
Compute-Optimal Scaling for Value-Based Deep RL

Preston Fu1,* Oleh Rybkin1,* Zhiyuan Zhou1 Michal Nauman1,2

Pieter Abbeel1 Sergey Levine1 Aviral Kumar3

1UC Berkeley 2University of Warsaw 3Carnegie Mellon University

Abstract

As models grow larger and training them becomes expensive, it becomes increas-
ingly important to scale training recipes not just to larger models and more data,
but to do so in a compute-optimal manner that extracts maximal performance per
unit of compute. While such scaling has been well studied for language modeling,
reinforcement learning (RL) has received less attention in this regard. In this paper,
we investigate compute scaling for online, value-based deep RL. These methods
present two primary axes for compute allocation: model capacity and the update-
to-data (UTD) ratio. Given a fixed compute budget, we ask: how should resources
be partitioned across these axes to maximize data efficiency? Our analysis reveals
a nuanced interplay between model size, batch size, and UTD. In particular, we
identify a phenomenon we call TD-overfitting: increasing the batch quickly harms
Q-function accuracy for small models, but this effect is absent in large models,
enabling effective use of large batch size at scale. We provide a mental model for
understanding this phenomenon and build guidelines for choosing batch size and
UTD to optimize compute usage. Our findings provide a grounded starting point
for compute-optimal scaling in deep RL, mirroring studies in supervised learning
but adapted to TD learning. Project page: value-scaling.github.io.

1 Introduction
Scaling compute plays a crucial role in the success of modern machine learning (ML). In natural
language and computer vision, compute scaling takes a number of different forms: model size [19],
the number of experts in a mixture-of-experts model [20], or test-time compute [46]. Since these
approaches exhibit different opportunities and tradeoffs, a natural line of study has been to identify
strategies for “compute-optimal” scaling [19], that prescribe how to allocate a given fixed amount of
compute to attain the best downstream performance.

In this paper, we are interested in understanding tradeoffs between different ways to scale compute for
value-based deep reinforcement learning (RL) methods based on temporal-difference (TD) learning
to realize a similar promise of transforming more compute to better data efficiency. Value-based
TD-learning methods typically provide two mechanisms to scale compute: first, increasing the
capacity of the network representing the Q-function, and second, increasing the number of updates
made per data point (i.e., the updates-to-data, UTD ratio) collected by acting in the environment.
Scaling along these two sources present different benefits, challenges, and desiderata [34]. Therefore,
in this paper, we ask: What is the best strategy to scale model size and UTD to translate a given
fixed compute budget into maximal performance?

Analogous to prior scaling studies in language models [19] and deep RL [39], addressing this question
requires us to understand how scaling compute in different ways affects the behavior of the underlying
TD-learning algorithm. Concretely, we will need a mental model of how scaling model size interacts
with various other hyperparameters of the TD-learning algorithm, notably the UTD ratio. Most

*Equal contribution. Corresponding authors: prestonfu@berkeley.edu, oleh.rybkin@gmail.com,
aviralku@andrew.cmu.edu. Code: github.com/prestonfu/model_scaling.

2nd Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2025).

https://value-scaling.github.io/
https://github.com/prestonfu/model_scaling/

prior work focuses on presenting a single performant set of hyperparameters, instead of providing an
analysis to help obtain such a set [23, 34]; we start with a number of controlled analysis experiments.

Our analysis reveals several insights into the distinct, and perhaps even opposing, behavior of TD-
learning when using small versus large model sizes. In contrast to supervised learning, where the
largest useful batch size primarily depends on gradient noise and is otherwise independent of model
size [30], we find that in TD-learning, smaller models perform best with small batch sizes, while
larger models benefit from larger batch sizes. At the same time, corroborating prior work [39], we
find that for any fixed model size, increasing the UTD ratio σ reduces the maximally admissible batch
size. To convert these observations into actionable guidance, we develop a mechanistic understanding
of the interplay between batch size, model capacity, and UTD ratio, discussed in Section 5.

We observe that for any fixed UTD ratio, increasing batch size reduces training TD-error across all
model sizes. However, generalization, as measured by the validation TD-error on a held-out set
of transitions, is highly dependent on the model size. For small models, attempting to reduce the
training TD-error with larger batch sizes leads to worse validation TD-error – a phenomenon we
term TD-overfitting. In contrast, for large models, reducing training TD-error by increasing the batch
size up to a threshold enables a lower validation TD-error. We trace the source of TD-overfitting
to poor-quality TD-targets produced by smaller networks: updating to fit these targets can harm
generalization on unseen state-action pairs. Empirically, we find that for each model size, there exists
a maximal admissible batch size: further increasing the batch size to reduce the variance in the TD
gradient amplifies overfitting. Equipped with this finding and the observation that high UTDs reduce
the maximal admissible batch size, we prescribe a rule to identify optimal batch sizes for scaling up
RL training under large compute budgets.

We then identify the best way to allocate compute between model size and the UTD ratio, given an
upper bound on either compute or on a combination of compute and data budget. We obtain scaling
rules that extrapolate to new budgets/compute for practitioners. Our contributions are:

• We analyze the behavior of TD-learning with larger models and observe that larger models mitigate
a phenomenon we call TD-overfitting, where value generalization suffers due to poor TD-targets.

• Based on this analysis, we establish an empirical model of batch size given a UTD ratio and model
size, and observe that larger models admit larger batch sizes.

• We provide an empirical model of jointly scaling UTD ratio and model size, and the laws for the
optimal tradeoff between them.

2 Related Work
Model scaling in deep RL. While large models have been essential to many of the successes in
ML [6, 7, 48, 4, 53], typical models used for standard state-based deep RL tasks remain small, usually
limited to a few feedforward MLP layers [38, 17, 18]. This is partly because naïve model size scaling
often causes divergence [2, 41, 34]. Previous works have shown that RL can be scaled to bigger
models [52, 34, 25, 41, 24, 47] by using layer normalization [34], feature normalization [23, 26], or
using classification losses [24, 8]. While these works focus on techniques that stabilize RL training,
they do not investigate the relationship between model capacity and UTD. We leverage our proposed
understanding of this relationship to achieve compute-optimal RL training. Furthermore, prior work
considered the aspect of predictability in scaling model capacity in RL, but in the context of online
policy gradients [15] or for RLHF reward model overparameterization [12]. In contrast, we study
model scaling in value-based RL where gradients come from backpropagating the TD loss.

Data and compute scaling in deep RL. A considerable amount of research in RL focused on
improving data efficiency through scaling the UTD ratio [3, 5] and find that one key challenge is
overfitting [27, 3, 33]. Previous work reported mixed results with evaluating overfitting in online
RL [22, 9], but we find validation TD-error to be predictive of TD-overfitting in our experiments, akin
to Li et al. [27]. Our TD-overfitting analysis additionally contextualizes prior work showing that large
batch sizes can degrade performance with small models [36] Prior works also considered scaling
up data in parallelized simulations or world models for on-policy RL [31, 44, 40, 11, 45]. Instead,
we focus on data-efficient off-policy learning algorithms and study resource allocation problems
pertaining to compute allocations instead.

Scaling laws in value-based RL. Most extensions of scaling laws from supervised learning focus on
language models and cross-entropy loss [19, 30, 32, 28], with few exceptions targeting downstream

2

metrics [10]. In contrast, off-policy RL involves distinct dynamics due to bootstrapping [9, 23, 29, 15],
making direct transfer of supervised scaling laws unreliable. Prior work shows that scaling UTD in
off-policy RL yields a peculiar law [39], but leaves model capacity unexplored. We extend this line
of work by showing that off-policy RL scales predictably with both UTD and model size and in the
process, uncover interesting insights about the interplay between batch sizes, overfitting, and UTD.

3 RL Preliminaries and Notation
In this paper, we study off-policy online RL, where the goal is to maximize an agent’s return by
training on a replay buffer and periodically collecting new data [49]. Value-based deep RL methods
train a Q-network, Qθ by minimizing the temporal difference (TD) error:

L(θ) = E(s,a,s′)∼P,a′∼π(·|s′)

[(
r(s, a) + γQ̄(s′, a′)−Qθ(s, a)

)2]
, (3.1)

where P is the replay buffer, Q̄ is the target Q-network, s denotes a state, and a′ is an action drawn
from a policy π(·|s) that aims to maximize Qθ(s, a). The ratio of the number of gradient steps per
unit amount of data is called the UTD ratio (i.e., the updates-to-data ratio) and we will denote it as σ.

4 A Formal Definition of Compute-Optimal Scaling
Our goal in this paper is to develop a prescription for allocating a fixed compute budget or a fixed
compute and data budget, between scaling the model size and the update-to-data (UTD) ratio for a
value-based RL algorithm. As mentioned earlier, scaling model size and increasing the UTD ratio
involve different trade-offs in terms of computational cost and practical feasibility. For example,
scaling the UTD ratio results in more “sequential” computation for training the value function, which
in turn implies a higher wall-clock time but does not substantially increase GPU memory needed.
On the other hand, increasing model size largely results in more parallel computation (unless the
model architecture itself requires sequential computation, a case that we do not study in this work).
Answering how to best partition compute between the UTD ratio and model size enables us to also
build an understanding of sequential vs parallel compute for training value functions. In this section,
we formalize this resource allocation problem, building upon the framework of Rybkin et al. [39].

To introduce this resource allocation problem, we need a relationship between the compute CJ and
the total data DJ needed to attain a given target return value J , the model size N , and the UTD ratio
σ. Formally, we can represent the total compute in FLOPs as follows [39]:

CJ(σ,N) ∝ σ ·N · DJ(σ,N), (4.1)

where DJ(σ,N) denotes the total amount of samples needed to attain performance J , and CJ(σ,N)
denotes the corresponding compute. Since batch size is typically parallelizable, does not significantly
affect wall-clock time, and is typically much smaller than the replay buffer, we drop the dependency
of compute on the batch size and aim to optimize compute per unit datapoint. Finally, we denote the
performance of a value-based RL algorithm Alg as J(πAlg). With these definitions, we formalize:

Problem 4.1 (Compute allocation problem). Find the best configuration for the UTD ratio σ and
the model size N , such that algorithm Alg attains:

1. Maximal compute efficiency in attaining performance J0 given data budget D0:
(σ∗, N∗) := arg min

(σ,N)
C s.t. J (πAlg(σ,N)) ≥ J0, D ≤ D0

2. Maximal performance given budget F0 and coefficient δ for trading off compute/data:
(σ∗, N∗) := arg max

(σ,N)
J (πAlg(σ,N)) s.t. C + δD ≤ F0.

The first part of Problem 4.1 seeks to allocate a compute budget C0 between N and σ to minimize
compute required to reach return J0. From a practitioner’s perspective, the solution to this part should
prescribe how to attain a target level of performance as efficiently as possible given a certain amount
of GPU resources available for training. The second part aims to construct a law that extrapolates to
higher compute budgets and higher return. Instead of extrapolating as a function of return, which can
be arbitrary and not predictable, we follow Rybkin et al. [39] and extrapolate as a function of a budget
F = C + δ · D. This allows the practitioners to achieve optimal return given the budget of resources
available, where δ denotes the cost of data relative to compute, expressed e.g. in wall-clock time.

3

Experimental setup. We use BRO [34] and SimbaV2 [26], approaches based on SAC [13] that
use a regularized residual network to represent the Q-values and have been shown to scale well to
high capacities. These prior works showed that scaling width gives better performance that scaling
depth in TD-learning. Thus, to study the impact of model size, we vary only the network width in
{256, 512, 1024, 2048, 4096}. We consider batch sizes from 4 to 4096 (varied in powers of 2 and
UTD ratios of 1, 2, 4, 8. We keep other hyperparameters fixed across all tasks at values suggested
by Nauman et al. [34]. For our initial study, we leverage the results from [34] on Deepmind Control
suite [50]. Following prior work [14, 34], we separate these into 7 medium difficulty tasks (referred
to as DMC-medium) and 6 hard difficulty tasks (DMC-hard). For these tasks, we fit averages of the
tasks for the two suites respectively, building upon the protocol prescribed in Rybkin et al. [39], to
show generalization of our fits across tasks. We evaluate scaling on 4 more difficult tasks from DMC
and HumanoidBench [42], where we make fits for each task individually to show applicability to
single tasks. Further details are in Section B.

5 Analyzing the Interplay Between Model Size and Batch Size
Rybkin et al. [39] argues that the best batch size decreases as a power law with respect to the UTD
ratio σ. However, this prior analysis holds model size N constant and does not consider its influence
on batch size. We extend prior analysis [39] by considering how model size modulates the effective
batch size under fixed UTD ratio, revealing a distinct form of overfitting unique to TD-learning.

