 g ¥y 4 32 o 5
- v 48 / -400 V4 2 t
& 97 == R2=0.99 500 7 == R?=0.99 —= R2=0.99 24 s —— R’=100 -400§8

300 14 -200 =

320 480640 xlel5 240 320 400 x1lels 90 120 160x1el5 16 24 32 xlel5
i —_
Flels x1lel5 x1lel5 x1lel5 [
2 . -600 ¢y 8003
€ | . -600 . 4 % =
o - 700 4 16 7 pA)
c 48 1 48 % > s~ g
= 9~ e 500 -7 3 e 600 ©
£32 _-86 -600 , 12 T) -400 v £
2 | %0 2 ¥ 400 % S| g
° —=— R?=0.34 | -500 / == R?=0.87 —— R2?=0.68 == R2=099 -4009
516 24 300 8 200 =

320 480640 xlel5 240 320 400 x1lels 90 120 160x1el5 16 24 32 xlel5

F/: Optimal budget for F;: Optimal budget for J 7/ Optimal budget for J F/: Optimal budget for

Figure 7: Optimal data D(F,) and compute C(Fy) fits for a given budget 7. Return .J is denoted in color,
showing how increased budgets correspond to higher returns. Similar to [39], we are able to allocate resources
across data and compute in a predictable way, while accounting for the effect of both model size and UTD.

9

Evaluation. We show that this dependency is predictable in Figure 7, including evaluating confidence
interval and extrapolation to higher budgets for this fit. This allows us to optimally allocate resources
for higher values of budget or return across data and compute.

Scaling Observation 3: Optimal partitioning between data and compute

Optimal scaling for data C and compute D are predictable functions of the total budget Fy, as
a power law in Eq. (7.3).

Now, we extend this analysis to allocating compute across UTD and model size as a function of the
budget. We use the same power law form:

o5 (Fo) = (f) N3 (Fy) = (bf)ﬁf. .4

Scaling Observation 4: Optimal partitioning of budget between UTD and model size

Optimal scaling for UTD o and model size N depends as a power law on the budget F, as in
Eq. (7.3). We can estimate the optimal allocation trend using this power law, and estimate
robustness of perfomance to allocation as the variance of this trend.

Implications. We show results for h1-pole-v0 humanoid-stand

two challenging tasks ip Figure 8 and A Y rimooe 8 —— r=00a 800
further results in Section D. We ob- B . 1600 o
serve the coefficients ar, S forre- w 2 g N g
source allocation vary between tasks, & e~ 500 4 S 600 £
showing that for some tasks scaling o) 2 400 \\\ e
model size or UTD is more or less © 3¢ a0

N
J

; -300
important. Further, we observe that 200 320 400 wieis 16 24 32 wiess
different tasks vary in the amount of

variance, seen as the size of the con-

fidence interval in Figure 8. This 2256 SoRm0d | gp| TTRTOS g 8003
shows that for some tasks, precisely K vV 4 2
. . .. £192 o 9 V.o c
setting model size and UTD is impor- — > -500 ? 600 8
: © So ’ £
tant; while other tasks allow to trade £ 5. . % 5
off model size and UTD without a big ~ &%8 e P00 o of 4008
decrease in performance. Our exper- £ 1300 =
imental procedure enables practition- 2j‘00 32?b 4d°0 . xlel5 . 016 Ii“d 32f x1el5
.. F e ti t F e ti t
ers to make these workflow decisions j + Optimal budget for J j ¢ Optimal budget forJ

based on the relationships that we fit Figure 8: Optimal UTD o(F,) and model size N(F), with
in this paper. extrapolation to higher budgets or returns. While for some tasks it
is necessary to set values precisely, other tasks allow some variation
8 Discussion in model size and UTD as indicated by variance.
We have established scaling laws for value-based RL allowing compute scaling in an optimal manner.
Specifically, we provide a way to scale batch size, UTD, model size, as well as data budget, and
provide scaling laws that estimate tradeoffs between these quantities. These laws are informed by
our novel analysis of the impact of scaling on overfitting in TD-learning. We also saw that in some
environments several configurations of the hyperparameters we studied could broadly be considered
compute-optimal, which reflected as a benign relative error in our fits. We were limited in how many
variables we can study due to the necessity of running higher-dimensional grid searches for every
new variable. Building on our results, future work will study other important hyperparameters, such
as learning rate and the critic update ratio. Further, while our work is limited to challenging simulated
robotic tasks, future work will study large scale domains such as visual and language domains using
larger scale models. The analysis and the laws presented in this work are a step towards training
TD-learning methods at a scale similar to other modern machine learning approaches.

10

Acknowledgments and Disclosure of Funding

We would like to thank Amrith Setlur, Seohong Park, Colin Li, and Mitsuhiko Nakamoto for feedback
on an earlier version of this paper. We thank the TRC program at Google Cloud for providing TPU
sources that supported this work. We thank NCSA Delta cluster for providing GPU resources that
supported the experiments in this work. This research was supported by ONR under N00014-24-
12206, N00014-22-1-2773, and ONR DURIP grant, with compute support from the Berkeley Research
Compute, Polish high-performance computing infrastructure, PLGrid (HPC Center: ACK Cyfronet
AGH), that provided computational resources and support under grant no. PLG/2024/017817. Pieter
Abbeel holds concurrent appointments as a Professor at UC Berkeley and as an Amazon Scholar.
This work was done at UC Berkeley and CMU, and is not associated with Amazon.

References

(1]

(2]

13

—

[4

—

[5

—

[6

—_

[7

—

[8

—

[9

[

(10]

(1]

(12]

[13]

[14]

[15]

Richard E Barlow and Hugh D Brunk. The isotonic regression problem and its dual. Journal of the
American Statistical Association, 1972.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning.
arXiv preprint arXiv:2106.01151, 2021.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized ensembled double Q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2020.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, pages 7480-7512.
PMLR, 2023.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron
Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In International
Conference on Learning Representations, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models. arXiv preprint,
2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first international conference on machine learning, 2024.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Irpan,
Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training value functions
via classification for scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why should i trust
you, bellman? the bellman error is a poor replacement for value error. arXiv preprint arXiv:2201.12417,
2022.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale reliably with
over-training and on downstream tasks. arXiv preprint, 2024.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus Foerster,
and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, 2018.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv: 2310.16828, 2023.

Jacob Hilton, Jie Tang, and John Schulman. Scaling laws for single-agent reinforcement learning. arXiv
preprint, 2023.

11

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. Advances in Neural Information Processing Systems, 2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and JoAGo GM AraA§jo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022.

Matthew Thomas Jackson, Uljad Berdica, Jarek Liesen, Shimon Whiteson, and Jakob Nicolaus Foerster. A
clean slate for offline reinforcement learning. arXiv preprint arXiv:2504.11453, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint,
2020.

Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Piéro, Michat Krutul, Szymon Antoniak,
Kamil Ciebiera, Krystian Krél, Tomasz Odrzyg6ZdZ, Piotr Sankowski, et al. Scaling laws for fine-grained
mixture of experts. arXiv preprint arXiv:2402.07871, 2024.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. In International Conference on Learning Representations,
2021.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline
model-free robotic reinforcement learning. arXiv preprint arXiv:2109.10813, 2021.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine. DR3:
Value-based deep reinforcement learning requires explicit regularization. International Conference on
Learning Representations, 2022.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline Q-learning on
diverse multi-task data both scales and generalizes. In International Conference on Learning Representa-
tions, 2023.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R
Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. SimBa: Simplicity bias for scaling up parameters
in deep reinforcement learning. arXiv preprint, 2024.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
normalization for scalable deep reinforcement learning. arXiv preprint arXiv:2502.15280, 2025.

Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient deep reinforcement learning requires
regulating overfitting. In International Conference on Learning Representations, 2023.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Piéro, Michat Krutul, Szymon Antoniak,
Kamil Ciebiera, Krystian Krél, Tomasz Odrzygézdz, Piotr Sankowski, et al. Scaling laws for fine-grained
mixture of experts. In International Conference on Machine Learning, 2024.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning, 2023.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model of large-batch
training. arXiv preprint, 2018.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, 2016.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus,
Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language models. Advances
in Neural Information Processing Systems, 2023.

