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Abstract
The prevalence and importance of algorithmic
two-sided marketplaces has drawn attention to
the issue of fairness in such settings. Algorith-
mic decisions are used in assigning students to
schools, users to advertisers, and applicants to job
interviews. These decisions should heed the pref-
erences of individuals, and simultaneously be fair
with respect to their merits (synonymous with fit,
future performance, or need). Merits conditioned
on observable features are always uncertain, a
fact that is exacerbated by the widespread use of
machine learning algorithms to infer merit from
the observables. As our key contribution, we care-
fully axiomatize a notion of individual fairness in
the two-sided marketplace setting which respects
the uncertainty in the merits; indeed, it simul-
taneously recognizes uncertainty as the primary
potential cause of unfairness and an approach to
address it. We design a linear programming frame-
work to find fair utility-maximizing distributions
over allocations, and we show that the linear pro-
gram is robust to perturbations in the estimated
parameters of the uncertain merit distributions,
a key property in combining the approach with
machine learning techniques.

1. Introduction
Systems based on algorithms and machine learning are in-
creasingly used to guide or outright make decisions which
strongly impact human lives; thus it is imperative to take
fairness into account when designing such systems. Notions
of fairness in computer science can be classified into those
that try to capture fairness towards a group (Hardt et al.,
2016; Kleinberg et al., 2017; Kearns et al., 2018; Hébert-
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Johnson et al., 2018) vs. those that try to be fair to each
individual (Dwork et al., 2012; Kim et al., 2018; 2020). In
our work, we focus on the latter notion. The most widely
studied notion of individual fairness is due to the seminal
work of Dwork et al. (2012): it assumes that a metric space
on observable features of individuals captures similarity,
and requires that outcomes of a resource allocation mech-
anism satisfy a certain Lipschitz continuity condition with
respect to the given metric. Intuitively, this ensures that
individuals who are similar according to the metric will be
treated similarly by the mechanism.

We consider a setting in which individuals have preferences
over the outcomes of the resource allocation mechanism, fo-
cusing on the important setting of two-sided markets. Appli-
cations of this setting abound: matching students to schools,
job fair participants to interviews, doctors to hospitals, pa-
tients to treatments, drivers to passengers in ride hailing,
or advertisers to ad slots/users in online advertising (Roth,
1986; Abdulkadiroğlu and Sönmez, 2003; Roth et al., 2007;
Bronfman et al., 2015; Mehta et al., 2013), to name a few.
In all these settings, the individuals (students, doctors) can
communicate preferences over the resources (schools, hos-
pitals), and also have observable features which may (par-
tially) reveal their qualifications or merit for the different
resources. Merit is broadly construed and can be defined as
a myriad of things: the true capabilities of a job candidate,
the potential relevance of a doctor’s interests when matching
with a residency program, a patient’s need for treatment, or
the fit of a student applying for public high schools. The
goal of our work is to develop a framework for reasoning
about fairness in such settings, as well as an algorithm which
assigns individuals to resources in a way that is fair with
respect to their merit, but also takes individual preferences
into account. In addition, the algorithm should attempt to
maximize the overall utility of the system (according to
problem-dependent notions of overall utility, e.g., social
welfare/revenue), while respecting fairness constraints.

Reconciling individual preferences with the traditional no-
tion of individual fairness (IF) has proven to be difficult.
The most relevant approach is that of Kim et al. (2020),
who propose preference-informed individual fairness (PIIF),
which requires that allocations be individually fair but also
allows for deviations aligned with preferences of the users.
However, there is a key difference between allowing for
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deviations in line with user preferences and requiring a
stronger notion of fairness in the presence of preferences.
As an example, consider the case of matching two applicants
A and B to jobs X and Y . Suppose A and B have simi-
lar qualifications, but A strictly prefers X over Y , and B
strictly prefers Y over X . In this setting, it is clear that we
should assign A to X and B to Y : both A and B are equally
qualified, and they can both receive their top choice. Fur-
thermore, doing so does not even come at a cost to X and Y
since A and B are essentially indistinguishable in terms of
merit. Nonetheless, PIIF allows the following (randomized)
allocation: assign A to either X and Y by flipping a coin,
and assign B to the remaining job. This allocation is individ-
ually fair (since both A and B have identical distributions
over outcomes); by extension, it is also PIIF.

We believe that fundamentally, the central axiom of indi-
vidual fairness (“individuals with similar features must be
treated similarly”) is incompatible with individual prefer-
ences (“if individuals have different preferences, each can
get their top choice”). This tension disappears when instead
of viewing qualifications as necessitating similar treatment,
we view them as entitlements to desirable outcomes. These
entitlements should depend not only on the individuals’ ab-
solute qualifications and preferences in a vacuum, but their
qualifications and preferences in the context of all other
individuals and resources. We regard this as the contextual
entitlement of an individual to obtain their desired outcome.

To define the appropriate notion of contextual entitlement
and ascertain stronger fairness guarantees than applying IF
or PIIF directly, we build on the recent work of Singh et al.
(2021), who question the Lipschitz continuity requirement
on the algorithm’s allocation imposed by individual fairness.
They argue that Lipschitz continuity should not be treated
as a first-order desideratum (optimized directly over), but
rather as a derived consequence of the uncertainty involved
in estimating an individual’s true merit based on their ob-
served features. Specifically, their central thesis is that merit
is never perfectly captured by observable features; there-
fore, the role of observable features is to induce a posterior
joint merit distribution over individuals. We note that in
numerous contemporary matching markets, ML algorithms
are being used to infer the merits or relevance of the in-
dividuals to the resources. For example, ML algorithms
are pervasively used in internet advertising to determine
the relevance of an advertiser to an ad slot/user (McMahan
et al., 2013; LinkedIn, 2023; Bogen et al., 2023) and are in-
creasingly common in recruiting platforms to determine the
suitability of a candidate for a job (Schumann et al., 2020).
The outputs of these algorithms are inherently uncertain; in
fact, many ML algorithms output probability estimates, and
many others can be modified to do so (Smith, 2013).

Treating uncertainty as the keystone of fairness, Singh et al.

(2021) argue that the intuitive reason why similar individu-
als should be treated similarly (the requirement of individual
fairness) is that similar observable features give rise to simi-
lar posterior distributions over merits. Using this intuition,
they derive a notion of fairness which states that when each
individual has higher merit with roughly equal probability,
each should be treated better with roughly equal probability.
More generally, the work of Singh et al. (2021) considers
the setting of choosing a ranking of individuals, e.g., rank-
ing search results on an e-commerce site. Their approach
can be viewed as defining a notion of entitlement of a seller
to be displayed prominently in that setting.

Contributions. In this work, we build on the work of
Singh et al. (2021) to derive suitable notions of contextual
entitlement of an individual to get their desired outcome in
bipartite matching with individual preferences. Our primary
contribution is the definition (in Section 2) of the framework
of uncertainty, and the axiomatization of a suitable notion
of individual fairness with preferences due to and under
uncertainty. Prior work appeared to struggle to reconcile
individual preferences with fairness even in this basic set-
ting, and we demonstrate that a focus on uncertainty and
merits resolves this issue while paving a path forward for
approaching fairness in more general allocation problems
widely studied in the context of ML.

Our technical contributions (detailed in Section 4) are to
explore the resulting fairness/utility trade-offs in the set-
ting of two-sided matchings, rather than merely rankings
(which were examined in Singh et al. (2021)). We present
an algorithm whose output is a probabilistic matching of
the individuals to resources (see Figure 1). When the princi-
pal’s utility can be expressed as a sum of the utilities of the
matches between individuals and resources, we show that
the principal’s optimization problem can be cast as a linear
program (LP). Our fairness framework enables efficient al-
gorithms for satisfying fairness while still maximizing the
overall utility of the system, and also allows for tradeoffs
between utility and fairness. Our primary technical contribu-
tion is to show that small errors in the principal’s estimates
of the entitlements only lead to a small loss in utility and
fairness; as a result, even when entitlements are estimated
using samples, the number of samples required to ensure a
utility/fairness loss of at most a (1 − ϵ) factor grows only
polynomially in 1/ϵ. Our contributions offer a new lens for
considering tradeoffs between a principal’s desiderata and
fairness, and thus open avenues for future work (Section 6).

2. Preliminaries
2.1. The Setting and Fairness Principles

There are n individuals (such as students, doctors, patients)
X and n resources (such as jobs, residency positions, hospi-
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Figure 1. A visual overview of our setup, using matching students and jobs as an example. Each job has an ML algorithm or domain
expert with access to observed features (a) for each student, and from those constructs a distribution Γ (b) which is an estimate of the merit
or fit for the job/student pair. Importantly, these estimates could be based on different factors for different jobs (see heterogeneity of merit
distribution for student x2). Student preferences (not pictured) and Γ are given to the algorithm as input. The algorithm seeks to output a
distribution over matchings which is “fair” (c) w.r.t. what each student is contextually entitled to, while simultaneously considering the
preferences of all students and the overall utility of the solution.

tal beds) Y . Each individual is to be matched to exactly one
resource; we discuss generalizations in Appendix F. Each
individual x has a (total) preference ranking over resources,
captured by the bijection rx : Y → [n]. Thus, r−1

x (k) is the
kth choice of individual x; in particular, r−1

x (1) is the top
choice of x. These rankings are communicated to the algo-
rithm by the individuals, and thus treated as deterministic.

