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Abstract

Data augmentation has been widely used in ma-
chine learning. Its main goal is to transform and
expand the original data using various techniques,
creating a more diverse and enriched training
dataset. However, due to the disorder and irregu-
larity of point clouds, existing methods struggle to
enrich geometric diversity and maintain topologi-
cal consistency, leading to imprecise point cloud
understanding. In this paper, we propose SinPoint,
a novel method designed to preserve the topologi-
cal structure of the original point cloud through
a homeomorphism. It utilizes the Sine function
to generate smooth displacements. This simulates
object deformations, thereby producing a rich di-
versity of samples. In addition, we propose a
Markov chain Augmentation Process to further ex-
pand the data distribution by combining different
basic transformations through a random process.
Our extensive experiments demonstrate that our
method consistently outperforms existing Mixup
and Deformation methods on various benchmark
point cloud datasets, improving performance for
shape classification and part segmentation tasks.
Specifically, when used with PointNet++ and
DGCNN, our method achieves a state-of-the-art
accuracy of 90.2 in shape classification with the
real-world ScanObjectNN dataset. We release the
code at https://github.com/CSBJian/SinPoint.
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Figure 1. SinPoint ensures a smooth and natural deformation pro-
cess, avoiding abrupt or unnatural changes. PointWOLF can lead
to data distortion and significant semantic deviation.

1. Introduction
In machine learning and deep learning, both the quality and
quantity of data are key factors in determining the perfor-
mance of the model. However, in practical applications,
obtaining a large amount of high-quality training data is
often challenging, and the data itself may be biased, pre-
venting the model from fully capturing the relevant features
during training. These challenges have driven the develop-
ment of Data Augmentation (DA) techniques. By applying
various transformations to the original data, more diverse
training samples can be generated, which helps mitigate
the negative effects of insufficient data or distribution bias,
thereby improving the model’s generalization ability.

From a statistical perspective, the main purpose of data aug-
mentation is to expand the distribution of training data. This
allows the model to learn the diversity of the data and avoid
over-reliance on specific patterns. Data augmentation ap-
plies transformations to the original data distribution, creat-
ing an extended one. The expectation is that the augmented
distribution resembles the original, but with increased vari-
ance and a broader sample space. This approach enhances
data diversity, reduces the model’s dependence on specific
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Figure 2. Some augmented samples produced by SinPoint-SSF (left) and SinPoint-MSF (right). The color is close to pink, the deformation
is more significant. The data generated by the SinPoint-SSF object has only a single peak, while the samples from SinPoint-MSF have
multiple distinct peaks.

samples, and helps it capture more general patterns.

In recent years, DA has shown significant success in han-
dling image data. Various methods, such as Cutout (De-
Vries & Taylor, 2017; Zhong et al., 2020), Mixup (Zhang
et al., 2017), Cutmix (Yun et al., 2019), and other methods
(Verma et al., 2019; Yang et al., 2022), have been utilized
to augment images and enhance the robustness and gen-
eralizability of models. However, unlike regular images,
point clouds are disordered and irregular, making it chal-
lenging to apply these DA methods directly to the point
cloud data. Some existing point cloud DA methods only
focus on a single type of operation, such as simple geomet-
ric transformations (rotation, scaling, and translation), data
perturbations (adding noise and deleting points), or hybrid
operations (simulated mixtures of images (Chen et al., 2020;
Lee et al., 2022; 2021; Zhang et al., 2022; Ren et al., 2022;
Wang et al., 2024)). While these methods may improve
data diversity to some extent, they often overlook the point
cloud’s intrinsic structure and semantic details, resulting in
a loss of topological consistency in the augmented point
cloud. For instance, PointMixup (Chen et al., 2020), Point-
CutMix (Zhang et al., 2022), and SageMix (Lee et al., 2022)
all use different strategies to mix samples, but they do not
consider the local structure of each sample. PointAugment
(Li et al., 2020) relies on a learnable transformation matrix,
making the outcome unpredictable. Similarly, PointWOLF
(Kim et al., 2021) transforms local point clouds using a
combination of strategies, which can lead to data distortion
and significant semantic deviation, as shown in Figure 1.

In this paper, we analyze the essential reasons why data
augmentation improves the model performance from a sta-
tistical point of view. On this basis, we propose a novel
SinPoint transformation technique based on a homeomor-
phism (Derrick, 1973) to address these issues mentioned
above. SinPoint aims to preserve the topological structure
of the original point cloud by a homeomorphism and per-
turb the local structure using a Sine function to simulate
the deformation of objects, thereby expanding the diversity
of point clouds. We design two deformation strategies, as

shown in Figure 2. One is to use a Single Sine Function
(SinPoint-SSF) with the initial phase as the origin to deform
the point cloud. The other is to use Multiple Sine Function
(SinPoint-MSF), with different anchor points as the initial
phase. The sine transforms of different parameters are super-
imposed to obtain richer deformations. Finally, we propose
a Markov chain augmentation framework. We further get
more semantically consistent samples by random combi-
nation of multiple basic transformations, and expand the
distribution space of training samples. We experimentally
demonstrate that SinPoint outperforms the state-of-the-art
point cloud augmentation method on multiple datasets.

Our main contributions can be summarized as follows:

• We analyze the data augmentation from a statistical
perspective. This expands the distribution boundary of
the dataset and increases its variance.

• We prove that the proposed Sine-based mapping func-
tion is a homeomorphism. In theory, it increases the
diversity of point clouds without destroying the topo-
logical structure.

• We propose a new Markov chain augmentation frame-
work that increases sample diversity by randomly com-
bining different foundational transformations to ex-
pand the distribution space of the dataset. expand the
dataset’s distribution space.

• We demonstrate the effectiveness of our framework
by showing consistent improvements over state-of-the-
art augmentation methods on both synthetic and real-
world datasets in 3D shape classification and part seg-
mentation tasks.

2. Related Work
Deep learning on point cloud. PointNet (Qi et al., 2017a)
is a pioneering work that uses shared MLPs to encode each
point individually and aggregates all point features through
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global pooling. Inspired by CNNs, PointNet++ (Qi et al.,
2017b) adopts a hierarchical multi-scale or weighted feature
aggregation scheme to get local features. DGCNN (Wang
et al., 2019b) introduces EdgeConv, which utilizes edge
features from the dynamically updated graph. Addition-
ally, various works have focused on point-wise multi-layer
perceptron (Liu et al., 2020; Xu et al., 2021b; Shen et al.,
2018; Ma et al., 2022; Qian et al., 2022; Zhang et al., 2023),
convolution (Li et al., 2018; Wu et al., 2019; Thomas et al.,
2019; Lin et al., 2020a; Xu et al., 2021a; Liu et al., 2019) ,
and graph-based (Simonovsky & Komodakis, 2017; Wang
et al., 2019a; Lin et al., 2020b; 2021) methods to process
point clouds. These methods consistently use Conventional
Data Augmentation (CDA) (Qi et al., 2017a;b; Wang et al.,
2019b) to improve the model’s robust kernel generalization
performance, but the improvement is relatively marginal.
Parallel to these approaches, other recent works (Chen et al.,
2020; Li et al., 2020; Lee et al., 2022; 2021; Zhang et al.,
2022; Kim et al., 2021; Ren et al., 2022; Hong et al., 2023)
focus on data augmentation to improve the generalization
power of deep neural networks in point clouds.