Michal Nauman, Michat Bortkiewicz, Piotr Mito§, Tomasz Trzcinski, Mateusz Ostaszewski, and Marek
Cygan. Overestimation, overfitting, and plasticity in actor-critic: The bitter lesson of reinforcement
learning. In International Conference on Machine Learning, 2024.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Mito§, and Marek Cygan. Bigger,
regularized, optimistic: Scaling for compute and sample-efficient continuous control. Advances in Neural
Information Processing Systems, 2024.

12

[35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

[52]

(53]

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In International Conference on Machine Learning, 2022.

Johan Obando Ceron, Marc Bellemare, and Pablo Samuel Castro. Small batch deep reinforcement learning.
Advances in Neural Information Processing Systems, 36:26003-26024, 2023.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283-23295, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of machine learning research,
22(268):1-8, 2021.

Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Snell, Pieter Abbeel, Sergey Levine, and Aviral Kumar.
Value-based deep 1l scales predictably, 2025. URL https://arxiv.org/abs/2502.04327.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari, Go, chess and
Shogi by planning with a learned model. Nature, 2020.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level Atari with human-level efficiency. In
International Conference on Machine Learning, 2023.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv preprint
arXiv:2403.10506, 2024.

Mustafa Shukor, Enrico Fini, Victor Guilherme Turrisi da Costa, Matthieu Cord, Joshua Susskind, and
Alaaeldin El-Nouby. Scaling laws for native multimodal models scaling laws for native multimodal models.
arXiv preprint arXiv:2504.07951, 2025.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 2016.

Jayesh Singla, Ananye Agarwal, and Deepak Pathak. SAPG: Split and aggregate policy gradients.
International Conference on Machine Learning, 2024.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch, Thomas
Lampe, Philemon Brakel, Sarah Bechtle, Steven Kapturowski, Roland Hafner, et al. Offline actor-critic
reinforcement learning scales to large models. International Conference on Machine Learning, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. DeepMind control suite. arXiv preprint, 2018.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez,
Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for continuous control.
Software Impacts, 2020.

Kevin Wang, Ishaan Javali, Michal Bortkiewicz, Benjamin Eysenbach, et al. 1000 layer networks for self-
supervised rl: Scaling depth can enable new goal-reaching capabilities. arXiv preprint arXiv:2503.14858,
2025.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12104-12113,
2022.

13

https://arxiv.org/abs/2502.04327

A Details on Deriving Scaling Fits

FLOPs calculation. We inherit the definition from Rybkin et al. [39], so that
C(o,N)=ko ND(o,N) (A.1)

for a constant k not dependent on o and N. We follow the standard practice of updating the critic,
target, and actor all ¢ times for each new data point collected (Algorithm 1).

A.1 Maximal compute efficiency for data < D,

As described in Section 7, the number of data points needed to achieve performance J is equal to

8,
. ag\es b,
Dy(o,N) ~ D" (%) + <z\;> : (A2)

where Dglin, aj,ay,by, By > 0 are constants not dependent on o and N. We first present a closed-
form solution to the simpler optimization problem in Eq. (A.3). This will enable us to characterize
the solution to Problem 4.1, part 1, which does not have a closed-form solution in terms of Cy but can
be easily estimated.

Proposition A.1. Ifa; < 1or B; < 1, there exists a unique optimum

(c*,N*) := arg (I(B}\Ifl) Cj(o,N) s.t. Dy(o,N) < Dy. (A3)
Moreover,
. 1+ % 1oy . 1+ % 1/Bs
o =uay <D0Dmm> N*=by (DODmm> (A4)
satisfy the following relation:
Ve (552i)1/5 (0%)/. (A5)

Proof. For ease of notation, we drop the subscript J throughout this derivation. Since there exist
sufficiently large (o, N) for which D(c, N) < Dy, Slater’s conditions are satisfied, and the KKT
conditions are necessary and sufficient for optimality. Let

L(o,N)=koND(o,N)+ A(D(o,N) —Dy) (A.6)

denote the Lagrangian. Now, we will solve for (&, N, 5\) satisfying the KKT conditions. The
stationarity conditions are

%ﬁ:o = (k6N +Naa”6 ' =kND(5,N) (A7)
g
376 =0 = (k6 N+ X\ B’ NP1 =ksD(5,N). (A.8)

Complementary slackness implies that

MND(5,N) —Dg) = 0. (A.9)

We claim that A > 0. Assume for the sake of contradiction that A\ = 0. Substituting into Equa-
tions (A.7) and (A.8), we obtain

aa®5 =B NP = D(&,N) > max {a%}_o‘,bﬁN_ﬁ}) (A.10)

But the last inequality contradicts « < 1 or # < 1, concluding the claim.

14

It follows that D(&,]\7) = Dy. Dividing Eq. (A.7) by Eq. (A.8), we obtain

aa*5 1 N
BN G D
or equivalently
~ g\ 1/8
N = (*Bba) a8, (A.12)
aa
Substituting into the active constraint D(, N) = Dy, we obtain
o l/a é 1/ﬁ
b8 Nep|tFa) (A.13)
DO _ PDmin ’ DO _ PDmin
Thus, (5, N) is the unique KKT solution, and thus the unique optima. O

A.2 Maximal data efficiency for compute < C,

We are now equipped to solve the optimization problem presented in Problem 4.1, part 1. Although
we cannot solve for the optimal (¢*, N*) directly, the following proposition shows that the set of
optimal solutions obtained by varying the compute budget Cy matches exactly the set of solutions
obtained by varying the data budget Dy in Proposition A.1. This equivalence reduces the original
problem to a simpler surrogate. Using Eq. (A.5), it is straightforward to compute the optimum
numerically.

Proposition A.2. Suppose a; < 1 or B; < 1, and assume the data and compute formulations
established in Equations (A.1) and (A.2). Let

min . _ i N). A.14
Cy a>r(I)5\I/1>OCJ(U’) ()

For a fixed budget Cy > Cf}“i“, write

(P) D= min Dy(o,N) st C(0,N) < Co (A.15)
and
(Py) (m}\l]l) Cj(o,N) s.t. Dy(o,N) < D*. (A.16)

Each problem admits a unique solution (c*, N*), and these solutions coincide.

Proof. As before, we drop the subscript J.

We first justify the existence of a global minimizer to (P;) over (0,00)%. Aso — 0 or N — 07,
then (a/0)® — oo or (b/N)? — oo, hence D(o,N) — oo. If 6, N — oo, then C(o, N) >
ko ND™in _y oo, contradicting C < Cy. Thus, the feasible set {C < Cp} is coercive, and by
continuity of C and D, (P;) attains a global minimizer.

Proposition A.1 shows that there exists A > 0 such that the KKT conditions for (P;) hold,

D
a—(U*,N*) +A3—C(a*,N*) =0 (A.17)
do oo
D o o I v ey —
C(o*, N*) = Co. (A.19)
For (P,), the KKT conditions imply that there exists y > 0 such that
% o1, N1y + w22 (o7, 1) = 0 (A.20)
do do
oc oD
9C b N+ 92 (ot N =
577 (0 N g (! NT) =0 (A21)
D(of,NT) =D~ (A.22)

15

If « < 1, then
oD

— = —aa® 1 <0 (A.23)

Oo

g£ = —koNaa®oc~ 1 + EN(Duin + a®c~* + P N7) > 0, (A.24)
ag

dBC

so ¢ > 0. In the other case, 1f6<1then <0an > 0,s0pu > 0.

Since the first solution is additionally given to satisfy D(c*, N*) = D*, these systems are identical,
and so must be their solutions, (*, N*, \) = (of, NT,1/u). Uniqueness in Proposition A.1 implies
uniqueness in (Py). O

A.3 Maximal performance for budget < F

Performance level J is task-dependent and is not guaranteed to satisfy any general properties,
so modeling part 2 of Problem 4.1 directly is impossible However, given a particular value of
J, we can compute the UTD ratio o, and model size Nz, that uniquely minimize the total
budget Fij(o,N) = Cys(0,N) + 6 -Dy(o,N) (see Proposition A.3). We run this procedure for
J1y oy Im € [Jmin, Jmax)» as described in Section B.

