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ABSTRACT

The success of supervised learning hinges on the assumption that the training
and test data come from the same underlying distribution, which is often not
valid in practice due to potential distribution shift. In light of this, most existing
methods for unsupervised domain adaptation focus on achieving domain-invariant
representations and small source domain error. However, recent works have shown
that this is not sufficient to guarantee good generalization on the target domain,
and in fact, is provably detrimental under label distribution shift. Furthermore, in
many real-world applications it is often feasible to obtain a small amount of labeled
data from the target domain and use them to facilitate model training with source
data. Inspired by the above observations, in this paper we propose the first method
that aims to simultaneously learn invariant representations and risks under the
setting of semi-supervised domain adaptation (Semi-DA). First, we provide a finite
sample bound for both classification and regression problems under Semi-DA. The
bound suggests a principled way to obtain target generalization, i.e. by aligning
both the marginal and conditional distributions across domains in feature space.
Motivated by this, we then introduce the LIRR algorithm for jointly Learning
Invariant Representations and Risks. Finally, extensive experiments are conducted
on both classification and regression tasks, which demonstrates LIRR consistently
achieves state-of-the-art performance and significant improvements compared with
the methods that only learn invariant representations or invariant risks.

1 INTRODUCTION

The success of supervised learning hinges on the key assumption that test data should share the
same distribution with the training data. Unfortunately, in most of the real-world applications, data
are dynamic, meaning that there is often a distribution shift between the training (source) and test
(target) domains. To this end, unsupervised domain adaptation (UDA) methods aim to approach
this problem by adapting the predictive model from labeled source data to the unlabeled target data.
Recent advances in UDA focus on learning domain-invariant representations that also lead to a small
error on the source domain. The goal is to learn representations, along with the source predictor,
that can generalize to the target domain Long et al. (2015); Ganin et al. (2016); Tzeng et al. (2017);
Long et al. (2018); Chen et al. (2019); Zhao et al. (2018). However, recent works Zhao et al. (2019a);
Wu et al. (2019); Combes et al. (2020) have shown that the above conditions are not sufficient to
guarantee good generalizations on the target domain. In fact, if the marginal label distributions are
distinct across domains, the above method provably hurts target generalization Zhao et al. (2019a).

On the other hand, while labeled target data is usually more difficult or costly to obtain than labeled
source data, it can lead to better accuracy Hanneke & Kpotufe (2019). Furthermore, in many practical
applications, e.g., vehicle counting, object detection, speech recognition, etc., it is often feasible to
at least obtain a small amount of labeled data from the target domain so that it can facilitate model
training with source data Li & Zhang (2018); Saito et al. (2019). Motivated by these observations,
in this paper we focus on a more realistic setting of semi-supervised domain adaptation (Semi-DA).
In Semi-DA, in addition to the large amount of labeled source data, the learner also has access to
a small amount of labeled data from the target domain. Again, the learner’s goal is to produce a
hypothesis that well generalizes to the target domain, under the potential shift between the source
and the target. Semi-DA is both a more-realistic and generalizable setting that allows practitioners to
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Figure 1: Overview of the proposed model. Learning invariant representations induces indistinguish-
able representations across domains, but there can still be mis-classified samples (as stated in red
circle) due to misaligned optimal predictors. Besides learning invariant representations, LIRR model
jointly learns invariant risks to better align the optimal predictors across domains.

design better algorithms that can overcome the aforementioned limitations in UDA. The key question
in this scenario is: how to maximally exploit the labeled target data for better model training?

In this paper, we address the above question under the Semi-DA setting. In order to first understand
how performance discrepancy occurs, we derive a finite-sample generalization bound for both clas-
sification and regression problems under Semi-DA. Our theory shows that, for a given predictor,
the accuracy discrepancy between two domains depends on two terms: (i) the distance between
the marginal feature distributions, and (ii) the distance between the optimal predictors from source
and target domains. Our observation naturally leads to a principled way of learning invariant repre-
sentations (to minimize discrepancy between marginal feature distributions) and risks (to minimize
discrepancy between conditional distributions over the features) across domains simultaneously for
a better generalization on the target. In light of this, we introduce our novel bound minimization
algorithm LIRR, a model of jointly Learning Invariant Representations and Risks for such purposes.
As a comparison, existing works on focus on either learning invariant representations only Ganin
et al. (2016); Tzeng et al. (2017); Zhao et al. (2018); Chen et al. (2019), or learning invariant risks
only Arjovsky et al. (2019); Chang et al. (2020); Song et al. (2019); Steinberg et al. (2020); Krueger
et al. (2020); Zhao et al. (2020), which are not sufficient to reduce the accuracy discrepancy for good
generalizations on the target. To our best knowledge, LIRR is the first work that subtly combine above
learning objectives with sound theoretical proof and interpretation. LIRR jointly learns invariant
representations and risks, and as a result, better mitigates the accuracy discrepancy across domains.
To better understand our method, we illustrate the proposed algorithm, LIRR, in Fig. 1.

In summary, our work provides the following contributions:

• Theoretically, we provide finite-sample generalization bounds for Semi-DA on both classification
(Theorem 3.1) and regression (Theorem 3.2) problems. Our bounds inform new directions for
simultaneously optimizing both marginal and conditional distributions across domains for better
generalization on the target. To the best of our knowledge, this is the first generalization analysis
in the Semi-DA setting.

• To bridge the gap between theory and practice, we provide an information-theoretic interpretation
of our theoretical results. Based on this perspective, we propose a bound minimization algorithm,
LIRR, to jointly learn invariant representations and invariant optimal predictors, in order to mitigate
the accuracy discrepancy across domains for better generalizations.