Data augmentation on point cloud. Current point
cloud augmentation methods can be divided into two cat-
egories: self-augmentation and mix-augmentation. Self-
augmentation through geometric transformation to augment
the shape diversity of the point cloud. For instance, CDA
(Qi et al., 2017a;b; Wang et al., 2019b) encompasses ge-
ometric transformations like rotation, scaling, translation,
and jittering, alongside the addition of noise and point re-
duction to enhance sample diversity. PointAugment (Li
et al., 2020) learn the transformation matrix with an aug-
mented network to produce augmentations. PointWOLF
(Kim et al., 2021) selects various anchor points to serve
as central points for the local point cloud’s weighted trans-
formation, leading to smooth and varied non-rigid defor-
mations. Mix-augmentation uses different strategies to cut
and combine two point clouds to form a new point cloud
that contains two local shapes. For example, PointMixup
(Chen et al., 2020) recently used the shortest path linear
interpolation between instances to augment data in the point
cloud. PointCutMix (Zhang et al., 2022) benefits from Cut-
Mixup and PointMixup, and proposes cutting and pasting
of point cloud parts. SageMix (Lee et al., 2022) proposes a
saliency-guided Mixup for point clouds to preserve salient
local structures.

3. Data Augmentation Effectiveness Analysis
Augmented data is obtained through a series of transforma-
tions or operations on the original data. Here, we analyze
the properties of the augmented data distribution in terms of
its variance. First, we define the variance of the given data
as follows:

Definition 1. (Data Variance) For the training dataset
X = {x1, x2, ..., xn}, the variance of the model’s predic-
tion f(xi) for each sample xi is expressed as:

VarX =
1

n

n∑
i=1

(E[f(xi)]− f(xi))
2
, (1)

where, E[f(xi)] is the mean of the dataset X , Var(X) is the
variance of the model on the dataset X , which is a measure
of the effect of the volatility of the training data on the
model’s prediction results.

With data augmentation, the samples in the original dataset
are expanded into a variety of different variants. Each aug-
mented sample introduces a slight shift from the original
data point, causing the distribution of the data points to
spread. These small shifts accumulate with each transfor-
mation, increasing the differences between the samples and,
consequently, the variance of the dataset. Therefore, we can
summarize the theorem as follows:

Theorem 1. (Data augmentation increases the vari-
ance of the dataset) Given an original dataset X =
{x1, x2, ..., xn}, Suppose that the data augmentation op-
eration T is a random transformation that converts each data
point xi in the original data set into an augmented data point
x′
i, i.e. x′

i = T (xi). (The proof is in the Appendix.)

Var(X) < Var(X ′). (2)

As demonstrated in Theorem 1, generating more diverse
data samples extends the coverage of the data distribution,
which enhances the model’s performance on unseen data
through improved accuracy and stability.

4. Method
4.1. Homeomorphism

The increase in variance reflects the growing diversity of the
dataset, which generally helps improve the model’s adapt-
ability to different scenarios, thereby reducing overfitting.
However, the increase in variance should be moderate; in
other words, the dataset’s diversity should be enhanced
appropriately to boost generalization, but not excessively.
However, existing methods do not address the issue of topo-
logical consistency before and after deformation, leading to
a significant difference between the generated samples and
real samples, as shown in Figure 1. This increases the vari-
ance of the data excessively. To control this, we introduce
homeomorphic mapping to ensure semantic consistency be-
fore and after data augmentation, thereby constraining the
variance changes within the dataset.

Homeomorphism (Derrick, 1973) is an important mathemat-
ical tool used to describe the equivalence relations between
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Figure 3. SinPoint obtains different degrees of geometric deformation by controlling the amplitude and angular velocity ω. In the above,
only two peaks or troughs appear due to the fixed angular velocity ω. In the following, multiple peaks or troughs occur due to the random
angular velocity ω. The darker the color, the larger the deformation.

topological spaces. It keeps the proximity of points in space
unchanged and makes topological Spaces have the same
topological properties.

Definition 2. (Homeomorphism) Given two topological
spaces X,Y , and given a mapping f : X→Y . f is a home-
omorphism of two spaces when it is satisfied that f is a
bijection and f and f−1 are continuous, denoted as X ∼= Y .

Definition 3. (Local homeomorphism) Let f : X→Y
is a mapping between two topological spaces X and Y .
If for every point x in X , exists a neighborhood U of x
such that f(U) is an open set in X and fU : U→f(U) is a
homeomorphism, then f is a local homeomorphism.

They have similar mathematical properties, both of which
require the mapping and its inverse mapping to be con-
tinuous and maintain the topological structure of the
space(Armstrong, 2013).

Proposition 1. (Topological consistency) If f is a home-
omorphism from X to Y , then X and Y have the same
topological properties.

Proposition 2. (Reflexivity, symmetry, and transitivity)
The homeomorphic relation is an equivalence relation, and
therefore it has reflexivity (any topological space is a home-
omorphism to itself), symmetry (if X∼=Y , then Y∼=X), and
transitivity (if Y∼=Z, then X∼=Z).

Homeomorphism plays a vital role in ensuring topological
consistency. First, a homeomorphism is not only one-to-one
(bijective) and continuous, but its inverse is also continu-
ous. This guarantees the preservation of the space topology.
Second, when processing point clouds, using a homeomor-
phism can ensure that the basic shape and structure of the
point cloud remain unaltered after augmentation or transfor-
mation, thus making the augmented data more consistent
with the actual scene or object.

4.2. Residual Function

Inspired by the deep residual network (He et al., 2016),
we focus on obtaining continuous residual coordinates and
generating augmented coordinates by adding offsets to the
original coordinates. Specifically, for a given point cloud
P = {p1, p2, ..., pn}, we only need to compute the residual
coordinates, represented by P

′ − P , thus the augmentation
process becomes:

P
′
= P + g(P ). (3)

A homeomorphism can ensure that the original space and the
deformed space have topological consistency. Therefore, it
is very important to select the appropriate residual function,
which not only gains diversity but also needs to guarantee
that the whole mapping is homeomorphic.

4.3. SinPoint

To obtain topologically consistent deformation, we have
chosen to use the Sine function as our residual function.
The inherent periodic nature of the Sine function allows
us to adjust the number of regions that are deformed with
precision. Additionally, by manipulating the amplitude of
the Sine function, we can precisely control the intensity
of the deformation. This displacement field, generated by
the Sine function, effectively distorts and deforms specific
local regions of the point cloud data without altering the
overall topology. As a result, the augmented point cloud
data contains more intricate and detailed local features. The
standard Sine function is shown below:

g(x) = Asin(ωx+ φ), (4)

where A, ω, and φ represent the amplitude, the angular ve-
locity (control period), and the initial phase, respectively.
The displacement field generated by Sine function is intro-
duced into a homeomorphism, and a homeomorphism based
on Sine function can be obtained.
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Figure 4. Markov Chain Augmentation Process. X0 is the input
sample, XT enhances the sample l, and T1 − T3 is a different
transformation. By randomly transferring input samples through
Markov process, more diverse enhanced samples can be obtained.