We expect that a higher budget will ultimately yield higher performance under the best hyperparameter
configuration. This procedure yields several points {(J;, F,)};~, along the Pareto frontier J
min, y Fj(o, N), as shown in Figure 9. Importantly, we do not directly model this curve, and only
need its existence, continuity, and monotonically increasing nature for our fits. Consequently, its
inverse is continuous and monotonically increasing. Therefore, for a given budget F;,, 1 <¢ < 'm,
the performance level J; is optimal for that budget, i.e.

(0%(F,), Nr(Fy,)) = arg (mz}\?() J (mag(o,N)) st. C+6D < Fy,.

)

This procedure yields m points along the solu-
tion to Problem 4.1, part 2. Since data efficiency
is predictable, we can therefore constrain the
budget to model 0%, N1 as in Eq. (7.4).
Proposition A.3. Suppose (ay,3;) € (0,1),
and fix § > 0. Consider the unconstrained
minimization min, y Fy(o, N). The optimum
(o*, N*) is unique and satisfies Eq. (A.5).

Performance

Proof. As either ¢ — 0" or N — 07, the
term 0D — oo. As 0, N — oo, the term
C > ko ND™" — oo. By the same logic as
the proof of Proposition A.2, a global minimizer (67(F1n), Nx(Frs)
exists.

Then, the objective is exactly the same as
Eq. (A.6), with A replaced by d, and the Dy
constant offset removed. Thus, the same logic
in the proof of Proposition A.1 applies, and we

Figure 9: A (hypothetical) depiction of the
performance—budget Pareto frontier we implic-
itly model. For each J;, we compute the budget-
minimizing UTD ratio o%(F,) and model size

btain th lation Eq. (A.5). O
obtain the same relation Eq. (A.5) N%(Fy,). We can then discard the y-axis, leav-
. . ing us with a relationship between budget F and
B Experiment Details (0%, N%).

For our experiments, we use a total of 17 tasks from two benchmarks (DeepMind Control [51]
and HumanoidBench [42]), listed in Table 2, with the BRO algorithm and architecture [34]. We
additionally use 2 tasks from HumanoidBench (h1-crawl, hl-stand) with SimbaV2 [26]. As
described in Section C, we normalize our returns to [0, 1000]; optimal 7 returns are pre-normalized.
For HumanoidBench, we report the returns listed by authors as the “success bar,” even though it is
possible to achieve a higher return. Our experiments fit D;(c, N') for 20 normalized performance
thresholds J, spaced uniformly between Jy,i, and Jy,ax, inclusive; 20 is an arbitrary choice that we
made so as to obtain useful insights about our method while not overwhelming the reader.

16

Table 2: Tasks used in presented experiments.

Domain Task Optimal 7 Returns Jmin ~ Jmax 1
HumanoidBench hl-crawl 700 450 780 2el2
hi-pole 700 300 680 Sell
hil-stand 800 200 660 Sell
DMC humanoid-stand 1000 300 850 5el0
DMC-Medium acrobot-swingup 1000 150 400 lell
cheetah-run 1000 400 750 lell
finger-turn-hard 1000 400 900 lell
fish-swim 1000 200 710 lell
hopper-hop 1000 150 320 lell
quadruped-run 1000 200 790 lell
walker-run 1000 350 730 lell
DMC-Hard dog-run 1000 100 270 lell
dog-trot 1000 100 580 lell
dog-stand 1000 100 910 lell
dog-walk 1000 100 860 lell
humanoid-run 1000 75 190 lell
humanoid-walk 1000 200 650 lell

Table 3: Configurations for ORIGINAL 3-dimensional grid searches.

Task UTD ratio o Critic width Possible batch sizes
hi-crawl 1,2,4,8 256, 512, 1024, 2048 16, 32, 64, 128, 256, 512, 1024, 2048
hi-pole 1,2,4,8 256, 512, 1024, 2048 64, 128, 256, 512, 1024, 2048
hi-stand 1,2,4,8 256, 512, 1024, 2048 128, 256, 512, 1024, 2048, 4096
humanoid-stand 1,2,4,8 128, 256, 512, 1024, 2048 64, 128, 256, 512, 1024

B.1 Hyperparameter Sweep Details

Out of the 17 tasks, we run a full 3-dimensional grid search B x N X o on 4 of them: 3 tasks
from HumanoidBench and Humanoid-Stand from DMC. Due to the computational requirements of
running a large grid search for obtaining the scaling fits, we use a constant network depth (2 BroNet
blocks [34]) and learning rate (3e-4) throughout our experiments and run at least 5 random seeds per
configuration. From these experiments, we follow the procedure described in Section C to estimate
a batch size rule (Figure 11). A superset of the configurations run in this three-dimensional grid
search are listed as ORIGINAL in Table 3. Out of the listed batch sizes in Table 3, we run at least 4
consecutive values of batch sizes for each (o, IV), such that the empirically most performant batch
size is neither the minimum nor maximum of the range. Since a full 3D-sweep is expensive, this
heuristic enables us to effectively reduce the total number of experiments we need to run to estimate
batch size fits. For instance, for small model sizes and low UTD values on h1-crawl, this amounts
to simply running batch sizes up to 64, since performance decreases monotonically as the batch size
increases.

Based on these runs, we set Jyi, and Jyax, as described in the following subsection. This enables us
to establish a batch size rule (Eq. (6.1)), where the “best” batch size uses the least amount of data to
achieve performance Jy,,.x. To evaluate our batch size rule B*(o, N), we run a 2-dimensional sweep
using our proposed batch sizes on INTERPOLATED and EXTRAPOLATED UTD ratios ¢ and model
sizes IN. The configurations are listed in Table 4. Note that we did not study extrapolation of model
size on humanoid-stand, since we already noticed that a width of 2048 performed worse than a
model width of 1024 at low UTD values.

Using various combinations of these measurements, we can fit data efficiency (Eq. (7.1)). InSec-
tion 7.1, we evaluate the absolute relative error of the fit prediction with respect to the ground truth
data efficiency on each of the datasets, when the fit solely uses ORIGINAL data and is evaluated on
ORIGINAL, INTERPOLATED, and EXTRAPOLATED data. Our final D, as described elsewhere in the
paper, is fitted on all three datasets, ORIGINAL, INTERPOLATED, and EXTRAPOLATED.

17

Table 4: Configurations for INTERPOLATED and EXTRAPOLATED.

Dataset Task UTD ratio o Critic width
INTERPOLATED hil-crawl 3,6,12 368, 720, 1456
hil-pole 3,6,12 368, 720, 1456
hil-stand 3,6,12 368, 720, 1456
humanoid-stand 3,6,12 176, 368, 720, 1456
N EXTRAPOLATED hil-crawl 1,2,4,8,16 4096
hil-pole 1,2,4,8,16 4096
hil-stand 1,2,4,8,16 4096
o EXTRAPOLATED hil-crawl 16 256, 512, 1024, 2048
hil-pole 16 256, 512, 1024, 2048
hi-stand 16 256, 512, 1024, 2048
humanoid-stand 16 128, 256, 512, 1024, 2048

The other 13 tasks are from DMC, which we group as DMC-medium and DMC-hard following
Nauman et al. [34]. For obtaining these fits, we borrow the data directly from Nauman et al. [34]:
the authors of this prior work ran 10 random seeds at a constant batch size 128 and learning rate
3e-4 on several UTD (1, 2, 5, 10, 15) and model size (Table 7 in [34]) configurations. Due to the
lack of appropriately set batch size in these experiments borrowed from prior work, the data does
not accurately represent the best achievable data efficiency, and in some cases increasing UTD or
model size worsens performance. In these cases, fitting D per task can result in instability, where the
exponents « s, 3 are driven to 0. To counteract this, we use two approaches:

1. Share parameters « ;, 5 of the fit over tasks as follows:

. aenv g benv B
Dpia) D (S2) 4 (B) B.1)

o N

Conceptually, this forces the slope of the compute-optimal line prescribed by Eq. (A.5) to
be shared across tasks within the same domain, but allows for a different intercept. This
results in variance reduction in the fitting procedure.

2. Average over multiple tasks according to the procedure in Section C. We present these
fits in the main paper to improve clarity and reduce clutter (Figure 6). This method essentially
treats the benchmark as a single task and fits an average amount of data required to achieve
some performance.