• We systematically analyze LIRR with extensive experiments on both classification and regression
tasks. Compared with methods that only learn invariant representations or invariant risks, LIRR
demonstrates significant improvements on Semi-DA. We also analyze the adaptation performance
with increasing labeled target data, which shows LIRR even surpasses oracle method Full Target
trained only on labeled target data, suggesting that LIRR can successfully exploit the structure in
source data to improve generalization on the target domain.
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2 PRELIMINARIES

Unsupervised Domain Adaptation We use X and Y to denote the input and output space, respec-
tively. Similarly, Z stands for the representation space induced from X by a feature transformation
g : X 7→ Z . Accordingly, we use X,Y, Z to denote random variables which take values in X ,Y,Z .
Throughout the paper, a domain corresponds to a joint distribution on the input space X and output
space Y . We use DS (DT ) to denote the source (target) domain and subsequently we also use
DS(Z)(DT (Z)) to denote the marginal distributions of DS(DT ) over Z. Furthermore, let D be a
categorical variable that corresponds to the index of domain, i.e., D ∈ {S, T}. The overall sampling
process for our data can then be specified by first drawing a value of D, and then depending on the
value of D, we sample from the corresponding distribution DD. Under this setting, the probabilities
of Pr(D = T ) and Pr(D = S) then determine the relative sample sizes of our target and source data.

A hypothesis is a function h : Z → [0, 1]. The error of a hypothesis h under distribution DS and
feature transformation g is defined as: εS(h, f) := EDS

[|h(g(X))− f(X)|]. In classification setting,
in which f and h are binary classification functions, above definition reduces to the probability
that h disagrees with f under DS : EDS

[|h(g(X)) − f(X)|] = EDS
[I(h(g(X)) 6= f(X))] =

PrDS
(h(g(X)) 6= Y ). In regression, the above error is then the usual mean absolute error, i.e., the

`1 loss. As a common notation, we also use ε̂S(h) to denote the empirical risk of h on the source
domain. Similarly, εT (h) and ε̂T (h) are the true risk and the empirical risk on the target domain.

Semi-supervised Domain Adaptation Formally, in Semi-DA the learner is allowed to have access
to a small amount of labeled data in target domain DT . Let S = {(x(S)

i , y
(S)
i )}ni=1 be a set of labeled

data sampled i.i.d. from DS . Similarly, we have T = {(x(T )
j )}kj=1 as the set of target unlabeled data

sampled from DT , and we let T̃ = {(x(T̃ )
j , y

(T̃ )
j )}mj=1 be the small set of labeled data where m ≤ k.

Usually, we also have m� n, and the goal of the learner is to find a hypothesis h ∈ H by learning
from S and T so that h has a small target error εT (h).

Clearly, with the additional small amount of labeled data T̃ , one should expect a better generalization
performance than what the learner could hope to achieve in the setting of unsupervised domain
adaptation. To this end, we first state the following generalization upper bound from Zhao et al.
(2019a) in the setting of unsupervised domain adaptation:

Theorem 2.1. (Zhao et al., 2019a) Let 〈DS(X), fS〉 and 〈DT (X), fT 〉 be the source and target
domains. For any function classH ⊆ [0, 1]X , and ∀h ∈ H, the following inequality holds:

εT (h) ≤ εS(h) + dH(DS(X),DT (X)) + min{EDS
[|fS − fT |],EDT

[|fS − fT |]}. (1)

The dH(·, ·) is known as theH-divergence (Ben-David et al., 2010), a pseudo-metric parametrized by
H to measure the discrepancy between two distributions. It should be noted that the above theorem
is a population result, hence it does not give a finite sample bound. Furthermore, the setting above
is noiseless, where fS and fT correspond to the groundtruth labeling functions in source and target
domains. Nevertheless, it provides an insight on achieving domain adaptation through bounding the
error difference on source and target domains: to simultaneously minimize the distances between
feature representations and between the optimal labeling functions.

3 GENERALIZATION BOUNDS FOR SEMI-SUPERVISED DOMAIN ADAPTATION

In this section, we derive a finite-sample generalization bound for Semi-DA, where the model has
access to both a large amount of labeled data S from the source domain, and a small amount of
labeled data T̃ from the target domain. For this purpose, we first introduce the definition ofH on both
classification and regression settings, and then present our theoretical results of the generalization
upper bounds for Semi-DA.

Definition 3.1. LetH be a family of binary functions from Z to {0, 1}, and AH be the collection of
subsets of Z defined as AH := {h−1(1) | h ∈ H}. The distance between two distributions D and D′
based onH is: dH(D,D′) := supA∈AH

|PrD(A)− PrD′(A)|.
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With the definition, we have the symmetric difference w.r.t. itself as: H∆H = {h(z)⊕h′(z) | h, h′ ∈
H}, where ⊕ is the XOR operation. Next, considering that for a joint distribution D over Z × Y
in our setting, there may be noise in the conditional distribution PrD(Y | Z). It is then necessary
to define a term to measure the noise level of each domain. To this end, in classification, we define
the noise on the source domain nS := ES [|Y − fS(Z)|], where fS : Z → [0, 1] is the conditional
mean function, i.e., fS(Z) = ES [Y | Z]. Similar definition also applies to the target domain, where
we use nT to denote the noise in target. In regression, with `1 loss, we define fS : Z → R to be
the conditional median function of Pr(Y | Z), i.e. fS(Z) := infy{y ∈ R : 1/2 ≤ Pr(Y ≤ y | Z)}.
Now we are ready to state the main results in this section:
Theorem 3.1. (Classification generalization bound in Semi-DA). Let H be a hypothesis set with
functions h : Z → {0, 1} and V Cdim(H) = d, D̂S (resp. D̂T ) be the empirical distribution induced
by samples from DS (resp. DT ). For 0 < δ < 1, then w.p. at least 1− δ over the n samples in S and
m samples in T̃ , for all h ∈ H, we have:

εT (h) ≤ m

n+m
ε̂T̃ (h) +

n

n+m
ε̂S(h)

+
n

n+m

[
dH∆H(D̂S(Z), D̂T (Z)) + min{ES [|fS(Z)− fT̃ (Z)|],ET [|fS(Z)− fT̃ (Z)|]}

]
+

n

n+m
|nS + nT̃ |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.