In addition, individuals have observed features, such as
GPA, performance on standardized tests, performance in
job interviews, medical tests, documentation of needs, etc.
These observed features reveal (partial) information about
the merits of the individuals for the resources. The merit of
individual x ∈ X for resource y ∈ Y is denoted by vx,y , and
V = (vx,y)x∈X ,y∈Y is the matrix of all merits. We assume
that the merits are unknown, but are drawn from a known
distribution Γ; this distribution is estimated by experts or
an ML algorithm based on the individuals’ observable at-
tributes. We assume that ties in merit have probability 0, i.e.,
for any y and x ̸= x′, the event vx,y = vx′,y has probability
0.1 We make no assumptions about Γ; e.g. we allow arbi-
trary correlations between the vx,y values. For the entirety
of this paper, the observable attributes are fixed, so we will
just focus on the known distribution Γ. Our model follows
Singh et al. (2021); it ascribes no semantics or meaning to
the observed features, aside from inducing a distribution.
In particular, we do not assume that the observed features
are numeric (e.g., they may be verbal summaries of a job
interview or a written personal statement), or that a metric
can be defined over them.

Although there is uncertainty in the merits of the individuals,
a mechanism designer, or the principal, should still strive

1This condition states that no two individuals ever have the
exact same merit for any resource. This is ensured with probability
1 for example if each entry has the tiniest amount of independent
noise drawn from a continuous distribution. Note that we are
assuming this only for the individuals’ merits, not their observable
features. For the latter, we may well be in a situation where only
students’ GPAs are known, and several have identical GPAs.

to ensure that individuals receive “good” or fair outcomes.
While our ultimate goal is to obtain a suitable definition of
fairness under uncertainty, we begin with an axiom for deter-
ministic fairness in matching, i.e., under absolute certainty:

Axiom 1 (Fairness of a Matching with Certain Merits). As-
sume that all merits vx,y are perfectly known, and that there
are no ties, i.e., vx,y ̸= vx′,y for all resources y and all
x ̸= x′. Let M : X → Y be a matching (bijection) from
individuals to resources. We say that M is fair towards
individual x if for all resources y, vM−1(y),y < vx,y implies
that rx(y) > rx(M(x)). In words, if resource y goes to an
individual with less merit than x, then x obtains a resource
she prefers over y. (Otherwise, y would go to a less quali-
fied individual, while a more qualified individual would be
worse off.) M is fair if it is fair towards all individuals x.

Axiom 1 expresses an extreme notion of meritocracy. It
articulates that if all merits were indeed known, then the
resources should always go to more qualified individuals if
they desire them. Such an extreme meritocratic approach
may be startling, and appear unfair. However, notice that
the axiom is fully predicated on the assumption that merits
are perfectly known.

In reality, as articulated above, merits will be only imper-
fectly predicted by observable features, and the resulting
uncertainty about which individual has higher merit should
be seen as the true force towards more equal treatment. Do-
ing so avoids unprincipled decisions about how similarly
individuals should be treated based on “small” or “medium”
differences in merit, and in effect implies that merits are
only used ordinally.

As discussed in depth in Section 3, any allocation rule that
aims to treat similar individuals “similarly” must randomize
the outcomes. The key question is how to derive the prob-
abilities in a principled way from a normative axiom. We
base our approach on the axiom that individuals should not
be punished for the mechanism’s uncertainty in the merits.
This is captured formally by the following lifting axiom.
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Axiom 2 (Lifting Axiom). Consider a setting of decision
making under uncertainty (not necessarily matching), in
which all relevant merits V are drawn jointly from a known
distribution Γ. Let Adet : V 7→ z ∈ Z be a fair determinis-
tic algorithm mapping the merits V to a corresponding out-
come z, satisfying a suitable notion of deterministic fairness.
Let s1, s2, . . . , sk : Z → R

≥0 be statistics on the outcomes
which are deemed relevant for fairness. Then, a randomized
algorithm (i.e., a map which takes as input a distribution
over merits Γ and outputs a distribution over the outcome
space Z) is ϕ-fair (for some fairness parameter ϕ ∈ [0, 1])
if it satisfies Ez∼Arand [sj(z)] ≥ ϕ · EV∼Γ [sj(Adet(V ))] for
all statistics j.

Axiom 2 requires some “unpacking” and justification. It
considers as a baseline a hypothetical world in which a
fair deterministic algorithm is run after the random merits
have been drawn and fully revealed. Doing so results in a
distribution over outcomes z, where the randomness is the
result of random merits. The outcome statistics sj are the
quantities which the mechanism cares about; in the case of
matching, these will be each individual x’s probability of
obtaining one of her top k outcomes, for each k ∈ [n]. Our
lifting axiom, with the fairness relaxation parameter ϕ set to
1, then states that just because the randomized mechanism
does not have access to the true merits, it should not give an
individual a worse outcome by any statistic than if it did have
access to the true merits (and ran the baseline deterministic
algorithm Adet). Or, stated differently, uncertainty about
merits should not be a reason to discriminate against any
individual with respect to any statistic of interest.

Remark 3. The key difference between Adet and Arand is
that the input to Adet is a matrix of deterministic merits V
(for example, the fully known merits of job applicants for
different companies), and the output of Adet is a determinis-
tic outcome z (a matching between jobs and applicants). In
contrast, the input to Arand is a distribution over merits for
each applicant for each job Γ (which models inherent uncer-
tainty in estimating the value of applicants), and the output
of Arand may be randomized over outcomes (a distribution
over matchings of applicants and jobs).

The choice of statistics sj captures the desired notion of
fairness. Our mathematical formulation, treating the ex-
pectations as lower bounds, implicitly captures that larger
values are better or more fair. Apart from this, we place no
restriction on the sj . In principle, sj could even completely
omit the outcomes of some of the individuals, though the
most natural approach in a symmetric setting is to apply the
same statistics to the outcomes of all individuals. Consid-
ering our approach for general environments, the statistics
should be chosen by domain experts, and auditable as quan-
titative expressions of normative criteria of desired fairness.

As in Singh et al. (2021), we consider a relaxed notion of

fairness, which quantifies the degree to which a principal
may be allowed to deviate from full fairness. Such a relaxed
notion is useful to study the tradeoff between fairness to-
wards the individuals and maximizing some other notion
of utility for a principal (such as the principal’s revenue or
some global societal goal). The parameter ϕ captures the
extent to which fairness is desired, with ϕ = 1 being full
fairness, and ϕ = 0 leaving the principal unconstrained.

We remark that the fairness notion/axioms of Singh et al.
(2021) for ranking under uncertainty are a special case of
our definitions when all individuals have the same rank-
ing rx = rx′ over resources, so that there is an objective
best (most desired) resource, second-best, etc. Singh et al.
(2021) required that each individual obtain a choice in the
(common) top k with probability at least equal to having
merit in the top k. This requirement was stated somewhat ad
hoc, and we believe that Axiom 2 articulates a more general
principle from which their requirement can be derived.

2.2. The Principal’s Utility

In addition to the criterion of fairness towards the individ-
uals, we also consider the principal’s utility. This utility
may or may not be aligned with the individuals’ preferences
or their merits for the resources. We write µx,y for the
utility the principal derives from giving resource y to indi-
vidual x. Thus, the principal’s utility from a matching M
is U(M) =

∑
x µx,M(x). If the principal is trying to maxi-

mize social welfare of the allocation to resources, i.e., the
sums of merits of everyone for the resource they obtain, then
a natural choice is µx,y = EV∼Γ [vx,y]; however, we allow
generic µx,y. For most of our results, we will assume that
µx,y ≥ 0 for all x, y. This is solely because multiplicative
approximation (of utility) — the most natural and widely
used approach — becomes meaningless or impossible when
the objective function could be positive or negative.

A principal constrained by fairness desiderata will face a
tradeoff between his utility and the fairness towards individ-
uals. We now capture the principal’s optimization problem
of maximizing his utility under a given fairness requirement:

Definition 4 (Utility maximizing ϕ-fair matching). Given
a desired fairness level ϕ, the principal seeks a random-
ized allocation algorithm Arand maximizing U(Arand) :=∑

x,y µx,y ·PM∼Arand [M(x) = y], subject to the constraint
that Arand is ϕ-fair, i.e., satisfies Axiom 2.

Note that by linearity, the principal’s utility can be fully
expressed in terms of the marginal probabilities with which
each individual is assigned each resource. Thus, if P =
(px,y)x,y is a doubly stochastic2 matrix with px,y repre-

2Recall that a matrix is doubly stochastic if all entries are in
[0, 1] and each row and column sums to 1.
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senting the probability that individual x is matched with
resource y, we also write U(P ) =

∑
x,y µx,y · px,y for the

principal’s expected utility under the marginal probabili-
ties P . The Birkhoff von Neumann (BvN) decomposition
(Birkhoff, 1946) gives a constructive and efficient way to
decompose any doubly stochastic matrix into a convex com-
bination of permutation matrices (i.e., matchings), so the
desired distribution over matchings can indeed be efficiently
obtained from P .