Theorem 2. (Homeomorphism Based on Sine Function)
Given two topological spaces X,Y , and given a mapping
f : X→Y = X+Asin(ωX+φ), if−1≤Aω≤1, then f is
a homeomorphism, else f is a local homeomorphism. (The
proof is in the Appendix.)

Since f is a homeomorphism, we can use it to augment the
point cloud and ensure its topological consistency. Mean-
while, this is a class-preserving transformation, ensuring the
consistency of the label before and after the deformation.
Given a set of points P = {p1, p2, ..., pn}, where N repre-
sents the number of points in the Euclidean space (x, y, z).
SinPoint applies a homeomorphism and the resulting aug-
mented point cloud P

′
is given as follows:

P
′
= P +Asin(ωP + φ), (5)

where Asin(ωP + φ) is displacement field of P . We need
to adjust A and ω to produce more diverse point clouds. In
this paper, we set A ∼ U(−a, a) and ω ∼ U(−w,w) to
obey the uniform distribution. In this way, more samples
with smooth deformation can be generated, which makes
the distribution of samples more uniform.

As illustrated in Figure 3, the transformation of the circle
by Equation (5) results in continuous local indentations on
the point cloud surface, attributable to the Sine function’s
periodic nature. This deformation technique enables the
simulation of a concavity similar to that observed when
an object is indented while preserving the point cloud’s
topology structure.

Since classification tasks are sensitive to global shapes, seg-
mentation tasks rely on local structures. We designed two
transformation strategies for SinPoint, SinPoint-SSF based
on a single sine function for classification and SinPoint-
MSF based on the superposition of multiple sine functions

Algorithm 1 SinPoint Without Markov
Input: Original point clouds P = {p1, p2, ..., pn}

Condition key for SinPoint-SSF or SinPoint-MSF
Anchor points number k, Amplitude a
Angular velocity ω

Output: P
′

if key == “SSF”
Sample A ∼ U(−a, a)
Sample ω ∼ U(−w,w)
P

′ ← P +Asin(ωP )
else if key == “MSF”

if using farthest point sampling
pi ← FPS(P, k), #FPS() is farthest point sam-
pling

else if using random point sampling
pi ← RPS(P, k), #RPS() is random point sam-
pling

end if
Sample Ai ∼ U(−a, a), i = 1 : k
Sample ωi ∼ U(−w,w), i = 1 : k

P
′ ← P + 1

k

∑k
i=1{Aisin(ωiP + pi)}

end if
Return P

′

for segmentation. Algorithm 1 is the process of generating
augmented samples.

SinPoint-SSF uses a single sine function to perturb the
coordinates of the point cloud. We normalize the point
cloud to the unit sphere space and take the sphere’s center
as the initial phase, that is, φ = 0. Then the SinPoint-SSF
transformed point cloud can be expressed as follows:

P
′
= P +Asin(ωP ). (6)

SinPoint-MSF superposes multiple sine functions to per-
turb the point cloud. Multiple sinusoidal complex waves
exhibit rich waveform characteristics through diverse com-
binations of frequency, amplitude and phase. SinPoint-MSF
first selects k anchor points as the initial phase and sam-
ples different amplitudes and angular velocities for additive
perturbations. This provides more diversity to the point
cloud and generates realistic samples. The transformation
of SinPoint-MSF as follows:

P
′
= P +

1

k

k∑
i=1

{Aisin(ωiP + φi)}, φi = pi. (7)

4.4. Markov Chain Augmentation Process

Markov process is a random process without memory, that
is, the future state depends only on the present state and
has nothing to do with the past history. According to Theo-
rem 1, more effective augmented samples are beneficial to
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Figure 5. An overview of our SinPoint framework. We use SinPoint to get the augmented point cloud and input it into the network with
the original point cloud for training. SinPoint can be adapted for a variety of tasks due to label consistency and topological consistency.

the model. To generate more diverse augmented samples
and further enhance the model’s performance, we propose a
Markov Chain Augmentation Framework, as shown in Fig-
ure 4, inspired by the general approach of combining various
types of transformations. We treat each transformation as a
transition matrix, and through multiple transitions, we can
obtain a combination of different transformations to further
increase the diversity of the data. For example, the transfor-
mation sequence may be {T1}, {T1, T2},{T1, T2, T3}.

It is common practice to select a set of augmentations (e.g.,
for point clouds: rotation, translation, scaling, dropout, etc.)
and generate synthetic examples by applying a sequence
of these augmentations to an original data point. To model
this process, we propose the following procedure: given a
data point, we randomly choose augmentations from a set
and apply them sequentially. To prevent excessive deviation
from the original data, there is a certain probability that we
discard the point and restart from a random point in the
original dataset. We formalize this approach below.

Definition 4. (Markov Chain Augmentation Process)
Given a dataset of n examples X = {x1, x2, ..., xn},
we augment the dataset via augmentation transformations
T1, T2, ..., Tm, which are stochastic transition matrices over
a finite state space of possible labeled (augmented) exam-
ples. We model this via a discrete time Markov chain with
the transitions: The probability of the transition is set to
1/m, and the maximum number of transitions is m.

From Definition 4, by conditioning on the chosen transition,
it is clear that the entire process is equivalent to a Markov
chain. Note that the transition matrices Tj do not need to be
explicitly materialized; instead, they are implicit based on
the description of the augmentation.

4.5. Framework

Our complete framework is shown in Figure 5. Our frame-
work includes SinPoint, Markov process and sample mixing.

SinPoint maps the point cloud input to a feature space with
topological consistency. By incorporating augmented inputs
generated by SinPoint, the training process optimizes the
backbone’s parameters in a larger feature space than the
baseline. Markov process uses multiple basic affine trans-
formations to further expand the sample space. Note that
the Markov process and sample mixing are attached to
the SinPoint. During the training stage, by utilizing the
same loss function as the baseline and optimizing the model
in this new augmented feature space, our method learns a
more expressive representation that better fits the input data,
leading to improved generalization. During inference, the
model uses the original point cloud input to preserve the
data’s geometric structure, ensuring no disruption to geomet-
ric priors in practical applications. Our method maintains
point cloud geometric and topological properties. It also ex-
tracts more discriminative features, significantly enhancing
overall model performance.

5. Experiments
In this section, we demonstrate the effectiveness of our pro-
posed method, SinPoint, with various benchmark datasets
and baselines. First, for 3D shape classification, we evalu-
ate the generalization performance and robustness using
SinPoint-SSF in classification. Next, we compare our
SinPoint-MSF with existing data augmentation methods
in part segmentation. More ablation studies and implemen-
tation details are provided in Appendix.

Datasets. For classification task, we use two synthetic
datasets: ModelNet40 (Wu et al., 2015) and ReducedMN40,
and two real-world datasets from ScanObjectNN (Uy et al.,
2019): OBJ ONLY and PB T50 RS. For the part segmen-
tation task, we adopt a synthetic dataset, ShapeNetPart (Yi
et al., 2016).