Theorem 3.2. (Regression generalization bound in Semi-DA). Let H be a hypothesis set with
functions h : Z → [0, 1] and Pdim(H) = d, D̂S (resp. D̂T ) be the empirical distribution induced by
samples from DS (resp. DT ). Then we define H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}. For
0 < δ < 1, then w.p. at least 1− δ over the n samples in S and m samples in T̃ , for all h ∈ H, we
have:

εT (h) ≤ m

n+m
ε̂T̃ (h) +

n

n+m
ε̂S(h)

+
n

n+m

[
dH̃(D̂S(Z), D̂T (Z)) + min{ES [|fS(Z)− fT̃ (Z)|],ET [|fS(Z)− fT̃ (Z)|]}

]
+

n

n+m
|nS + nT̃ |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.

Remark It is worth pointing out that both nS and nT are constants that only depend on the
underlying source and target domains, respectively. Hence |nS + nT | essentially captures the the
amplitude of noise. The last two terms of the bound come from standard concentration analysis for
uniform convergence.

Comparing with previous results Ben-David et al. (2010); Zhao et al. (2019a); Combes et al. (2020);
Redko et al. (2017; 2019), our bounds is the first in Semi-DA literature which contain empirical error
terms from both the source and target domains and replace λ term with our fourth term, which is
tighter since λ relies the choice of the hypothesis class H. More importantly, these bounds imply
a natural and principled way for a better generalization to the target domain by learning invariant
representations and risks simultaneously. Note that this is in sharp contrast to previous works where
only invariant representations are pursued Ganin et al. (2016); Zhao et al. (2018).

4 LEARNING INVARIANT REPRESENTATIONS AND RISKS

Motivated by the generalization error bounds in Thm. 3.1 and 3.2 in Sec. 3, in this section we propose
our bound minimization algorithm LIRR. Since the last two terms reflect the noise level, complexity
measures and error caused by finite samples, respectively, we then hope to optimize the upper bound
by minimizing the first four terms. The first two terms are the convex combination of empirical
errors of h on S and T , which can be optimized with the labeled source and target data. The third
term measures the distance of representations between the source and target domains, which is a
good inspiration for us to learn the invariant representation (Ganin et al., 2016) across domains. The
fourth term corresponds to the distance of the optimal classifiers between S and T . To minimize this
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term, the model is forced to learn the data representations that induce the same optimal predictors
for both source and target domains, which exactly corresponds to the principle of invariant risk
minimization (Arjovsky et al., 2019).

4.1 INFORMATION THEORETIC INTERPRETATION

To better understand why the bound minimization strategy can solve the intrinsic problems of
Semi-DA, in what follows we provide interpretations from an information-theoretic perspective.

Invariant Representations Learning invariant representations corresponds to minimizing the third
term of the bound Thm. 3.1 and bound Thm. 3.2. We consider a feature transformation Z = g(X)
that can obtain the invariant representation Z from input X . The invariance on representations can
be described as achieving statistical independence D ⊥ Z, where D stands for the domain index.
This independence is equivalent to the minimization of mutual information I(D;Z). To see this, if
I(D;Z) = 0, then DS(Z) = DT (Z), so the third term in the bounds will vanish. Intuitively, this
means that by looking at the representations Z, even a well-trained domain classifier C(·) cannot
correctly guess the domain index D. We also call the learned feature transformation g : X → Z the
invariant encoder.

Invariant Risks Learning invariant risks corresponds to minimizing the fourth term of the bound
Thm. 3.1 and bound Thm. 3.2. Inspired by Arjovsky et al. (2019), we want to identify a subset
of feature representation through feature transformation Z = g(X) that best supports an invariant
optimal predictor for source and target domains. That means the identified feature representation
Z = g(X) can induce the same optimal predictors. This objective can be interpreted with a
conditional independence D ⊥ Y | Z, which is equivalent to minimizing I(D;Y | Z). To see this,
when the conditional mutual information of I(D;Y | Z) equal 0, the two conditional distributions
PrS(Y | Z) and PrT (Y | Z) coincide with each other. As a result, the optimal predictors become
the same across domains, so the fourth term in our bounds Thm. 3.1, Thm. 3.2 will vanish.

In summary, our learning objective on invariant representations and invariant risks are achievable
with the minimization on I(D;Z) and I(D;Y | Z). It is instructive to present the integrated form
as in Eq. 2. In words, the integrated form suggests the independence of D ⊥ (Y,Z). We regard the
independence as an intrinsic objective for domain adaptation since it implies an alignment of the joint
distributions over (Y, Z) across domains, as opposed to only the marginal distributions over Z.

I(D;Y, Z) = I(D;Z)︸ ︷︷ ︸
Invariant Representation

+ I(D;Y | Z)︸ ︷︷ ︸
Invariant Risk

(2)

4.2 ALGORITHM DESIGN

To learn invariant representations, that is achieving marginal independence of Y ⊥ Z and mini-
mization on min I(Y ;Z), we adopt the adversarial training method as in Ganin et al. (2016). The
invariant representation objective focuses on learning the feature transformation g(·) to obtain the
invariant representations from input X , which can fool the domain classifier C. This part of the
objective function can be described as in Eq. 3.

Lrep(g, C) = EX∼DS(X)[log(C(g(X)))] + EX∼DT (X)[log(1− C(g(X)))] (3)

To learn invariant risks, that is achieving conditional independence of D ⊥ Y | Z, we resort to the
conditional mutual information minimization on I(D;Y | Z), and further convert min I(D;Y | Z)
objective to the minimization of the difference between the two conditional entropies, as in Eq. 4.

min I(D;Y | Z) = minH(Y | Z)−H(Y | D,Z) (4)

The following proposition gives a variational form of the conditional entropy as infimum over a
family of cross-entropies, where L denotes the cross-entropy loss.
Proposition 4.1. Farnia & Tse (2016) H(Y | Z) = inff E[L(Y ; f(Z))].