5.1 Measuring Overfitting in TD-Learning

0.0 0.5 1.0
Steps 1e6

100

101
Lo

ss

Train, Critic Width = 512

Batch 256
Batch 512
Batch 1024

0.0 0.5 1.0
Steps 1e6

Val, Critic Width = 512

0.0 0.5 1.0
Steps 1e6

100

101

Lo
ss

Train, Critic Width = 2048

0.0 0.5 1.0
Steps 1e6

Val, Critic Width = 2048

h1-crawl-v0, UTD=1

Figure 1: Measuring train and validation TD-errors
for different batch sizes on h1-crawl. While the train-
ing and validation TD-errors reduce as model size in-
creases, for smaller models a larger batch size results in
a higher final TD-error. This illustrates the role of batch
size in modulating overfitting with TD-learning.

Following Rybkin et al. [39], which identifies
overfitting as a key factor in selecting effective
batch sizes for a fixed model size, we begin
our analysis by understanding how overfitting
depends on model size. Unlike supervised learn-
ing, where the target is fixed, TD-learning in-
volves fitting to targets that evolve over time
and depend on the network being trained. This
makes overfitting in TD-learning fundamentally
different. As a measure of generalization, we
measure the TD-error on both the training data
(i.e., transitions sampled from the replay buffer)
and a held-out validation set of transitions drawn
i.i.d. from the same distribution. Further details
are provided in Section B.

Observations on model size. We report training
and validation TD-errors on h1-crawl at the
end of training in Figure 2(a) (see Section D.5
for complete loss curves). As model size in-
creases, the final training TD-error decreases,
consistent with increased model capacity. Inter-
estingly, we find that increasing model capacity
consistently leads to a lower validation TD-error.
Moreover, there is no clear sign of classical over-
fitting (i.e., low training error but high validation error), perhaps because TD-learning rarely “fully”
fits target values regardless of model size.

Observations on batch size. We next study the role of batch size in Figure 1 (when varying batch
sizes for a fixed model size) and Figure 2(b, c). Perhaps as expected, larger batch sizes generally
reduce training TD-error, likely because they provide a better low-variance estimate of the gradient.
However, their impact on validation TD-error is more nuanced and depends on the model size N .
For smaller networks (widths {256, 512}), increasing the batch size often plateaus or increases the
validation TD-error. This corroborates prior work [39], which identified larger batch sizes as a source
of overfitting when operating at networks with width 512. However, larger models allow us to use
larger batch sizes without overfitting (Figure 2(d)). Why does this occur?

5.2 A Mental Model for TD-Overfitting
In supervised learning, overfitting occurs when reducing training loss further would primarily fit
to noise or spurious correlations on the training dataset, in a way that results in a higher loss on a

4

600K 2M 9M 34M
Model Size

0

5

10

15

20

25

30

Lo
ss

Validation Loss
Training Loss

64 128 256 512 1024 2048
Batch Size

0

20

40

60

Tr
ai

ni
ng

 L
os

s

Model Width: 256
Model Width: 512
Model Width: 1024
Model Width: 2048

64 128 256 512 1024 2048
Batch Size

0

20

40

60

Va
lid

at
io

n
Lo

ss

Model Width: 256
Model Width: 512
Model Width: 1024
Model Width: 2048

180K 620K 2M 9M 34M
Model Size

28

29

210

211

M
ax

 A
dm

iss
ib

le
 B

at
ch

 S
ize h1-crawl-v0

h1-pole-v0
h1-stand-v0
humanoid-stand

Figure 2: Effect of batch size on TD-error for h1-crawl with σ = 1. Left to right: (a) increasing model
size consistently lowers the best achieved validation TD-error for a fixed batch size; (b) Larger batch sizes
reduce training TD-error. (c) However, beyond a certain threshold, larger batch sizes lead to increased validation
TD-error, particularly for smaller models, indicating TD-overfitting. (d) This overfitting threshold increases with
model size: larger models can enable higher batch sizes, suggesting increased robustness to overfitting.

validation dataset distributed identically as the training data. Even though smaller networks overfit
(Figure 2(c)), our experiments are not in this regime since larger networks are able to attain both
lower training TD-error and lower validation error (Figures 2(b, c)).

Small model, small batch Small model, large batch

Large model, large batchLarge model, small batch

Figure 3: A conceptual view of TD-overfitting. Small mod-
els cannot cope with large batch sizes due to more directed
gradient updates onto low-quality TD-targets, and might di-
verge from the target optimal value function V ∗. Instead, they
might perform better with smaller batch sizes, which result
in noisy updates. Large models produce TD targets that are
high-quality and benefit from regressing to these targets better
via larger batch sizes.

We argue that this apparent deviation from
classical overfitting is explained by the use
of target networks. Regardless of whether
a given network has sufficient capacity to
reduce TD error on the current batch, TD
methods would subsequently update the
target network. This can lead to an increase
in TD-error on validation data at the next
step. That is, TD-error may not reduce: (i)
on validation state-action pairs or (ii) with
respect to updated target values.

For conceptual understanding: low-
capacity Q-networks entangle features used
to predict Q-values across state-action
pairs [23, 21]. Target network updates in-
evitably change target values on unseen
transitions, potentially increasing the val-
idation TD-error, as we observe empiri-
cally in Figure 2(b, c) (full curves in Fig-
ure 13). Larger batch sizes produce lower-
variance gradients that exacerbate this prob-
lem, as fitting the targets on some transi-
tions comes at the expense of others with
limited representational capacity.

In contrast, larger-capacity models can more effectively decouple predictions across transitions,
mitigating this issue and leading to improved generalization even at high batch sizes. This suggests a
key observation: avoiding overfitting in TD-learning requires either smaller batch sizes or higher
model capacity. We present this insight as an illustration in Figure 3. We note that high capacity model
generally leads to lower training and validation TD-errors (Figure 2(b, c)). We term this phenomenon
TD-overfitting, to emphasize that it is driven not by memorization of values on the training set but by
the interplay between limited capacity and non-stationary targets, that exist uniquely in TD-learning.

Takeaway 1: Smaller models cannot utilize large batch sizes

The training TD-error decreases with higher batch size. With low model capacity, increasing
batch size results in a higher validation TD-error, i.e. the maximum admissible batch size is
small. Larger models enable the use of a larger admissible batch size. This can be attributed
to poor generalization of the TD-targets from smaller models.

5.3 The Role of Dynamic Programming in TD-Overfitting
We now conduct experiments to verify that indeed TD-targets are the root cause of the TD-
overfitting phenomenon discussed above. To this end, we conduct a diagnostic experiment inspired

5

512 1024 2048
Main Critic Width

101

2 × 101

3 × 101

Va
lid

at
io

n
Lo

ss

Average Slope: -0.55

Passive: 512
Passive: 1024
Passive: 2048

512 1024 2048
Passive Critic Width

101

2 × 101

3 × 101

Va
lid

at
io

n
Lo

ss

Average Slope: -0.33

Main: 512
Main: 1024
Main: 2048

Figure 4: Validation TD-error w/ the passive critic. Increasing the
model size for both the main and passive critic can reduce the validation
TD-error, increasing the main critic size is much more effective, showing
that target quality is crucial for effective learning.

by the setup in Ostrovski et al.
[37]. We train a passive critic
alongside the main Q-network.
This passive critic is not in-
volved in TD updates but is
trained solely to fit the TD-
targets generated by the main
Q-network (experimental de-
tails in Section B). By ablat-
ing the network width used
to parameterize the passive
critic, we can decouple the con-
tributions of (i) the main Q-
network’s capacity and (ii) the
quality of TD-targets, which we hypothesize drives TD-overfitting.

In Figure 4, we observe that when the TD-targets are generated by a low-capacity Q-network, the
passive critic — regardless of its own capacity — exhibits higher validation TD-error. This supports
the main insight from our mental model: the TD overfitting phenomenon is driven primarily by the
poor generalization of TD-targets produced by low-capacity networks. While increasing the passive
critic’s width improves its ability to fit lower quality targets (e.g., a width = 2048 passive critic fits
width = 512 targets slightly better than a smaller passive critic), the validation TD-error can increase
or slowly decrease over the course of training (see h1-crawl in Figure 14). Conversely, when the
main Q-network generating the targets is larger (e.g., width = 2048), even smaller passive critics
(e.g., width = 512 or 1024) can match resulting TD-targets quite well, and validation error decreases
over the course of training (see h1-crawl in Figure 14). This indicates that a large portion of the
overfitting dynamics of TD-learning is governed by the target values, and how they evolve during
training, irrespective of the main critic (though the targets themselves depend on the main critic).

We also observe that if the passive critic is smaller than the target-network, it may underfit in its
ability to fit the TD-targets on the training data, leading to elevated training and validation TD-errors.
However, this underfitting effect is much less severe than the overfitting observed when the TD-targets
themselves are poor due to the limited capacity of the Q-network, as seen from the slope in Figure 4.

Takeaway 2: Overfitting in TD-learning is governed by TD-targets

Overfitting in TD-learning is less about fitting the TD-targets on limited data, but more about
the quality of the TD-targets themselves — a direct consequence of model capacity and the
fundamental nature of dynamic programming with deep neural networks.

6 Prescribing Batch Sizes Using Model Size and the UTD ratio
Using the insights developed above, we now construct a prescriptive rule to select effective batch
sizes, which in turn allows us to estimate the tradeoffs between UTD ratio and compute in the next
section for addressing Problem 4.1. Specifically, we aim to identify the largest batch size, denoted B̃,
that can be used before the onset of TD overfitting, i.e., before validation TD-error begins to increase
for a given model size. From our insights in the previous section, we see that the largest such value of
B̃ increases as model size N increases. We also note in Figure 5, that B̃ decreases with increasing
UTD ratio σ, aligned with the findings of Rybkin et al. [39]: for a fixed model size, larger σ values
lead to TD-overfitting when batch size increases. Motivated by these empirical findings, we propose
a rule that models B̃ asymmetrically between model size N , and UTD ratio σ as follows:

B̃(σ,N) ≈ aB
σαB + bB · σαB ·N−βB

(6.1)

where aB , bB , αB , βB > 0 take on values listed in Section D.1.

Scaling Observation 1: Batch size selection

For best performance, batch size should increase with model size and decrease with the UTD
ratio. This dependency can be modeled by a predictable function in Eq. (6.1).

6

619K 2M 9M 34M
N: model size

32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze

h1-crawl-v0, =1

619K 2M 9M 34M
N: model size

32

128

512

2048 h1-crawl-v0, =2

619K 2M 9M 34M
N: model size

32

128

512

2048 h1-crawl-v0, =4

619K 2M 9M 34M
N: model size

32

128

512

2048 h1-crawl-v0, =8

1 2 4 8
: UTD

32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze

h1-crawl-v0, N=619K

1 2 4 8
: UTD

32

128

512

2048 h1-crawl-v0, N=2M

1 2 4 8
: UTD

32

128

512

2048 h1-crawl-v0, N=9M

1 2 4 8
: UTD

32

128

512

2048 h1-crawl-v0, N=34M

Empirical value
B * ()

Figure 5: A two-dimensional batch size fit B̃(σ,N). Slices of the fit are shown at particular values of σ and
N . In line with our analysis of TD-overfitting, we observe that larger models allow larger batch sizes. We build
a fit that captures the intuition, but this effect does not continue indefinitely but instead asymptotes. We further
extend prior work that observed that batch size needs to be decreased with UTD [39] and incorporate that in our
2-dimensional fit. Leveraging batch sizes from this fit allows us to better answer compute allocation questions.

Implications. As σ increases, the σαB term in the denominator dominates, yielding the approxima-
tion B̃(σ,N) ≈ aB/σ

αB , consistent with a power law relation from prior work [39]. Conversely,
as σ → 0+, i.e., when targets are nearly static, B̃ → ∞ since updates are infrequent and TD-
overfitting does not occur. Finally, our functional form increases with N , with an upward asymptote
at B∗ → aB/σ

αB when N → ∞. This reflects the intuition that low-capacity networks require
smaller batch sizes to avoid TD-overfitting, whereas for sufficiently large models, the maximum
admissable batch size is primarily constrained by the UTD ratio σ.