Baselines. For a fair comparison with different data aug-
mentation methods, we use the same backbone network:
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Table 1. 3D shape classification performance on ModelNet40 /ScanObjectNN using SinPoint-SSF

Model Method Synthetic Datasets Real-world Datasets
ModelNet40 ReducedMN40 OBJ ONLY PB T50 RS

PointNet

Base 89.2 81.9 76.1 64.1
+PointAugment (Li et al., 2020) 90.9 84.1 74.4 57.0
+PointMixup (Chen et al., 2020) 89.9 83.4 - -
+PatchAugment (Sheshappanavar et al., 2021) 90.9 - - -
+PointWOLF (Kim et al., 2021) 91.1 85.7 78.7 67.1
+RSMix (Lee et al., 2021) 88.7 - - -
+SageMix (Lee et al., 2022) 90.3 - 79.5 66.1
+PointCutMix (Zhang et al., 2022) 90.5 - - -
+WOLFMix (Ren et al., 2022) 90.7 - - -
+PCSalMix (Hong et al., 2023) 90.5 - - -
+PointPatchMix (Wang et al., 2024) 90.1 - - -
+SinPoint(Ours) 91.3 (↑ 2.1) 86.5 (↑ 4.6) 82.6 (↑ 6.5) 70.8 (↑ 6.7)

PointNet++

Base 90.7 85.9 84.3 79.4
+PointAugment (Li et al., 2020) 92.9 87.0 85.4 77.9
+PointMixup (Chen et al., 2020) 92.3 88.6 88.5 80.6
+PatchAugment (Sheshappanavar et al., 2021) 92.4 - 87.1 81.0
+PointWOLF (Kim et al., 2021) 93.2 88.7 89.7 84.1
+RSMix (Lee et al., 2021) 91.6 - - -
+SageMix (Lee et al., 2022) 93.3 - 88.7 83.7
+PointCutMix (Zhang et al., 2022) 93.4 - - -
+WOLFMix (Ren et al., 2022) 93.1 - - -
+PCSalMix (Hong et al., 2023) 93.1 - - -
+PointPatchMix (Wang et al., 2024) 92.9 - - -
+SinPoint(Ours) 93.4 (↑ 2.7) 89.6 (↑ 3.7) 90.2 (↑ 5.9) 84.5 (↑ 5.1)

DGCNN

Base 92.2 87.5 86.2 77.3
+PointAugment (Li et al., 2020) 93.4 88.3 83.1 76.8
+PointMixup (Chen et al., 2020) 92.9 89.0 - -
+PatchAugment (Sheshappanavar et al., 2021) 93.1 - 86.9 79.1
+PointWOLF (Kim et al., 2021) 93.2 89.3 88.8 81.6
+RSMix (Lee et al., 2021) 93.5 - - -
+SageMix (Lee et al., 2022) 93.6 - 88.0 83.6
+PointCutMix (Zhang et al., 2022) 93.2 - - -
+WOLFMix (Ren et al., 2022) 93.2 - - -
+PCSalMix (Hong et al., 2023) 93.2 - - -
+SinPoint(Ours) 93.7 (↑ 1.5) 90.1 (↑ 2.6) 90.2 (↑ 4.0) 84.6 (↑ 7.3)

including PointNet (Qi et al., 2017a), PointNet++ (Qi et al.,
2017b), and DGCNN (Wang et al., 2019b). These back-
bones can more clearly show the impact of data augmenta-
tion on model performance. To further verify the validity of
SinPoint, we have added a comparison of various backbone
networks in the Appendix.

5.1. 3D Shape Classification

Comparisons with SOTA Methods. Experimental results
of 3D shape classification are shown in Table 1. We re-
port the Overall Accuracy (OA) of each model on all four
datasets. From the results, we can clearly see that our Sin-
Point significantly outperforms all of the previous methods
in every dataset and model. Particularly, the average OA

improvement on the synthetic datasets is 2.6%, and the av-
erage OA improvement on the real-world datasets is even
5.9%, and the maximum improvement was DGCNN reach-
ing 7.3% in PB T50 RS. It proves that our SinPoint is more
efficient on real data sets. These consistent improvements
demonstrate the effectiveness of our framework.

3D shape classification performance under Various Net-
work Backbones. The effectiveness of SinPoint is further
validated across a variety of network architectures in Mod-
elNet40 (Wu et al., 2015) and ScanObjectNN (Uy et al.,
2019), including PointNet (Qi et al., 2017a), PointNet++
(Qi et al., 2017b), DGCNN (Wang et al., 2019b), RSCNN
(Liu et al., 2019), PointConv (Wu et al., 2019), PointCNN
(Li et al., 2018), GDANet (Xu et al., 2021b), PCT (Guo
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Table 2. 3D shape classification performance in various architectures on ModelNet40.
Model PointNet PointNet++ DGCNN RSCNN PointConv PointCNN GDANet PCT PointMLP
Param. - 1.4M 1.8M - 18.6M - - 2.8M 12.6M

Base 89.2 90.7 92.2 91.7 92.5 92.5 93.4 93.2 94.1
+SinPoint 91.3 (↑ 2.1) 93.4 (↑ 2.7) 93.7 (↑ 1.5) 92.9 (↑ 1.2) 92.8 (↑ 0.3) 93.2 (↑ 0.7) 93.6 (↑ 0.2) 93.5 (↑ 0.3) 94.3 (↑ 0.2)

et al., 2021) and PointMLP (Ma et al., 2022), PointNeXt-
S (Qian et al., 2022), PointMetaBase-S (Lin et al., 2023),
SPoTr (Park et al., 2023). From Table 2, we observe that
SinPoint has a consistent improvement of accuracy against
the baselines (+0.2∼2.7%). Notably, using the basic Point-
Net++ and DGCNN, we can surpass the Transformer-based
baseline PCT while reducing the parameters by half. This
reduction compensates for the parameter deficiency in the
network through data augmentation alone. Surprisingly,
DGCNN+SinPoint is only 0.4% lower than PointMLP, but
the parameters are 7 times lower.

5.2. 3D Shape Part Segmentation

Next, we test SinPoint for 3D shape part segmentation task
on the ShapeNetPart (Yi et al., 2016) benchmark. We follow
the settings from PointNet, PointNet++ and DGCNN that
randomly select 2048 points as input for a fair comparison.
We compare our methods with several recent methods, in-
cluding PointMixup (Chen et al., 2020), RSMix (Lee et al.,
2021), SageMix (Lee et al., 2022) and PointWOLF (Kim
et al., 2021). Table 3 shows that on ShapeNetPart, SinPoint-
MSF consistently improves mean IoU (mIoU) over baselines
(1.0% over PointNet++ and 0.7% over DGCNN), demon-
strating the applicability of SinPoint-MSF to point-wise
tasks. Clearly, SinPoint-MSF achieves the SOTA perfor-
mance in part segmentation. Furthermore, in the Appendix,
we offer comparisons against a variety baseline models,
where our SinPoint consistently outperforms others. Finally,
in Figure 6, we present the visualization results for Sinpoint
and baseline. Our method can improve the segmentation
performance of the model in detail.