Using the above variational form, the minimization of the conditional entropies could be transformed
to a minimization of the cross-entropy losses of domain-invariant predictor fi and domain-dependent
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predictor fd. The learning objective of the two predictors can be shown as in Eq. 5 and Eq. 6,
respectively. Notice that the domain-dependent loss Ld should be no greater than the domain-
invariant loss Li, because of the additional domain information.

min
g,fi
Li = E(x,y)∼DS ,DT̃

[L(y, fi(g(x)))] (5)

min
g,fd
Ld = Ed∼DE(x,y)∼DS ,DT̃

[L(y, fd(g(x), d))] (6)

Hence, the overall learning objective of Eq. 4 can be re-written with the following loss functions.

min
g,fi

max
fd
Lrisk = Li + λrisk(Li − Ld) (7)

The first term of Eq. 7 regards to the supervised training on source and target labeled data; the second
term regards to approaching the minimization objective of H(Y | Z) −H(Y | D,Z), as well as
achieving the predictions’ invariance between fi and fd over the same representation z. If we take
the example of binary classification of bear and dog as in Eq . 1, if fi and fd have their prediction of
bear according to a proper representation of animal’s shape, then any domain information will not
contribute to the prediction, thus the predictor captures the invariant part and achieves invariant risks.

In general, as the factorization in Eq. 2 suggests, in order to achieve improved adaptation performance
by minimizing the accuracy discrepancy between domains, we need to enforce the joint independence
of (Y, Z) ⊥ D by learning feature transformation g. To achieve it, we propose our learning objective
of LIRR as in Eq. 8, where λrisk and λrep are set to 1 by default.

min
g,fi

max
C,fd
LLIRR(g, fi, fd, C) = Lrisk(g, fi, fd) + λrepLrep(g, C) (8)

At a high level, the first term Lrisk(g, fi, fd) in the above optimization formulation stems from the
minimization of I(Y ;D | Z), and the second term Lrep(g, C) is designed to minimize I(D;Z).

5 EXPERIMENTS

In this section, we introduce the experimental settings, results analysis, and ablation study for the
experiments on both classification and regression tasks. More experimental settings, implementation
details, and results are included in the Appendix.

5.1 IMAGE CLASSIFICATION

Datasets: To verify the efficacy of LIRR on the image classification problem, we conduct experiments
on NICO (He et al., 2020), VisDA2017 (Peng et al., 2017), OfficeHome (Venkateswara et al., 2017),
and DomainNet (Peng et al., 2019) datasets. NICO is dedicatedly designed for O.O.D. (out-of-
distribution) image classification. It has two superclasses animal and vehicle, and each superclass
contains different environments1, e.g. bear on grass or snow. VisDA2017 contains Train (T) domain
and Validation (V) domain with 12 classes in each domain. Office-Home includes four domains:
RealWorld (RW), Clipart (C), Art (A), and Product (P), with 65 classes in each domain. DomainNet
is the largest domain adaptation dataset for image classification with over 600k images from 6
domains: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R), and Sketch (S), with 345
classes in each domain. For each dataset, we randomly pick source-target pairs for the evaluation. To
satisfy the setting of Semi-DA, which has access to a few labeled target samples, we randomly select
a small ratio (1% or 5%) of the target data as labeled target samples.

Baselines: We compare our approach with the following representative domain adaptation methods:
DANN (Ganin et al., 2016), CDAN (Long et al., 2018), IRM (Arjovsky et al., 2019), ADR (Saito
et al., 2017), and MME (Saito et al., 2019); S+T, a model trained with the labeled source and the few
labeled target samples without using unlabeled target samples; and Full T, a model trained with the
fully labeled target. All these methods are implemented and evaluated under the Semi-DA setting.

1For animal, we sample 8 classes from environments grass and snow as two domains. For vehicle, we sample
7 classes from environments sunset and beach as two domains.
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Table 1: Accuracy (%) comparison (higher means better) on NICO, OfficeHome, DomainNet, and
VisDA2017 with 1% (above) and 5% (below) labeled target data (mean ± std).

1% labeled target NICO Animal NICO Traffic OfficeHome Domainnet VisDA2017
Method Grass to Snow Snow to Grass Sunset to Beach Beach to Sunset Art to Real Real to Prod. Prod. to Clip. Real to Clip. Sketch to Real Clip. to Sketch Train to Val.

S+T 70.06±2.14 80.08±1.21 71.37±1.54 70.07±1.28 69.20±0.15 74.63±0.13 48.65±0.12 48.37±0.08 57.44±0.07 44.16±0.05 76.17±0.15
DANN 83.80±1.73 81.57±1.51 72.69±1.35 72.03±1.05 72.20±0.23 78.13±0.26 52.47±0.21 51.53±0.19 60.23±0.15 46.36±0.15 78.91±0.25
CDAN 82.33±0.59 78.25±0.74 75.53±0.55 74.31±0.47 72.98±0.33 79.15±0.31 53.80±0.33 50.67±0.25 60.53±0.23 44.66±0.22 80.23±0.41
ADR 73.06±1.20 76.74±0.89 72.85±0.95 69.47±0.81 70.55±0.27 76.62±0.28 49.47±0.31 49.94±0.21 59.63±0.22 44.73±0.21 80.40±0.36
IRM 78.55±0.34 78.27±0.51 64.58±2.41 69.10±2.36 71.13±0.25 77.60±0.24 51.53±0.21 51.86±0.13 58.04±0.12 46.96±0.15 80.79±0.27

MME 87.12±0.76 79.52±0.43 78.69±0.86 74.21±0.78 72.66±0.18 78.07±0.17 52.78±0.16 51.04±0.12 60.35±0.12 45.09±0.14 80.52±0.35
LIRR 86.80±0.61 84.78±0.53 71.85±0.58 72.04±0.75 73.12±0.19 79.58±0.22 54.33±0.24 52.39±0.15 61.20±0.10 47.31±0.11 81.67±0.22

LIRR+CosC 89.67±0.72 89.73±0.68 81.00±0.89 79.98±0.95 73.62±0.21 80.20±0.23 53.84±0.19 53.42±0.09 61.79±0.11 47.83±0.10 82.31±0.21
Full T 94.52±0.74 97.98±0.23 99.80±0.87 97.64±0.96 83.67±0.12 91.42±0.05 78.27±0.23 72.40±0.05 77.11±0.07 62.66±0.07 89.56±0.14

5% labeled target NICO Animal NICO Traffic OfficeHome Domainnet VisDA2017
Method Grass to Snow Snow to Grass Sunset to Beach Beach to Sunset Art to Real Real to Prod. Prod. to Clip. Real to Clip. Sketch to Real Clip. to Sketch Train to Val.