Crucially note that our proposed functional form factorizes into a function of σ and a function of N ,

aB
σαB

· 1

1 + bB ·N−βB
. (6.2)

To evaluate the feasibility of such a relationship in our analysis, we had to run a 3-dimensional grid
search B ×N × σ. However, the fact that this fit is effective subsequently allows practitioners to
instead run two 2-dimensional grid searches on B × σ and B ×N , significantly reducing the amount
of compute needed to estimate this fit.

Evaluation. In order to evaluate this fit, we compare to a simple log-linear fit log B̃ ∼
(1, log σ, logN), which would increase indefinitely in σ and N . Averaged over 4 tasks, our rule
achieves a relative error of 48.9% compared to the log-linear fit’s 55.1% (see also Section D). One
might wonder if a relative error of 48.9% is actually large for a batch size fit. We empirically observe
that the error is large because, in many cases, there is a wide range of batch sizes that all attain good
performance (see Section D.2).

7 Partitioning Compute Optimally Between Model Size and UTD
Equipped with the relationship between batch size, model size, the UTD ratio from Eq. (6.1), and the
definition of compute in Eq. (4.1), we now answer the questions from Problem 4.1.1

7.1 Solving Problem 4.1, Part 1: Maximal Data Efficiency under Compute C0
To solve this problem, we note that to maximize the data-efficiency we should operate in a regime
where the total compute, C := k ·σ ·N ·DJ(σ,N) ≤ C0, where C0 and k are constants not dependent
on σ and N . We then require a functional form for DJ . We observe that extending the relationship
from Rybkin et al. [39], which modeled data efficiency as an inverse power law of the UTD ratio
for a fixed, given model size, can also work well in our scenario when the model size is variable.
Inspired by prior work on language models [19, 43], we augment the fit from Rybkin et al. [39]
with an additive power law term dependent on model size. Intuitively, this is sensible since the total
amount of data needed to attain a given performance should depend inversely on the model size since

1We also attempted to build a fit for learning rate in our experiments, but found learning rate to generally not
be as critical as the batch size for compute-optimal scaling. Please see Section D.3 for more details.

7

1M 3M5M 26M

1
2

5
10
15

: U
TD

DMC-medium, BRO

1M 3M5M 26M

2

5

10
15

DMC-hard, BRO

.6M 2M 9M 34M

1

2

4

8

h1-crawl-v0, BRO

.6M 2M 9M 36M

1

2

4

8

h1-crawl-v0, SimbaV2

.2M.6M 2M 9M 34M
N: model size

1

2

4

8

: U
TD

humanoid-stand, BRO

.6M 2M 9M 34M
N: model size

1

2

4

8

h1-pole-v0, BRO

.6M 2M 9M 34M
N: model size

1

2

4

8

h1-stand-v0, BRO

.6M 2M 9M 36M
N: model size

1

2

4

8

h1-stand-v0, SimbaV2

3

6

12

J:
Da

ta
 u

nt
il

J e
nv

×1e5

Figure 6: Data efficiency fit DJ(σ,N) on all domains, shown as iso-data contours. Each contour denotes
the curve which attains the same data efficiency to attain a given target performance J , with data efficiency
denoted by color. The form of the fit allows a closed-form solution for optimal configurations, and we show
these as stars. These points lie on a power law. This law enables us to scale compute while allocating it to UTD
or model size as we will discuss in subsequent results in this paper.

bigger models attain better sample-efficiency in TD-learning [34, 25]. Moreover, model size and
the UTD ratio present two avenues for improving data efficiency, hence the additive nature of the
proposed relationship. We find that the relationship can be captured as:

DJ(σ,N) ≈ Dmin
J +

(aJ
σ

)αJ

+

(
bJ
N

)βJ

, (7.1)

where Dmin
J is a constant not dependent on σ and N , and aJ , αJ , bJ , βJ are constants that depend

on the return target J . With this relationship in place, we are now able to answer Part 1:

σ∗(D0) =

(
aσ

D0 −Dmin

)ασ

, N∗(D0) =

(
bN

D0 −Dmin

)βN

, (7.2)

where the coefficients can be computed from aJ , αJ , bJ , βJ (see details in Section A).

Scaling Observation 2: Partitioning compute optimally between model size and UTD

Optimal UTD and model size is a predictable function of data budget D (alternatively,
compute budget C), as a power law in Eq. (7.2).

We visualize this solution in Figure 6. We plot iso-D contours, i.e. curves in (σ,N) space that attain
identical data efficiency, and find that these curves move diagonally to the top-right for smaller D
values, in a way where both increasing the model size and the UTD ratio improves data efficiency.
These contours are curved such that there is a single point on each frontier that attains optimal
compute efficiency C. We plot these points, which follow the solution in Eq. (7.2). This allows us to
predict data efficiency for novel combinations of UTD and model size, which is crucial.

Evaluation. Our data efficiency coefficients are fitted against a grid of UTD ratios and model sizes.
We evaluate our proposed data efficiency fits on a grid of interpolated and extrapolated UTD ratios
and model sizes using the fitted batch size. Averaged over 4 tasks, our fit achieves a relative error
of 10.0% against the ground truth data efficiency on fitted UTD ratios and model sizes, 14.9% on
interpolation, and 18.0% on extrapolation. Experimental details are described in Section B.1.

We also compare our estimated UTD ratios and model size with other approaches for allocating unseen
compute budgets in Table 1. We compare to the following alternate approaches: (i) UTD-only scaling
at compute budget C for a given model size, (ii) model-only scaling at compute budget C for a given
UTD, and (iii) our proposed compute-optimal UTD and model size, run with a constant, fixed batch
size not specifically designed for our compute budget C. This constant fixed batch size corresponds to

8

the batch size prescribed by our fit for the first compute budget B̃(σ∗(Cmin), N
∗(Cmin))). In Table 1,

we observe that our compute-optimal scaling achieves the target performance using the least amount
of data, whereas both σ-only scaling and N -only scaling require substantially more data, as evaluated
using the ratio of the total amount of data needed for the approaches and the total amount of data
needed for our compute-optimal approach. The strategy of using a constant batch size performs only
marginally worse than our approach. However, as this comparison still relies on our proposed UTD
ratio and model-size prescriptions, it primarily shows that these prescriptions are relatively robust to
variations in batch size.

Table 1: Data efficiency ratios of various ap-
proaches to allocate compute to our approach of
compute-optimal (σ,N) scaling. All perform subpar
to our compute-optimal UTD, model size prescrip-
tions in terms of data efficiency.

Approach Mean Median

Compute-optimal (ours) 1.00 1.00
Compute-optimal (ours)

+ fixed batch size 1.03 1.05

σ-only scaling 1.26 1.18
N -only scaling 1.11 1.11

Implications. Our results show that appropriate
choices of UTD and model size improve both data
efficiency and compute utilization. At the same
time, we find broad regions of near-equivalent per-
formance: multiple (UTD, model-size) settings
perform similarly well, so fully optimizing these
hyperparameters is often unnecessary to capture
most of the gains (Figure 20 and Figure 21). Sim-
ilarly, while the best configuration is environment-
dependent, with some tasks benefiting from larger
models to begin learning and others from a higher
UTD, scaling the model size paired with a mild
increase in UTD is often a good starting point.
Our framework makes these trade-offs explicit and
provides a principled approach to selecting good values for these hyperparameters.

7.2 Solving Problem 4.1, Part 2: Resource Partitioning for Different Returns J
For the solution to the problem to be practical, we need to prescribe a solution that works for all
values of J . However, J can be arbitrary and not smooth, which makes designing a general law
impossible. Instead, we follow Rybkin et al. [39] and use the notion of a total budget F = C + δ · D
as a substitute for J . Similarly to J , the budget F increases as the complexity of policy learning
increases.

That is, for a well-behaved TD-learning algorithm with the “optimal” hyperparameters, J will be
some unknown monotonic function of F . Using this intuition, we will now demonstrate a solution
to compute allocation that optimizes F , therefore also optimizing J . Similarly, we will be able to
extrapolate our solution to higher F , and thus higher J .

We produce a solution to Problem 4.1, part 2, by observing that C and D evolve predictably as a
function of F , in line with previous work [39]:

C∗(F0) =

(
aC
F0

)αC

, D∗(F0) =

(
bC
F0

)βC

. (7.3)

320 480640

16

24
32

* J
: O

pt
im

al
 d

at
a

h1-crawl-v0

R2=0.99

240 320 400

48

64

80

h1-pole-v0

R2=0.99

90 120 160
14

20

28

h1-stand-v0

R2=0.99

16 24 32
24

32

48

humanoid-stand

R2=1.00

320 480640
*
J : Optimal budget for J

16

32

48

* J
: O

pt
im

al
 c

om
pu

te

R2=0.34

240 320 400
*
J : Optimal budget for J

24
32

48

R2=0.87

90 120 160
*
J : Optimal budget for J

8

12

16

R2=0.68

16 24 32
*
J : Optimal budget for J

2

3

4

R2=0.99

500

600

700

×1e15

×1e4

300

400

500

600

×1e15

×1e4

200

400

600

×1e15

×1e4

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e15

×1e4

500

600

700

×1e15

×1e15

300

400

500

600

×1e15

×1e15

200

400

600

×1e15

×1e15

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e15

×1e15

Figure 7: Optimal data D(F0) and compute C(F0) fits for a given budget F0. Return J is denoted in color,
showing how increased budgets correspond to higher returns. Similar to [39], we are able to allocate resources
across data and compute in a predictable way, while accounting for the effect of both model size and UTD.

9

Evaluation. We show that this dependency is predictable in Figure 7, including evaluating confidence
interval and extrapolation to higher budgets for this fit. This allows us to optimally allocate resources
for higher values of budget or return across data and compute.

Scaling Observation 3: Optimal partitioning between data and compute

Optimal scaling for data C and compute D are predictable functions of the total budget F0, as
a power law in Eq. (7.3).

Now, we extend this analysis to allocating compute across UTD and model size as a function of the
budget. We use the same power law form:

σ∗
F (F0) =

(
aF
F0

)αF

, N∗
F (F0) =

(
bF
F0

)βF

. (7.4)

Scaling Observation 4: Optimal partitioning of budget between UTD and model size

Optimal scaling for UTD σ and model size N depends as a power law on the budget F , as in
Eq. (7.3). We can estimate the optimal allocation trend using this power law, and estimate
robustness of perfomance to allocation as the variance of this trend.

240 320 400

1

2

4

J: O
pt

im
al

 U
TD

h1-pole-v0

R2=-0.06

16 24 32
2

4

8
humanoid-stand

R2=0.94

240 320 400
*
J : Optimal budget for J

128

192

256

N
J: O

pt
im

al
 m

od
el

 si
ze

R2=0.32

16 24 32
*
J : Optimal budget for J

6

9

12
R2=0.94

300

400

500

600

×1e15

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e15

300

400

500

600

×1e15

×1e5

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l
×1e15

×1e5

Figure 8: Optimal UTD σ(F0) and model size N(F0), with
extrapolation to higher budgets or returns. While for some tasks it
is necessary to set values precisely, other tasks allow some variation
in model size and UTD as indicated by variance.

Implications. We show results for
two challenging tasks in Figure 8 and
further results in Section D. We ob-
serve the coefficients αF , βF for re-
source allocation vary between tasks,
showing that for some tasks scaling
model size or UTD is more or less
important. Further, we observe that
different tasks vary in the amount of
variance, seen as the size of the con-
fidence interval in Figure 8. This
shows that for some tasks, precisely
setting model size and UTD is impor-
tant; while other tasks allow to trade
off model size and UTD without a big
decrease in performance. Our exper-
imental procedure enables practition-
ers to make these workflow decisions
based on the relationships that we fit
in this paper.

8 Discussion
We have established scaling laws for value-based RL allowing compute scaling in an optimal manner.
Specifically, we provide a way to scale batch size, UTD, model size, as well as data budget, and
provide scaling laws that estimate tradeoffs between these quantities. These laws are informed by
our novel analysis of the impact of scaling on overfitting in TD-learning. We also saw that in some
environments several configurations of the hyperparameters we studied could broadly be considered
compute-optimal, which reflected as a benign relative error in our fits. We were limited in how many
variables we can study due to the necessity of running higher-dimensional grid searches for every
new variable. Building on our results, future work will study other important hyperparameters, such
as learning rate and the critic update ratio. Further, while our work is limited to challenging simulated
robotic tasks, future work will study large scale domains such as visual and language domains using
larger scale models. The analysis and the laws presented in this work are a step towards training
TD-learning methods at a scale similar to other modern machine learning approaches.