Selecting experimental constants. To select J,,,x, we first group by the UTD ratio o and model
size N. Out of each group, we select the run with the highest final Monte-Carlo returns (over all
batch sizes). Over these runs, we set Jp,ax as the highest return threshold that 80% of the runs reach.

We heuristically select Jp,;, as the lowest return threshold such that configurations that eventually
reach performance J,.x “look sufficiently different,” i.e. there are configurations with batch sizes
By, Bs such that their confidence intervals [Dy, . — 0., DJ... + 07...] do not overlap. Here
D denotes the true (not fitted) amount of data required to reach the performance level, and o is the
standard deviation given by the procedure described in Section C.

We select ¢ in the budget formula F = C+ dD so that 6D represents the real-time cost of environment
steps, as measured in FLOPs. Our procedure is as follows:

1. Pick the run that achieves performance .Jy, 5« Within the lowest wall-clock time.

2. Based on timing statistics from this run, set

__ FLOPs/grad steps x grad steps/sec
- env steps/sec '

) (B.2)

The resulting expression for F is therefore a proxy for wall clock time.

18

Algorithm 1 Training loop drop-ins for any value-based algorithm

1: Initialize environment p
2: Initialize replay buffer P ~
3: Initialize parameter vectors 6 (critic), 0 (target critic), ¢ (actor)
4: Initialize validation environment p**
5: Initialize validation replay buffer 7P*" // size |P|/k
6: Initialize passive critic parameter vector GP** // possibly different size than 0
7: for each iteration do
8: for each environment step do
9: ar ~ T(at|st)
10: St41 ~ P(Se+1|st, ar)
11: 73<—PU{(st,at,r(st,at),stﬂ)}
12: if £ mod k£ = O then // do validation less frequently to avoid overhead
13: u:‘ul ~ ﬁ@y}(();:”s;al)
14: sty ~ ™ (s 51, at)
15: Pwl — P\’&Il U {(.S‘)“I, (l),“], 7‘<S),“1., (17«'11)\ S;“}l 1)}
16: end if
17: end for
18: for each update do
19: Sample training batch z ~ P
20: for o gradient steps do B
21: 0 <_ 0 — ncrilic_v9£crilic (I§ 97 6) o
22: 6})([5)1\'6 (7 9}721551\6 . r/Cl-iliCVGDA\\nu£Cri[ic (‘l‘: HP‘(L\SI\C? 6)
23: (P — ¢ - nactorv¢4actor(x§ 07 ¢)
24: 0« 104+ (1—71)0
25: end for
26: if logging then
27: Sample validation batch 2" ~ P!
28: L8 < Leie(x*;0,0)
29. LIV o e (5 0750,)
30: end if
31: end for
32: end for

B.2 Detailed Explanations for How to Obtain Main Paper Figures

Figure 2. Standard off-policy online RL trains on data sampled from a replay buffer, which is
regularly augmented with data from the environment. We construct a held-out dataset of transitions
following the same distribution as the training replay buffer. To do so, we create a validation
environment, which is identical to the training environment with a different random seed, and a
corresponding validation replay buffer. This allows us to measure the validation TD-error, i.e. the
TD-error of the critic against the target on data sampled from the validation replay buffer. Algorithmic
details are described in Algorithm 1 in blue.

Figure 4. The passive critic regresses onto the target produced by the main critic, and is trained
using a similar procedure as the main critic. We report the TD-error of the passive critic against the
TD-target on validation data. Algorithmic details are described in Algorithm 1 in green.

Figure 5. We describe our batch size fitting procedure in Section C.

Figure 6. Circles represent the true data efficiencies on our ORIGINAL UTD ratios and model sizes.
Using this data, we fit a batch size rule B*(o, N) (Eq. (6.1)), and run experiments using our batch
size rule on INTERPOLATED and EXTRAPOLATED UTD ratios and model sizes. Then, we fit data
efficiency Dy, (o, N) (Eq. (7.1)) on all of the data, where J,ax is listed in Table 2. The iso-data
contours are predictions from the fit, and the log-log-line containing compute-optimal points follows
the formula in Eq. (7.2).

Figure 7. We fit D ;, independently for each .J;. Following Section A.3, we numerically solve for the
optimum (0=(F,), N3(F,)). We plot D and C for these optima against F;,. Out of these m = 20
points, we fit a line to the bottom 15 of them and mark the top 5 as budget extrapolation. We record
R? between the log-linear fit and log-y values over all 20 points.

19

) hl-stand, 0=2, N=2M, B=1024 hl-crawl, o=1, N=619K, B=64
humanoid-stand, 0=8, N=2M, B=512

800
800
800 700
c 600 c
£ 600 E] 5600
2 9] 9]
o} 400
& 400 < < 500
- = =
= Original data 200 Original data Original data
200 Isotonic smoothing Isotonic smoothing 400 Isotonic smoothing
0 Including resets Gaussian smoothing Gaussian smoothing
0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
D: Data x1e5 D: Data x1le5 D: Data x1e5

Figure 10: A demonstration of our MC returns preprocessing. Left: Full-parameter resets introduce
variance in returns; we remove the dips before running isotonic regression. Middle: Gaussian
smoothing can lead to under-smoothing the returns, making data efficiency more difficult to fit.
Right: Gaussian smoothing can lead to over-smoothing the returns, e.g. at 625K env steps, Gaussian-
smoothed returns are higher than the maximum returns achieved up to that point.

Figure 8. Same method as Figure 7.

C Additional Details on the Fitting Procedure

Preprocessing return values. Our fits require estimates of the data and compute needed by a given
run to reach a target performance level. The BRO algorithm [34] employs full-parameter resets as a
form of plasticity regularization [35], reinitializing the agent every 2.5M gradient steps to encourage
better exploration and long-term learning. However, these resets induce abrupt drops in Monte Carlo
(MC) returns, which do not reflect a true degradation in learning quality. Instead, returns typically
recover quickly and often surpass pre-reset levels. Including these transient dips in the MC curve
would artificially inflate the estimated data and compute required to reach a given performance
threshold. To obtain a cleaner, more consistent signal of learning progress, we therefore remove
post-reset return drops from our analysis (Figure 10, left). This allows us to more accurately model
the intrinsic data efficiency of the algorithm, independent of reset-induced variance.

Following [39], we then process the return values with isotonic regression [1], which transforms the
return values to the most aligned nondecreasing sequence of values that can then be used to estimate
D (Figure 10, middle and right). This procedure enables us to fit the minimum number of samples
needed to reach a given performance level, regardless of whether the performance drops later in
training. It also reduces variance compared to the naive approach of measuring the data efficiency
directly on each random seed.

Uncertainty-adjusted optimal batch size. We follow Rybkin et al. [39] to compute uncertainty-
adjusted optimal batch sizes, since the precision of the fit B would otherwise be limited by the
granularity of our grid search. We run K = 100 bootstrap estimates by sampling n random seeds
with replacement out of the original n random seeds, applying isotonic regression, and selecting the
optimal batch size By, by data efficiency to threshold Jy,.«. Since these batch sizes can span multiple
orders of magnitude (Table 3), we report the mean of these bootstrapped estimates in log space as the
“best” batch size:

K
1
Bbootstrap = exp (K Z log Bk) . (C.1)
k=1

Additionally, considering the set of bootstrapped data efficiencies to reach a given performance
threshold J, this procedure also yields an estimate of the standard deviation of the data efficiency.

Fitting procedure. Prior work fits the data using a brute force grid search followed by LBFG-S
[16, 39]. Empirically, we found that the quality of the resulting fit is highly dependent on the initial
point found by brute force, and the bounds of the brute force grid must be tuned per fit. To resolve
these issues, we use the following procedure:

20

1. Normalize the inputs x to [¢, h] = [0.5, 2] in log space via

_ log(max z) — log(min x)

= C.2

s logh — log ¥ €2

m = log(minz) — slog ¥ (C.3)
1 —

2 = exp (ngsm) 7 (C.4)

and normalize the output y by dividing by the mean, y' = y/y. This results in a more
numerically stable fitting procedure, since o € [1, 20] and N € [1e5, 2e8] are otherwise on
very different scales.