S+T 75.83±1.89 83.38±1.23 86.45±1.08 86.13±0.87 72.10±0.13 78.84±0.12 54.51±0.10 59.80±0.13 66.14±0.11 51.71±0.09 82.87±0.12
DANN 76.13±0.73 84.61±1.21 84.13±1.20 87.50±1.09 75.47±0.22 80.41±0.21 59.37±0.20 61.31±0.14 68.21±0.20 52.78±0.22 83.95±0.10
CDAN 82.33±0.59 83.08±2.13 86.97±0.47 87.50±0.56 74.92±0.29 80.57±0.33 59.14±0.31 62.18±0.22 68.49±0.19 53.77±0.21 83.31±0.32
ADR 80.36±0.31 80.97±0.98 84.50±0.91 75.29±0.87 75.47±0.27 79.27±0.26 58.24±0.27 61.22±0.38 67.96±0.37 53.19±0.32 83.57±0.43
IRM 81.57±1.01 84.29±1.10 85.71±2.20 83.61±2.17 74.71±0.21 79.67±0.25 58.98±0.22 60.69±0.30 67.81±0.28 52.31±0.25 82.62±0.29

MME 87.80±0.87 85.50±0.95 92.02±0.85 90.76±0.81 75.24±0.22 82.45±0.18 61.75±0.19 62.31±0.11 69.02±0.18 53.88±0.14 84.12±0.22
LIRR 85.90±0.98 85.24±0.73 90.77±0.42 88.90±0.39 76.14±0.18 83.64±0.21 62.61±0.17 62.74±0.21 69.35±0.13 54.05±0.17 84.47±0.19

LIRR+CosC 88.97±0.45 88.22±0.55 92.70±0.87 91.50±1.05 76.63±0.19 83.45±0.22 62.84±0.23 63.03±0.17 69.52±0.09 54.44±0.12 85.06±0.17
Full T 94.52±0.74 97.98±0.23 99.80±0.87 97.64±0.96 83.67±0.12 91.42±0.05 78.27±0.23 72.40±0.05 77.11±0.07 62.66±0.07 89.56±0.14

Table 2: Mean absolute error (MAE, lower means better) comparison on Citycam with 1% and 5%
labeled target data (mean ± std). The best is emphasized in bold.

Method 253 to 398 170 to 398 511 to 398
1% 5% 1% 5% 1% 5%

S+T 3.20±0.03 2.42±0.02 3.12±0.02 2.07±0.01 3.45±0.02 2.82±0.04
ADDA 3.13±0.01 2.34±0.03 3.05±0.03 2.05±0.01 2.87±0.03 2.45±0.02
DANN 3.08±0.02 2.38±0.02 3.01±0.04 2.01±0.02 2.95±0.03 2.41±0.04
IRM 3.11±0.02 2.27±0.03 2.91±0.02 2.02±0.01 2.89±0.05 2.33±0.03
LIRR 2.96±0.02 2.13±0.01 2.84±0.01 1.98±0.02 2.80±0.03 2.25±0.01
Full T 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01

5.2 TRAFFIC COUNTING REGRESSION

Datasets: To verify the efficacy of LIRR on the regression problem, we conduct experiments on
WebCamT dataset (Zhang et al., 2017) for the Traffic Counting Regression task. WebCamT has
60,000 traffic video frames annotated with vehicle bounding boxes and counts, collected from 16
surveillance cameras with different locations and recording time. We pick three source-target pairs
with different visual similarities: 253→398, 170→398, 511→398 (digit denotes camera ID).

Baselines: The baseline models for this task are generally aligned with our classification experiments
except the methods that can not be applied to the regression task (e.g. MME, ADR, and CDAN).
Thus, for the traffic counting regression task, we compare with the baseline methods: ADDA (Tzeng
et al., 2017), DANN, IRM, S+T, and FullT.

5.3 EXPERIMENTAL RESULTS ANALYSIS

The classification results are shown in Table 1 with 1% and 5% labeled target data. LIRR outper-
forms the baselines on all the five adaptation datasets, which consistently indicates its effectiveness.
As our learning objective suggests, LIRR can be viewed as achieving D ⊥ (Y,Z), which combines
the benefits of achieving D ⊥ Y and D ⊥ Y | Z. In contrast, DANN, CDAN, and ADDA can be
viewed as only achieving D ⊥ Z or its variant form; and IRM can be viewed as an approximation to
achieve D ⊥ Y | Z using gradient penalty. LIRR outperforms all these methods on different datasets
with 1% or 5% labeled target data, demonstrating simultaneously learning invariant representations
and risks achieves better generalization for domain adaptation than only learning one of them. Such
results are consistent with our theoretical analysis and algorithm design objective. Besides, when
applying LIRR along with the cosine classifier (CosC) module, which is also used in MME, the
performance further outperforms MME by a larger margin.

The traffic counting regression results are shown in Table 2 with 1% and 5% labeled target data.
The superiority of LIRR over baseline methods is supported by its lowest MAE on all the settings.
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Figure 2: Performance comparison with increasing number of labeled target data, from Domain Art
to RealWorld on Officehome dataset. X axis: the ratio of labeled target data; Y axis: accuracy.

DANN and ADDA are the representative methods of learning invariant representations, while IRM
is the representative method of learning invariant risks. Both DANN, ADDA, and IRM achieve
lower error than S+T, which means learning invariant representations or invariant risks can benefit
Semi-DA to some extent on the regression task. Similar with the observations from the classification
experiments, LIRR outperforms both DANN, ADDA, and IRM, demonstrating simultaneously
learning invariant representations and risks achieves better adaptation than only aligning one of them.