10

Acknowledgments and Disclosure of Funding

We would like to thank Amrith Setlur, Seohong Park, Colin Li, and Mitsuhiko Nakamoto for feedback
on an earlier version of this paper. We thank the TRC program at Google Cloud for providing TPU
sources that supported this work. We thank NCSA Delta cluster for providing GPU resources that
supported the experiments in this work. This research was supported by ONR under N00014-24-
12206, N00014-22-1-2773, and ONR DURIP grant, with compute support from the Berkeley Research
Compute, Polish high-performance computing infrastructure, PLGrid (HPC Center: ACK Cyfronet
AGH), that provided computational resources and support under grant no. PLG/2024/017817. Pieter
Abbeel holds concurrent appointments as a Professor at UC Berkeley and as an Amazon Scholar.
This work was done at UC Berkeley and CMU, and is not associated with Amazon.

References
[1] Richard E Barlow and Hugh D Brunk. The isotonic regression problem and its dual. Journal of the

American Statistical Association, 1972.

[2] Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning.
arXiv preprint arXiv:2106.01151, 2021.

[3] Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized ensembled double Q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2020.

[4] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, pages 7480–7512.
PMLR, 2023.

[5] Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron
Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In International
Conference on Learning Representations, 2023.

[6] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models. arXiv preprint,
2024.

[7] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first international conference on machine learning, 2024.

[8] Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex Irpan,
Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training value functions
via classification for scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

[9] Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why should i trust
you, bellman? the bellman error is a poor replacement for value error. arXiv preprint arXiv:2201.12417,
2022.

[10] Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale reliably with
over-training and on downstream tasks. arXiv preprint, 2024.

[11] Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus Foerster,
and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint, 2024.

[12] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, 2023.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, 2018.

[14] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv: 2310.16828, 2023.

[15] Jacob Hilton, Jie Tang, and John Schulman. Scaling laws for single-agent reinforcement learning. arXiv
preprint, 2023.

11

[16] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. Advances in Neural Information Processing Systems, 2023.

[17] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and JoÃG, o GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

[18] Matthew Thomas Jackson, Uljad Berdica, Jarek Liesen, Shimon Whiteson, and Jakob Nicolaus Foerster. A
clean slate for offline reinforcement learning. arXiv preprint arXiv:2504.11453, 2025.

[19] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint,
2020.

[20] Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon Antoniak,
Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling laws for fine-grained
mixture of experts. arXiv preprint arXiv:2402.07871, 2024.

[21] Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. In International Conference on Learning Representations,
2021.

[22] Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline
model-free robotic reinforcement learning. arXiv preprint arXiv:2109.10813, 2021.

[23] Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine. DR3:
Value-based deep reinforcement learning requires explicit regularization. International Conference on
Learning Representations, 2022.

[24] Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline Q-learning on
diverse multi-task data both scales and generalizes. In International Conference on Learning Representa-
tions, 2023.

[25] Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R
Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. SimBa: Simplicity bias for scaling up parameters
in deep reinforcement learning. arXiv preprint, 2024.

[26] Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
normalization for scalable deep reinforcement learning. arXiv preprint arXiv:2502.15280, 2025.

[27] Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient deep reinforcement learning requires
regulating overfitting. In International Conference on Learning Representations, 2023.

[28] Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon Antoniak,
Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling laws for fine-grained
mixture of experts. In International Conference on Machine Learning, 2024.

[29] Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning, 2023.

[30] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of large-batch
training. arXiv preprint, 2018.

[31] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, 2016.

[32] Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus,
Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language models. Advances
in Neural Information Processing Systems, 2023.

[33] Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzcinski, Mateusz Ostaszewski, and Marek
Cygan. Overestimation, overfitting, and plasticity in actor-critic: The bitter lesson of reinforcement
learning. In International Conference on Machine Learning, 2024.

[34] Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Bigger,
regularized, optimistic: Scaling for compute and sample-efficient continuous control. Advances in Neural
Information Processing Systems, 2024.

12

[35] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In International Conference on Machine Learning, 2022.

[36] Johan Obando Ceron, Marc Bellemare, and Pablo Samuel Castro. Small batch deep reinforcement learning.
Advances in Neural Information Processing Systems, 36:26003–26024, 2023.

[37] Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295, 2021.

[38] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of machine learning research,
22(268):1–8, 2021.

[39] Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Snell, Pieter Abbeel, Sergey Levine, and Aviral Kumar.
Value-based deep rl scales predictably, 2025. URL https://arxiv.org/abs/2502.04327.

[40] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari, Go, chess and
Shogi by planning with a learned model. Nature, 2020.

[41] Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level Atari with human-level efficiency. In
International Conference on Machine Learning, 2023.

[42] Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv preprint
arXiv:2403.10506, 2024.

[43] Mustafa Shukor, Enrico Fini, Victor Guilherme Turrisi da Costa, Matthieu Cord, Joshua Susskind, and
Alaaeldin El-Nouby. Scaling laws for native multimodal models scaling laws for native multimodal models.
arXiv preprint arXiv:2504.07951, 2025.

[44] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 2016.

[45] Jayesh Singla, Ananye Agarwal, and Deepak Pathak. SAPG: Split and aggregate policy gradients.
International Conference on Machine Learning, 2024.

[46] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

[47] Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch, Thomas
Lampe, Philemon Brakel, Sarah Bechtle, Steven Kapturowski, Roland Hafner, et al. Offline actor-critic
reinforcement learning scales to large models. International Conference on Machine Learning, 2024.

[48] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615, 2022.

[49] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

[50] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. DeepMind control suite. arXiv preprint, 2018.

[51] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez,
Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for continuous control.
Software Impacts, 2020.

[52] Kevin Wang, Ishaan Javali, MichaĹ Bortkiewicz, Benjamin Eysenbach, et al. 1000 layer networks for self-
supervised rl: Scaling depth can enable new goal-reaching capabilities. arXiv preprint arXiv:2503.14858,
2025.

[53] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12104–12113,
2022.

13

https://arxiv.org/abs/2502.04327

A Details on Deriving Scaling Fits

FLOPs calculation. We inherit the definition from Rybkin et al. [39], so that

C(σ,N) = k σ N D(σ,N) (A.1)

for a constant k not dependent on σ and N . We follow the standard practice of updating the critic,
target, and actor all σ times for each new data point collected (Algorithm 1).

A.1 Maximal compute efficiency for data ≤ D0

As described in Section 7, the number of data points needed to achieve performance J is equal to

DJ(σ,N) ≈ Dmin
J +

(aJ
σ

)αJ

+

(
bJ
N

)βJ

, (A.2)

where Dmin
J , aJ , αJ , bJ , βJ > 0 are constants not dependent on σ and N . We first present a closed-

form solution to the simpler optimization problem in Eq. (A.3). This will enable us to characterize
the solution to Problem 4.1, part 1, which does not have a closed-form solution in terms of C0 but can
be easily estimated.

Proposition A.1. If αJ < 1 or βJ < 1, there exists a unique optimum

(σ∗, N∗) := arg min
(σ,N)

CJ(σ,N) s.t. DJ(σ,N) ≤ D0. (A.3)

Moreover,

σ∗ = aJ

(
1 + αJ

βJ

D0 −Dmin

)1/αJ

N∗ = bJ

(
1 + βJ

αJ

D0 −Dmin

)1/βJ

(A.4)

satisfy the following relation:

N∗ =

(
βJb

βJ

αJaαJ

)1/βJ

(σ∗)αJ/βJ . (A.5)

Proof. For ease of notation, we drop the subscript J throughout this derivation. Since there exist
sufficiently large (σ,N) for which D(σ,N) < D0, Slater’s conditions are satisfied, and the KKT
conditions are necessary and sufficient for optimality. Let

L(σ,N) = k σ N D(σ,N) + λ(D(σ,N)−D0) (A.6)

denote the Lagrangian. Now, we will solve for (σ̃, Ñ , λ̃) satisfying the KKT conditions. The
stationarity conditions are

∂L
∂σ

= 0 =⇒ (k σ̃ Ñ + λ̃)αaα σ̃−α−1 = kÑD(σ̃, Ñ) (A.7)

∂L
∂N

= 0 =⇒ (k σ̃ Ñ + λ̃)β bβ Ñ−β−1 = kσ̃D(σ̃, Ñ). (A.8)

Complementary slackness implies that

λ̃(D(σ̃, Ñ)−D0) = 0. (A.9)

We claim that λ̃ > 0. Assume for the sake of contradiction that λ̃ = 0. Substituting into Equa-
tions (A.7) and (A.8), we obtain

αaα σ̃−α = β bβ Ñ−β = D(σ̃, Ñ) > max
{
aασ̃−α, bβÑ−β

}
. (A.10)

But the last inequality contradicts α < 1 or β < 1, concluding the claim.

14

It follows that D(σ̃, Ñ) = D0. Dividing Eq. (A.7) by Eq. (A.8), we obtain

αaα σ̃−α−1

β bβ Ñ−β−1
=

Ñ

σ̃
, (A.11)

or equivalently

Ñ =

(
βbβ

αaα

)1/β

σα/β . (A.12)

Substituting into the active constraint D(σ̃, Ñ) = D0, we obtain

σ̃ = a

(
1 + α

β

D0 −Dmin

)1/α

, Ñ = b

(
1 + β

α

D0 −Dmin

)1/β

. (A.13)

Thus, (σ̃, Ñ) is the unique KKT solution, and thus the unique optima.

A.2 Maximal data efficiency for compute ≤ C0

We are now equipped to solve the optimization problem presented in Problem 4.1, part 1. Although
we cannot solve for the optimal (σ∗, N∗) directly, the following proposition shows that the set of
optimal solutions obtained by varying the compute budget C0 matches exactly the set of solutions
obtained by varying the data budget D0 in Proposition A.1. This equivalence reduces the original
problem to a simpler surrogate. Using Eq. (A.5), it is straightforward to compute the optimum
numerically.

Proposition A.2. Suppose αJ < 1 or βJ < 1, and assume the data and compute formulations
established in Equations (A.1) and (A.2). Let

Cmin
J := min

σ>0,N>0
CJ(σ,N). (A.14)

For a fixed budget C0 ≥ Cmin
J , write

(P1) D∗ = min
(σ,N)

DJ(σ,N) s.t. CJ(σ,N) ≤ C0 (A.15)

and

(P2) min
(σ,N)

CJ(σ,N) s.t. DJ(σ,N) ≤ D∗. (A.16)

Each problem admits a unique solution (σ∗, N∗), and these solutions coincide.

Proof. As before, we drop the subscript J .

We first justify the existence of a global minimizer to (P1) over (0,∞)2. As σ → 0+ or N → 0+,
then (a/σ)α → ∞ or (b/N)β → ∞, hence D(σ,N) → ∞. If σ,N → ∞, then C(σ,N) ≥
kσNDmin → ∞, contradicting C ≤ C0. Thus, the feasible set {C ≤ C0} is coercive, and by
continuity of C and D, (P1) attains a global minimizer.

Proposition A.1 shows that there exists λ > 0 such that the KKT conditions for (P1) hold,
∂D
∂σ

(σ∗, N∗) + λ
∂C
∂σ

(σ∗, N∗) = 0 (A.17)

∂D
∂N

(σ∗, N∗) + λ
∂C
∂N

(σ∗, N∗) = 0 (A.18)

C(σ∗, N∗) = C0. (A.19)

For (P2), the KKT conditions imply that there exists µ ≥ 0 such that
∂C
∂σ

(σ†, N†) + µ
∂D
∂σ

(σ†, N†) = 0 (A.20)

∂C
∂N

(σ†, N†) + µ
∂D
∂N

(σ†, N†) = 0 (A.21)

D(σ†, N†) = D∗. (A.22)

15

If α < 1, then
∂D
∂σ

= −αaασ−α−1 < 0 (A.23)

∂C
∂σ

= −kσNαaασ−α−1 + kN(Dmin + aασ−α + bβN−β) > 0, (A.24)

so µ > 0. In the other case, if β < 1, then ∂D
∂N < 0 and ∂C

∂N > 0, so µ > 0.

Since the first solution is additionally given to satisfy D(σ∗, N∗) = D∗, these systems are identical,
and so must be their solutions, (σ∗, N∗, λ) = (σ†, N†, 1/µ). Uniqueness in Proposition A.1 implies
uniqueness in (P1).

A.3 Maximal performance for budget ≤ F0

Performance level J is task-dependent and is not guaranteed to satisfy any general properties,
so modeling part 2 of Problem 4.1 directly is impossible. However, given a particular value of
J , we can compute the UTD ratio σFJ

and model size NFJ
that uniquely minimize the total

budget FJ(σ,N) = CJ(σ,N) + δ · DJ(σ,N) (see Proposition A.3). We run this procedure for
J1, . . . , Jm ∈ [Jmin, Jmax], as described in Section B.