2.3. Characterization of Fairness via Stability

In order to apply Axiom 2 to the case of matching under
uncertainty, we require the fairness notion of Axiom 1 for
the deterministic algorithm Adet. Our first observation is
that fairness is equivalent to stability when the merits are
fully known.

Proposition 5. Let V be a matrix of merits without ties. For
each resource y, let r′y be a ranking of all individuals in
order of decreasing merits of each individual for y. Then, a
matching M is fair according to Axiom 1 iff M is a stable
matching with respect to the rankings (rx) and (r′y).

Proof. We show that M is unfair towards x at resource y if
and only if (x, y) is a blocking pair. Then, fairness towards
all individuals at all resources is equivalent to M being
stable. By Axiom 1, M is unfair towards x at resource
y if vM−1(y),y < vx,y and rx(y) < rx(M(x)). The first
condition is equivalent, by definition of r′y, to r′y(x) <
r′y(M

−1(y)). This in turn is equivalent, by definition, to
(x, y) forming an unstable pair under the rankings.

To capture the notion of fairness under a randomized al-
location algorithm, fix an individual x ∈ X and k ∈
{1, . . . , n}. For a matching M , we define the fairness statis-
tic sx,k(M) = 1[rx(M(x)) ≤ k], i.e., the sx,k are indicator
functions of whether individual x obtained one of her top
k choices. These statistics have the following useful prop-
erties: (1) together, they precisely determine the matching
M (because each x is matched to the unique position in her
ranking satisfying sx,k(M) > sx,k−1(M)); (2) each agent’s
utility is (weakly) monotone in each statistic. Property (1)
ensures that, in a sense, we capture all information that can
be captured; and property (2) ensures that defining fairness
by requiring larger values for statistics is meaningful.

Our goal is to design an algorithm Arand which takes as
input Γ and generates a ϕ-fair distribution over match-
ings. Using our lifting Axiom 2, we obtain the follow-
ing equivalent definition of fairness of a randomized al-
location algorithm under uncertainty which we will use
throughout. To express the definition concisely, we write
ℓx,k := PV∼Γ,Mdet=Adet(V )[rx(Mdet(x)) ≤ k] for the prob-
ability that x gets her kth or higher-ranked resource under

Γ and when the deterministic algorithm Adet chooses the
stable matching Mdet that is optimal for the individuals.
Definition 6. A distribution over matchings Arand is ϕ-fair
if for all x ∈ X , k ∈ [n], we have that

P
M∼Arand

[rx(M(x)) ≤ k] ≥ ϕ · ℓx,k. (1)

For the definition, we make a normative decision to choose
the stable matching which is (simultaneously) optimal for
all individuals (as opposed to, say, the resources according
to the rankings r′y , or optimal for neither). This is achieved
by letting Adet be individual-proposing Gale-Shapley, and is
the most stringent fairness requirement, as it gives all indi-
viduals the highest possible rank of any fair allocation. One
could study trade-offs within our lifted uncertainty frame-
work (Axiom 2) with respect to other matchings/choices of
Adet, which would be more lenient.

3. Discussion and Related Work
Given that our key contribution is to articulate a formal
framework for reasoning about fairness in allocation prob-
lems, before proceeding to technical results, here, we dis-
cuss various modeling choices and their underlying implicit
or explicit normative principles, as well as limitations im-
posed by our framework. Many of the issues we discuss
here have been discussed by Singh et al. (2021) as well.

3.1. Observables and Merit

An extremely important aspect of our framework is the dis-
tinction between observable features and merits of individ-
uals. Observable features, as discussed previously, encom-
pass items such as GPA, verbal summaries of interviews,
application materials, scores on standardized exams, etc. In
contrast, merit is a rather amorphous notion, capturing a
mixture of qualification (for jobs) or need (for resources).
The units in which it may be measured, or the specific no-
tion, may be difficult to articulate. For example, for the
scenario of hiring, should merit be the immediate readi-
ness of an applicant, the performance after one year, after
five years, or some combination thereof? For access to a
life-saving drug or medical treatment, should merit be an
estimated probability of dying without it or should it take
into account other health conditions, expected remaining
lifespan, etc.?

The fact that merit is conceived as an abstract notion also
allows the principal to incorporate risk aversion, or — con-
versely — risk seeking behavior. For example, if a job only
requires basic competency, then merit may be defined as the
probability of exceeding such a minimal competency level.
Conversely, if only exceptional performance is valued, then
the probability of being exceptional may be a suitable notion
of merit. By modifying the specific definition of merit, the
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principal can control how he prioritizes the value of “risky”
candidates who are, for example, exceptionally qualified
with low probability and average otherwise.

The amorphous nature of merit may appear to be a drawback
of our approach, since any utility one may derive is con-
tingent upon defining a suitable and useful notion of merit.
However, we believe that it is, in fact, a feature. Any discus-
sion of fairness must be underpinned by an understanding
of how deserving individuals are of which resources. The
notion of merit serves as a clean abstraction for articulat-
ing this entitlement. Formulating an appropriate notion of
merit should fall to domain experts, and the role of computer
science within this context should be to help the principal
achieve fairness with respect to the proposed merit notions.

3.2. Merit Distributions

The discussion of merit above, and the examples we gave,
should make it clear that meaningful notions of merit are
rarely if ever observable. For example, performance on a
job after one year may be somewhat predicted by observ-
able attributes, but will also be determined to a large extent
by random future events. Thus, our second key modeling
assumption is that the observable features of all individuals
only give a distribution over their merits for the resources,
rather than deterministic values.

The allocations produced by mechanisms under our frame-
work will only be as fair as allowed by the distributions.
If the distributions do not capture actual merit based on
observables, a mechanism that is “fair” with respect to the
assumed distributions will fail to be so in a meaningful
sense. Thus, in addition to defining a suitable notion of
merit, domain experts (or ML-based predictors) will also
be needed to articulate what the observable features reveal
about an individual’s merits for all resources.

3.3. The Principal’s Utility

Our approach can be applied to any utility function for the
principal which can be expressed in terms of utilities for
individual resource assignments. (See a discussion of the
difficulties with a generalization beyond this setting in Ap-
pendix F.) This includes settings in which the principal’s
utility may be well aligned with the individuals’ preferences
(e.g. when the principal derives utility whenever an individ-
ual is matched to their top choice). We remark that such
settings are in a sense “easier”, in that the lack of conflict
between the principal’s and individuals’ utilities leaves the
principal less constrained in terms of optimization.

3.4. Randomization

Our model treats uncertainty of merits as a first-order fea-
ture/concern, but also “fights fire with fire”: our algorithmic

approach heavily relies on randomizing the allocation of
resources to individuals. In general, explicitly randomized
allocations are not as widely used in real-world settings
(outside of gambling) as deterministic ones. They do seem
to be accepted more readily when applied to repeated low-
stakes settings than for rare or single-shot high-stakes ones.
Two plausible explanations suggest themselves: (1) individ-
uals may not trust the principal’s claim to randomize, and
suspect that the outcome may be rigged. (2) In repeated
settings, the actual average allocation will usually be close
to the expectation, resulting in fairness not only ex ante,
but also ex post. Given the relatively lower adoption of ran-
domization in practice (especially in high-stakes settings), a
natural question is whether guarantees for approaches uti-
lizing forms of individual fairness (including ours) can be
obtained without randomization.

We argue that in general, this is impossible: while random-
ization of outcomes may appear undesirable, it is unavoid-
able when any similarity-based notion of individual fairness
is to be achieved. This can be seen in two contexts. First, if
there are two similar individuals, both preferring the same
resource, any deterministic allocation would leave one agent
always with the less desirable resource; this would constitute
very dissimilar treatment. Even in the absence of resource
constraints, similar issues will arise. Consider two very
different individuals who should be treated differently (e.g.,
one should definitely be given a loan, while the other should
not). Now, following a standard proof technique, consider a
sequence of individuals “interpolating” between the two, so
that any two adjacent individuals in the sequence are similar.
If allocations are made deterministically, there must be at
least one adjacent pair in the sequence such that one is deter-
ministically allocated, while the other goes deterministically
unallocated. This would violate similar treatment of similar
individuals.

Naturally, whether in a particular context, randomization
is an acceptable approach is beyond the purview of tech-
nical work. Instead, it should be decided by the domain
expert seeking to achieve fairness, after articulating in what
sense fairness is desired. The concrete contribution of our
work is to articulate a more fundamental underpinning of
quantitative randomization decisions when similarity-based
individual fairness is indeed desired.

3.5. Related Work

We give a brief description of the most relevant related work
here, and leave the rest to Appendix A. Our fairness frame-
work, as previously mentioned, is built by generalizing the
uncertainty framework of Singh et al. (2021) to matching.
Singh et al. introduce the concept of working with the merit
distribution Γ and comparing individuals by the probability
that one is more qualified than another. They propose an LP
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framework for finding approximately fair and utility max-
imizing randomized rankings, and also show the method
is practical by fielding it in a real-world conference. We
remark that the proof of Prop. 4.4 in Singh et al. (2021) (anal-
ogous to our Theorem 10) contains a mistake that appears
to be unfixable. Thus, an important part of our contribution
is not only generalizing their result to matchings, but also
obtaining a correct and tight proof even for the restricted
ranking setting.