5.3. Ablation Studies

Robustness. Additional studies demonstrate our SinPoint
improves the robustness of models against previous methods
(Chen et al., 2020; Lee et al., 2021; 2022) on four types of
corruption: (1) Gaussian noise with (σ ∈ (0.01, 0.05), (2)
Rotation 180o (X-axis,Z-axis), (3) Scaling with a factor
in 0.6, 2.0, and (4) Dropout with a rate r ∈ {0.25, 0.50}.
We adopt DGCNN and OBJ ONLY to evaluate the robust-
ness of models. As shown in Table 4, SinPoint consistently
improves robustness in various corruptions. DGCNN with
SinPoint shows the best robustness with significant gains
compared to previous methods. Importantly, the gain over
the baseline significantly increases as the amount of corrup-

Figure 6. 3D part segmentation experiment visualization results.

tion increases: 13.1% for Gaussian noise (σ : 0.05), 11.7%
for Rotation 180° (Z-axis), 2.6% for Scaling in 2.0, and 3.8%
for Dropout (r = 0.5). We believe that the diverse samples
augmented by a homeomorphism in SinPoint help models
to learn more robust features against various corruptions.

Ablation study of modules. Table 5 summarizes the results
of the ablation study on DGCNN. Model A gives a baseline
classification accuracy of 91.7%. On top of Model A, we
use a combination of different augmentations. From the
results shown in Table 5, we can see that each augmentation
function contributes to producing more effective augmented
samples. It is worth noting that when only SinPoint is used,
the results already surpass A, and B, while using a mixture
of original and augmented samples can again improve the
generalization performance of DGCNN. Moreover, when
using more modules, the model’s generalization ability is
further improved to 93.7%, an improvement of 2.0% over
the vanilla. This means that the more effective the aug-
mented samples, the greater the improvement of the model,
and Theorem 1 is further confirmed experimentally.

Ablation study of SinPoint with SSF and MSF. We further
verify the performance difference between SinPoint-SSF
and SinPoint-MSF in the classification and segmentation
tasks. As shown in Table 6, SinPoint-SSF is suitable for
classification tasks, and SinPoint-MSF is suitable for seg-
mentation tasks. In classification tasks, a single sine trans-
formation can better enhance the global characteristics of
the data, avoid unnecessary complexity, and help improve
classification performance. In the segmentation tasks, the
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Table 3. Complete part segmentation results (mIoU) on ShapeNetPart (Yi et al., 2016) using SinPoint-MSF.

Model Base +CDA +PointMixup +RSMix +SageMix +PointWOLF +SinPoint(Ours)

PointNet++ 84.8 85.1 85.5 85.4 85.7 85.2 85.8 (↑ 1.0)
DGCNN 84.8 85.0 85.3 85.2 85.4 85.2 85.5 (↑ 0.7)

Table 4. Robustness with DGCNN (Wang et al., 2019b) on
OBJ ONLY (Uy et al., 2019)

Method Gaussian noise Rotation 180o Scaling Dropout
σ:0.01 σ:0.05 X-axis Z-axis ×0.6 ×2.0 25% 50%

DGCNN 84.9 48.4 32.5 32.4 73.7 73.0 83.3 75.7
+ PointMixup 85.0 61.3 31.7 32.7 73.8 73.0 84.2 74.9
+ RSMix 84.2 49.1 32.7 32.6 75.0 74.5 84.0 73.6
+ SageMix 85.7 51.2 36.5 37.9 75.6 75.2 84.9 79.0
+ SinPoint 85.9 61.5 38.6 44.1 76.1 75.6 85.1 79.5

Table 5. Ablation study of SinPoint on ModelNet40 (Wu et al.,
2015). Mix: mixed training samples.

DGCNN SinPoint Markov Mix OA Inc.↑
A 91.7 -
B ✓ 92.7 1.0
C ✓ 92.9 1.2
D ✓ ✓ 93.0 1.3
E ✓ ✓ 93.4 1.7
F ✓ ✓ 93.2 1.5
G ✓ ✓ ✓ 93.7 2.0

Table 6. Ablation study of SinPoint with SSF and MSF.

DGCNN OBJ ONLY (OA) ShapeNetPart (mIoU)
+SinPoint Classification Segmentation

SSF 90.2 85.3
MSF 89.8 85.5

composite transformation of multiple sine transformation
superpositions provides more diverse local details, thereby
improving the segmentation accuracy.

Ablation study of amplitude A and angular velocity ω
sampling. We explore the effectiveness of amplitude A and
angular velocity ω sampling. Table 7 shows the results with
various sampling methods for amplitude A and angular ve-
locity ω. Uniform and Gaussian sampling introduce +3.9%
and 2.8% gains over base DGCNN. The OA with Uniform
sampling is 2.1% higher than Gaussian sampling, which
means that uniform sampling leads to greater diversity and
maximizes model performance.

Performance on scene segmentation. We added additional
experiments to the S3DIS (Armeni et al., 2016) and Se-
manticKITTI (Behley et al., 2019) datasets. As shown in
Table 8, our SinPoint is still able to improve MinkNet (Choy

Table 7. Ablation study A and ω sampling.

OA mAcc

base 85.829±0.296 83.375±0.395
Uniform 89.759±0.431 88.636±0.445
Gaussian 87.607±0.344 85.494±0.409

Table 8. SinPoint on S3DIS and SemanticKITTI.
Method S3DIS SemanticKITTI

MinkNet 64.8 55.9
+SinPoint (Ours) 65.4 (↑ 0.6) 63.5 (↑ 7.6)

et al., 2019) performance. This also shows that our SinPoint
is also suitable for scene tasks.

6. Conclusion
We propose SinPoint, a novel point cloud augmentation
framework that combines Sine transformation grounded
in homeomorphism and Markov process. The homeomor-
phism ensures topological consistency between the data be-
fore and after the sine transformation, while the Markov pro-
cess generates more diverse augmented samples through the
superposition of multiple transformations. We conducted
extensive experiments and demonstrated how SinPoint im-
proves the performance of three representative networks on
multiple datasets. Our findings show that the augmentations
we produce are visually realistic and beneficial to the mod-
els, further validating the importance of our approach to
understanding the local structure of point clouds.
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A. Datasets
ModelNet40 is a widely used synthetic benchmark dataset containing 9840 CAD models in the training set and 2468 CAD
models in the validation set, with a total 40 classes of common object categories. ReducedMN40 comes from PointMixup
(Chen et al., 2020) and only contains 20% training samples to simulate data scarcity. ScanObjectNN is a real-world dataset
that is split into 80% for training and 20% for evaluation. Among the variants of ScanObjectNN, we adopt the simplest
version (OBJ ONLY) and the most challenging version (PB T50 RS). OBJ ONLY, which has 2,309 and 581 scanned objects
for the training and validation sets, respectively, and PB T50 RS, which is a perturbed version with 11,416 and 2,882
scanned objects for the training and validation sets, respectively. Both have 15 classes. We use only coordinates (x, y, z) of
1024 points for training models without additional information, such as the normal vector. For the part segmentation task,
we adopt a synthetic dataset, ShapeNetPart (Yi et al., 2016), which contains 14,007 and 2,874 samples for training and
validation sets. ShapeNetPart consists of 16 classes with 50 part labels. Each class has 2 to 6 parts.