We expect that a higher budget will ultimately yield higher performance under the best hyperparameter
configuration. This procedure yields several points {(Ji,FJi

)}mi=1 along the Pareto frontier J 7→
minσ,N FJ(σ,N), as shown in Figure 9. Importantly, we do not directly model this curve, and only
need its existence, continuity, and monotonically increasing nature for our fits. Consequently, its
inverse is continuous and monotonically increasing. Therefore, for a given budget FJi

, 1 ≤ i ≤ m,
the performance level Ji is optimal for that budget, i.e.

(σ∗
F (FJi

), N∗
F (FJi

)) = arg max
(σ,N)

J (πAlg(σ,N)) s.t. C + δD ≤ FJi
.

Budget

Pe
rf

or
m

an
ce

J1

Ji

Jm

FJ1

(σ∗
F (FJ1), N

∗
F (FJ1))

FJi FJm

(σ∗
F (FJm), N∗

F (FJm))

Figure 9: A (hypothetical) depiction of the
performance–budget Pareto frontier we implic-
itly model. For each Ji, we compute the budget-
minimizing UTD ratio σ∗

F (FJi) and model size
N∗

F (FJi). We can then discard the y-axis, leav-
ing us with a relationship between budget F and
(σ∗

F , N
∗
F).

This procedure yields m points along the solu-
tion to Problem 4.1, part 2. Since data efficiency
is predictable, we can therefore constrain the
budget to model σ∗

F , N∗
F as in Eq. (7.4).

Proposition A.3. Suppose (αJ , βJ) ∈ (0, 1),
and fix δ > 0. Consider the unconstrained
minimization minσ,N FJ(σ,N). The optimum
(σ∗, N∗) is unique and satisfies Eq. (A.5).

Proof. As either σ → 0+ or N → 0+, the
term δD → ∞. As σ,N → ∞, the term
C ≥ kσNDmin → ∞. By the same logic as
the proof of Proposition A.2, a global minimizer
exists.

Then, the objective is exactly the same as
Eq. (A.6), with λ replaced by δ, and the D0

constant offset removed. Thus, the same logic
in the proof of Proposition A.1 applies, and we
obtain the same relation Eq. (A.5).

B Experiment Details

For our experiments, we use a total of 17 tasks from two benchmarks (DeepMind Control [51]
and HumanoidBench [42]), listed in Table 2, with the BRO algorithm and architecture [34]. We
additionally use 2 tasks from HumanoidBench (h1-crawl, h1-stand) with SimbaV2 [26]. As
described in Section C, we normalize our returns to [0, 1000]; optimal π returns are pre-normalized.
For HumanoidBench, we report the returns listed by authors as the “success bar,” even though it is
possible to achieve a higher return. Our experiments fit DJ(σ,N) for 20 normalized performance
thresholds J , spaced uniformly between Jmin and Jmax, inclusive; 20 is an arbitrary choice that we
made so as to obtain useful insights about our method while not overwhelming the reader.

16

Table 2: Tasks used in presented experiments.

Domain Task Optimal π Returns Jmin Jmax δ

HumanoidBench h1-crawl 700 450 780 2e12
h1-pole 700 300 680 5e11
h1-stand 800 200 660 5e11

DMC humanoid-stand 1000 300 850 5e10

DMC-Medium acrobot-swingup 1000 150 400 1e11
cheetah-run 1000 400 750 1e11
finger-turn-hard 1000 400 900 1e11
fish-swim 1000 200 710 1e11
hopper-hop 1000 150 320 1e11
quadruped-run 1000 200 790 1e11
walker-run 1000 350 730 1e11

DMC-Hard dog-run 1000 100 270 1e11
dog-trot 1000 100 580 1e11
dog-stand 1000 100 910 1e11
dog-walk 1000 100 860 1e11
humanoid-run 1000 75 190 1e11
humanoid-walk 1000 200 650 1e11

Table 3: Configurations for ORIGINAL 3-dimensional grid searches.

Task UTD ratio σ Critic width Possible batch sizes

h1-crawl 1, 2, 4, 8 256, 512, 1024, 2048 16, 32, 64, 128, 256, 512, 1024, 2048
h1-pole 1, 2, 4, 8 256, 512, 1024, 2048 64, 128, 256, 512, 1024, 2048
h1-stand 1, 2, 4, 8 256, 512, 1024, 2048 128, 256, 512, 1024, 2048, 4096
humanoid-stand 1, 2, 4, 8 128, 256, 512, 1024, 2048 64, 128, 256, 512, 1024

B.1 Hyperparameter Sweep Details

Out of the 17 tasks, we run a full 3-dimensional grid search B × N × σ on 4 of them: 3 tasks
from HumanoidBench and Humanoid-Stand from DMC. Due to the computational requirements of
running a large grid search for obtaining the scaling fits, we use a constant network depth (2 BroNet
blocks [34]) and learning rate (3e-4) throughout our experiments and run at least 5 random seeds per
configuration. From these experiments, we follow the procedure described in Section C to estimate
a batch size rule (Figure 11). A superset of the configurations run in this three-dimensional grid
search are listed as ORIGINAL in Table 3. Out of the listed batch sizes in Table 3, we run at least 4
consecutive values of batch sizes for each (σ,N), such that the empirically most performant batch
size is neither the minimum nor maximum of the range. Since a full 3D-sweep is expensive, this
heuristic enables us to effectively reduce the total number of experiments we need to run to estimate
batch size fits. For instance, for small model sizes and low UTD values on h1-crawl, this amounts
to simply running batch sizes up to 64, since performance decreases monotonically as the batch size
increases.

Based on these runs, we set Jmin and Jmax, as described in the following subsection. This enables us
to establish a batch size rule (Eq. (6.1)), where the “best” batch size uses the least amount of data to
achieve performance Jmax. To evaluate our batch size rule B∗(σ,N), we run a 2-dimensional sweep
using our proposed batch sizes on INTERPOLATED and EXTRAPOLATED UTD ratios σ and model
sizes N . The configurations are listed in Table 4. Note that we did not study extrapolation of model
size on humanoid-stand, since we already noticed that a width of 2048 performed worse than a
model width of 1024 at low UTD values.

Using various combinations of these measurements, we can fit data efficiency (Eq. (7.1)). InSec-
tion 7.1, we evaluate the absolute relative error of the fit prediction with respect to the ground truth
data efficiency on each of the datasets, when the fit solely uses ORIGINAL data and is evaluated on
ORIGINAL, INTERPOLATED, and EXTRAPOLATED data. Our final D, as described elsewhere in the
paper, is fitted on all three datasets, ORIGINAL, INTERPOLATED, and EXTRAPOLATED.

17

Table 4: Configurations for INTERPOLATED and EXTRAPOLATED.

Dataset Task UTD ratio σ Critic width

INTERPOLATED h1-crawl 3, 6, 12 368, 720, 1456
h1-pole 3, 6, 12 368, 720, 1456
h1-stand 3, 6, 12 368, 720, 1456

humanoid-stand 3, 6, 12 176, 368, 720, 1456

N EXTRAPOLATED h1-crawl 1, 2, 4, 8, 16 4096
h1-pole 1, 2, 4, 8, 16 4096
h1-stand 1, 2, 4, 8, 16 4096

σ EXTRAPOLATED h1-crawl 16 256, 512, 1024, 2048
h1-pole 16 256, 512, 1024, 2048
h1-stand 16 256, 512, 1024, 2048

humanoid-stand 16 128, 256, 512, 1024, 2048

The other 13 tasks are from DMC, which we group as DMC-medium and DMC-hard following
Nauman et al. [34]. For obtaining these fits, we borrow the data directly from Nauman et al. [34]:
the authors of this prior work ran 10 random seeds at a constant batch size 128 and learning rate
3e-4 on several UTD (1, 2, 5, 10, 15) and model size (Table 7 in [34]) configurations. Due to the
lack of appropriately set batch size in these experiments borrowed from prior work, the data does
not accurately represent the best achievable data efficiency, and in some cases increasing UTD or
model size worsens performance. In these cases, fitting D per task can result in instability, where the
exponents αJ , βJ are driven to 0. To counteract this, we use two approaches:

1. Share parameters αJ , βJ of the fit over tasks as follows:

Denv
J (σ,N) ≈ Denv min

J +

(
aenv
J

σ

)αJ

+

(
benv
J

N

)βJ

. (B.1)

Conceptually, this forces the slope of the compute-optimal line prescribed by Eq. (A.5) to
be shared across tasks within the same domain, but allows for a different intercept. This
results in variance reduction in the fitting procedure.

2. Average over multiple tasks according to the procedure in Section C. We present these
fits in the main paper to improve clarity and reduce clutter (Figure 6). This method essentially
treats the benchmark as a single task and fits an average amount of data required to achieve
some performance.

Selecting experimental constants. To select Jmax, we first group by the UTD ratio σ and model
size N . Out of each group, we select the run with the highest final Monte-Carlo returns (over all
batch sizes). Over these runs, we set Jmax as the highest return threshold that 80% of the runs reach.

We heuristically select Jmin as the lowest return threshold such that configurations that eventually
reach performance Jmax “look sufficiently different,” i.e. there are configurations with batch sizes
B1, B2 such that their confidence intervals [DJmin − σJmin ,DJmin + σJmin] do not overlap. Here
D denotes the true (not fitted) amount of data required to reach the performance level, and σ is the
standard deviation given by the procedure described in Section C.

We select δ in the budget formula F = C+δD so that δD represents the real-time cost of environment
steps, as measured in FLOPs. Our procedure is as follows:

1. Pick the run that achieves performance Jmax within the lowest wall-clock time.

2. Based on timing statistics from this run, set

δ ≈ FLOPs/grad steps× grad steps/sec
env steps/sec

. (B.2)

The resulting expression for F is therefore a proxy for wall clock time.

18

Algorithm 1 Training loop drop-ins for any value-based algorithm
1: Initialize environment p
2: Initialize replay buffer P
3: Initialize parameter vectors θ (critic), θ̄ (target critic), ϕ (actor)
4: Initialize validation environment pval

5: Initialize validation replay buffer Pval // size |P|/k
6: Initialize passive critic parameter vector θpassive // possibly different size than θ
7: for each iteration do
8: for each environment step do
9: at ∼ πϕ(at|st)

10: st+1 ∼ p(st+1|st, at)
11: P ← P ∪ {(st, at, r(st, at), st+1)}
12: if t mod k = 0 then // do validation less frequently to avoid overhead
13: aval

t ∼ πϕ(a
val
t |sval

t)
14: sval

t+1 ∼ pval(sval
t+1|sval

t , aval
t)

15: Pval ← Pval ∪
{
(sval

t , aval
t , r(sval

t , aval
t), sval

t+1)
}

16: end if
17: end for
18: for each update do
19: Sample training batch x ∼ P
20: for σ gradient steps do
21: θ ← θ − ηcritic∇θLcritic(x; θ, θ̄)
22: θpassive ← θpassive − ηcritic∇θpassiveLcritic(x; θ

passive, θ̄)
23: ϕ← ϕ− ηactor∇ϕLactor(x; θ, ϕ)
24: θ̄ ← τθ + (1− τ)θ̄
25: end for
26: if logging then
27: Sample validation batch xval ∼ Pval

28: Lval
critic ← Lcritic(x

val; θ, θ̄)

29: Lpassive
critic ← Lcritic(x; θ

passive, θ̄)
30: end if
31: end for
32: end for

B.2 Detailed Explanations for How to Obtain Main Paper Figures

Figure 2. Standard off-policy online RL trains on data sampled from a replay buffer, which is
regularly augmented with data from the environment. We construct a held-out dataset of transitions
following the same distribution as the training replay buffer. To do so, we create a validation
environment, which is identical to the training environment with a different random seed, and a
corresponding validation replay buffer. This allows us to measure the validation TD-error, i.e. the
TD-error of the critic against the target on data sampled from the validation replay buffer. Algorithmic
details are described in Algorithm 1 in blue.

Figure 4. The passive critic regresses onto the target produced by the main critic, and is trained
using a similar procedure as the main critic. We report the TD-error of the passive critic against the
TD-target on validation data. Algorithmic details are described in Algorithm 1 in green.

Figure 5. We describe our batch size fitting procedure in Section C.