2. Define 6" = softplus(f) = log(1 + exp(h)) for all “raw” parameters § € R. Softplus is a
smooth approximation to ReLU and forces fit parameters to be positive, and empirically
tends to improve fitting stability. For example, to fit data efficiency, we optimize over
[0pmin, 04, 01, 04, 05] € R®, and extract e.g. D™ = softplus(fpmin).

3. Use LBFG-S to optimize over raw parameters. We use MSE in log space as the objective:
L(y,§) = (logy — log).

4. Apply softplus and correct the parameters for normalization.

Empirically, we find that initializing all raw parameters as zero generally works well.

Aggregate data efficiency. In Figure 6, we show data efficiency fits aggregated over multiple tasks.
We follow Rybkin et al. [39]: first, normalize the data efficiency DJ" by intra-environment medians
Devmed = median {DY (0, N)}, - To interpret the normalized data efficiency on the same scale

med
as the original data, we write D7 = median { D™ med}env, so that DV rorm = DIV . %
Finally, we fit all of the normalized data together using the same functional form.
D Additional Experimental Results
D.1 Batch Size Fits B(o, N)
Refer to Figure 11.
1680.64
hi-crawl 50-30 1 6.0le7 o030 N—1.12
4112.98
hi-pole 5024 | 1 .45e] g0-24 N —0.07 .
1458.10 '
hi-stand 0027 1 1.33e74 50-27 N —12.71
1160.40

humanoid-stand

50-49 9 7762 5049 N —0.38

D.2 Batch Size Fit Analysis

In Table 5, we group runs by UTD and model size, and bin runs based on batch sizes. Then, we
consider the data efficiency ratio between the runs appearing in bins with suboptimal batch sizes
and runs with the predicted batch size, and average over UTDs and model sizes. We find that batch
sizes within a interval around the best batch size B* perform reasonably, and performance degrades
significantly with larger intervals. Indeed, per this analysis, one cannot naively reuse the same batch
size for small and large models: in Figure 5, we see a =~ 40 x range in bootstrap-optimal batch sizes
across different model sizes at UTD 8. However, the sensitivity of performance to the precise value
of batch size is relatively low, which is good news for practitioners and which is why we observe a
high relative error in the fit, which turns out to be benign.

D.3 Learning Rate Sensitivity Analysis

A natural question is whether learning rate affects performance in the compute-optimal regime or not.
We found that there is a range of “reasonable” learning rates, which empirically always contains our

21

Grouped by UTD ratio o

o hl-pole-v0, o=1 hl-pole-v0, 0=2 hl-pole-v0, o=4 hl-pole-v0, 0=8
52048 o 2048 2048 o 2048
2)
£ s/ 5122 s512| 0 e — 512 ¢ o
Q . p
7 128 128 128) 128
aa]
L32 32 32 32
Q
619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34M
o hl-stand-v0, o=1 hl-stand-v0, 0=2 hl-stand-v0, 0=4 hl-stand-v0, 0=8
5 2048 2048 e 2048 2048
<) ¢ I [
£ 512 512 512 512
Qo)
7 128 128 128 128
[aa]
S 32 32 32 32
Q
619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34M
o humanoid-stand, o=1 humanoid-stand, 0=2 humanoid-stand, o=4 humanoid-stand, 0=8
5 2048 2048 2048 2048
ey
2512 o e 7 512 e 2 . 512
g 128 128 o 128 128 e—m
aa] D
L 32 32 32 32
S
183K628K 2M 9M 34M 183K628K 2M 9M 34M 183K628K 2M 9M 34M 183K628K 2M 9M 34M
N: model size N: model size N: model size N: model size
Grouped by model size N
o h1l-pole-v0, N=619K h1l-pole-v0, N=2M h1l-pole-v0, N=9M h1l-pole-v0, N=34M
% 2048 \ 2048 2048 2048)
c
2512 ————nu_2 ¢ 512/ T 512 T——6___ o 512| T —*—
Q a
7 128 128 128 128
aa]
L 32 32 32 32
s}
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
o hl-stand-v0, N=619K hl-stand-v0, N=2M hl-stand-v0, N=9M hl-stand-v0, N=34M
3 2048 2048 2048 ‘ 2048 :
< C € \
£ 512 ; 512 512 o 512
o __
7 128 128 128 128
o
L 32 32 32 32
[aa]
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
o humanoid-stand, N=628K humanoid-stand, N=2M humanoid-stand, N=9M humanoid-stand, N=34M
3 2048 2048 2048 2048
e -
£ 512 512 \ 5120 T e 512 \
o \\ ¢ s
7 128 128 128 128
a]
32 32 32 32
o
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
o: UTD o: UTD o: UTD o: UTD

Figure 11: Two-dimensional batch size fit B(cr, N) grouped by o and N, as a completion to Figure 5,
for the BRO algorithm and architecture [34]

22

Grouped by UTD ratio o

] hl-crawl-v0, o=1 hl-crawl-v0, 0=2 hl-crawl-v0, o=4 hl-crawl-v0, 0=8

» 2048 2048 2048 2048

e

£ 1024 1024 1024 1024

Qo

‘g 512 512 512 512

m

L, 256 256 256 256

@ 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M

] hl-stand-v0, o=1 hl-stand-v0, 0=2 hl-stand-v0, 0=4 hl-stand-v0, 0=8

‘w2048 2048 2048 2048

<

% 1024 1024 1024 1024

Qo

g 512 512 512 512

o

;o 256 256 256 256

o 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M
N: model size N: model size N: model size N: model size

Grouped by model size N

] hl-crawl-v0, o=1 hl-crawl-v0, 0=2 hl-crawl-v0, o=4 hl-crawl-v0, 0=8

» 2048 2048 2048 2048

e

£ 1024 1024 1024 1024

Q

‘gj 512 512 512 512

m

L, 256 256 256 256

@ 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M

] hl-stand-v0, o=1 hl-stand-v0, 0=2 hl-stand-v0, o=4 hl-stand-v0, 0=8

w2048 2048 2048 2048

c

% 1024 1024 1024 1024

Qo

g 512 512 512 512

m

;o 256 256 256 256

@ 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M 604K 2M 9M 36M
N: model size N: model size N: model size N: model size

Figure 12: Analogous to Figure 11, with the SimbaV2 architecture [26]

Table 5: Batch size sensitivity over grid search. Batch sizes far away from the predicted batch size perform
poorly.

Batch size range Data efficiency ratio

[1/16 B*,1/8 B] 1.52
[1/8 B*,1/4 B¥| 1.38
[1/4 B*,1/2 B¥| 1.26
[1/2 B*,2/3 B¥| 1.22
B* 1.00
[1.5B*,2 B¥] 1.16
[2 B*, 4 B*] 1.18
[4 B*,8 B] 1.19

[8 B*,16 B*] 1.30

23

Table 6: Learning rate sensitivity over grid search.

Learning rate range Data efficiency ratio

[1/41r%,1/21r"] 1.39
[1/21r",2/31r"] 1.35
2/31r",1r] 1.04
[Ir*,1.51r"] 1.03
(151, 21r"] 1.18
[21r", 41" 1.27

Table 7: Bootstrap-optimal vs. default learning rates over compute-optimal (o, N, B).

Environment Data efficiency ratio
hl-crawl 1.0118
hil-pole 1.0000
hl-stand 1.0000

humanoid-stand 0.9504

“default” value of 3e-4. Crucially, this is the case for all model sizes and UTD ratio, meaning that a
practitioner can get away without setting learning rate carefully for a compute-optimal run as long as
they utilize a default value.

Grid search regime. We run hyperparameter sweeps over (model size, UTD, learning rate) and
(model size, batch size, learning rate), where Ir € {1e-4, 2e-4, 3e-4, 6e-4}. In this regime, we found
that the empirically optimal learning rate only took on values {2e-4,3e-4}. We report the data
efficiency ratio between the empirically optimal and default learning rates in Table 6. Since our
default learning rate is in the range [Ir*, 1.5 1r*], the overall effect on performance is minimal.