5.4 ABLATION STUDY

Comparisons with optimizing single invariant objective. As pointed out in Sec. 5.3, LIRR is
simultaneously learning invariant representations and risks, while DANN, CDAN, ADDA can be
viewed as only achieving invariant representations or its variant forms, and IRM is an approximation
to solely achieve invariant risks. From the results on both classification and regression tasks, we can
further acknowledge the importance of simultaneously optimizing these two invariant items together.
As shown in Table 1 and 2, all the methods that only minimize one single invariant objective perform
worse than LIRR, indicating our method is effective and consistent to the theoretical results.

Increasing proportions of labeled target data. Revisiting Thm. 3.1 and Thm. 3.2, we know that as
the proportion of the labeled target data rises, the upper bound of εT (h) gets tighter. Accordingly,
the margin between LIRR and other methods becomes larger, as shown in Fig. 2. Another riveting
observation from Fig. 2 is, LIRR and its variant LIRR+CosC even achieve better performance than
the oracle by large margin with 25% or 30% labeled target data. Stunning but plausible, with source
and a few labeled target data, LIRR can learn more robust and generalized representations and achieve
better performance on the target, comparing with the model trained by the fully labeled target data.

Cosine Classifier. As introduced in Saito et al. (2019), cosine classifier is proved to be helpful for
improving the model’s performance on Semi-DA. As shown in Table. 1, the same phenomenon can
be found when comparing the performance of LIRR and LIRR+CosC. For almost all the cases, LIRR
plus cosine classifier module achieves higher accuracy than LIRR alone.

6 RELATED WORK

Domain Adaptation Most existing research on domain adaptation focuses on the unsupervised
setting, i.e. the data from target domain are fully unlabeled. Recent deep unsupervised domain
adaptation (UDA) methods usually employ a conjoined architecture with two streams to represent the
models for the source and target domains, respectively (Zhuo et al., 2017). Besides the task loss on
the labeled source domain, another alignment loss is designed to align the source and target domains,
such as discrepancy loss (Long et al., 2015; Sun et al., 2016; Zhuo et al., 2017; Adel et al., 2017;
Kang et al., 2019; Chen et al., 2020), adversarial loss (Bousmalis et al., 2017; Tzeng et al., 2017;
Shrivastava et al., 2017; Russo et al., 2018; Zhao et al., 2019b), and self-supervision loss (Ghifary
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et al., 2015; 2016; Bousmalis et al., 2016; Carlucci et al., 2019; Feng et al., 2019; Kim et al., 2020;
Mei et al., 2020). Semi-DA deals with the domain adaptation problem where some target labels are
available (Donahue et al., 2013; Li et al., 2014; Yao et al., 2015; Ao et al., 2017). Saito et al. (2019)
empirically observed that UDA methods often fail in improving accuracy in Semi-DA and proposed a
min-max Entropy approach that adversarially optimizes an adaptive few-shot model. Different from
these works, our proposed method aims to align both the marginal feature distributions as well as the
conditional distributions of the label over the features, which can arguably overcome the limitations
that exist in UDA methods that only align feature distributions (Zhao et al., 2019a; Wu et al., 2019).

Invariant Risk Minimization In a seminal work, Arjovsky et al. (2019) consider the question that
data are collected from multiple envrionments with different distributions where spurious correlations
are due to dataset biases. This part of spurious correlation will confuse model to build predictions
on unrelated correlations (Lake et al., 2017; Janzing & Scholkopf, 2010; Schölkopf et al., 2012)
rather than true causal relations. IRM (Arjovsky et al., 2019) estimates invariant and causal variables
from multiple environments by regularizing on predictors to find data represenation matching for all
environments. Chang et al. (2020) extends IRM to neural predictions and employ the environment
aware predictor to learn a rationale feature encoder. As a comparison, in this work we provably show
that IRM is not sufficient to ensure reduced accuracy discrepancy across domains, and we propose to
align the marginal features as well simultaneously.

7 CONCLUSION

Compared with UDA, the setting of semi-DA is more realistic and has broader practical applications.
In this paper we propose finite-sample generalization bounds for both classification and regression
problems under Semi-DA. Our results shed new light on Semi-DA by suggesting a principled
way of simultaneously learning invariant representations and risks across domains, leading to the
bound minimization algorithm - LIRR. Extensive experiments on real-world datasets, including both
image classification and traffic counting tasks, demonstrate the effectiveness of LIRR as well as its
consistency to our theoretical results.
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A PROOF

In this section, we provide a detailed proof of Thm. 3.1 and Thm. 3.2 in sequence.

A.1 PROOF OF CLASSIFICATION BOUND

Before we reach the proof to the main theorem, we first prove the following lemmas for each theorem.
With the notations introduced in Sec.3, we introduce the following lemmas that will be used in
proving the main theorem:
Lemma A.1. [Blitzer et al. (2008)] Let h ∈ H := {h : Z → {0, 1}}, where V Cdim(H) = d, and
for any distribution DS(Z), DT (Z) over Z , then

|εS(h)− εT (h)| ≤ dH∆H(DS(Z),DT (Z))

Lemma A.2. Let h ∈ H := {h : Z → {0, 1}}, where V Cdim(H) = d, and for any distribution
DS(Z),DT (Z) overZ . Let the noises on the source and target are defined as nS := ES [|Y −fS(Z)|]
and nT := ET [|Y − fT (Z)|], where f : Z → [0, 1] is the conditional mean function, i.e., f(Z) =
E[Y |Z] then we have:∣∣εS(h)− εT (h)

∣∣ ≤ |nS + nT |+ dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

Proof. To begin with, we first show that for the source domain, εS(h) cannot be too large if h is
close to the optimal classifier fS on source domain for ∀h ∈ H:

|εS(h)− ES [|h(Z)− fS(Z)|]| =
∣∣ES [|h(Z)− Y |]− ES [|h(Z)− fS(Z)|]

∣∣
≤ ES

[∣∣|h(Z)− Y | − |fS(Z)− h(Z)|
∣∣]

≤ ES [|Y − fS(Z)|]
= nS .