Figure 6. Circles represent the true data efficiencies on our ORIGINAL UTD ratios and model sizes.
Using this data, we fit a batch size rule B∗(σ,N) (Eq. (6.1)), and run experiments using our batch
size rule on INTERPOLATED and EXTRAPOLATED UTD ratios and model sizes. Then, we fit data
efficiency DJmax

(σ,N) (Eq. (7.1)) on all of the data, where Jmax is listed in Table 2. The iso-data
contours are predictions from the fit, and the log-log-line containing compute-optimal points follows
the formula in Eq. (7.2).

Figure 7. We fit DJi independently for each Ji. Following Section A.3, we numerically solve for the
optimum (σ∗

F (FJi), N
∗
F (FJi

)). We plot D and C for these optima against FJi . Out of these m = 20
points, we fit a line to the bottom 15 of them and mark the top 5 as budget extrapolation. We record
R2 between the log-linear fit and log-y values over all 20 points.

19

0 2 4 6 8 10
: Data

0

200

400

600

800

J:
Re

tu
rn

×1e5

Original data
Isotonic smoothing
Including resets

humanoid-stand, =8, N=2M, B=512

0 2 4 6 8 10
: Data

0

200

400

600

800

J:
Re

tu
rn

×1e5

Original data
Isotonic smoothing
Gaussian smoothing

h1-stand, =2, N=2M, B=1024

0 2 4 6 8 10
: Data

400

500

600

700

800

J:
Re

tu
rn

×1e5

Original data
Isotonic smoothing
Gaussian smoothing

h1-crawl, =1, N=619K, B=64

Figure 10: A demonstration of our MC returns preprocessing. Left: Full-parameter resets introduce
variance in returns; we remove the dips before running isotonic regression. Middle: Gaussian
smoothing can lead to under-smoothing the returns, making data efficiency more difficult to fit.
Right: Gaussian smoothing can lead to over-smoothing the returns, e.g. at 625K env steps, Gaussian-
smoothed returns are higher than the maximum returns achieved up to that point.

Figure 8. Same method as Figure 7.

C Additional Details on the Fitting Procedure

Preprocessing return values. Our fits require estimates of the data and compute needed by a given
run to reach a target performance level. The BRO algorithm [34] employs full-parameter resets as a
form of plasticity regularization [35], reinitializing the agent every 2.5M gradient steps to encourage
better exploration and long-term learning. However, these resets induce abrupt drops in Monte Carlo
(MC) returns, which do not reflect a true degradation in learning quality. Instead, returns typically
recover quickly and often surpass pre-reset levels. Including these transient dips in the MC curve
would artificially inflate the estimated data and compute required to reach a given performance
threshold. To obtain a cleaner, more consistent signal of learning progress, we therefore remove
post-reset return drops from our analysis (Figure 10, left). This allows us to more accurately model
the intrinsic data efficiency of the algorithm, independent of reset-induced variance.

Following [39], we then process the return values with isotonic regression [1], which transforms the
return values to the most aligned nondecreasing sequence of values that can then be used to estimate
DJ (Figure 10, middle and right). This procedure enables us to fit the minimum number of samples
needed to reach a given performance level, regardless of whether the performance drops later in
training. It also reduces variance compared to the naive approach of measuring the data efficiency
directly on each random seed.

Uncertainty-adjusted optimal batch size. We follow Rybkin et al. [39] to compute uncertainty-
adjusted optimal batch sizes, since the precision of the fit B would otherwise be limited by the
granularity of our grid search. We run K = 100 bootstrap estimates by sampling n random seeds
with replacement out of the original n random seeds, applying isotonic regression, and selecting the
optimal batch size Bk by data efficiency to threshold Jmax. Since these batch sizes can span multiple
orders of magnitude (Table 3), we report the mean of these bootstrapped estimates in log space as the
“best” batch size:

Bbootstrap = exp

(
1

K

K∑
k=1

logBk

)
. (C.1)

Additionally, considering the set of bootstrapped data efficiencies to reach a given performance
threshold J , this procedure also yields an estimate of the standard deviation of the data efficiency.

Fitting procedure. Prior work fits the data using a brute force grid search followed by LBFG-S
[16, 39]. Empirically, we found that the quality of the resulting fit is highly dependent on the initial
point found by brute force, and the bounds of the brute force grid must be tuned per fit. To resolve
these issues, we use the following procedure:

20

1. Normalize the inputs x to [ℓ, h] = [0.5, 2] in log space via

s =
log(maxx)− log(minx)

log h− log ℓ
(C.2)

m = log(minx)− s log ℓ (C.3)

x′ = exp

(
log x−m

s

)
, (C.4)

and normalize the output y by dividing by the mean, y′ = y/y. This results in a more
numerically stable fitting procedure, since σ ∈ [1, 20] and N ∈ [1e5, 2e8] are otherwise on
very different scales.

2. Define θ′ = softplus(θ) = log(1 + exp(θ)) for all “raw” parameters θ ∈ R. Softplus is a
smooth approximation to ReLU and forces fit parameters to be positive, and empirically
tends to improve fitting stability. For example, to fit data efficiency, we optimize over
[θDmin , θa, θb, θα, θβ] ∈ R5, and extract e.g. Dmin = softplus(θDmin).

3. Use LBFG-S to optimize over raw parameters. We use MSE in log space as the objective:
L(y, ŷ) = (log y − log ŷ)2.

4. Apply softplus and correct the parameters for normalization.

Empirically, we find that initializing all raw parameters as zero generally works well.

Aggregate data efficiency. In Figure 6, we show data efficiency fits aggregated over multiple tasks.
We follow Rybkin et al. [39]: first, normalize the data efficiency Denv

J by intra-environment medians
Denv med

J = median {Denv
J (σ,N)}σ,N . To interpret the normalized data efficiency on the same scale

as the original data, we write Dmed
J = median

{
Denv med

J

}
env, so that Denv norm

J := Denv
J · Dmed

J

Denv med
J

.
Finally, we fit all of the normalized data together using the same functional form.

D Additional Experimental Results

D.1 Batch Size Fits B̃(σ,N)

Refer to Figure 11.

h1-crawl
1680.64

σ0.30 + 6.01e7σ0.30N−1.12

h1-pole
4112.98

σ0.24 + 1.45e1σ0.24N−0.07

h1-stand
1458.10

σ0.27 + 1.33e74σ0.27N−12.71

humanoid-stand
1160.40

σ0.49 + 2.77e2σ0.49N−0.38

(D.1)

D.2 Batch Size Fit Analysis

In Table 5, we group runs by UTD and model size, and bin runs based on batch sizes. Then, we
consider the data efficiency ratio between the runs appearing in bins with suboptimal batch sizes
and runs with the predicted batch size, and average over UTDs and model sizes. We find that batch
sizes within a interval around the best batch size B∗ perform reasonably, and performance degrades
significantly with larger intervals. Indeed, per this analysis, one cannot naïvely reuse the same batch
size for small and large models: in Figure 5, we see a ≈ 40× range in bootstrap-optimal batch sizes
across different model sizes at UTD 8. However, the sensitivity of performance to the precise value
of batch size is relatively low, which is good news for practitioners and which is why we observe a
high relative error in the fit, which turns out to be benign.

D.3 Learning Rate Sensitivity Analysis

A natural question is whether learning rate affects performance in the compute-optimal regime or not.
We found that there is a range of “reasonable” learning rates, which empirically always contains our

21

Grouped by UTD ratio σ

619K 2M 9M 34M
32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-pole-v0, =1

619K 2M 9M 34M
32

128

512

2048
h1-pole-v0, =2

619K 2M 9M 34M
32

128

512

2048
h1-pole-v0, =4

619K 2M 9M 34M
32

128

512

2048
h1-pole-v0, =8

619K 2M 9M 34M
32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-stand-v0, =1

619K 2M 9M 34M
32

128

512

2048
h1-stand-v0, =2

619K 2M 9M 34M
32

128

512

2048
h1-stand-v0, =4

619K 2M 9M 34M
32

128

512

2048
h1-stand-v0, =8

183K628K 2M 9M 34M
N: model size

32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze humanoid-stand, =1

183K628K 2M 9M 34M
N: model size

32

128

512

2048
humanoid-stand, =2

183K628K 2M 9M 34M
N: model size

32

128

512

2048
humanoid-stand, =4

183K628K 2M 9M 34M
N: model size

32

128

512

2048
humanoid-stand, =8

Grouped by model size N

1 2 4 8
32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-pole-v0, N=619K

1 2 4 8
32

128

512

2048
h1-pole-v0, N=2M

1 2 4 8
32

128

512

2048
h1-pole-v0, N=9M

1 2 4 8
32

128

512

2048
h1-pole-v0, N=34M

1 2 4 8
32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-stand-v0, N=619K

1 2 4 8
32

128

512

2048
h1-stand-v0, N=2M

1 2 4 8
32

128

512

2048
h1-stand-v0, N=9M

1 2 4 8
32

128

512

2048
h1-stand-v0, N=34M

1 2 4 8
: UTD

32

128

512

2048

B
* :

 B
es

t b
at

ch
 si

ze humanoid-stand, N=628K

1 2 4 8
: UTD

32

128

512

2048
humanoid-stand, N=2M

1 2 4 8
: UTD

32

128

512

2048
humanoid-stand, N=9M

1 2 4 8
: UTD

32

128

512

2048
humanoid-stand, N=34M

Figure 11: Two-dimensional batch size fit B̃(σ,N) grouped by σ and N , as a completion to Figure 5,
for the BRO algorithm and architecture [34]

22

Grouped by UTD ratio σ

604K 2M 9M 36M
256

512

1024

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-crawl-v0, =1

604K 2M 9M 36M
256

512

1024

2048
h1-crawl-v0, =2

604K 2M 9M 36M
256

512

1024

2048
h1-crawl-v0, =4

604K 2M 9M 36M
256

512

1024

2048
h1-crawl-v0, =8

604K 2M 9M 36M
N: model size

256

512

1024

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-stand-v0, =1

604K 2M 9M 36M
N: model size

256

512

1024

2048
h1-stand-v0, =2

604K 2M 9M 36M
N: model size

256

512

1024

2048
h1-stand-v0, =4

604K 2M 9M 36M
N: model size

256

512

1024

2048
h1-stand-v0, =8

Grouped by model size N

604K 2M 9M 36M
256

512

1024

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-crawl-v0, =1

604K 2M 9M 36M
256

512

1024

2048
h1-crawl-v0, =2

604K 2M 9M 36M
256

512

1024

2048
h1-crawl-v0, =4

604K 2M 9M 36M
256

512

1024

2048
h1-crawl-v0, =8

604K 2M 9M 36M
N: model size

256

512

1024

2048

B
* :

 B
es

t b
at

ch
 si

ze h1-stand-v0, =1

604K 2M 9M 36M
N: model size

256

512

1024

2048
h1-stand-v0, =2

604K 2M 9M 36M
N: model size

256

512

1024

2048
h1-stand-v0, =4

604K 2M 9M 36M
N: model size

256

512

1024

2048
h1-stand-v0, =8

Figure 12: Analogous to Figure 11, with the SimbaV2 architecture [26]

Table 5: Batch size sensitivity over grid search. Batch sizes far away from the predicted batch size perform
poorly.

Batch size range Data efficiency ratio

[1/16B∗, 1/8B∗] 1.52
[1/8B∗, 1/4B∗] 1.38
[1/4B∗, 1/2B∗] 1.26
[1/2B∗, 2/3B∗] 1.22

B∗ 1.00
[1.5B∗, 2B∗] 1.16
[2B∗, 4B∗] 1.18
[4B∗, 8B∗] 1.19
[8B∗, 16B∗] 1.30

23

Table 6: Learning rate sensitivity over grid search.
Learning rate range Data efficiency ratio

[1/4 lr∗, 1/2 lr∗] 1.39
[1/2 lr∗, 2/3 lr∗] 1.35
[2/3 lr∗, lr∗] 1.04
[lr∗, 1.5 lr∗] 1.03
[1.5 lr∗, 2 lr∗] 1.18
[2 lr∗, 4 lr∗] 1.27

Table 7: Bootstrap-optimal vs. default learning rates over compute-optimal (σ,N,B).
Environment Data efficiency ratio

h1-crawl 1.0118
h1-pole 1.0000
h1-stand 1.0000

humanoid-stand 0.9504

“default” value of 3e-4. Crucially, this is the case for all model sizes and UTD ratio, meaning that a
practitioner can get away without setting learning rate carefully for a compute-optimal run as long as
they utilize a default value.