Most similar to our setting is the work of Karni et al. (2022),
focusing on producing stable matchings which also satisfy
the PIIF notion of Kim et al. (2020). Recall that PIIF is
based on the concept of IF (Dwork et al., 2012), but criti-
cally allows for deviations away from IF if these deviations
align with an individual’s preferences. As discussed in
Section 1, while PIIF is a natural generalization of IF in
non-resource-constrained settings (like classification), the
guarantees it provides deteriorate substantially under con-
strained resources. This leads to two major differences
between our work and that of Karni et al. (2022). The
most important is that our method requires fairness with
respect to a stronger baseline (namely, individual-proposing
Gale-Shapley), while PIIF based approaches like Karni et al.
(2022) allow for these solutions plus many other, less fair
ones which potentially include worse outcomes for indi-
viduals. The second difference is that Karni et al. (2022)
work in the more difficult setting of simultaneously guar-
anteeing PIIF and an appropriate generalization of stability.
Indeed, they must restrict discussion to PIIF with proto-
metrics (where all distances between pairs of individuals are
either 0 or 1), and extending results beyond this setting runs
into difficult technical challenges and impossibility results.
In contrast, we (1) do not consider stability guarantees of
our final solution3; and (2) believe that our framework of
contextual entitlement more naturally captures desiderata
surrounding preferences and qualifications than PIIF.

Very recent work of Høgsgaard et al. (2023) considers the-
oretical guarantees of mixing fair and utility maximizing
mechanisms more generally (but does not consider general
user preferences). Their approach could potentially be used
to give utility guarantees on the (suboptimal) Thompson
sampling approach of Singh et al. (2021). In our work, we
derive guarantees based on our specific problem formula-
tion, and therefore expect better approximation results.

4. Technical Results
We defer most proofs to Appendix D. First, we note that
achieving a fair solution is straightforward by generalizing
the Thompson Sampling approach of Singh et al. (2021).

3While our method indeed utilizes Gale-Shapley as a subrou-
tine, we do not have any stability guarantees for our final matching
distribution.

Proposition 7 (Thompson Sampling Matching). Let Athom

be the following randomized algorithm. First, sample a
single merit profile V ∼ Γ; define rankings r′y over indi-
viduals by the resources according to Proposition 5, i.e.,
by decreasing merit. Then run the Gale-Shapley algorithm
using rankings (rx) and (r′y), with individuals proposing,
and output the resulting matching. Athom is 1-fair.

The proof follows from (1) since Athom explicitly produces
the same distribution over matchings as defines fairness.

Building on Proposition 7, observe that as in Singh
et al. (2021), the principal can achieve ϕ-fairness with
the algorithm Amix which randomizes between his utility-
maximizing matching4 M∗ (with probability 1 − ϕ) and
a matching M obtained from Athom (with probability ϕ).
Amix is ϕ-fair because Athom is 1-fair. Furthermore, Amix
guarantees at least a 1− ϕ approximation to the optimum
utility U(M⋆) for the principal, since the optimal matching
M∗ is chosen with probability at least 1−ϕ. However, Amix
may not guarantee the optimal utility subject to the approxi-
mate fairness constraint. Indeed, this was already shown by
Singh et al. (2021) for the special case of rankings.

Our main technical contribution is therefore to derive a
utility-maximizing algorithm for the principal, in particular
in the (realistic) case that the desired fairness approximation
ℓx,k must be obtained by sampling. In Section 4.1 we show
how to efficiently find the utility-maximizing ϕ-fair solution
with an LP, under the assumption that the parameters ℓx,k
are known to the principal. Then, in Section 4.2, we demon-
strate that even when the ℓx,k must be approximated (e.g.,
by sampling), the principal can obtain near-optimal fairness
and utility by suitably modifying the LP; the proof requires
a careful perturbation analysis of the LP.

4.1. Optimal ϕ-Fair Allocations

First, we observe a fundamental difference between match-
ing and the ranking case of Singh et al.: in the matching
setting, even for ϕ = 1, the fully fair solution is not neces-
sarily unique. (See Appendix B for an example.) This is
in contrast to ranking (when all individuals have the same
preference order), where there is a unique solution.

This is good news for the principal, since, in contrast to
ranking, the principal can optimize utility by adjusting al-
locations even for the most stringent fairness requirement
of ϕ = 1. To characterize the optimal ϕ-fair solution for
the principal, we can write the following linear program
OPT-LPFair. In it, the variable px,y is the probability that
individual x is assigned resource y. The first constraint
enforces ϕ-fairness of the policy induced by P = (px,y)x,y;
the remaining constraints ensure that P is doubly stochastic.

4M∗ can be computed in polynomial time as a maximum
weighted bipartite matching with respect to the µx,y .
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max
∑

x∈X
∑

y∈Y µx,y · px,y
s.t.

∑k
i=1 px,r−1

x (i) ≥ ϕ · ℓx,k ∀x, k∑
x∈X px,y = 1 ∀y∑
y∈Y px,y = 1 ∀x

px,y ≥ 0 ∀x, y

(2)

We show a generic and straightforward way to obtain feasi-
ble solutions for OPT-LPFair (2).

Proposition 8. Assume that for each x, the entries ℓx,k form
a CDF, in the sense that 0 = ℓx,0 ≤ ℓx,1 ≤ · · · ≤ ℓx,n = 1,
and that for all y, we have

∑
x(ℓx,rx(y) − ℓx,rx(y)−1) =

1. For all x, y, define qx,y = ℓx,rx(y) − ℓx,rx(y)−1. Then,
Q = (qx,y)x,y is a feasible solution to OPT-LPFair for all
ϕ ∈ [0, 1].

Using a general LP solver for this problem may not always
be efficient, especially as the number of individuals n in-
creases. In Appendix C, we show that the optimization can
be cast as a weighted (fractional) matching problem.

4.2. Using Approximate Rank Estimates

We first show that directly substituting sampled estimates of
ℓx,k in place of the unknown ℓx,k in the LP may lead to an
unfair solution. Driven by the insight of the failure mode,
we then propose an approach for sampling, modifying and
solving an LP to avoid it (Proposition 9). We then provide an
analysis of the multiplicative5 fairness and utility guarantees
of our proposed approach (Theorem 10). Finally, we show
that the analysis of our method is tight (Proposition 11).

In order to solve OPT-LPFair, one needs access to the values
ℓx,k, which form the fairness constraints. Recall that ℓx,k is
the probability that individual x is given a resource among
her top k preferences when all merits are drawn jointly
from the distribution Γ and an individual-optimal stable
matching is computed with respect to the induced rankings.
Even when Γ is given in closed form, with independent and
simple distributions for the merits of different individuals
and resources, it is not clear how the ℓx,k can be computed
exactly; indeed, we believe that it may be #P-hard to do so.

The natural alternative is to estimate the ℓx,k by sampling
from Γ. However, doing so means that the estimates of ℓx,k
will not be equal to the true values, which in turn raises the
question of how unfair or suboptimal the solution of the LP
with perturbed right-hand side could be. Stated differently,
it might take an exorbitant number of samples (and with
it time) to obtain sufficiently accurate estimates to ensure
approximate fairness and optimality. To carry out such a

5Note that standard LP sensitivity analysis techniques (e.g.,
Cook et al. (1986); Nemhauser and Wolsey (1988)) in contrast
only yield an additive approximation on the obtained utility, and
the main challenge in the analysis is to obtain a multiplicative one.

sensitivity analysis, we begin with a proposition relating
the number of samples with the maximum additive error in
approximating the ℓx,k.
Proposition 9. Let ϵ > 0 and κ > 0 be given, and define
m(ϵ) = (κ+1)·log(2n)

2ϵ2 . Let ℓ̃x,k be obtained by sampling
merits V from Γ independently m(ϵ) times, computing the
fair matchings, and normalizing the counts of the outcomes.
With probability at least 1 − n−κ, the resulting estimated
fairness requirements ℓ̃x,k satisfy |ℓ̃x,k − ℓx,k| ≤ ϵ, simulta-
neously for all x ∈ X and k ∈ [n].

The “obvious” way of using the estimates ℓ̃x,k would be
to substitute them into OPT-LPFair in place of the unknown
ℓx,k. However, doing so may fail to satisfy any kind of
fairness guarantee. To see this, consider an individual x
who has the highest merit for her top choice resource with
some small but non-zero probability δ < 1/m (where m
is the number of samples). There is a non-trivial proba-
bility that ℓ̃x,1 is estimated to be 0, so the LP may output
a solution P with px,1 = 0, completely violating the fair-
ness requirement with respect to individual x and her top
resource. Not only could fairness be completely violated
(recall that our fairness requirement is multiplicative), but
the principal may even suffer a big loss in utility. This can
occur when µx,r−1

x (1) is very large, i.e., the principal would
derive very high utility from assigning x to her top choice
of resource. The incorrect samples in combination with a
stringent fairness requirement (such as ϕ = 1) may prevent
the LP from doing so. Notice that such a large µx,r−1

x (1)

can occur even when µx,y = E [vx,y] is the expected merit,
namely when vx,y follows a distribution that takes on an
extremely large value with very small probability.