B. A Implementation Detail
We conduct experiments using Python and PyTorch with two NVIDIA TITAN RTX for point clouds. Following the original
configuration in (Qi et al., 2017a;b; Wang et al., 2019b), we use the SGD optimizer with an initial learning rate of 10−1 and
weight decay of 10−3 for PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b) and SGD with an initial learning
rate of 10−2 and weight decay of 10−4 for DGCNN (Wang et al., 2019b). We train models with a batch size of 32 for 300
epochs. For hyperparameters of SinPoint-SSF and SinPoint-MSF, we opt A = 0.6, w = 2.5, k = 4 in the entire experiment.
In the Markov chain augmentation process, we choose scaling, shifting, rotation and jittering as the base transformation,
then m = 4 and the transition probability is 25%.

C. Proof
Theorem 1. (Data augmentation increases the variance of the dataset) Given a original dataset X = {x1, x2, ..., xn},
Suppose that the data augmentation operation T is a random transformation that converts each data point xi in the original
data set into an augmented data point x′

i, i.e. x′
i = T (xi). So Var(X) < Var(X ′).

Proof: Suppose that the transformation T introduces a random disturbance to each data point ϵi, i.e. :

x′
i = xi + ϵi, (8)

where ϵi is a random variable from a distribution, representing random changes in the data augmentation process. For
computational simplicity, we assume that the mean of this random disturbance is zero, that is, E[ϵi] = 0, and the variance is
Var(ϵi) = ρ2ϵi .

Next, we calculate the variance Var(X ′) of the augmented dataset:

Var(X ′) =
1

n

n∑
i=1

(x′
i − µ′

X)2 =
1

n

n∑
i=1

(xi + ϵi − µX)2 (9)

where E[X] = µX . Expanded square term:

Var(X ′) =
1

n

n∑
i=1

[
(xi − µX)2 + 2(xi − µX)ϵi + ϵ2i

]
(10)

We break this formula into three categories:

Var(X ′) =
1

n

n∑
i=1

(xi − µX)2 +
1

n

n∑
i=1

2(xi − µX)ϵi +
1

n

n∑
i=1

ϵ2i (11)

Notice that E[ϵi] = 0, and ϵi is independent of xi, so the second term is zero:

1

n

n∑
i=1

2(xi − µX)ϵi = 0 (12)
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Therefore, the variance of the augmented dataset is simplified to:

Var(X ′) = Var(X) +
1

n

n∑
i=1

ϵ2i (13)

Since ϵi is a random disturbance with a variance of ρ2ϵi , therefore:

1

n

n∑
i=1

ϵ2i ≈ σ2
ϵ (14)

Thus, the variance of the enhanced data set can be expressed as:

Var(X ′) = Var(X) + σ2
ϵ (15)

Since ρ2ϵi > 0, data augmentation necessarily leads to an increase in variance.

Theorem 2. (Homeomorphism Based on Sine Function) Given two topological spaces X,Y , and given a mapping
f : X→Y = X +Asin(ωX + φ), if −1≤Aω≤1, then f is a homeomorphism, else f is a local homeomorphism.

1) Proof: if −1≤Aω≤1, then f is a homeomorphism

Step 1: Continuous

Let g(x) = x, h(x) = Asin(ωx+ φ), x ∈ R. Since g(x) = x is a continuous function and h(x) = Asin(ωx+ φ) is also
a continuous function, then f(x) = g(x) + h(x) = x+Asin(ωx+ φ) must be a continuous function.

Step 2: Bijective

Let f(x) = x+Asin(ωx+ φ), x ∈ R. Then f
′
(x) = 1 +Aωcos(ωx+ φ), x ∈ R.

Since Aωcos(ωx+ φ) ∈ [−Aω,Aω]. Next f
′
(x) ∈ [1−Aω, 1 +Aω].

Let f
′
(x) > 0 => 1 +Aωcos(ωx+ φ) > 0 => 1−Aω > 0 => Aω < 1.

Let f
′
(x) < 0 => 1 +Aωcos(ωx+ φ) < 0 => 1 +Aω < 0 => Aω > −1.

As −1 ≤ Aω ≤ 1, f is a monotone function. In this case, ∀Aω ∈ [−1, 1],∃f−1 is f

In this case, ∀Aω ∈ [−1, 1], f must be invertible, and the inverse function of f is f−1.

Thus, f is bijective if and only if −1 ≤ Aω ≤ 1.

Finally, when −1 ≤ Aω ≤ 1, then f : X→Y = X +Asin(ωX + φ) is a homeomorphism.

2) Proof: if Aω∈R, then f is a local homeomorphism

as we konw, h(x) = Asin(ωx+ φ), x ∈ R is a periodic function. where T = 2kπ
ω .

Let 2kπ − pi
2 ≤ ωx+ φ ≤ 2kπ + pi

2 , k ∈ Z, then 2kπ− pi
2 −φ

ω ≤ x ≤ 2kπ+ pi
2 −φ

ω , now f is strictly increasing.

Let 2kπ + pi
2 ≤ ωx+ φ ≤ 2kπ + 3pi

2 , k ∈ Z, then 2kπ+ pi
2 −φ

ω ≤ x ≤ 2kπ+ 3pi
2 −φ

ω , now f is strictly decreasing.

Thus, when Aω∈R, ∀u ∈ R,∃U such that fU is monotone and f is a local homeomorphism.

D. Analysis
D.1. Detailed Analysis of How Our Method Affects Part Boundaries

The Jacobian determinant is a quantity that describes the ’stretching’ or ’shrinking’ properties of the mapping locally. In
practical applications, when the sign of the Jacobian determinant changes, a transition from ’stretching’ to ’shrinking’ may
occur, leading to a folding phenomenon.

Given the mapping P ′ = P + Asin(ωP + ϕ), we can see it as a transformation from P to P ′, where P = (x, y, z) and
P ′ = (x′, y′, z′) denote points in 3D space.
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Calculate the Jacobian.

Set:
g(P ) = Asin(ωP + ϕ). (16)

So the transformation can be written as follows:

P ′ = P + g(P ). (17)

To calculate the Jacobian JP ′(P ) of this transformation, we need to take the derivatives with respect to the components of
P ′ with respect to P separately.

1 Write the component forms of P ′ Suppose each component form is as follows:

x′ = x+Axsin(ωxx+ ϕx). (18)

y′ = y +Aysin(ωyy + ϕy). (19)

z′ = z +Azsin(ωzz + ϕz). (20)

Thus, P ′ = (x′, y′, z′) is obtained by adding P = (x, y, z) to the sine transform of the components.

2 Calculate the elements of the Jacobian matrix.

The Jacobian matrix JP ′(P ) is of the form:

JP ′(P ) =


∂x′
∂x

∂x′
∂y

∂x′
∂z

∂y′

∂x

∂y′

∂y

∂y′

∂z
∂z′
∂x

∂z′
∂y

∂z′
∂z

 (21)

Since x′ depends only on x, y′ depends only on y, and z′ depends only on z, the partial derivative matrix is a diagonal
matrix.