Similarly, we also have an analogous inequality hold on the target domain:
|εT (h)− ET [|h(Z)− fT (Z)|]| ≤ nT .

Combining both inequalities above, yields:
εS(h) ∈ [ES [|h(Z)− fS(Z)|]− nS ,ES [|h(Z)− fS(Z)|] + nS ],

−εT (h) ∈ [−ET [|h(Z)− fT (Z)|]− nT ,−ET [|h(Z)− fT (Z)|] + nT ].

Hence, ∣∣εS(h)− εT (h)
∣∣ ≤ |nS + nT |+

∣∣ES [|h(Z)− fS(Z)|]− ET [|h(Z)− fT (Z)|]
∣∣.

Now to simplify the notation, for e ∈ {S, T}, define εe(h, h′) = Ee[|h(Z)− h′(Z)|], so that∣∣ES [|h(Z)− fS(Z)|]− ET [|h(Z)− fT (Z)|]
∣∣ =

∣∣εS(h, fS)− εT (fT , h)
∣∣.

To bound
∣∣εS(h, fS)− εT (fT , h)

∣∣, on one hand, we have:∣∣εS(h, fS)− εT (fT , h)
∣∣ =

∣∣εS(h, fS)− εS(h, fT ) + εS(h, fT )− εT (fT , h)
∣∣

≤
∣∣εS(h, fS)− εS(h, fT )

∣∣+
∣∣εS(h, fT )− εT (fT , h)

∣∣
≤ ES [|fS(Z)− fT (Z)|] +

∣∣εS(h, fT )− εT (fT , h)
∣∣

From A.1, we have:
≤ ES [|fS(Z)− fT (Z)|] + dH∆H(DS(Z),DT (Z)).

Similarly, by the same trick of subtracting and adding back εT (h, fS) above, the following inequality
also holds:∣∣εS(h, fS)− εT (fT , h)

∣∣ ≤ ET [|fS(Z)− fT (Z)|] + dH∆H(DS(Z),DT (Z)).

Combine all the inequalities above, we know that:∣∣εS(h)− εT (h)
∣∣ ≤ |nS + nT |+ dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
�
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Lemma A.3. [Mohri et al. (2018), Corollary 3.19] Let h ∈ H := {h : Z → {0, 1}}, where
V Cdim(H) = d. Then ∀h ∈ H,∀δ > 0, w.p.b. at least 1 − δ over the choice of a sample size m
and natural exponential e, the following inequality holds:

ε(h) ≤ ε̂(h) +

√
2d

m
log

em

d
+

√
1

2m
log

1

δ
.

Lemma A.4. Let h ∈ H := {h : Z → {0, 1}}, where V Cdim(H) = d. Then ∀h ∈ H,∀δ > 0,
then w.p.b. at least 1− δ over the choice of a sample size m and natural exponential e, the following
inequality holds:

εT (h) ≤ ε̂S(h) + dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ

Proof. Invoking the upper bound in A.2, we have w.p.b at least 1− δ:

εT (h) ≤ εS(h) + dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
+ |nS + nT |

≤ ε̂S(h) + dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ

�

Theorem A.1. Let h ∈ H := {h : Z → {0, 1}}, where V Cdim(H) = d. For 0 < δ < 1, then
w.p.b. at least 1− δ over the draw of samples S and T , for all h ∈ H, we have:

εT (h) ≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m
|nS + nT |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.

Proof. Having A.3, A.4, we can use a union bound to combine them with coefficients m/(n+m)
and n/(n+m) respectively, we have:

εT (h) ≤ m

n+m

(
ε̂T (h) +

√
2d

m
log

em

d
+

√
1

2m
log

1

δ

)
+

n

n+m
(ε̂S(h) + dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m

(
|nS + nT |+

√
2d

n
log

en

d
+

√
1

2n
log

1

δ

)
.

From Cauchy-Schwartz inequality, we obtain

εT (h) ≤ m

n+m

(
ε̂T (h) +

√
4d

m
log

em

d
+

1

m
log

1

δ

)
+

n

n+m
(ε̂S(h) + dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m

(
|nS + nT |+

√
4d

n
log

en

d
+

1

n
log

1

δ

)
.
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As m� n and applying Cauchy-Schwartz inequality one more time, we have

≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m

(
|nS + nT |+

√
8d

m
log

em

d
+

2

m
log

1

δ
+

8d

n
log

en

d
+

2

n
log

1

δ

)
.

≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m
(|nS + nT |) +O(

√
(

1

m
+

1

n
)log

1

δ
+
d

m
log

m

d
+
d

n
log

n

d
)

�

A.2 PROOF OF REGRESSION BOUND

For regression generalization bound, we follow the proof strategy in previous section, but with slight
change of definitions. We let H = {h : Z → [0, 1]} be a set of bounded real-valued functions
from the input space Z to [0, 1]. We use Pdim(H) to denote the pseudo-dimension of H, and let
Pdim(H) = d. We first prove the following lemmas that will be used in proving the main theorem:
Lemma A.5. (Zhao et al., 2018) For h, h′ ∈ H := {h : Z → [0, 1]}, where Pdim(H) = d, and for
any distribution DS(Z), DT (Z) over Z ,

|εS(h, h′)− εT (h, h′)| ≤ dH̃(DS(Z),DT (Z))

where H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}.
Lemma A.6. For h, h′ ∈ H := {h : Z → [0, 1]}, where Pdim(H) = d, and for any distribution
DS(Z), DT (Z) over Z , we define H̃ := {I|h(x)−h′(x)|>t := h, h′ ∈ H, 0 ≤ t ≤ 1}. Then ∀h ∈ H,
the following inequality holds:∣∣εS(h)− εT (h)

∣∣ ≤ |nS + nT |+ dH̃(DT (Z),DS(Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
Lemma A.7. Thm.11.8 (Mohri et al., 2018) LetH be the set of real-valued function from Z to [0, 1].
Assume that Pdim(H) = d. Then ∀h ∈ H,∀δ > 0, with probability at least 1− δ over the choice
of a sample size m and natural exponential e, the following inequality holds:

ε(h) ≤ ε̂(h) +

√
2d

m
log

em

d
+

√
1

2m
log

1

δ
.