Fundamentally, the multiplicative fairness requirement
means that the algorithm must guard against rare events
of an individual deserving a highly ranked resource. The
approach to ensure this is to allocate to each individual at
least a small probability to get high choices, just in case
the samples missed the merit values justifying this deci-
sion. More precisely, we define ℓ̂x,k := 1

nϵ+1 (ℓ̃x,k + kϵ).
Then, the sampling-based algorithm can be summarized
as follows: (1) Draw m(ϵ/2) samples from Γ to estimate
the ℓx,k as ℓ̃x,k; (2) Compute ℓ̂x,k from the ℓ̃x,k according
to ℓ̂x,k = 1

nϵ+1 (ℓ̃x,k + kϵ); (3) Solve the LP (2) with the

ℓ̂x,k in place of the ℓx,k, resulting in a marginal probabil-
ity matrix P ; and (4) Compute a Birkhoff von Neumann
decomposition of P to obtain a distribution over matchings.

Denote the resulting modified LP, with right-hand side
ℓ̂x,k by ÔPT-LPFair. Our main technical result shows that
ÔPT-LPFair is feasible and gives a good approximation to
the fairness and utility guarantees of OPT-LPFair.
Theorem 10. Let ϕ ∈ [0, 1] and ϵ > 0 be given. Assume
that the estimates ℓ̃x,k satisfy |ℓ̃x,k−ℓx,k| ≤ ϵ/2 for all x, k,
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and define ℓ̂x,k according to ℓ̂x,k = 1
nϵ+1 (ℓ̃x,k + kϵ). Then

ÔPT-LPFair is feasible. Furthermore, let P̂ be an optimal
solution for ÔPT-LPFair, and P ∗ an optimal solution for
OPT-LPFair. Then, P̂ is

(
ϕ·(1+ϵ/2)

nϵ+1

)
-fair (with respect to

the true ℓx,k) and has utility U(P̂ ) ≥ 1
ϕnϵ+1 · U(P ∗).

Theorem 10 gives the desired multiplicative approximation
on the utility obtained by the modified LP. Combining The-
orem 10 with Proposition 9, we obtain that by sampling
from Γ O(log(n)/ϵ2) times, then solving the resulting lin-
ear program ÔPT-LPFair, with high probability, the output
will be at least ϕ(1+ϵ/2)

nϵ+1 fair and approximate the principal’s
optimal utility to within a factor of 1

ϕnϵ+1 .

While our result can be considered an extension/general-
ization of Proposition 4.4 from Singh et al. (2021), several
points are worth mentioning. First, our setting is signifi-
cantly more general, and the fact that individuals do not
have identical preferences requires a much more careful
proof approach. Second, our Theorem 10 improves the ap-
proximation guarantee for the principal’s utility from 1

nϵ+1

to 1
ϕnϵ+1 . While this may appear to be a small improvement,

it is quite meaningful: in particular, for ϕ = 0, we recover
the fact that an unconstrained principal does not suffer any
utility loss from misestimating the fairness requirements
(which will not be enforced anyway). Finally, the proof of
Proposition 4.4 in Singh et al. (2021) in its current form con-
tains a serious mistake; indeed, it appears that a proof along
the lines pursued in Singh et al. (2021) cannot succeed, so
our work is the first correct proof of the claimed result.

The analysis in Theorem 10 is tight: for the given algorithm,
there are instances for which perturbed inputs lead to the
given loss in fairness and utility.

Proposition 11. There exists a fair ranking instance for
ϕ = 1 and a small perturbation for which the algorithm of
Theorem 10 only achieves a 1

nϵ+1 approximation for utility,
and another instance for which it only achieves fairness
1+ϵ/2
nϵ+1 .

5. Experiment
To evaluate how closely the practical performance aligns
with our theoretical results, and how our method compares
with prior work, we ran a simple experiment which we detail
in Appendix E. Figure 2 summarizes the main take-away:
our method enjoys sizable utility gains across different ϕ
values over a Thompson Sampling baseline.

6. Future Work
Recall that we assumed access to the merit distribution
Γ, which we treat as the underlying ground truth. A ripe
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Figure 2. ϕ vs. utility value for experiments on the Libimseti dating
dataset (Brozovsky and Petricek, 2007). Our method (blue) obtains
higher utility than the baseline Amix Thompson Sampling (orange)
everywhere except ϕ = 0 (an unconstrained principal). We obtain
a performance boost even for 1-fairness, which was not the case in
previous work (Singh et al., 2021).

avenue for future work is to consider how to actually obtain
Γ, or indeed a good enough approximation Γ̂, to run our
procedure and still obtain guarantees with respect to the
underlying ground truth.

It is also natural to apply our framework to other alloca-
tion problems, or possibly beyond. Here, the fact that our
technical results (apart from the perturbation analysis) were
extremely straightforward is very promising. For it suggests
that when viewed within the right framework, fairness re-
quirements may not pose a big obstacle, so a generalization
to more challenging settings may be within reach.

The broader point raised by our work is that fairness may
be very fruitfully modeled and analyzed by quantifying un-
certainties in the merit predictions of any ML algorithm or
domain expert. Our work clearly highlights that achieving
fairness in allocation relies on learning accurate posterior
distributions Γ from the given observable variables. It shifts
the conversation from “when should we consider individuals
similar?” to “what do observable features tell us about indi-
viduals’ merits?”, a framing that may be much more clearly
understood by domain experts, and is more amenable to stan-
dard ML approaches. Understanding the implications of this
requirement and developing domain-specific approaches to
meet it is a promising direction for future work.
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A. Extended Related Work
Two-sided Markets. Nearly all of the literature deals with the setting of fairness in one- or two-sided markets with
exact (as opposed to uncertain) preferences/utilities. Do et al. (2021) use Lorenz efficiency to create Pareto efficient
rankings, producing rankings/matchings which increase the utility of worse-off individuals. There is also work on group
fairness in bipartite matching. Panda et al. (2022) consider bipartite matching with group fairness constraints and enforce
minimum/maximum selection rates per group (quotas), but do not consider preferences of either side. They do have a
notion of individual fairness (probabilistic individual fairness), but it is still defined in terms of a distribution over group
fair deterministic matchings. Fleiner and Kamiyama (2016) work with similar desiderata but in a setting with preferences
on both sides, proving that lower quotas and stability are compatible. Similarly, using preferences, Huang et al. (2016)
define a fair bipartite matching to be one which, subject to having maximum cardinality, minimizes the number of rank-n
neighbors, then minimizes the number of rank-(n− 1) neighbors, etc. They also provide an algorithm for finding such a
(deterministic) matching. In contrast to these works, our model has uncertainty, and we provide individual-level statistical
guarantees relative to the expectation of those statistics.

In two-sided markets more generally, Su et al. (2022) study an apply-accept interaction protocol, in which individual users
are given additional autonomy over recommended content. They empirically show that individual utilities are distributed in
a more egalitarian manner if, when optimizing over preferences for individual users, the recommendation algorithm indeed
considers what other users are being recommended as well (similar to our notion of contextual entitlement). In contrast, we
treat fairness as a first-order desideratum and explicitly constrain our optimization problem to respect it.

Fair Division and Stable Matchings. The fair division and mechanism design literature (Amanatidis et al., 2022; Cole
et al., 2013) has other approaches for dealing with resource allocation; however, they typically do not consider the existence
of a classifier or underlying merit distribution Γ. In particular, we also take inspiration from works that consider an unknown
amount of good to be divided (Xue, 2018; Long et al., 2021) since they too deal with uncertainty. There is also work
approaching fairness in matching from the perspective of the fair division literature. Freeman et al. (2021) consider the
notion of “Double Envy-Freeness Up To c Matches”, which ensures that individuals are satisfied up to some number of
resources being removed from the picture. This is motivated by envy-freeness up to c goods (EFc) from the fair division
literature. Igarashi et al. (2022) investigate the interaction of envy-freeness and stability in two-sided matching markets.
These fairness notions seem generally incomparable to ours since they require looking at the potential outcome where one
resource was removed (EF1), whereas we guarantee top k outcomes with respect to some baseline.

Among the more traditional stable matching literature which considers uncertainty in inputs, Aziz et al. (2016) is most
similar to our work. They consider producing matchings which are stable when the preferences of one side are uncertain in
the sense that they are given by a distribution D over linear orderings of the other side. We instead only have access to a
distribution over merit Γ, which then induces D, the distribution over linear orderings. However, given Γ, it is not clear
that we can exactly construct D in polynomial time. Furthermore, the central question in Aziz et al. (2016) is to find a
deterministic matching which maximizes the probability of being stable for the uncertain preferences. In contrast, we are
focused on ensuring good top-k outcomes with respect to some baseline distribution over matchings, and are satisfied with
randomized outputs.