Although we observe smaller relative variation in the best learning rate over UTD and model sizes
compared to batch size, we find empirically that the best learning rate (i) decreases with increasing
model size, correlation: -0.75, (ii) decreases with increasing UTD, correlation: -0.46, (iii) increases
with increasing batch size, correlation: 0.42. With simple log-linear fits, we obtain a relative error of
37.5%:

hi-crawl Ir* ~ 4.4827e-4 - (N/2.3e6) 3112 . ;01273 . (B /512)0-3709
hi-pole Ir* ~ 2.4727e-4-(N/2.3e6) 02472 . ;702392 (B /512)0-2701

Despite the high relative error, we observe that data efficiency is similar within an interval of
“reasonable” learning rates.

Compute-optimal regime. For each task and compute-optimal setting o*(Co), N*(Co) with fitted
batch size B(c*(Cp), N*(Cy)), we ran a sweep of learning rates over [1e-4, 2e-4, 3e-4, 4e-4, Se-4].
Following Eq. (C.1), we compute the bootstrap-optimal learning rate for each setting, then round
to the nearest of the five learning rates. In Table 7, we show that data efficiency is not improved
significantly when using the rounded bootstrap-optimal learning rate, compared to the “default”
learning rate 3e-4. The table shows averages over compute budgets.

D.4 Target Network Update Rate Sensitivity Analysis

Value-based deep RL methods train a Q-network (g by minimizing the TD-error against the target
Q-network () (Eq. (3.1)). The target network weights 6 are typically updated via Polyak averaging,
0 + (1 — 7)0 + 70, where T is a constant, the target network update rate. Small 7 yield high-bias,
low-variance targets; large 7 the opposite. Intuitively, 7 seems to be an important hyperparameter for
modulating the dynamics of TD-learning. Empirically, however, we do not find a strong relationship
between the model size, the target network update rate 7, and training or validation TD error. We
ran a sweep over 7 € [Se-4, le-3, 2e-3, 5e-3, le-2, 2e-2, 5e-2, le-1, 2e-1]. Then, we fit a power law
TD error ~ a - 7°, and record the correlation and slope in Table 8. In general, we find that training
and validation TD error increase with 7 (positive slope and correlation), but there is not a strong
relationship between model size and the corresponding correlation or slope.

24

Table 8: Correlation between target update rate 7

Task Metric Critic width ~ Correlation ~ Slope (b)
hi-crawl Critic loss 512 0.7365 0.1203
1024 0.9175 0.1348
2048 0.9302 0.1164
Validation critic loss 512 0.4639 0.0329
1024 0.6413 0.0244
2048 0.4751 0.0168
hi-stand Critic loss 512 0.9056 0.3916
1024 0.9446 0.2035
2048 0.1857 0.0195
Validation critic loss 512 0.7777 0.1294
1024 0.3109 0.0196
2048 -0.6852 -0.0421

We additionally found that data efficiency is not very sensitive to our choice of 7, as long as the value
of 7 is reasonable. Following the same sensitivity analysis from Section 6, we find that varying 7
by an order of magnitude from the bootstrapped optimal value of 7 worsens the data efficiency by
only 19%. For comparison, varying the batch size by an order of magnitude yields a data efficiency
variation of up to 52% (Table 5). Throughout the remainder of our experiments, we use a “default”
value of 7 = 5e-3, which we find is within the “reasonable” interval and near the bootstrapped
optimal value.

D.5 Full TD-error curves

We provide full training and validation TD-error curves in Figure 13, as a completion to Figure 1.
The summary statistics are marked with ‘X’ and correspond to the points used in Figure 2.

D.6 Passive Critic Learning Curves

We provide the full validation TD error curves over training in Figure 14. In these plots the summary
statistics are marked with ‘X, and we provide Figure 15 as a completion to Figure 4.

D.7 Data Efficiency Fits D; _ (o, N)

max (
For the following four tasks, we fit data efficiency using the empirically best data efficiency for
performance threshold Jy,.x across batch sizes for each (o, N) setting. In Figures 16 and 17, we
show the fits for multiple values of J.

hl-crawl 5.11e4 (1 (2.5965/0’)0'15+ (1-7067/N)0‘75)
hil-pole 9.43e3
(D.2)

hil-stand 2.14eb5

.

1+ (3.22e6/0)"%" + (2.50e12/N)O'30)

1+ (6.68¢-1/0)>% + (1.74e6/N)0'97>
+

MmN 7T N7 N N

humanoid-stand 1.49¢4 (14 (1.78¢6/0)"2® + (3.75e7/N)0'63)

For the remaining tasks, we use the available batch size.

25

hl-crawl-v0, B=256 hl-crawl-v0, B=512 hl-crawl-v0, B=1024 h1l-crawl-v0, B=2048
102

@ "
B E
10°

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

Loss

Steps le6 Steps le6 Steps le6 Steps le6
h1l-pole-v0, B=256 h1l-pole-v0, B=512 h1l-pole-v0, B=1024 hl-pole-v0, B=2048
10?
7
S
10t
10°
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Steps le6 Steps le6 Steps le6 Steps le6
hl-stand-v0, B=256 hl-stand-v0, B=512 hl-stand-v0, B=1024 hl-stand-v0, B=2048

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Steps le6 Steps le6 Steps le6 Steps le6

humanoid-stand, B=128 humanoid-stand, B=256 humanoid-stand, B=512 humanoid-stand, B=1024

102

::WWWW:W

107t

Loss

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

Steps le6 Steps le6 Steps le6 Steps le6
—— Training —— Width=128 — Width=512 —— Width=2048
~——— Validation =~ —— Width=256 —— Width=1024

Figure 13: Training and validation TD-error curves over training, grouped by critic width and passive
critic width, at UTD = 1. The summary statistics in Figure 2 are marked with ‘X’ and are averages
over the last 10% of training.

26

hl-crawl-v0, UTD=2
Critic Width: 1024

b\\ﬁ\\.

Critic Width: 512 Critic Width: 2048

10! Passive Width: 1024
—— Passive Width: 2048

f

Validation Loss

200k 400k 600k 800k 200k 400k 600k 800k 200k 400k 600k 800k
Steps Steps Steps
h1l-pole-v0, UTD=2
Critic Width: 512 Critic Width: 1024 Critic Width: 2048
Passive Width: 512
a2 Passive Width: 1024
S —— Passive Width: 2048
s
F=]
©
2 02
o1
s
200k 400k 600k 800k 200k 400k 600k 800k 200k 400k 600k 800k
Steps Steps Steps
hl-stand-v0, UTD=2
Critic Width: 512 Critic Width: 1024 Critic Width: 2048
Passive Width: 512
9 Passive Width: 1024
S —— Passive Width: 2048
c
2102
©
3z
s

200k 400k 600k 800k
Steps

200k 400k 600k 800k
Steps

200k 400k 600k 800k
Steps

Figure 14: Validation TD-error curves over training, grouped by critic width. The summary statistics
in Figure 4 are marked with ‘X’ and are averages over the last 10% of training.

DMC-medium, shared « ;, 5;:

acrobot-swingup 4.29e5 (1 + (6.46e-1/0)°%® 4 (8.42e5/N)"3?)
cheetah-run 4.81e5 (1 + (4.30e-1/0)%%® + (3.40e5/N)" %)
finger-turn 2.66€5 (1 + (1.08¢0/0)° %% + (4.67e5/N)"3?)
fish-swim 6.28e5 (1 + (1.36e-1/0)%%® + (2.70e5/N)"39) (D.3)
hopper-hop 3.52e5 (1 + (8.24e-1/0)"® + (3.12e5/N)"?)
quadruped-run 1.39€5 (1 + (3.54€0/0)%® + (1.64e6/N)"*)
walker-run 1.61e5 (1 + (2.85e0/0)%® + (6.07e5/N)'39)
DMC-medium, averaged environment:
DMC-medium averaged 3.72e5 (1 4 (1.26e0/0)" ! + (6.33e5/N)%%?) (D.4)
DMC-hard, shared o 5, 3.
dog-run 4.45e5 (1 + (1.23¢0/0)* ™ + (9.26e5/N)"*?)
dog-stand 4.40e5 (1 + (1.94e-1/0)*™ + (3.94e5/N)"*?)
dog-trot 5.38e5 (1 + (6.42e-1/0)™ + (7.53e5/N)" %)
dog-walk 6.03e5 (1+ (3.09e-1/0)%" + (3.78e5/N)" %) (0-)
humanoid-run 4.29e5 (1 + (2.04e0/0)%™ + (1.00e6/N)"*?)
humanoid-walk 3.30e5 (1 + (3.81e0/c)"™ + (1.13e6/N)"*?)