Grid search regime. We run hyperparameter sweeps over (model size, UTD, learning rate) and
(model size, batch size, learning rate), where lr ∈ {1e-4, 2e-4, 3e-4, 6e-4}. In this regime, we found
that the empirically optimal learning rate only took on values {2e-4, 3e-4}. We report the data
efficiency ratio between the empirically optimal and default learning rates in Table 6. Since our
default learning rate is in the range [lr∗, 1.5 lr∗], the overall effect on performance is minimal.

Although we observe smaller relative variation in the best learning rate over UTD and model sizes
compared to batch size, we find empirically that the best learning rate (i) decreases with increasing
model size, correlation: -0.75, (ii) decreases with increasing UTD, correlation: -0.46, (iii) increases
with increasing batch size, correlation: 0.42. With simple log-linear fits, we obtain a relative error of
37.5%:

h1-crawl lr∗ ∼ 4.4827e-4 · (N/2.3e6)−0.3112 · σ−0.1273 · (B/512)0.3709

h1-pole lr∗ ∼ 2.4727e-4 · (N/2.3e6)−0.2472 · σ−0.2392 · (B/512)0.2701

Despite the high relative error, we observe that data efficiency is similar within an interval of
“reasonable” learning rates.

Compute-optimal regime. For each task and compute-optimal setting σ∗(C0), N∗(C0) with fitted
batch size B̃(σ∗(C0), N∗(C0)), we ran a sweep of learning rates over [1e-4, 2e-4, 3e-4, 4e-4, 5e-4].
Following Eq. (C.1), we compute the bootstrap-optimal learning rate for each setting, then round
to the nearest of the five learning rates. In Table 7, we show that data efficiency is not improved
significantly when using the rounded bootstrap-optimal learning rate, compared to the “default”
learning rate 3e-4. The table shows averages over compute budgets.

D.4 Target Network Update Rate Sensitivity Analysis

Value-based deep RL methods train a Q-network Qθ by minimizing the TD-error against the target
Q-network Q̄ (Eq. (3.1)). The target network weights θ̄ are typically updated via Polyak averaging,
θ̄ ← (1− τ)θ̄ + τθ, where τ is a constant, the target network update rate. Small τ yield high-bias,
low-variance targets; large τ the opposite. Intuitively, τ seems to be an important hyperparameter for
modulating the dynamics of TD-learning. Empirically, however, we do not find a strong relationship
between the model size, the target network update rate τ , and training or validation TD error. We
ran a sweep over τ ∈ [5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1]. Then, we fit a power law
TD error ∼ a · τ b, and record the correlation and slope in Table 8. In general, we find that training
and validation TD error increase with τ (positive slope and correlation), but there is not a strong
relationship between model size and the corresponding correlation or slope.

24

Table 8: Correlation between target update rate τ

Task Metric Critic width Correlation Slope (b)

h1-crawl Critic loss 512 0.7365 0.1203
1024 0.9175 0.1348
2048 0.9302 0.1164

Validation critic loss 512 0.4639 0.0329
1024 0.6413 0.0244
2048 0.4751 0.0168

h1-stand Critic loss 512 0.9056 0.3916
1024 0.9446 0.2035
2048 0.1857 0.0195

Validation critic loss 512 0.7777 0.1294
1024 0.3109 0.0196
2048 -0.6852 -0.0421

We additionally found that data efficiency is not very sensitive to our choice of τ , as long as the value
of τ is reasonable. Following the same sensitivity analysis from Section 6, we find that varying τ
by an order of magnitude from the bootstrapped optimal value of τ worsens the data efficiency by
only 19%. For comparison, varying the batch size by an order of magnitude yields a data efficiency
variation of up to 52% (Table 5). Throughout the remainder of our experiments, we use a “default”
value of τ = 5e-3, which we find is within the “reasonable” interval and near the bootstrapped
optimal value.

D.5 Full TD-error curves

We provide full training and validation TD-error curves in Figure 13, as a completion to Figure 1.
The summary statistics are marked with ‘X’ and correspond to the points used in Figure 2.

D.6 Passive Critic Learning Curves

We provide the full validation TD error curves over training in Figure 14. In these plots the summary
statistics are marked with ‘X’, and we provide Figure 15 as a completion to Figure 4.

D.7 Data Efficiency Fits DJmax
(σ,N)

For the following four tasks, we fit data efficiency using the empirically best data efficiency for
performance threshold Jmax across batch sizes for each (σ,N) setting. In Figures 16 and 17, we
show the fits for multiple values of J .

h1-crawl 5.11e4
(
1 + (2.59e5/σ)

0.15
+ (1.70e7/N)

0.75
)

h1-pole 9.43e3
(
1 + (3.22e6/σ)

0.27
+ (2.50e12/N)

0.30
)

h1-stand 2.14e5
(
1 + (6.68e-1/σ)2.53 + (1.74e6/N)

0.97
)

humanoid-stand 1.49e4
(
1 + (1.78e6/σ)

0.26
+ (3.75e7/N)

0.63
)

(D.2)

For the remaining tasks, we use the available batch size.

25

0.00 0.25 0.50 0.75 1.00
Steps 1e6

100

101

102

Lo
ss

h1-crawl-v0, B=256

0.00 0.25 0.50 0.75 1.00
Steps 1e6

h1-crawl-v0, B=512

0.00 0.25 0.50 0.75 1.00
Steps 1e6

h1-crawl-v0, B=1024

0.00 0.25 0.50 0.75 1.00
Steps 1e6

h1-crawl-v0, B=2048

0.0 0.5 1.0 1.5
Steps 1e6

100

101

102

Lo
ss

h1-pole-v0, B=256

0.0 0.5 1.0 1.5
Steps 1e6

h1-pole-v0, B=512

0.0 0.5 1.0 1.5
Steps 1e6

h1-pole-v0, B=1024

0.0 0.5 1.0 1.5
Steps 1e6

h1-pole-v0, B=2048

0.00 0.25 0.50 0.75 1.00
Steps 1e6

100

101

102

Lo
ss

h1-stand-v0, B=256

0.00 0.25 0.50 0.75 1.00
Steps 1e6

h1-stand-v0, B=512

0.00 0.25 0.50 0.75 1.00
Steps 1e6

h1-stand-v0, B=1024

0.00 0.25 0.50 0.75 1.00
Steps 1e6

h1-stand-v0, B=2048

0.00 0.25 0.50 0.75 1.00
Steps 1e6

10 1

100

101

102

Lo
ss

humanoid-stand, B=128

0.00 0.25 0.50 0.75 1.00
Steps 1e6

humanoid-stand, B=256

0.00 0.25 0.50 0.75 1.00
Steps 1e6

humanoid-stand, B=512

0.00 0.25 0.50 0.75 1.00
Steps 1e6

humanoid-stand, B=1024

Training
Validation

Width=128
Width=256

Width=512
Width=1024

Width=2048

Figure 13: Training and validation TD-error curves over training, grouped by critic width and passive
critic width, at UTD = 1. The summary statistics in Figure 2 are marked with ‘X’ and are averages
over the last 10% of training.

26

200k 400k 600k 800k
Steps

101Va
lid

at
io

n
Lo

ss

Critic Width: 512

Passive Width: 512
Passive Width: 1024
Passive Width: 2048

200k 400k 600k 800k
Steps

Critic Width: 1024

200k 400k 600k 800k
Steps

Critic Width: 2048

h1-crawl-v0, UTD=2

200k 400k 600k 800k
Steps

102

Va
lid

at
io

n
Lo

ss

Critic Width: 512
Passive Width: 512
Passive Width: 1024
Passive Width: 2048

200k 400k 600k 800k
Steps

Critic Width: 1024

200k 400k 600k 800k
Steps

Critic Width: 2048

h1-pole-v0, UTD=2

200k 400k 600k 800k
Steps

102

Va
lid

at
io

n
Lo

ss

Critic Width: 512
Passive Width: 512
Passive Width: 1024
Passive Width: 2048

200k 400k 600k 800k
Steps

Critic Width: 1024

200k 400k 600k 800k
Steps

Critic Width: 2048

h1-stand-v0, UTD=2

Figure 14: Validation TD-error curves over training, grouped by critic width. The summary statistics
in Figure 4 are marked with ‘X’ and are averages over the last 10% of training.

DMC-medium, shared αJ , βJ :

acrobot-swingup 4.29e5
(
1 + (6.46e-1/σ)0.98 + (8.42e5/N)1.39

)
cheetah-run 4.81e5

(
1 + (4.30e-1/σ)0.98 + (3.40e5/N)1.39

)
finger-turn 2.66e5

(
1 + (1.08e0/σ)0.98 + (4.67e5/N)1.39

)
fish-swim 6.28e5

(
1 + (1.36e-1/σ)0.98 + (2.70e5/N)1.39

)
hopper-hop 3.52e5

(
1 + (8.24e-1/σ)0.98 + (3.12e5/N)1.39

)
quadruped-run 1.39e5

(
1 + (3.54e0/σ)0.98 + (1.64e6/N)1.39

)
walker-run 1.61e5

(
1 + (2.85e0/σ)0.98 + (6.07e5/N)1.39

)
(D.3)

DMC-medium, averaged environment:
DMC-medium averaged 3.72e5

(
1 + (1.26e0/σ)1.01 + (6.33e5/N)0.89

)
(D.4)

DMC-hard, shared αJ , βJ .

dog-run 4.45e5
(
1 + (1.23e0/σ)0.73 + (9.26e5/N)1.29

)
dog-stand 4.40e5

(
1 + (1.94e-1/σ)0.73 + (3.94e5/N)1.29

)
dog-trot 5.38e5

(
1 + (6.42e-1/σ)0.73 + (7.53e5/N)1.29

)
dog-walk 6.03e5

(
1 + (3.09e-1/σ)0.73 + (3.78e5/N)1.29

)
humanoid-run 4.29e5

(
1 + (2.04e0/σ)0.73 + (1.00e6/N)1.29

)
humanoid-walk 3.30e5

(
1 + (3.81e0/σ)0.73 + (1.13e6/N)1.29

)
(D.5)

27

512 1024 2048
Main Critic Width

101

2 × 101

3 × 101

Va
lid

at
io

n
Lo

ss

Average Slope: -0.55

Passive: 512
Passive: 1024
Passive: 2048

512 1024 2048
Passive Critic Width

101

2 × 101

3 × 101 Average Slope: -0.33

Main: 512
Main: 1024
Main: 2048

h1-crawl-v0

512 1024 2048
Main Critic Width

6 × 101

7 × 101

8 × 101

9 × 101

Va
lid

at
io

n
Lo

ss

Average Slope: -0.27

Passive: 512
Passive: 1024
Passive: 2048

512 1024 2048
Passive Critic Width

6 × 101

7 × 101

8 × 101

9 × 101 Average Slope: -0.11

Main: 512
Main: 1024
Main: 2048

h1-pole-v0

512 1024 2048
Main Critic Width

2 × 101

3 × 101

4 × 101

Va
lid

at
io

n
Lo

ss

Average Slope: -0.39

Passive: 512
Passive: 1024
Passive: 2048

512 1024 2048
Passive Critic Width

2 × 101

3 × 101

4 × 101 Average Slope: -0.11

Main: 512
Main: 1024
Main: 2048

h1-stand-v0

Figure 15: Summary statistics for passive critic experiments, as a completion of Figure 4, run at
UTD 2. Across multiple environments, increasing the main critic size is much more effective than
increasing the passive critic size.

DMC-hard, averaged environment:

DMC-hard averaged 5.39e5
(
1 + (8.92e-1/σ)0.77 + (6.68e5/N)1.27

)
(D.6)

D.8 Optimal Budget Partition

We provide plots analogous to Figures 7 and 8 in Figures 18 to 21 for DMC-medium and DMC-hard
tasks. These data efficiency fits use the shared exponents αJ , βJ method described in Section B.

As shown in Figures 8, 20 and 21, however, the optimal UTD and model size for a given budget
F0 are unpredictable. We verify that these hyperparameters are fundamentally unpredictable in this
setting, running at least 50 seeds per UTD and model size at the fitted batch size, for h1-crawl, in
Figure 22. Despite this, the fit for CFJ

achieves considerably lower uncertainty than in Figure 7,
indicating that there is a large range of “reasonable” hyperparameters corresponding to similar data
and compute values.