Statistical Discrimination. There is also recent work on statistical discrimination, which refers to “discrimination that
may occur due to imperfect information a decision maker may have about an individual’s qualities” (Castera et al., 2022).
This line of work is relevant to our setting since it implicitly describes situations in which individuals may have high variance
in the perceived merit (with respect to the ground truth Γ). Emelianov et al. (2020) initiate the study of candidate selection
in the setting where the algorithm only has access to noisy estimates of merit (and the true merit is sampled from normal
distributions). To make a selection, the mechanism is presented with these unbiased merit samples plus some normally
distributed noise, where the variance of the noise is group-dependent. For example, minority groups may have noise with
higher variance added to their merit estimates. Castera et al. (2022) extend this inquiry to stable matchings, where they
show that different levels of noise for different groups of individuals can adversely impact the quality of the matching of
all individuals, not just the group which the noisy estimates originated from. We view our work as complementing that of
Castera et al. (2022): instead of observing (noisy) realizations of merit through samples, we assume that the underlying
distributions over merits are known and accessible to our algorithm. Even in this full-information case (where we can view
the hidden differential variance of Emelianov et al. (2020)), it is unclear how one should design algorithmic techniques
handling distributions, or indeed what even constitutes fairness. Importantly, in contrast to Castera et al. (2022), we do not
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make any assumptions on the form of the underlying distributions (e.g., normal distributions).

Uncertainty and Fairness. More generally, some works do grapple with uncertainty and fairness from a variety of
perspectives. Kearns et al. (2017); Salem and Gupta (2020) both focus on uncertainty in fair candidate selection. The
former does so in the context of only being able to evaluate individuals within smaller subsets, and the latter in a secretary
problem with uncertainty in applicant quality which is conveyed to the mechanism through partial orders. Ghosh et al.
(2021) investigate the impact of uncertainty in demographic information and its impact on downstream fairness desiderata.

Offline and Online Fair Ranking and Matching. The extensive literature on fair ranking (Singh and Joachims, 2018;
Bower et al., 2021; Celis et al., 2020; Kletti et al., 2022b; Do and Usunier, 2022; Kletti et al., 2022a; Ai et al., 2018) has
also influenced our work and ideas; for a comprehensive treatment, see, e.g., Patro et al. (2022). Also related is literature
on ad markets and marketplaces (Celis et al., 2019; Chawla and Jagadeesan, 2022; Ilvento et al., 2020; Basu et al., 2020;
Wang and Joachims, 2021), and the growing interest in online ranking/matching markets, including fairness considerations
(Jagadeesan et al., 2021; 2022; Min et al., 2022; Do et al., 2022; Patro et al., 2020; Esmaeili et al., 2022). We focus on the
offline setting in this work.

B. An Example with Multiple 1-Fair Allocation Distributions
Here, we show that already for n = 3 individuals and resources, there are instances which not only have multiple 1-fair
distributions over matchings, but even have distributions over matchings which have different marginal probabilities for
allocating specific resources to individuals. This constitutes a stark contrast with the setting of ranking, in which there is a
unique 1-fair distribution over the marginals of rankings.

In our instance, the individuals’ preference rankings are given by the following — for example, individual 1 ranks the
resources in the order (1, 3, 2) from most to least desirable:

PX =

1 3 2
1 3 2
3 1 2

 .

The distribution of merits is given by

Γ =

0 0 1
1 1 2
2 2 0

 with probability 0.9, and

2 0 0
1 1 1
0 2 2

 with probability 0.1;

again, the rows correspond to individuals, so in the first (more likely) case, individual 1 is least meritorious for resources
1 and 2, and in the middle for resource 3. Notice that the distribution is such that there are never ties in merit for the
same resource. By inferring the corresponding rankings r′y by the resources induced from the merits, and computing the
individual-optimal stable matchings, we obtain that in the two cases, the individual-optimal stable matchings are

M1 =

0 1 0
0 0 1
1 0 0

 M2 =

1 0 0
0 1 0
0 0 1

 .

By observing the position which each individual obtains in her ranking for each of these two allocations, and taking the
convex combination, we see that the fairness requirements are captured by the following matrix:

L = (ℓx,k)x,k =

0.1 0.1 1
0 0.9 1
0.1 1 1

 .

Now, consider the alternative randomized allocation which chooses

M̃1 =

0 1 0
1 0 0
0 0 1


14
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with probability 0.9, and the matrix M2 given above with probability 0.1. Under this distribution of allocations, the
probabilities for each individual x to obtain her kth ranked choice are captured by the following matrix:

L′ = (ℓ′x,k)x,k =

0.1 0.1 1
0.9 0.9 1
1 1 1

 .

Because ℓ′x,k ≥ ℓx,k for all x and k, this distribution is 1-fair; furthermore, not only the distribution over matchings is
different, but so are the marginals. Indeed, we can generalize this example to obtain a whole family of 1-fair distributions
with distinct marginals of allocations: with probability 0.9, the individual chooses one of M1, M̃1 (choosing the former with
some probability λ ∈ [0, 1]), and with the remaining probability, the principal chooses M2.

It is also worth noting that the matrix M̃1 is not stable under the rankings r′y for either of the two possible merit profiles.
Indeed, under the first merit profile, individual 1 and resource 3 form an instability, and under the second merit profile,
individual 1 and resource 1 form an instability. This serves as a counterexample to a potential conjecture that any 1-fair
distribution over allocations must randomize over allocations which are stable for some merit profile in the support of Γ.

C. Solving OPT-LPFair with Weighted Fractional Matching
As we mentioned in Section 4, while the linear program OPT-LPFair is a natural way to capture the principal’s optimization
problem, the solution can in fact be obtained without an explicit LP solver, by noticing that the optimization problem can be
cast as a weighted (fractional) matching problem. This is not all that surprising, given that the underlying problem is to
match individuals with resources. Recall that maximum-weight matching (and more generally, circulation) problems can be
solved using combinatorial algorithms (Ahuja et al., 1993), which may provide a more efficient tailored algorithm for larger
n.

In order to show a reduction to the weighted matching problem, we interpret the probabilities px,y as fractional assignments
or flows in a circulation problem. For each resource y, there is a node u′

y, whose total demand is 1. To capture the
fairness requirements ℓx,k, for each individual x, we have n nodes ux,1, . . . , ux,n. For k < n, node ux,k has supply
ϕ · (ℓx,k − ℓx,k−1); and ux,n has supply ϕ · (ℓx,n − ℓx,n−1) + (1 − ϕ). The bipartite graph contains exactly the edges
(ux,k, u

′
y) for rx(y) ≤ k, with weights µx,y. Note that by this definition, ux,n has edges to all u′

y. The supply at ux,k is
exactly the probability with which x must be assigned a rank k or higher to ensure ϕ-fairness, but excluding the probability
with which x must be assigned a rank of k − 1 or higher. It is then straightforward (and standard) to verify that the
maximum-weight circulation with the given demands and supplies is an optimum solution to OPT-LPFair.

Indeed, we are not the first to observe the connection between this type of LP and bipartite circulations. A similar construction
was already presented in the first step of Algorithm 1 of Athanassoglou and Sethuraman (2011) in a housing allocation
problem with probabilistic inputs.

To see why the reduction is useful, recall that maximum-weight matching (and more generally, circulation) problems can be
solved using combinatorial algorithms (Ahuja et al., 1993). Therefore, combined with noting that this procedure will also
work for ÔPT-LPFair using Q̂ (defined in the proof of Theorem 10 in Section 4) instead of Q implies that if we wanted to
find a solution satisfying Theorem 10, we could just run a combinatorial algorithm (such as a min-cost max-flow) instead of
a generic LP solver.

D. Omitted Proofs from Section 4
Proposition 8. Assume that for each x, the entries ℓx,k form a CDF, in the sense that 0 = ℓx,0 ≤ ℓx,1 ≤ · · · ≤ ℓx,n = 1, and
that for all y, we have

∑
x(ℓx,rx(y)− ℓx,rx(y)−1) = 1. For all x, y, define qx,y = ℓx,rx(y)− ℓx,rx(y)−1. Then, Q = (qx,y)x,y

is a feasible solution to OPT-LPFair for all ϕ ∈ [0, 1].

Proof. For each x, the qx,y form a PDF over the resources y; this is directly seen by considering the resources in the order
in which x ranks them. This immediately implies non-negativity and stochasticity for each x (i.e., each row sums to 1).
Stochasticity for each y follows from the assumption about the sum over x. The fairness constraint, even for ϕ = 1, follows
by telescoping the sum in the first constraint of OPT-LPFair, which equals ℓx,k.
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Proposition 9. Let ϵ > 0 and κ > 0 be given, and define m(ϵ) = (κ+1)·log(2n)
2ϵ2 . Let ℓ̃x,k be obtained by sampling merits

V from Γ independently m(ϵ) times, computing the fair matchings, and normalizing the counts of the outcomes. With
probability at least 1− n−κ, the resulting estimated fairness requirements ℓ̃x,k satisfy |ℓ̃x,k − ℓx,k| ≤ ϵ, simultaneously for
all x ∈ X and k ∈ [n].

Proof. The proof is virtually identical to the proof of Proposition 4.3 of Singh et al. (2021). Fix some individual x. Notice
that qk = ℓx,k forms a CDF of the ranks of resources assigned to individual x. Let the indicator random variable Zk,j be
defined by the following process. Sample merits V ∼ Γ; this sampling is independent for different j. Define the rankings r′y
for resources as in Proposition 5, and consider the stable matching according to the rx, r

′
y that is optimal for the individuals.