27

h1l-crawl-vO

iy 3X10 Average Slope: -0.55 3x10 Average Slope: -0.33
3
-
c 2x 10! 2x 10!
2
g Main: 512
‘_>° 10t i Main: 1024 [T =~_ _
= = Main: 2048 q
512 1024 2048 512 1024 2048
Main Critic Width Passive Critic Width
h1l-pole-vO
" 910t Average Slope: -0.27 92X Average Slope: -0.11
g ex10t 8x 10!
_C‘ \\\
o 7 x 10 So 7x 10!
- ~
g | Passive: 512
R Passive: 1024 [~ ~ _ 6x10!
= — — Passive: 2048 \\\
512 1024 2048 512 1024 2048
Main Critic Width Passive Critic Width
hl-stand-vO
1 4X10° Average Slope: -0.39 ax 10! Average Slope: -0.11
c Ss
0 3x10! 5 3x10!
- N
3 Passive: 512
© Passive: 1024 | ~
- — = Passive: 2048 \\\
2x 10" 1 2x10*
512 1024 2048 512 1024 2048
Main Critic Width Passive Critic Width

Figure 15: Summary statistics for passive critic experiments, as a completion of Figure 4, run at
UTD 2. Across multiple environments, increasing the main critic size is much more effective than
increasing the passive critic size.

DMC-hard, averaged environment:

DMC-hard averaged 5.39¢5 (1 + (8.92e-1/0)* 7" + (6.68e5/N)*27) (D.6)

D.8 Optimal Budget Partition

We provide plots analogous to Figures 7 and 8 in Figures 18 to 21 for DMC-medium and DMC-hard
tasks. These data efficiency fits use the shared exponents « 5, 37 method described in Section B.

As shown in Figures 8, 20 and 21, however, the optimal UTD and model size for a given budget
Fo are unpredictable. We verify that these hyperparameters are fundamentally unpredictable in this
setting, running at least 50 seeds per UTD and model size at the fitted batch size, for hl1-crawl, in
Figure 22. Despite this, the fit for Cr, achieves considerably lower uncertainty than in Figure 7,
indicating that there is a large range of “reasonable” hyperparameters corresponding to similar data
and compute values.

28

hl-crawl-v0, o=1 hl-crawl-v0, 0=2 hl-crawl-v0, o=4 hl-crawl-v0, =8
x1le5
8 700
g <
a 3
22 600
Q =

619K 2M M 34M 619K 2M 9M 34M 619K 2M oM 34M 619K 2M 9M 34M

hl-pole-v0, 0=2
x1le5

D: Data

619K 2M M 34M 619K 2M 9M 34M 619K 2M oM 34M 619K 2M oM 34M

619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34M 619K 2M 9M 34m 200
humanoid-stand, 0=2 humanoid-stand, 0=8 800
x1le5 x1le5 x1le5
8 8 8 700
£
600 2
4 4 4 9
500,
2 2 2 -400
-300

183K628K 2M 9M 34M 183K628K 2M 9M 34M 183K628K 2M 9M 34M 183K628K 2M 9M 34M
o0: UTD o: UTD o0: UTD o: UTD

Figure 16: Data efficiency fits D (o, N) for multiple performance thresholds .J, grouped by UTD
ratio 0. Each Dy is fit independently.

29

hl-crawl-v0, o=1 hl-crawl-v0, 0=2 hl-crawl-v0, =4 hl-crawl-v0, 0=8
x1le! x1e! xle5

NB

619K 2M IM 34M 619K 2M 9M 34M 619K 2M oM 34M 619K 2M oM 34M

619K 2M M 34M 619K 2M oM 34M 619K 2M IM 34M 619K 2M 9M 34M

619K 2M M 34M 619K 2M oM 34M 619K 2M IM 34M 619K 2M 9M 34M

humanoid-stand, o=4

xle5 x1e5
8 8
4 4
2 2

183K628K 2M 9M 34M 183K628K 2M 9M 34M 183K628K 2M 9M 34M 183K628K 2M 9M 34M
o0: UTD o: UTD o0: UTD o: UTD

Figure 17: Same as Figure 16, but instead grouped by model size V.

30

-600

-700

J: Return

-500

-800
-700

€
600 2

7}

o
-500 =,
-400
-300

Dy;: Optimal data

Dy;: Optimal data

Dy;: Optimal data

Dy;: Optimal data

acrobot-swingup

X g « -400
-350
32 -300
’..’ -250
— = R?=0.99
16 -200
32 48 64 xlels
hopper-hop
x 64
{)‘ -300
32 & 1250
’
16 -200
— = R2?=1.00
-150
16 32 48 xlels

F;': Optimal budget for J

dog-run
x1le5
-250
° 200
,0
4 / -150
—— R2=1.00
3 “100
4 6 8 xlelé
humanoid-run
xl%’i
o
6 / -150
(4
4
-100
#7 == R=1.00
4 6 8 x1lel6

F;': Optimal budget for J

DMC-medium

cheetah-run

67 *
#1700

32 /

/ -600
@

16 ‘p{- R2=1.00 500
16 32 64 x1el5
quadruped-run

xled

d
4
16 y -600
]
8 -400
— = R?=0.99

4 -200

8 16 32 xlel5

F/": Optimal budget for J

finger-turn
xled P
32 ’
‘,}'
16 o
8 —— R?=0.99
8 16 32
walker-run
xled
P
16 ‘o
~«
8
4 —— R?=0.98
8 16 32

F/": Optimal budget for J

DMC-hard
dog-stand dog-trot
x1e5 »® x1e5
4 -750 6
2 -500 4 ,
1 / i 250 3 LTl
&~ —— R?=1.00 o —= R’=1.00
1 2 4 x1lel6 4 6 8
humanoid-walk
x1le5
. f’ﬂ“ -600
4 -400
3 == R2=1.00
-200
4 6 8 xlel6

F/": Optimal budget for J

fish-swim
xled " E
800 64 7 Leoo2
32 [
-600 400
‘t
16 Pl R?=0.99 &
-400 -200
xlel5 16 32 64 xlels5
-700
-600
-500
-400
x1lel5
dog-walk
x1le5 Py o
X -800 E
6 9]
-400 600 &
©
4 £
4000
(200 3 /—- R2=1.00 E
-200 =«
x1lel6 4 6 8 xlelé

Figure 18: Optimal data D(Fy) for a given budget Fy, as a completion of Figure 7.

31

ute

xNone

=

o
=
)

Cr+: Optimal comp

J

ol
-

o
Ve x 101
©

€
Séx 10t

Q.
Osx101

o
)

ute
X
o)
[}
o
w

=
o

Cy;: Optimal comp!
o
© N

X
oy

Py
oU"

Cr+: Optimal compute
= [
o 1%

7

*,
Fpe

acrobot-swingup

-400
1350
"“’

,.‘y -300
oo 250
#_ re=0se

° -200
32 48 64 xlel5
hopper-hop
300
%
4
250
./%x
'
.:.". 2 200
== R%=0.72
s -150
16 32 48 xlels

": Optimal budget for J

dog-run
2¥ La2so
»
J‘ -200
’
-150
@ -~ R2=0.97
-100
4 6 8 xlel6
humanoid-run
.,“ -150
rd
A= grooes | 100
°
4 6 8 x1lel6

Optimal budget for/

DMC-medium

cheetah-run

xNone
2 1700
6x10%° ,
4x1015 f -600
3x10"% &
x10% q.q- R?2=0.98 500
16 32 64 x1lel5
quadruped-run
xNone
16 x/x
10
®,7 L
b 600
-400
%%~ R?=0.95
-200

8 16 32 xlel5
F;: Optimal budget for J

DMC-hard
dog-stand dog-trot
><1e185 x1el5
% 1 A
750 16
4 -400
-500 12
2 /Q. ."
7 —— R2=002 | 250 8 7 pemgo1 | 200
1 °
1 2 4 x1lel6 4 6 8 xlelé
humanoid-walk
x1lel5
j 600
16 }
12 f 400
®
8 == R2=1.00
-200
4 6 8 xlelé

F; : Optimal budget for J

finger-turn
xNone
101 L7 1800
In %
[2 A4
6x 1013 -~
}‘ 600
4x101
3x10% — R2=0.85
-400
8 16 32 xlels
walker-run
xNone
1016 -700
xS
37 Leoo
S
\t’ 500
- R2— |
1015 % R?=0.92 400

8 16 32xlel5
F/: Optimal budget for J

xNone

6x101°

4x10%

3x10%

x1lel5
12

8

6

fish-swim

% * %
-600 °
e 2
£
[] o 400 £
o o __ S
== 2%e=0.10 8
-200 =«

16 32 64 xlel5

dog-walk

o
» -800 E
Q
‘f * 1600 e
$ £
J" 4008
— = R?=0.90 9
¢ -200 =«

4 6 8 xlelé

Figure 19: Optimal compute C(Fy) for a given budget Fy, as a completion of Figure 7.