Diagonal elements are computed:
∂x′

∂x
= 1 +Axωxcos(ωxx+ ϕx) (22)

∂y′

∂y
= 1 +Ayωycos(ωyy + ϕy) (23)

∂x′

∂z
= 1 +Azωzcos(ωzz + ϕz) (24)

So the Jacobian matrix is as follows:

JP ′(P ) =

1 +Axωxcos(ωxx+ ϕx) 0 0
0 1 +Ayωycos(ωyy + ϕy) 0
0 0 1 +Azωzcos(ωzz + ϕz)

 (25)

The determinant of this Jacobian is:

det(JP ′(P )) = (1 +Axωxcos(ωxx+ ϕx)) · (1 +Ayωycos(ωyy + ϕy)) · (1 +Azωzcos(ωzz + ϕz)). (26)

If det(JP ′(P )) > 0, the map is orientation-preserving near that point, that is, no direction flip occurs locally.

If det(JP ′(P )) < 0, the map is orientation-reversing near that point, that is, the local direction has been flipped.

Thus, when |Aw| < 1, det(JP ′(P )) > 0, not affecting the part boundaries. When |Aw| > 1, that is, |A| and |w| are
large and in the same direction, the determinant may change sign in different regions, which means that the mapping may
alternately hold or flip directions in different regions. At this time, the determinant of some regions approaches zero or
becomes negative, which may cause the points in local regions to be compressed or collapsed, affecting the part boundaries.
In addition, the degree of specific influence on the boundary is also affected by the parameter. When the parameter value
does not change much, this influence can be ignored.

As shown in Figure 7, selecting too large a parameter can result in folding, which may affect part boundaries. Therefore,
in order to ensure topological consistency and no drastic folding occurs, we choose an appropriate A and w.
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D.2. Detailed Analysis of Label Consistency

1) One-to-one mapping between point clouds and labels.

Given point cloud P = (p1, p2, ..., pn). Each point pi has a corresponding label li. So you can get a one-to-one
correspondence:

p1 → l1, p2 → l2, ..., pn → ln. (27)

This means that for each point pi, it has a corresponding label li, which is associated with the geometric position of the
point.

2) Definition of homeomorphic mapping.

A homeomorphic map f(x) is a map that preserves topology and changes the positions of points but not the relative relations
between them.

If we deform the point cloud by the homeomorphic mapping f(P ), then the new point cloud P ′ is:

P ′ = P + f(P ). (28)

Therefore, each point position of the new point cloud P ′ is p′i = pi + f(pi), that is, each point pi moves to the new position
p′i by mapping f(x).

3) Label consistency.

Since the homeomorphic mapping one-to-one correspondence of points in the point cloud, the index and label of each point
are kept consistent after the point cloud is deformed. In other words, the label li corresponding to the deformed position p′i
does not change. We can obtain the following relationship:

p′1 → p1 → l1, p
′
2 → p2 → l2, ..., p

′
n → pn → ln. (29)

Thus:
p′1 → l1, p

′
2 → l2, ..., p

′
n → ln. (30)

This means that in the deformed point cloud P ′, the label of each point p′i remains the same as the label of pi in the original
point cloud P .

E. Additional Experiments
E.1. Mean and Standard Deviation

Performance oscillation is an essential issue in point cloud benchmarks. However, for a fair comparison with the numbers
reported in PointMixup (Chen et al., 2020) RSMix (Lee et al., 2021), and SageMix (Lee et al., 2022), we followed the
prevalent evaluation metric in point clouds, which reports the best validation accuracy. Apart from this, to make the
experiment fair, like SageMix, we provide the additional results with five runs on OBJ ONLY (Uy et al., 2019) and report
the mean and variance of our method, and the experimental results are shown in Table 9.

Table 9. Mean and standard deviation measures on OBJ ONLY

Method Model
PointNet PointNet++ DGCNN

Base 78.56±0.51 86.14±0.39 85.72±0.44
+PointMixup 78.88±0.28 87.50±0.26 86.26±0.34
+RSMix 77.60±0.56 87.30±0.65 85.88±0.59
+SageMix 79.14±0.30 88.42±0.26 87.32±0.53
+SinPoint(Ours) 82.21±0.36 89.83±0.35 88.64±0.55
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Figure 7. Visualization of ablation results for different parameters of SinPoint.

E.2. Ablation Studies and Analyses

3D shape classification performance under Various Backbones. The effectiveness of SinPoint is further validated across
some of the latest backbones in ScanObjectNN (Uy et al., 2019), including PointMLP (Ma et al., 2022), PointNeXt-S (Qian
et al., 2022), PointMetaBase-S (Lin et al., 2023), SPoTr (Park et al., 2023). As shown in Table 10, our SinPoint can improve
the model’s performance.

Table 10. 3D shape classification performance in various architectures on PB T50 RS

Model PointMLP PointNeXt-S PointMetaBase-S SPoTr
Params. (M) 13.2 1.4 1.4 1.7
FLOPs (G) 31.3 1.6 0.6 10.8
Throughput (ins./sec.) 191 2040 2674 281

Base 85.7 87.7 88.2 88.6
+SinPoint(Ours) 87.5(↑1.8) 88.9(↑1.2) 89.3(↑1.1) 89.5(↑0.9)

Ablation study of amplitude A. The amplitude A of the Sine function controls the degree of deformation in SinPoint.
As shown in Table 11, the larger the A, the larger the deformation. However, in Figure 7, too large deformation will lead
to the loss of local geometric information. Therefore, we need proper deformation. As demonstrated in Theorem 1, data
augmentation amplifies the variance of the data distribution. However, extremes in variance (either excessive or insufficient)
degrade model’s performance. Consequently, controlling the augmentation intensity within an optimal range becomes
imperative.

Table 11. Ablation study of amplitude A.

A 0.2 0.4 0.6 0.8 1.0

OA (%) 88.985 88.812 90.189 89.329 88.985
mAcc (%) 87.811 87.663 89.045 88.642 88.303

3D part segmentation performance under Various Baselines. The effectiveness of SinPoint is further validated across a
variety of network architectures in ShapeNetPart (Yi et al., 2016), including PointNet (Qi et al., 2017a), PointNet++ (Qi
et al., 2017b), DGCNN (Wang et al., 2019b), CurveNet (Xiang et al., 2021), 3DGCN (Lin et al., 2021), GDANet (Xu et al.,
2021b), PointMLP (Ma et al., 2022), SPoTr (Park et al., 2023), PointMetaBase (Lin et al., 2023) and DeLA (Chen et al.,
2023). Table 12 shows that SinPoint has a consistent improvement of mean Inter-over-Union (mIoU) over the baselines
(+0.1∼1.0%).

E.3. Visualization

Convergence analysis. As shown in Figure 8, our SinPoint demonstrates faster convergence during the training phase
and achieves higher accuracy than the baseline. Consistent performance improvement is achieved under various parameter
Settings.