Let V be the resulting stable matching. Let Zk,j = 1 iff individual x is assigned a resource she ranks kth or better in
V . Then Pr[Zj,k = 1] = qk, and further Zk = 1

m ·
∑m

j=1 Zk,j is the average of m independent Bin(qk) binary random
variables. By the DKW Inequality for the uniform convergence of the empirical CDF to the true CDF (Dvoretzky et al.,
1956), with probability at least 1 − n−κ, all ℓx,k are estimated with additive error at most ±ϵ with m = (κ+1) log(2n)

2ϵ2

samples.

Theorem 10. Let ϕ ∈ [0, 1] and ϵ > 0 be given. Assume that the estimates ℓ̃x,k satisfy |ℓ̃x,k − ℓx,k| ≤ ϵ/2 for all x, k, and
define ℓ̂x,k according to ℓ̂x,k = 1

nϵ+1 (ℓ̃x,k + kϵ). Then ÔPT-LPFair is feasible. Furthermore, let P̂ be an optimal solution

for ÔPT-LPFair, and P ∗ an optimal solution for OPT-LPFair. Then, P̂ is
(

ϕ·(1+ϵ/2)
nϵ+1

)
-fair (with respect to the true ℓx,k) and

has utility U(P̂ ) ≥ 1
ϕnϵ+1 · U(P ∗).

Proof. As a first step, we verify that ÔPT-LPFair is feasible, and show how to generically obtain a solution. With the
definition ℓ̂x,0 := 0, notice that for any fixed x, the ℓ̂x,k form a CDF. This is because the ℓ̃x,k are a CDF (and hence
monotone). Furthermore, for any resource y,∑

x

(ℓ̂x,rx(y) − ℓ̂x,rx(y)−1)

=
1

nϵ+ 1
·
∑
x

(ℓ̃x,rx(y) + ϵ− ℓ̃x,rx(y)−1)

=
1

nϵ+ 1
·

(
nϵ+

∑
x

(ℓ̃x,rx(y) − ℓ̃x,rx(y)−1)

)

=
1

nϵ+ 1
· (nϵ+ 1) = 1.

This is because the ℓ̃x,k, being obtained by a distribution over matchings, form a doubly stochastic matrix themselves. As
a result, we can apply Proposition 8 with the ℓ̂x,k in place of ℓx,k, and obtain that the solution q̂x,y := 1

nϵ+1 · (ℓ̃x,rx(y) −
ℓ̃x,rx(y)−1 + ϵ) is a feasible solution to ÔPT-LPFair.

It remains to prove fairness and utility guarantees; We begin with fairness. Let P = (px,y)x,y be a feasible solution to
ÔPT-LPFair. Consider some individual x and k ∈ {1, . . . , n}. Because P is a ϕ-fair solution of ÔPT-LPFair, it satisfies∑k

i=1 px,r−1
x (i) ≥ ϕ · ℓ̂x,k = ϕ

nϵ+1 (ℓ̃x,k + kϵ). By assumption, ℓ̃x,k ≥ ℓx,k − ϵ/2, which together with k ≥ 1 and ℓx,k ≤ 1

implies that ϕ
nϵ+1 (ℓ̃x,k + kϵ) ≥ ϕ

nϵ+1 (ℓx,k + (ϵ/2) · ℓx,k) ≥ ϕ·(1+ϵ/2)
nϵ+1 ℓx,k, so we have established

(
ϕ·(1+ϵ/2)

nϵ+1

)
-fairness.

The remainder of the proof — and most of the technical work — will be concerned with the loss in the principal’s utility.

Let P ∗ = (p∗x,y)x,y be an optimal solution to OPT-LPFair. Define the matrices Q = (qx,y)x,y, Q̂ = (q̂x,y)x,y as before as

qx,y := ℓx,rx(y) − ℓx,rx(y)−1 q̂x,y :=
1

nϵ+ 1
· (ℓ̃x,rx(y) − ℓ̃x,rx(y)−1 + ϵ).

By Proposition 8, Q constitutes a feasible solution for OPT-LPFair, and Q̂ a feasible solution for ÔPT-LPFair. We first show
that the entries of Q̂ cannot be much smaller than those of Q:

(1 + nϵ) · q̂x,y − qx,y ≥ 0 for all x, y. (3)
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To do so, we recall that by assumption of the theorem, |ℓ̃x,k − ℓx,k| ≤ ϵ/2 for all x, k, so by definition of qx,y and q̂x,y , we
have

(1 + nϵ)q̂x,rx(y) − qx,rx(y) = (ℓ̃x,k − ℓ̃x,k−1 + ϵ)− (ℓx,k − ℓx,k−1) = ϵ+ (ℓ̃x,k − ℓx,k)︸ ︷︷ ︸
≥−ϵ/2

− (ℓ̃x,k−1 − ℓx,k−1)︸ ︷︷ ︸
≤ϵ/2

≥ 0.

Now, we define the matrix

W =
ϕnϵ+ ϕ

ϕnϵ+ 1
· Q̂+

1

ϕnϵ+ 1
· P ∗ − ϕ

ϕnϵ+ 1
·Q.

Being feasible solutions to the respective LPs, Q̂, P ∗, Q are all doubly stochastic, and in particular have row and column
sums 1. Therefore, W is a linear combination of matrices with row and column sums 1, and the respective coefficients of
Q̂, P ∗, Q are ϕnϵ+ϕ

ϕnϵ+1 ,
1

ϕnϵ+1 ,
−ϕ

ϕnϵ+1 and sum up to 1. Thus, by linearity, W also has row and column sums 1.

Next, we show that the entries of W are all non-negative. Using the definition of W and (3), we can bound

wx,y =
ϕnϵ+ ϕ

ϕnϵ+ 1
· q̂x,y +

1

ϕnϵ+ 1
· p∗x,y︸ ︷︷ ︸

≥0

− ϕ

ϕnϵ+ 1
· qx,y ≥ ϕ

ϕnϵ+ 1
· ((1 + nϵ) · q̂x,y − qx,y) ≥ 0.

Thus, we have shown that W is doubly stochastic. Next, we will show that W also satisfies the fairness constraints of
ÔPT-LPFair, and is thus feasible for ÔPT-LPFair. To do so, fix an x and a k. Using the definition of W , we can write

k∑
i=1

wx,r−1
x (i) =

ϕnϵ+ ϕ

ϕnϵ+ 1︸ ︷︷ ︸
≥ϕ

·
k∑

i=1

q̂x,r−1
x (i) +

1

ϕnϵ+ 1
·

k∑
i=1

(p∗
x,r−1

x (i)
− ϕqx,r−1

x (i))︸ ︷︷ ︸
(∗)

.

We now show that the expression (∗) is non-negative. Recall that the fact that P ∗ satisfies the ϕ-fairness requirement, along
with the definition of Q (and the resulting telescoping series) implies that

k∑
i=1

p∗
x,r−1

x (i)
≥ ϕ · ℓx,k = ϕ ·

k∑
i=1

qx,r−1
x (i).

Using this non-negativity and the definition of Q̂, we obtain that

k∑
i=1

wx,r−1
x (i) ≥ ϕ ·

k∑
i=1

q̂x,r−1
x (i) = ϕ · ℓ̂x,k,

thus implying that W is a feasible solution to the approximate LP.

Given that W is a feasible solution for ÔPT-LPFair, its utility gives a lower bound on the utility of optimal solutions to
ÔPT-LPFair. We therefore complete the proof by lower-bounding the utility achieved from W .

U(W ) =
∑
x∈X

∑
y∈Y

µx,y · wx,y =
1

ϕnϵ+ 1
·
∑
x∈X

∑
y∈Y

µx,y

p∗x,y + ϕ · ((nϵ+ 1) · q̂x,y − qx,y)︸ ︷︷ ︸
≥0 by (3)

 ≥ 1

ϕnϵ+ 1
· U(P ∗).
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Proposition 11. There exists a fair ranking instance for ϕ = 1 and a small perturbation for which the algorithm of
Theorem 10 only achieves a 1

nϵ+1 approximation for utility, and another instance for which it only achieves fairness 1+ϵ/2
nϵ+1 .

Proof. We explicitly construct the true merit distributions and small adversarial perturbations, for n individuals. Our
examples in fact fit within the ranking (not just the matching) framework, in that for any given individual i, the merit for all
resources is the same. We therefore simply talk about the merit of each individual, without referencing a resource.

In the example showing tightness of the guarantee on the principal’s utility, individual 1 has merit n with probability 1− ϵ
and merit n− 1 with probability ϵ. Individual 2 has merit n− 1 with probability 1− ϵ and merit n with probability ϵ. Each
other individual i has merit n− i deterministically, i.e., with probability 1. The PDF pℓ and CDF ℓ are therefore

pℓ =

1− ϵ ϵ 0
ϵ 1− ϵ 0
0 0 In−2

 ℓ =


1− ϵ 1 1 . . . 1
ϵ 1 1 . . . 1
0 0 1 . . . 1
...

...
. . . . . .

...
0 0 . . . 0 1

 .

Here, In−2 is the n− 2× n− 2 identity matrix. According to this distribution, the ranking of individuals by merit is the
same as their ranking by index, except for some randomization between individuals 1 and 2.

Next, we define an adversarially perturbed version of the PDF and CDF as follows:

pℓ̃ =


1− ϵ/2 0 0 . . . ϵ/2
ϵ/2 1− ϵ/2 0 . . . 0
0 ϵ/2 1− ϵ/2 . . . 0
...