32

o5, Optimal UTD

05 Optimal UTD

oy;: Optimal UTD

oy;: Optimal UTD

acrobot-swingup

8 -400
—— R2=-0.61
L I _—- 350
o._.’—'—.—‘i
~e-3 °
4 ey, » -300
w** 1250
2 -200
32 48 64 xlels
hopper-hop
32
— = R2=0.46 -300
16 o8
o~ -250
s [oF o~
-200
* Lis0
16 32 48 xlels

7/ Optimal budget for /

dog-run
4
— = R?=-0.05 =250
ke d
o
3| ¢ Op __a-—- [200
° S Ve o
-150
2 -100
4 6 8 x1el6
humanoid-run
-175
4 150
-125
-100
3 -75
4 6 8 x1el6

F/": Optimal budget for J

12

8

DMC-medium

cheetah-run

-= R

16 32

2=0.66

®

*
»
.“\

g
E 3
64

quadruped-run

—-= R
%o
& °

2=0.16

s
el x x*
e ® %~
O S~o

8 16

®

32

-700 12

600 8

-500

xlel5

-600

-400 8

-200
x1lel5

7/ : Optimal budget for /

finger-turn
-900
N —— R2=0.47
..: o . -800
5 o-0°
-700
& ."t'fg
®~. [-600
-500
* Maoo
8 16 32 x1el5
walker-run
g — = R?=-0.14 -700
[
~
< * -600
\\\.Ox *u
~
» Sl -500
-400
8 16 32 x1lels

7/ Optimal budget for

DMC-hard
dog-stand dog-trot
°
0\‘ — = R?=0.97 800 == R?=0.50 500
]
b -600 4
“ﬁ 400
N
™, 200 3
1 2 4 x1el6
humanoid-walk
— = R?=-0.44 : -600
%
» |
.x 500
o® ° |
._._.:;___‘__ 400
() N |
%00 300
-200
4 6 8 xlel6

F/": Optimal budget for J

fish-swim
* —— R2=-0.32
PR
%
’\x““ ®
1 SN
\\

4 0

~

16 32 64

dog-walk

— = R?=0.18
oMy

IS o
o o
o o
J: Performance level

N
o
o

xlel5

r2 o o
o o o
o o o
J: Performance level

N
o
o

x1lel6

Figure 20: Optimal UTD ratio o (Fo) for a given budget Fo, as a completion of Figure 8.

33

X
ol
®
o

N
EN

16

Optimal model size

Ny
X I
o)
o ©

Optimal model size

Ny,

o
Nxle6
@

3 4
o

£

®

£

a2 3
o

©

=

9}

Nx

@

]

°

o

€

®

£

=

jo%

o

N,
N

acrobot-swingup

-400
—— R2z017 "%
. 350
»
oo § O _—- [300
o 'y
s -250
e ®
-200
32 48 64 xlels
hopper-hop
— = R2=-0.05 * -300
°
o0 * 250
c-oq!.c.__,,x__
® -200
°
© -150
16 32 48 xlels

F/": Optimal budget for J

dog-run
—— R2= |
ou o R2=0.79 250
DN
° 0% -200
'(\’
.\ 5
op’ 150
%
* %100
4 6 8 x1el6
humanoid-run
-175
-150
-125
-100
-75
4 6 8 x1el6

7/ Optimal budget for

DMC-medium

cheetah-run finger-turn
x1e5 ' x 2 -900
— = R?=0.39 700 — = R?=0.16
14 ° ® * -800
-7 20 © ~=7 700
12 »” 600 w 2°
% © {"“ * -600
65 o =% ‘r.
P
10 -“e % 500 16 ° o -500
had °
-400
16 32 64 xlels 8 16 32 x1lel5
quadruped-run walker-run
1e5 1e5)
53 = R2=06s * e — R?=0.59 700
an % 600 16 LI P
24 g 12
:‘/” [} §(. 500
» 400 8 N
- 86y .
16 “Ter -400
-200 ¢
8 16 32 xlel5 8 16 32 x1el5
F/*: Optimal budget for J Ff: Optimal budget for J
DMC-hard
dog-stand dog-trot
x1e6| R2—0.67 x1b JPYN
3~ R*=0 -800 |
,/x - 500
2 ! ————-o____ |
. v;“e"“ 600 3 Treso=fg 400
o’ 200 = [300
0 »
1~ - -200
-200 —— R2=-0.03
N 2 -100
1 2 4 x1el6 4 6 8 x1el6
humanoid-walk
x1e6
—=— R?=-1.01 600
3 -
L - |
. ..’/ 500
P
',/ .. -400
e, % L0
°
2 -200
4 6 8 xlel6

7/ Optimal budget for /

x1e5

24
20

16

fish-swim

— = R2=-0.92 §
. 16002
-~ g
.ﬁ‘x -
"d.’ o " laook
(Al 3 % §
200

16 32 64 xlels

dog-walk

®, --r=070 [-8002
Se . K%
L 9]
° | o
o %, 600 ¢
D g
'o‘\\ 400
* % &
200

4 6 8 xlel6

Figure 21: Optimal model size N} (Fy) for a given budget Fo, as a completion of Figure 8.

w =
®
Nb

N
H

Dy;: Optimal data,
=
o

7

lel5 ®
& & g > £
700 £ 64 o, |7002
o 7, g
] 7
600 E45 ppd 1600 £
= () o
§ - R=100 -500 0 @ —— r2=073 500 &
§32
320 480640 xlel5 320 480640 x1lel5
: Optimal budget for J T‘f: Optimal budget for J

ize

G54 °
2 o’ %* 700 B .
R g » 700
. 600 = Sy
© L 3 |
1 5 Es12 i 600
a
—— R2=-0.5P 500 6 —— R2-015 ¥, 500
0.5 £256
320 480 640 xlel5 320 480 640 xlels

F': Optimal budget for J

F/: Optimal budget for /

Figure 22: Optimal data, compute, UTD, and model size for a given budget F, run for 50+ seeds on
hil-crawl.

34

	Introduction
	Related Work
	RL Preliminaries and Notation
	A Formal Definition of Compute-Optimal Scaling
	Analyzing the Interplay Between Model Size and Batch Size
	Measuring Overfitting in TD-Learning
	A Mental Model for TD-Overfitting
	The Role of Dynamic Programming in TD-Overfitting

	Prescribing Batch Sizes Using Model Size and the UTD ratio
	Partitioning Compute Optimally Between Model Size and UTD
	Solving []Problem 4.1, Part 1: Maximal Data Efficiency under Compute C0
	Solving []Problem 4.1, Part 2: Resource Partitioning for Different Returns J

	Discussion
	Details on Deriving Scaling Fits
	Maximal compute efficiency for data D0
	Maximal data efficiency for compute C0
	Maximal performance for budget F0

	Experiment Details
	Hyperparameter Sweep Details
	Detailed Explanations for How to Obtain Main Paper Figures

	Additional Details on the Fitting Procedure
	Additional Experimental Results
	Batch Size Fits (, N)
	Batch Size Fit Analysis
	Learning Rate Sensitivity Analysis
	Target Network Update Rate Sensitivity Analysis
	Full TD-error curves
	Passive Critic Learning Curves
	Data Efficiency Fits DJ(, N)
	Optimal Budget Partition