Training efficiency. As shown in Table 13, Our SinPoint achieves the best performance while reducing the time per training
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Table 12. Part segmentation performance in various architectures on ShapeNetPart (Yi et al., 2016). The proposed SinPoint shows
consistent improvements over baselines.
Model PointNet PointNet++ DGCNN CurveNet 3DGCN GDANet PointMLP SPoTr PointMetaBase DeLA

Base 83.5 84.8 84.8 86.6 86.4 86.1 85.8 87.0 86.9 87.0
+SinPoint 84.4 (↑ 0.9) 85.8 (↑ 1.0) 85.5 (↑ 0.7) 86.8 (↑ 0.2) 86.6 (↑ 0.2) 86.2 (↑ 0.1) 86.1 (↑ 0.3) 87.2 (↑ 0.2) 87.3 (↑ 0.4) 87.4 (↑ 0.4)

Figure 8. Convergence curve during the model training phase. Our SinPoint has a faster convergence speed and higher convergence
accuracy than the baseline.

epoch. Notably, the training time is reduced by 10 times compared to PointAugment, 6 times compared to SageMix, and 2
times compared to PointWOLF.

Table 13. Comparisons of the training efficiency on ModelNet40 using PointNet.

Method PointAugment SageMix PointWOLF SinPoint (Ours)

OA (%) 74.4 79.5 78.7 82.6
Time (sec) 84 51 15 8

Qualitative results of SinPoint. In Figure 9, we give a visualization of more augmented samples. In Figure 10, we present
an augmented sample visualization comparison between SinPoint-SSF and SinPoint-MSF.

Qualitative results compare SinPoint with PointWOLF. We compare our SinPoint with PointWOLF in geometric diversity
and topological consistency of point clouds. As can be seen from Figure 11, our SinPoint is entirely superior to PointWOLF
and does not require AugTune (Kim et al., 2021). The results generated by our SinPoint are more in line with the real world.
On the contrary, many of the results generated by PointWOLF are out of the reality.

E.4. Discussion and Future Work

In the future, we will apply SinPoint to more tasks, such as feature space augmentation, few-shot learning (Liu et al.,
2019; Qi et al., 2017a), semantic segmentation (Chen et al., 2019; Xu et al., 2021c; Wang et al., 2019a), object detection
(Taha et al., 2020; Zhao et al., 2021; Sugimura et al., 2020), point cloud registration (Wu et al., 2024), etc. It is worth
noting, however, that different tasks require different considerations. For example, in few-shot learning, SinPoint maximizes
the diversity of training data when samples are extremely scarce. For object detection, SinPoint can generate richer 3D
transformations for various object instances in a 3D scene, and so on. Therefore, SinPoint will be easily extended to other
tasks.
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Figure 9. Augmented point clouds using SinPoint. In each row, the left-most sample is the original, and the remaining samples are its
transformed results.

Figure 10. Visualization comparison of our SinPoint. The left is SinPoint-SSF, right is SinPoint-MSF. SinPoint-MSF can produce varying
degrees of local deformation in different regions.

F. Compare to Other Methods
F.1. Conventional Data Augmentation

A Conventional Data Augmentation (CDA) (Qi et al., 2017a;b; Wang et al., 2019b) for point clouds applies a global
similarity transformation (e.g., scaling, rotation, and translation) and point-wise jittering. Given a set of points P = {pi|i =
1, 2, ..., N}, where N represents the number of points in the Euclidean space (x, y, z). The augmented point cloud P

′
is

given as follows:

P
′
= SRP +B. (31)

where S > 0 is a scaling factor, R is a 3D rotation matrix, and B ∈ RN×3 is a translation matrix with global translation
and point-wise jittering. Typically, R is an extrinsic rotation parameterized by a uniformly drawn Euler angle for the
up-axis orientation. Scaling and translation factors are uniformly drawn from an interval, and point-wise jittering vectors are
sampled from a truncated Gaussian distribution.

Obviously, when B does not exist, CDA is a rigid transformation, and when B exists, CDA is simply a similarity
transformation with jitter. Thus, CDA cannot simulate diverse shapes and deformable objects, and the enhanced sample has
poor diversity.
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F.2. Mix-Augmentation

Several works (Chen et al., 2020; Lee et al., 2021) tried to leverage the Mixup in point cloud. PointMixup linearly interpolates
two point clouds by

P
′
= {λpαi + (1− λ)pβϕ∗(i)}

n
i , y

′
= λyα + (1− λ)yβ . (32)

ϕ∗ = argmin
ϕ∈Φ

n∑
i=1

∥pαi + pβϕ(i)∥2 (33)

where P t = {pt1, ..., ptn} is the set of points with t ∈ {α, β}, n is the number of points, and ϕ∗ : {1, ..., n} → {1, ..., n}
is the optimal bijective assignment between two point clouds. In RSMix (Lee et al., 2021), they generate an augmented
sample by merging the subsets of two objects, defined as P

′
= (Pα − Sα)∪Sβ→α, where St⊂P t t is the rigid subset and

Sβ→α denotes Sβ translated to the center of Sα. SageMix sequentially selects the query point based on the saliency scores
to improve the above method.

Although these methods have shown that Mixup is effective for point clouds, some limitations have remained unresolved:
loss of original structures, discontinuity at the boundary, and loss of discriminative regions. Therefore, although the method
based on mixup can increase the diversity of samples by mixup different samples, it destroys the point cloud structure.

F.3. Self-Augmentation

A representative method is PointWOLF. PointWOLF generates deformation for point clouds by a convex combination of
multiple transformations with smoothly varying weights. PointWOLF first selects several anchor points and locates random
local transformations (e.g., similarity transformations) at the anchor points. Based on the distance from a point in the input
to the anchor points, PointWOLF differentially applies the local transformations. The smoothly varying weights based on
the distance to the anchor points allow spatially continuous augmentation and generate realistic samples. Given an anchor
point pAj ∈ PA. the local transformation for an input point pAj ∈ Pi can be written as:

pji = SjRj(pi − pAj ) +Bj + pAj . (34)

where Rj , Sj and Bj are rotation matrix, scaling matrix and translation vector bj respectively which specifically correspond
to pAj . S is a diagonal matrix with three positive real values, i.e., S = diag(sx, sy, sz) to allow different scaling factors for
different axes.

Due to the local rotation and translation, the local separation from the main body will cause the topological structure of the
point cloud to change, so PointWOLF is not a homeomorphism and cannot guarantee the topological consistency.

Meanwhile, AugTune is also required due to the poor performance of the PointWOLF direct transform. For N points and
M anchor points, the time complexity of PointWOLF is O(MN) +O(N). However, our SinPoint can produce realistic
augmented data without interpolation, and our SinPoint time complexity is only O(N) or O(MN), which can reduce the
amount of computation.

F.4. Limitations

Since SinPoint uses homeomorphism computing to augment the point cloud, additional computational effort is required,
which is consistent with the framework limitations of all data augmentation. Although we demonstrated that our method
can be applied to point cloud classification and part segmentation, other tasks have not yet been investigated using our
method, such as scene segmentation and object detection of point cloud datasets of indoor and outdoor. However, because
our framework has topological consistency and label consistency, we believe our framework can be extended to different
tasks. These are left for future work.
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Figure 11. Visualization comparison of our SinPoint with PointWOLF. The top original point cloud, each shape left is SinPoint, right is
PointWOLF. The samples generated by our SinPoint are more diverse and realistic.
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