...
...

. . .
...

0 . . . . . . ϵ/2 1− ϵ/2

 ℓ̃ =


1− ϵ/2 1− ϵ/2 1− ϵ/2 . . . 1
ϵ/2 1 1 . . . 1
0 ϵ/2 1 . . . 1
... 0

. . . . . .
...

0 0 . . . ϵ/2 1

 .

Under this perturbed distribution, individual 1 has merit n with probability 1− ϵ/2, and otherwise has merit 0, individual 2
has merit n with probability ϵ/2, and otherwise has merit n − 1, individual 3 has merit n − 1 with probability ϵ/2, and
otherwise has merit n− 2, etc. In particular, note that the first row of ℓ̃ is 1− ϵ/2 everywhere except for the last column,
where it is 1. By inspecting the CDFs of both distributions, we see that the difference in any entry is at most ϵ/2, so these
distributions indeed satisfy the assumptions of Theorem 10.

Finally, we define the principal’s utility function: it is µx,k = 0 everywhere for all x, k except for µ1,2 = 1. That is, the
principal obtains utility only if individual 1 is ranked in exactly the second spot k = 2. (If we view the spots as jobs which
all individuals rank in the same order, this would correspond to individual 1 being a particularly good fit with job 2.)

Using the definition ℓ̂x,k = 1
nϵ+1 (ℓ̃x,k + kϵ), we can now calculate.

ℓ̂1,1 =
1

nϵ+ 1
(ℓ̃1,1 + ϵ) =

1 + ϵ/2

nϵ+ 1
ℓ̂1,2 =

1

nϵ+ 1
(ℓ̃1,2 + 2ϵ) =

1 + 3
2ϵ

nϵ+ 1
.

For ϕ = 1, in ranking, the solution is unique (see Appendix B and proof of Lemma 4.2 by (Singh et al., 2021)), and given by
the PDFs induced by the CDFs. In particular, we obtain that the probability of allocating individual 1 to slot 2 (the only
allocation resulting in any utility) is

p̂1,2 = ℓ̂1,2 − ℓ̂1,1 =
1 + 3

2ϵ− 1− 1
2ϵ

nϵ+ 1
=

ϵ

nϵ+ 1
.

However, the allocation given by the true 1-far PDF Q = pℓ has q1,2 = ϵ. Therefore, the utility under ℓ is ϵ, whereas the
utility under ℓ̂ is ϵ

nϵ+1 . This proves that the 1
nϵ+1 approximation ratio for the utility is tight.

Next, we modify the example slightly to obtain a tight example for the approximation of fairness. Here, the ground truth
is even simpler: the PDF is the identity matrix In, i.e., individual i deterministically has the i-th highest merit. We use
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the same perturbed input ℓ̃ and pℓ̃ as before. Notice that it also perturbs each value by at most ϵ/2 compared to this new
ground truth In. As we showed above, ℓ̂1,1 = 1+ϵ/2

nϵ+1 , whereas according to the ground truth, individual 1 is always the best
(and thus entitled to the top spot). Due to the uniqueness of the solution in the context of ranking for ϕ = 1, we have that
p̂1,1 = ℓ̂1,1 = 1+ϵ/2

nϵ+1 · ℓ1,1. Thus, on this example, the distribution achieves fairness no better than 1+ϵ/2
nϵ+1 , completing the

proof.

E. Experiment
To evaluate how closely the practical performance aligns with our theoretical results, and how our method compares
with prior work, we ran a simple experiment. The experiment uses a public dataset from the Czech dating site Libimseti
(Brozovsky and Petricek, 2007) which has been used in experiments in prior work on matching (e.g., Su et al. (2022)). For
each user, the dataset contains a binary attribute of their gender, as well as ratings by other users of the opposite gender, on a
scale of [1-10]. To avoid any normative connotations of the side of the market that should be treated fairly, we will refer to
the two sides as “orange” and “green” instead of gendered.

For computational reasons, our experiment uses a subset of the data consisting of the 100 highest contributing orange
and green users (those who have rated the most users of the opposite color). Based on these 200 users, we construct two
100× 100 matrices. The first, RG, has at entry RG(x, y) the rating of orange individual y by green individual x. Similarly,
RO(x, y) gives the rating of green individual y by orange individual x. We impute missing entries (i.e., when user x had not
rated user y in the true data set) in either matrix using a standard matrix completion technique (Salakhutdinov and Mnih,
2008).

In our problem setup, one side of the market has certain preferences (i.e., rankings) while the other has uncertain estimates
of the merits of the first side. To model preferences, we take as ground truth the matrix completion of RG, and use it to get a
deterministic ranking function over the entire set of orange individuals for each green individual. To model uncertainty in the
merits, we assume that the merits follow a normal distribution centered on the estimated rating: r(x, y) ∼ N (RO(x, y), σ =
3), where r(x, y) is the rating (merit) of the yth green user by the xth orange user.

We treat µx,y = E [r(y, x)] = RO(y, x) as the mean rating that green user x receives from orange user y, and our
optimization objective

∑100
x=1

∑100
y=1 µx,ypx,y therefore maximizes the expected welfare of the orange people. (Note that

the reversed index in µx,y is because in the LP (2), each variable px,y represents the probability that green person x is
matched with orange person y.) To construct the approximate RHS fairness constraints ℓ̂ in the linear program Equation (2),
we ran the Gale-Shapley algorithm 10,000 times, each time with different merits sampled from the aforementioned rating
distributions. We set ϵ = 0.01, so 10,000 samples is approximately sufficient to obtain error at most ϵ/2 by Proposition 9.

Figure 2 depicts the drop in utility across different ϕ values for the LP-based solution ÔPT-LPFair, vs. the baseline which
randomizes, with parameter ϕ, between Thompson sampling and a utility-maximizing matching.

As in (Singh et al., 2021) observe that Amix is a straight line, since, in expectation, it is just a convex combination of two
different objective values. Notice that in our setting, ÔPT-LPFair actually achieves higher utility than Thompson sampling at
ϕ = 1. This is in contrast to the setting of ranking (and the MovieLens experiments from (Singh et al., 2021), Figure 2b). It
happens because in matching, there may be different 1-fair solutions (see, e.g., Appendix B). Our experiments thus suggest
that in the context of matching, there may be a much larger margin for potential utility optimization while preserving the
same level of fairness, in particular for high values of ϕ-fairness. This is because when the preferences of individuals are not
aligned, they may be less in competition for resources.

F. Extensions
Beyond One-to-one Matchings. For ease of exposition, we assumed that |X | = |Y| = n, i.e., the number of resources
equals the number of individuals. This assumption was not crucial at all, as we now discuss. As is standard in discussing
allocation preferences, we assume that every individual x prefers being allocated to any resource y over not being allocated
at all. First, notice that Axiom 1 did not require the number of individuals and resources to be the same — it simply states
a requirement for each pair (x, y) of an individual and resource. Correspondingly, the same fairness statistics defined in
Section 2 still capture the intuitive notion of fairness, i.e., the frequencies/probabilities of individual x being allocated rank
k or higher. Consequently, Equation (1) is still a meaningful fairness requirement under uncertainty.
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The primary difference is that some individuals or resources may go unallocated, so the allocation matrices will typically
not be doubly stochastic. Also, the equivalence between fair matchings and stable matchings with respect to induced
rankings r′y by resources needs a minor adaptation. Following the standard approach in the area (see Section 1.4.1 of
(Gusfield and Irving, 1989)), we can extend the definition of stability to instances with unequal sides to allow for unmatched
individuals/resources. A standard reduction involving the introduction of additional “virtual individuals/resources” who are
ranked lowest (in arbitrary order) by everyone on the other side, and whose own rankings are irrelevant, can be used to find
stable matchings in this context.

In summary, we still obtain an equivalence between fair matchings and stable matchings, which can be combined with
Axiom 2 to obtain all relevant statistics and define a suitable linear program. The rest of the approach and analysis carry
through unchanged. The easiest way to see this is to again introduce “virtual individuals/resources” and reduce the case of
|X | ̸= |Y| to the case of |X | = |Y|, defining the principal’s utility µx,y = 0 when the individual x or resource y is virtual.
A similar approach can be taken in the setting where resources may be able to accept multiple individuals.

Beyond Linear Objectives. Another possible generalization would be to consider non-linear objective functions for the
principal. (Recall from Section 2.2 that we assumed the principal’s utility to be the sum of utilities for each match between
an individual and a resource.) For non-linear objectives, the primary problem is that the principal’s utility cannot be fully
captured by the marginal probabilities pi,j with which each resource is allocated to each individual. Therefore, it is not
clear how to formulate a tractable optimization problem in this setting. As a simple example, consider the case when the
principal’s objective is to maximize the minimum utility of any agent. When there are two agents and one desirable item, the
minimum utility will always be 0 (determined by the agent who does not receive the item). However, a fractional allocation
— captured by the LP — will consider allocating “half” of the item to each agent, obtaining positive minimum utility. While
one could still find an optimum distribution by writing an LP with one variable for each full allocation, this approach results
in an exponentially large linear program, and will thus typically not be practical or useful.
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