Lemma A.8. Let H be a set of real-valued functions from Z to [0, 1] with Pdim(H) = d, and
H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}. For 0 < δ < 1, then w.p.b. at least 1 − δ over the
draw of samples S and T , for all h ∈ H, we have:

εT (h) ≤ ε̂S(h) + dH̃(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ

Proof. Invoking the upper bound in A.6 and A.7, we have w.p.b at least 1− δ:

εT (h) ≤ ε̂S(h) + dH̃(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
+ |nS + nT |

≤ ε̂S(h) + dH̃(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ

�
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Theorem A.2. Let H be a set of real-valued functions from Z to [0, 1] with Pdim(H) = d, and
H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}. For 0 < δ < 1, then w.p.b. at least 1 − δ over the
draw of samples S and T , for all h ∈ H, we have:

εT (h) ≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH̃(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m
|nS + nT |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.

Proof. Having A.5, A.6, A.7, A.8, we can use a union bound to combine them with coefficients
m/(n+m) and n/(n+m) respectively, and replace the dH∆H(DS ,DT ) with dH̃(DS ,DT ) in the
proof of Thm. A.1. Obviously, we have Thm. A.2. �

B MORE EXPERIMENTAL RESULTS

B.1 HYPER-PARAMETERS

There are two fundamental part in our proposed LIRR loss. One is the invariant representation
item, the other is the invariant risk item. We use λrep and λrisk represent the weights of invariant
representation item and invariant risk item respectively. In order to explore the best trade off between
this two items, we conduct extra experiments on Art to Real scenario in OfficeHome dataset. All
other hyper-parameters settings are set as same as Sec. 5.1. The results can be found in Table. 3.
From which, we can see that the optimal performance is achieved when λrisk = 0.1 and λrep = 0.01.

Table 3: The weights trade off between invariant representation part and invariant risk part under
OfficeHome: Art to Real scenarios.(mean ± std)

λrisk
λrep 1 0.1 0.01

1 70.23±0.18 70.96±0.17 70.55±0.18
0.1 71.20±0.14 72.66±0.16 72.31±0.19
0.01 72.65±0.15 73.12±0.19 72.97±0.20

B.2 IMPLEMENTATION DETAILS

For image classification task: we use ResNet34 as backbone networks. We adopt SGD with learning
rate of 1e-3, momentum of 0.9 and weight decay factor of 5e-4. We decay the learning rate with a
multiplier 0.1 when training process reach three quarters of the total iterations. The batch size is set
as 128 for VisDA2017 and Domainnet, 64 for officehome. For adversarial training, we use gradient
reversal layer (GRL) to flip gradient in the backpropagation between feature encoder g(·) and domain
discriminator C(·) to obtain domain-invariant representation w.r.t. source labeled data and target
unlabeled data. For min-max training objective in Eq. (8), we implement it with the difference on
two losses , L(y, h(z)) and L(y, h(z, d)). h(z) is realized by a common predictor which only takes
feature z as input. h(z, d) indicates an additional predictor which takes the combination of feature z
and domain index d, e.g. we concatenate original feature z with an additional full 0 (or 1) channel
to represent source(or target) domain. It’s worth noting that according to Saito et al. (2019), the
utilization of entropy minimization hurts the performance. Thus, we implement the CDAN method
without entropy minimization. Our results are all obtained without heavy engineering tricks. All code
is implemented in Pytorch and will be made available upon acceptance.

For traffic counting regression task: we use VGG16 as encoder and FCN8s (Shelhamer et al.,
2017) as decoder. The model will output a density map as the regression result for input images. The
optimizing goal is a joint loss including both the euclidean loss between the groundtruth density map
and the predicted one, and the mean absolute counting error loss between the total predicted count
and groundtruth count. We use mean absolute error (MAE) metric for evaluation, which measure the
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absolute difference between the output count and the ground-truth count. We adopt Adam optimizer
with learning rate set to 1e-6. The batch size is set as 24.

B.3 VISUALIZATION

Origin Source+Target DANN IRM LIRR(Ours)

Figure 3: Grad-CAM (Selvaraju et al., 2017) results of different model, LIRR appropriately captures
the invariant part of the same object in different domains, e.g. the shape of horse and husky leads to
invariant prediction across snow and grass domain.

Grad-CAM Results on NICO dataset In order to vividly showcase the learned feature represen-
tation which supports the invariant risks across domains. We employ Grad-CAM (Selvaraju et al.,
2017) to visualize the most influential part in prediction in Fig 3.

Traffic Counting Examples Visualization Fig. 4 visualizes the counting results of different algo-
rithms on Camera 511 to 398 scenario, WebCamT. The red line represents the LIRR method we
proposed while the black line represents the gt count. It’s rather clear to see that LIRR have a better
ability of cross domain regression fitting than other methods, especially the area within the green
bounding box with dot lines.

C MORE RELATED WORK

Transferability Transferability of deep networks has been researched in the field of transfer
learning (Yosinski et al., 2014), which is normally performed by taking a standard neural architecture
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Camera 511

Camera 398

Figure 4: The line chart of the regression results of different DA methods on Camera 511 to 398,
WebCamT.

along with its pretrained weights on large-scale datasets such as ImageNet, and then fine-tuning the
weights on the target task. This method offers little benefit to large-scale tasks but greatly improve
the expressive ability of the model on small data sets with light weighted model (Raghu et al., 2019).
Work (Yosinski et al., 2014) shows an decreasing trend of transferability when going deeper into the
deep network. This phenomenon has also been applied in applications such as (Long et al., 2015),
which adapts the network to the target domain with multiple layers within the backbone network.
Some works (Li et al., 2019; Liu et al., 2019b;a) in few-shot learning utilize features of multiple
appended layers to handle the hierarchy of classes.
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