28

619K 2M 9M 34M

1

2

4

8

: D
at

a

h1-crawl-v0, =1

619K 2M 9M 34M

1

2

4

8

h1-crawl-v0, =2

619K 2M 9M 34M

1

2

4

8

h1-crawl-v0, =4

619K 2M 9M 34M

1

2

4

8

h1-crawl-v0, =8

619K 2M 9M 34M

4

8

12

: D
at

a

h1-pole-v0, =1

619K 2M 9M 34M

4

8

12

h1-pole-v0, =2

619K 2M 9M 34M

4

8

12

h1-pole-v0, =4

619K 2M 9M 34M

4

8

12

h1-pole-v0, =8

619K 2M 9M 34M

2

4

8

: D
at

a

h1-stand-v0, =1

619K 2M 9M 34M

2

4

8

h1-stand-v0, =2

619K 2M 9M 34M

2

4

8

h1-stand-v0, =4

619K 2M 9M 34M

2

4

8

h1-stand-v0, =8

183K 628K 2M 9M 34M
: UTD

2

4

8

: D
at

a

humanoid-stand, =1

183K 628K 2M 9M 34M
: UTD

2

4

8

humanoid-stand, =2

183K 628K 2M 9M 34M
: UTD

2

4

8

humanoid-stand, =4

183K 628K 2M 9M 34M
: UTD

2

4

8

×1e5 ×1e5 ×1e5 ×1e5

×1e5 ×1e5 ×1e5 ×1e5

×1e5 ×1e5 ×1e5 ×1e5

×1e5 ×1e5 ×1e5 ×1e5
humanoid-stand, =8

500

600

700

J:
Re

tu
rn

300

400

500

600

J:
Re

tu
rn

200

300

400

500

600

J:
Re

tu
rn

300

400

500

600

700

800

J:
Re

tu
rn

Figure 16: Data efficiency fits DJ(σ,N) for multiple performance thresholds J , grouped by UTD
ratio σ. Each DJ is fit independently.

29

619K 2M 9M 34M

1

2

4

8

: D
at

a

h1-crawl-v0, =1

619K 2M 9M 34M

1

2

4

8

h1-crawl-v0, =2

619K 2M 9M 34M

1

2

4

8

h1-crawl-v0, =4

619K 2M 9M 34M

1

2

4

8

h1-crawl-v0, =8

619K 2M 9M 34M

4

8

12

: D
at

a

h1-pole-v0, =1

619K 2M 9M 34M

4

8

12

h1-pole-v0, =2

619K 2M 9M 34M

4

8

12

h1-pole-v0, =4

619K 2M 9M 34M

4

8

12

h1-pole-v0, =8

619K 2M 9M 34M

2

4

8

: D
at

a

h1-stand-v0, =1

619K 2M 9M 34M

2

4

8

h1-stand-v0, =2

619K 2M 9M 34M

2

4

8

h1-stand-v0, =4

619K 2M 9M 34M

2

4

8

h1-stand-v0, =8

183K 628K 2M 9M 34M
: UTD

2

4

8

: D
at

a

humanoid-stand, =1

183K 628K 2M 9M 34M
: UTD

2

4

8

humanoid-stand, =2

183K 628K 2M 9M 34M
: UTD

2

4

8

humanoid-stand, =4

183K 628K 2M 9M 34M
: UTD

2

4

8

×1e5 ×1e5 ×1e5 ×1e5

×1e5 ×1e5 ×1e5 ×1e5

×1e5 ×1e5 ×1e5 ×1e5

×1e5 ×1e5 ×1e5 ×1e5
humanoid-stand, =8

500

600

700

J:
Re

tu
rn

300

400

500

600

J:
Re

tu
rn

200

300

400

500

600

J:
Re

tu
rn

300

400

500

600

700

800

J:
Re

tu
rn

Figure 17: Same as Figure 16, but instead grouped by model size N .

30

DMC-medium

32 48 64
16

32

64

* J
: O

pt
im

al
 d

at
a

acrobot-swingup

R2=0.99

16 32 64

16

32

64
cheetah-run

R2=1.00

8 16 32

8

16

32

finger-turn

R2=0.99

16 32 64

16

32

64

fish-swim

R2=0.99

16 32 48
*
J : Optimal budget for J

16

32

64

* J
: O

pt
im

al
 d

at
a

hopper-hop

R2=1.00

8 16 32
*
J : Optimal budget for J

4

8

16

quadruped-run

R2=0.99

8 16 32
*
J : Optimal budget for J

4

8

16

walker-run

R2=0.98

200

250

300

350

400

×1e15

×1e4

500

600

700

×1e15

×1e4

400

600

800

×1e15

×1e4

200

400

600

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e15

×1e4

150

200

250

300

×1e15

×1e4

200

400

600

×1e15

×1e4

400

500

600

700

×1e15

×1e4

DMC-hard

4 6 8
3

4

6

* J
: O

pt
im

al
 d

at
a

dog-run

R2=1.00

1 2 4

1

2

4

dog-stand

R2=1.00

4 6 8

3
4

6

dog-trot

R2=1.00

4 6 8

3
4

6

dog-walk

R2=1.00

4 6 8
*
J : Optimal budget for J

4

6

8

* J
: O

pt
im

al
 d

at
a

humanoid-run

R2=1.00

4 6 8
*
J : Optimal budget for J

3

4

6

humanoid-walk

R2=1.00

100

150

200

250

×1e16

×1e5

250

500

750

×1e16

×1e5

200

400

×1e16

×1e5

200

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e16

×1e5

100

150

×1e16

×1e5

200

400

600

×1e16

×1e5

Figure 18: Optimal data D(F0) for a given budget F0, as a completion of Figure 7.

31

DMC-medium

32 48 64

1016

* J
: O

pt
im

al
 c

om
pu

te

acrobot-swingup

R2=0.89

16 32 64

2 × 1015

3 × 1015

4 × 1015

6 × 1015

cheetah-run

R2=0.98

8 16 32

1016

3 × 1015

4 × 1015

6 × 1015

finger-turn

R2=0.85

16 32 64

3 × 1015

4 × 1015

6 × 1015

fish-swim

R2=-0.10

16 32 48
*
J : Optimal budget for J

1016

3 × 1015

4 × 1015

6 × 1015

* J
: O

pt
im

al
 c

om
pu

te

hopper-hop

R2=0.72

8 16 32
*
J : Optimal budget for J

1016

quadruped-run

R2=0.95

8 16 32
*
J : Optimal budget for J

1015

1016

walker-run

R2=0.92

200

250

300

350

400

×1e15

×None

500

600

700

×1e15

×None

400

600

800

×1e15

×None

200

400

600

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e15

×None

150

200

250

300

×1e15

×None

200

400

600

×1e15

×None

400

500

600

700

×1e15

×None

DMC-hard

4 6 8
8

12

16

* J
: O

pt
im

al
 c

om
pu

te

dog-run

R2=0.97

1 2 4
1

2

4

8
dog-stand

R2=0.92

4 6 8

8

12

16

dog-trot

R2=0.91

4 6 8
6

8

12

dog-walk

R2=0.90

4 6 8
*
J : Optimal budget for J

10

15

20

* J
: O

pt
im

al
 c

om
pu

te

humanoid-run

R2=0.96

4 6 8
*
J : Optimal budget for J

8

12
16

humanoid-walk

R2=1.00

100

150

200

250

×1e16

×1e15

250

500

750

×1e16

×1e15

200

400

×1e16

×1e15

200

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e16

×1e15

100

150

×1e16

×1e15

200

400

600

×1e16

×1e15

Figure 19: Optimal compute C(F0) for a given budget F0, as a completion of Figure 7.

32

DMC-medium

32 48 64
2

4

8

J: O
pt

im
al

 U
TD

acrobot-swingup

R2=-0.61

16 32 64

4

6

8
cheetah-run

R2=0.66

8 16 32
4

8

12

finger-turn

R2=0.47

16 32 64

1
2
4

fish-swim

R2=-0.32

16 32 48
*
J : Optimal budget for J

8

16

32

J: O
pt

im
al

 U
TD

hopper-hop

R2=0.46

8 16 32
*
J : Optimal budget for J

6

8

12
quadruped-run

R2=0.16

8 16 32
*
J : Optimal budget for J

8

12
16

walker-run

R2=-0.14

200

250

300

350

400

×1e15

500

600

700

×1e15
400
500
600
700
800
900

×1e15
200

400

600

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e15

150

200

250

300

×1e15
200

400

600

×1e15

400

500

600

700

×1e15

DMC-hard

4 6 8
2

3

4

J: O
pt

im
al

 U
TD

dog-run

R2=-0.05

1 2 4

2

4

6

dog-stand

R2=0.97

4 6 8
3

4

dog-trot

R2=0.50

4 6 8

3

4
dog-walk

R2=0.18

4 6 8
*
J : Optimal budget for J

3

4

J: O
pt

im
al

 U
TD

humanoid-run

R2=-0.61

4 6 8
*
J : Optimal budget for J

4

5

humanoid-walk

R2=-0.44

100

150

200

250

×1e16

200

400

600

800

×1e16
100

200

300

400

500

×1e16
200

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e16

75

100

125

150

175

×1e16
200

300

400

500

600

×1e16

Figure 20: Optimal UTD ratio σ∗
F (F0) for a given budget F0, as a completion of Figure 8.

33

DMC-medium

32 48 64
8

16

24

N
J: O

pt
im

al
 m

od
el

 si
ze

acrobot-swingup

R2=0.17

16 32 64

10

12

14

cheetah-run

R2=0.39

8 16 32

16

20

24
finger-turn

R2=0.16

16 32 64

16

20
24

fish-swim

R2=-0.92

16 32 48
*
J : Optimal budget for J

4

6
8

N
J: O

pt
im

al
 m

od
el

 si
ze

hopper-hop

R2=-0.05

8 16 32
*
J : Optimal budget for J

16

24

32

quadruped-run

R2=0.64

8 16 32
*
J : Optimal budget for J

8

12
16

walker-run

R2=0.59

200

250

300

350

400

×1e15

×1e5

500

600

700

×1e15

×1e5

400
500
600
700
800
900

×1e15

×1e5

200

400

600

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e15

×1e5

150

200

250

300

×1e15

×1e5

200

400

600

×1e15

×1e5

400

500

600

700

×1e15

×1e5

DMC-hard

4 6 8

3

4

N
J: O

pt
im

al
 m

od
el

 si
ze

dog-run

R2=0.79

1 2 4

1

2

3

dog-stand

R2=0.67

4 6 8
2

3

4
dog-trot

R2=-0.03

4 6 8

2

3
dog-walk

R2=0.70

4 6 8
*
J : Optimal budget for J

2

3

4

N
J: O

pt
im

al
 m

od
el

 si
ze

humanoid-run

R2=0.50

4 6 8
*
J : Optimal budget for J

2

3

humanoid-walk

R2=-1.01

100

150

200

250

×1e16

×1e6

200

400

600

800

×1e16

×1e6

100

200

300

400

500

×1e16

×1e6

200

400

600

800

J:
Pe

rfo
rm

an
ce

 le
ve

l

×1e16

×1e6

75

100

125

150

175

×1e16

×1e6

200

300

400

500

600

×1e16

×1e6

Figure 21: Optimal model size N∗
F (F0) for a given budget F0, as a completion of Figure 8.

Figure 22: Optimal data, compute, UTD, and model size for a given budget F0, run for 50+ seeds on
h1-crawl.

34

	Introduction
	Related Work
	RL Preliminaries and Notation
	A Formal Definition of Compute-Optimal Scaling
	Analyzing the Interplay Between Model Size and Batch Size
	Measuring Overfitting in TD-Learning
	A Mental Model for TD-Overfitting
	The Role of Dynamic Programming in TD-Overfitting

	Prescribing Batch Sizes Using Model Size and the UTD ratio
	Partitioning Compute Optimally Between Model Size and UTD
	Solving []Problem 4.1, Part 1: Maximal Data Efficiency under Compute C0
	Solving []Problem 4.1, Part 2: Resource Partitioning for Different Returns J

	Discussion
	Details on Deriving Scaling Fits
	Maximal compute efficiency for data D0
	Maximal data efficiency for compute C0
	Maximal performance for budget F0

	Experiment Details
	Hyperparameter Sweep Details
	Detailed Explanations for How to Obtain Main Paper Figures

	Additional Details on the Fitting Procedure
	Additional Experimental Results
	Batch Size Fits (, N)
	Batch Size Fit Analysis
	Learning Rate Sensitivity Analysis
	Target Network Update Rate Sensitivity Analysis
	Full TD-error curves
	Passive Critic Learning Curves
	Data Efficiency Fits DJ(, N)
	Optimal Budget Partition

